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Abstract: Forward logistic regression and conditional analysis have been compared to assess landslide
susceptibility across the whole territory of the Sicilian region (about 25,000 km2) using previously
existing data and a nested tiered approach. These approaches were aimed at singling out a statistical
correlation between the spatial distribution of landslides that have affected the Sicilian region in the
past, and a set of controlling factors: outcropping lithology, rainfall, landform classification, soil use,
and steepness. The landslide inventory used the proposal of building the models like the official
one obtained in the PAI (hydro geologic asset plan) project, amounting to more than 33,000 events.
The 11 types featured in PAI were grouped into 4 macro-typologies, depending on the inherent
conditions believed to generate various kinds of failures and their kinematic evolution. The study has
confirmed that it is possible to carry out a regional landslide susceptibility assessment based solely
on existing data (i.e., factor maps and the landslide archive), saving a considerable amount of time
and money. For scarp landslides, where the selected factors (steepness, landform classification, and
lithology) are more discriminate, models show excellent performance: areas under receiver operating
characteristic (ROC) (AUCs) average > 0.9, while hillslope landslide results are highly satisfactory
(average AUCs of about 0.8). The stochastic approach makes it possible to classify the Sicilian territory
depending on its propensity to landslides in order to identify those municipalities which are most
susceptible at this level of study, and are potentially worthy of more specific studies, as required by
European-level protocols.

Keywords: landslide susceptibility assessment; forward logistic regression; forward conditional
analysis; GIS; Sicily

1. Introduction

One of the most obvious effects of rapid territorial expansion in recent decades is the growing
impact that natural disasters have on man and his activities. Therefore, institutions are committed to
investing their resources in both the implementation of structural interventions to mitigate risk as well as
early warning systems, and in defining guidelines for land management and civil protection issues [1,2].
Landslides are among the major contributors to the dynamics of the morphological evolution of slopes
and occur when slope stability conditions change due to increased stress or decreased resistance along
a failure surface. A deformation occurring on a pre-existing failure surface is called re-activation,
whilst one along a new fracture plane is referred to as a neo-activation. International literature refers to
landslide susceptibility as the spatial probability for gravitational instability conditions within an area,
based on its physical-environmental conditions [3,4]. Therefore, depending on the spatial variability
of the physical-environmental features of the study area (typically, a river-basin or an administrative
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territorial unit), a landslide susceptibility map allows the units into which it is subdivided to be
differentiated, according to the higher or lower probability of a landslide occurring. Most approaches
and methods were designed to evaluate landslide susceptibility based on the identification and spatial
characterization of a set of control factors, and on quantifying the relationships between these and
an archive of past landslides. This concept is a reinterpretation of the actualism principle [5] from
a geomorphological point of view: the past and the present are the keys to the future [1,6–8]. This
principle suggests that the areas affected by landslides in the future will be those that share similar
characteristics to those already recorded in past landslides [7,8]. One of the first aspects to be faced in
planning research stages aiming to define a set of susceptibility conditions of an area is to establish the
scale and approach at which the analysis should be performed. Time- and economic resources-allowing
geostatistical approaches are often the most suitable for areas of hundreds or thousands of square
kilometers [4,9]. Landslide susceptibility assessment poses specific methodological issues when
performed for regional mapping purposes [2]. Indeed, within regional applications, overall forecasting
performance is seriously hindered by the lack of data required or the inaccuracy of these data: landslide
inventories and thematic maps of the controlling factors. Likewise, no matter what the resolution of
the processed data is, some basic issues in model building procedures, such as the modelling approach,
mapping units, landslide classification, and representation and validation strategies [1], need to be
optimized when applied to regional multi-scale assessment procedures. Thus, an expert European
landslide group has recently proposed some criteria for a multi-level method (TIER [10]) in order
to define shared approaches to landslide susceptibility mapping. Three susceptibility TIER levels
have been proposed and reference data and model building procedures have been recommended for
each one. The TIER approach is strictly dependent on the quality of the available data in landslide
inventories and on thematic maps, required for the whole European territory. This protocol consists
of three nested levels (TIER1, TIER2, and TIER3) with a gradually increasing degree of resolution
for the predictive models [10–13]. In a nested tiered approach, when the scale of work changes, the
resolution of the factors, the mapping units, as well as the complexity and the type of the techniques
used, may change too. The TIERS protocol features a high degree of objectivity and spatial and/or
time repeatability, which is why it represents an important safety benchmark for national and regional
administrations. For small-scale studies (smaller than 1:100,000), the methods recommended by the
Joint Research Centre (JRC research group) are those based on expert-driven approaches such as
conditional analysis, heuristics, and/or weighted factors. In this piece of research, we have had the
opportunity to verify and compare the use of the binary logistic regression (BLR) statistical technique
on extensive areas, in the range of tens of thousands of square kilometers, contrary to suggestions
by European Commission experts (Tier-based approach). We have then compared results with those
obtained through the conditional analysis (CA) approach and with those obtained by other authors
researching the same area [10,13,14]. Susceptibility scenarios described by the maps are also compared
and homogenized with those hazards arising from the PAI program [15], working towards a punctual
and detailed analysis of all possible discrepancies that may result. Further to validation, and once the
robustness of the scientific guidelines testing has been tested, the skills and the experience acquired
may be used as a basis for the drafting of a Sicilian municipality susceptibility map, a useful tool for
the policy-makers dealing with land management.

2. Study Area

The geological setting of Sicily (Figure 1) consists of three main structural elements [16,17]: a range
sector, running along the northern strip of the island, from the Peloritan Peaks to the Aegadian Islands,
where Triassic to Mesozoic structural–stratigraphic units, mainly characterized by carbonate (at the
base) to clayey (at the top) formations, tectonically overlap; a northwest-dipping foredeep area lying in
the mid-southern area of the Sicilian territory, consisting of Plio-Pleistocene pelagic marly limestones,
silty mudstones, and sandy clays overlying Messinian evaporites separated by the Sikan Peaks; the
Hyblean Plateau located in southeastern Sicily, made up of a Triassic-Liassic platform and scarp-basin
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carbonates overlaid by Jurassic-Eocene pelagic carbonates and Tertiary open-shelf clastic deposits;
southern and central Sicily feature Cretaceous-Lower Pleistocene clastic-terrigenous deposits and
Messinian evaporites [18].

 

2 

 

 

Figure 1. Schematic structural map of Sicily [17]. (a) The three main geological structural elements of
Sicily; (b) distribution of the main stratigraphic–structural units.

The mechanical characteristics of outcropping lithotypes are among the main geo-environmental
factors directly influencing the geomorphological stability of Sicilian slopes. Slides and flows are
mainly located where the clay continental sequences outcrop. Hard block outcrops (metamorphic and
carbonate) are affected by falls, topples, and lateral spreading. The rainfall may cause denudation
slope actions able to generate, in the presence of debris on the metamorphic units, debris flows or
debris avalanches. The triggering factors which are most likely to influence the activation of landslides
in Sicily, are, in order: rainfall, human activity, volcanic eruptions, and earthquakes. Carbonatic rocks
outcropping in the foreland sector are almost exclusively affected by falls. Both the ductile clayey
formations and the weathered top coverage of the metamorphic units may experience rapid debris
avalanche/debris flow phenomena.

The geomorphological features of the island of Sicily have been crafted by the collision of the
Eurasian and African plates acting in synergy to shape the current landscape. The topography is directly
influenced by the stratigraphic structure of the area and by the surface uplifting and subduction that
occurred during the quaternary period, influenced heavily by significant eustatic sea level variations.
The changes to Sicily’s geology through the epochs have led to a mountainous and hilly terrain.

Furthermore, the influence of medieval human civilization is still apparent in the small Sicilian
urban centers. These historic centers are often surrounded by harsh terrain, where slopes with a
gradient of 50% or more can often be seen encompassing the centers, features which would have been
favorable to the population who first settled there when defending their land. This, however, leads to
limited space and opportunity for further urban development.

The flat areas of the island, a total of just 7% of the entire territory, are represented by the alluvial
plain of Catania, the coastal plain of Licata and Gela, the coastal area of Trapanese, and that between
Syracuse and Scicli, at the foot of the Monti Iblei.

From analysis of the rainfall data of the Sicilian stations, it is possible to highlight how the rainfall
is concentrated, especially in the October–March period, though it is somewhat appreciable in the
spring (April–May) and of little importance in the summer months. The maximum and minimum
values of average annual precipitation are respectively 919 mm in the Monreale station, in the province
of Palermo, and 510.6 mm in the Agrigento station. Frequently, at the highest peaks, there is snowfall,
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of which there is no significant long-term data, due largely to the lack of a sufficient number of snow
stations. A meteoric event of considerable importance in the northern mountain ranges, in particular
for the northern slopes of the Madonie due to the presence of fog, which, in addition to integrating
normal water supplies through condensation, performs a mitigating and compensating action for
extreme climatic events, limiting precipitation and keeping temperatures lower during periods of
summer water deficit, as well as decreasing the intensity of weather events harmful to plants, such as
late frosts. As regards the thermometric data, there is an inverse trend compared with that of rainfall,
as occurs throughout the Mediterranean region. There is, in fact, a gradual increase between March
and April, and a more marked increase from May to July–August—a period in which the absolute
maximum values are reached—beyond which the temperatures gradually decrease until October, and
then drop sharply until December and touch the minimum values in January–February which is the
coldest time of the year. The highest average annual temperature is 18.8 ◦C for the Cefalù (Palermo)
station, while the lowest, 13.3 ◦C, is recorded in Petralia Sottana (Palermo). The lowest average annual
minimum temperature value (9.3 ◦C) is recorded in the Petralia Sottana station, while the highest
annual average maximum temperature value (24.1 ◦C) in the Lentini (Siracusa) and Palermo stations
(Castelnuovo Institute).

3. Data Collection and Processing

3.1. Landslide Inventory

Landslides are natural events in the evolution of a slope. They are a problem and become a
hazard and/or risk when they interact with man and the man-made environment. Landslides can be
classified according to their movement types and the nature of the displaced material type, as well
as the state, distribution, and style of their activity [8,19–21]. As raised by [22], there is a conceptual
ambiguity concerning landslides stemming from the use of the very same term (i.e., landslide) for
both the landslide deposit (displacement volume) and the movement of material on a slope or a
pre-existing landslide body [20,23]. This is in addition to general confusion originating from the
variable and complex nature of the phenomenon itself [24], due to profoundly different morphological
characteristics, behavior, activity states, and their evolution. The construction of the landslide inventory
is a fundamental and critical step towards the application of statistical models designed to estimate
the probability of new activations affecting previously uninvestigated areas. A landslide inventory
commonly represents the sum of all the events that have occurred in an area. Alterations to a slope
profile, pointing to ongoing landslides, tend, over time, to become less evident because of erosion,
new landslides, human activity, and vegetation, making the “in landslide/not in landslide” border
hard to detect with the passage of time. Generally, “newer” phenomena generated by recent heavy
rainfall or earthquakes are more easily identifiable and interpretable than more remote ones, where
diagnostic elements begin to dissolve. Certainly, there is a critical issue concerning the updating of the
landslide inventory, as the public administration lacks economic and human resources. This shows,
even more clearly, the limitations of PAI methodology in mapping areas at risk, as it leads to a zoning
system, which is not closely related to all new activations. No systematic archive of slope instability
exists for the research area of this paper. The latest archive of slope failures is the one belonging to the
PAI project, which now holds 33,094 landslides (latest update May 2016) classified into 11 different
types. The landslides that were mapped within the PAI project affect an area of approximately 1300
square kilometers, approximately 5.1% of the size of the region (Table 1; Figure 2). The landslide
archive derives from a historical inventory and territorial analysis, completed with the execution of
inspections, which began in 2003. The archive is continuously updated by reports from the following:
literature and scientific publications; studies to support urban development projects in municipalities;
regional civil protection archives; and reports from local authorities to regional and national bodies
(Civil Protection, Territory and Environment Departments) of geomorphological phenomena that have
occurred (from 1998 to today).
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Table 1. Landslide inventory, statistics, and their reclassification.

PAI
Number of

Cases

Area [m2] for a Single Landslide
Total
(km2)

Percentages SUFRA

TYPOLOGY max min mean Std. Dev. Landslide
Area

Total
Area

Number of
Cases

Area
(km2) TYPOLOGY

1. Falls/Topples 5460 1,630,259 25 15,310 1,138,586 84 6.4 0.3 5460 84 1. Scarp
Landslide

2. Rapid flows 853 1,152,779 79 15,403 48,938 13 1.0 0.1

10,202 435 2. Hillslope
landslide

4. Slides 2835 45,106 530 11,350 11,987 81 6.2 0.3

5. Complex 3076 735,524 766 50,290 114,782 215 16.5 0.8

7. Slow flow 3438 194,381 869 34,263 41,727 125 9.6 0.5

6. DPGV/Spreads 28 7,891,513 212 509,802 509,802 14 1.1 0.1 28 14 3. DPGV and
Spreads

3. Sinkhole 43 1,380,425 25 51,918 219,976 2 0.2 0.0

17,404 772 4. Others
8. Areas with

diffused landslides 2877 225,203 1482 53,560 225,203 288 22.1 1.1

9. Slowly surface
deformation 3512 124,610 605 23,534 29,059 155 11.9 0.6

10. Badlands 1266 1,625,318 3471 42,755 302,626 54 4.1 0.2

11. Caused by
accel. erosion 9706 254,775 9358 30,171 57,136 273 20.9 1.1

Total 33,094 2,699,822 1305 100.0 5.1 33,094 1305 Total

Area of Sicily 25.832 Km2
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Figure 2. PAI landslide inventory. (a) Regional distribution of landslides; (b) detail of a portion of the
territory of landslides on the hillshade grid; (c) PAI landslides on orthophotos.

The PAI archive focuses more on urban and populated areas. In this piece of research, various
models were created to record landslides affecting scarps (scarp landslides; SCR_LSN) and landslides
lying over slopes (hillslope landslides; HILL_LSN).

3.2. Modelling Approach

A predictive model must represent the response of a natural system to the trigger conditions
described by its environmental features; the response may lie in the spatial distribution of new landslides
or in the so-called prediction image. The effectiveness of the model can be measured by comparing the
final expected results (the susceptibility map) with the actual results that are directly observed (the new
landslide map). When studying the natural environment, the use of models is essential, as they allow
for a simplification of the infinite natural variables, as well as operating within an acceptable processing
time with conventional computers. Thanks to a greater exchange of information, the development of
the hardware and software component for the acquisition and processing of data, and the interaction
between different research groups, the methods for assessing susceptibility from landslides have
evolved rapidly [3,4,24–27]. In the last decade, several applications have been carried out with the
aim of comparing results from different statistical approaches, as applied to the implementation of
models of landslide susceptibility on the same area, using the same landslide inventory and the same
control factors [28–31]. Although full agreement does not exist within the scientific community as
to what the best approach to follow is, the experience gained through our previous studies tells us
which statistical techniques may be adopted from among the many available (discriminant analysis,
conditional analysis, binary logistic regression, classification, and regression trees) and which one
leads to greater performance in terms of predictive fitting, and robustness [27,32–39].

3.3. Conditional Analysis (CA)

The CA statistical approach has been widely adopted in landslide susceptibility
assessment [24,26,33,40–44]. The CA concept is simple and easily manageable in a GIS environment.
That is why it is the single most recommended method when investigating the landslide susceptibility
conditions of larger areas and at scales greater than 1:100,000.
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The CA method is based on the concept that landslide density, computed on homogenous
domains, represents the relational function between the environmental variables and the framework of
a landslide area [2,26,45].

According to the CA concept, we must compute the density of cells in an unstable area for unique
condition units (UCUs), defined by overlapping and combining a set of selected control factors and
intersecting the UCU and landslide layers. From a statistical point of view, the landslide density
corresponds to the susceptibility value of an area in a landslide, linked to a particular combination of
control factors. Mathematically, this concept can be expressed as

P = δUCU(i) =
UCUunst(i)

UCU(i)
=

(
UCUunst(i)

UCUunst

)
∗

(
UCUunst
UCUall

)
(

UCU(i)
UCUall

) (1)

where probability (P) can be computed as the ratio between unstable (UCUunst) and total counts
(UCUall) of cells for the cells which have a value.

Landslide density is the relational function between the environmental conditions and the
landslides in a given area, meaning that a density ranking order corresponds to a scale of landslide
susceptibility [32,33,46].

3.4. Binary Logistic Regression (BLR)

One of the key points in determining the susceptibility conditions of an area with multivariate
statistical techniques is the selection of an appropriate number of factors that can justify the spatial
distribution of past and future forms of instability. In fact, many of these techniques provide an estimate
of the importance of each factor in relation to the others, or its specific contribution in generating a
particular type of landslide in the area under investigation. Many of these techniques rank, through
hierarchization, the contribution of each factor in determining the landslide-specificity of an area by
identifying the minimum and maximum number of factors needed, beyond which the performance
variation of the model may be defined as insignificant or even negative [47,48].

According to Hosmer and Lemeshow [49], the aim of an approach based on binary logistic
regression (BLR) is to enable the singling out of the best linear relationship between a dichotomous
dependent variable (such as 1 or 0 representing the “presence”/“absence” of landslides, respectively)
and a set of independent variables representing control geo-environmental factors. In the logistic
regression equation, the expected dependent variable f(x) may be expressed as

logit(x) = ln(odds) = ln
[

π

1− π

]
= α+ β1X1 + β2X2 + · · ·+ βpXp (2)

where logit(x) corresponds to a natural logarithm of odds [π/(1− π)], expressed as a ratio between
the likelihood of the presence of landslides (π) over the likelihood of their absence (1− π); α is the
intercept of the model; and β1, β2 up to βn are the coefficients, which measure the contribution of each
independent input variable [50–52].

In other words, the BLR allows us to estimate the contribution of each input variable using
its coefficient in the probability equation by adopting the maximum likelihood classifier concept.
Comparing the maximum likelihood computed for every β-value with each estimated error, the
significance of the coefficients is tested using the Wald test [31,49,53]. The probability of occurrence
can be estimated by multiplying the −2 log-likelihood ratio; thus, the negative log-likelihood (−2LL)
statistic is obtained, which has a chi-square (χ2) distribution. According to this approach, BLR is
executed through a stepwise procedure that allows the differentiation of only those predictor variables
with a significant impact on the performance of the multivariate model [36,54,55].

A problem arising when using BLR is that which is related to choosing the appropriate sample
size for an unstable area (positive cases) as opposed to stable ones (negative cases). Indeed, the number
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of positive cases is significantly lower than negative ones, thus generating an imbalance. Therefore,
it is one of the most important choices concerning the random selection technique likely to lead to a
balanced dataset of landslide and non-landslide pixels [56]. In this piece of research, the TANAGRA
open-source software was used to apply forward stepwise logistic regression [57].

3.5. Variables Selection and Factor Class Definition

Landslides are directly connected to the many environmental condition types, mainly depending
on slope morphology (slope angle, orientation slope, curvature, elevation, roughness, etc.) and other
intrinsic characteristics (lithology, soil use, tectonic condition, landform classification, etc.), while the
activation of new landslides depends on trigger factors, such as intensive rainfall or earthquakes [58–60].

All kinds of geo-environmental factors may be considered as potential predictive factors and
can be introduced into the analysis. All the factors should be drawn at a specific measurement for
classification (categorical, continuous). Acquiring each factor requires time and money. In addition,
we must also consider the computing time needed to process huge volumes of data. This is why only
those variables thought to be directly and/or indirectly capable of conditioning the established of a
slope, thanks to knowledge acquired from previous studies, may enter the analysis. The use and
reclassification of a limited number of factors also prevents the generation of a large number of not very
widespread mapping units and thus the overestimation of the density for untrained mapping units.

The CA method, requires preselecting the factors to be entered into the analysis, and then defining
the UCUs representing the mapping unit in this type of analysis. The univariate approach was followed
for each acquired variable and their density calculated for the different types of landslide analyzed
(scarp and hillslope landslide). The univariate approach was followed for each acquired variable and
their density calculated for the different types of landslide analyzed (scarp and hillslope landslide).
Univariate analysis allows to distinguish the significant from insignificant variables, and then combine
only those variables among them which are likely to be the most influential in the production of the
mapping units GRID layer. The following continuous and categorical variables have been acquired
and analyzed (Table 2).

Table 2. Geo-environmental factors and their spatial distribution.

Categorical Variables

Variable References Description Code Percentage
Distribution (%)

Soil Use
(Corine Land
Cover project,

2006)

Continuous urban fabric USE_111 1.94
Discontinous urban fabric USE_112 2.42

Transitional areas USE_13 0.27
Green urban areas USE_14 0.06

Arable land USE_21 32.54
Permanent crops USE_22 21.61

Heterogeneous agricultural areas USE_23 14.97
Forest USE_31 7.79

Shrub and/or herbaceous
associations USE_32 17.31

Open spaces with little or no
vegetation USE_33 0.65

Water bodies USE_51 0.44
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Table 2. Cont.

Categorical Variables

Variable References Description Code Percentage
Distribution (%)

Outcropping
lithology

Lithological
Complex

Continental clastic deposition
complex LITH_CDC 12.94

Phyllitic and metamorphic
complex LITH_PhMe 3.51

Sandy-calcarenitic complex LITH_SaCa 13.22
Evapotitic complex LITH_Ev 4.86

Conglomerate-sandstone LITH_CoSa 2.74
Clay complex LITH_Cl 34.13

Sandstone and clay LITH_SaCl 8.66
Carbonatic complex LITH_Ca 13.41

Volcanic complex LITH_Vo 6.53

Landform
classification

Landform
Classification
(Weiss, 2001)

Canyons LCL_CANY 7.51
Midslope drainage LCL_MDRG 2.27
Upland drainage LCL_UPDRN 2.32
U-shaped valleys LCL_USHP 2.92

Plains LCL_PLAINS 32.58
Open slopes LCL_OPEN 39.51
Upper slope LCL_UPPSL 2.80
Local ridge LCL_LOCRDG 0.00

Midslope ridge LCL_MRDG 2.00
Mountain tops LCL_MNTPS 8.07

Rainfall
(mm)

SIAS, 2015

0–450 RAIN_L 1.58
450–600 RAIN_M 63.32
600–800 RAIN_H 20.75

>800 RAIN_VH 14.34

Slope Angle
(Scarp

landslide)
Θ = TAN ∆y/∆x

Canyons SLO_L 87.81
Midslope drainage SLO_M 10.72
Upland drainage SLO_H 1.47

Slope Angle
(Hillslope
landslide)

U-shaped valleys SLO_L 78.09
Plains SLO_M 15.28

Open slopes SLO_H 6.43
Upper slope SLO_VH 0.20

3.5.1. Continuous Variables

The 2-m ARTA-DEM was used and resampled to generate the digital elevation model (DEM).
Slope angle, slope aspect, and landform classification were calculated using the DEM.

• Slope angle (SLO) is usually considered as one of the main controlling factors in landslide
modelling. At first, SLO was classified into 5 natural break intervals [14], expressed in sexagesimal
degrees (0◦–5◦; 5◦–12◦; 12◦–18◦–18◦–32◦: > 32◦). The raster-file of the slope angle was obtained
by resampling the 2-meter resolution ARTA-DTM flight ATA (2007/2009) to 100 m per side. As
shown in Figure 3, the proposed reclassification for the slope angle for the hillslope landslide
does not reveal the theoretical concept for the slope increase, which corresponds to an increase
in the likelihood of landslides occurring. This does not happen with the scarp landslide, where
increasing the slope angle leads to an increase in the percentage of landslides.
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1 
 

Figure 3. Univariate analysis for the continuous variables. Soil use. USE_111: continuous urban fabric;
USE_112: discontinuous urban fabric; USE_13: transitional areas; USE_14: green urban areas; USE_21:
arable land; USE_22: permanent crops; USE_23: heterogeneous agricultural areas; USE_31: USE_321:
shrub and/or herbaceous associations; USE_33: open spaces with little or no vegetation; USE_51:
water bodies. Landform classification. LCL_CANY: canyons; LCL_MDRG: midslope drainage;
LCL_UPDRN: upland drainage; LCL_USHP: U-shaped valleys; LCL_PLAINS: plains; LCL_OPEN:
open slopes; LCL_UPPSL: upper slope; LCL_LOCRDG: local ridge; LCL_MRDG: midslope ridge;
LCL_MNTPS: mountain tops. Rainfall (mm). PREC_L: 0–450; PREC_M: 450–600; PREC_H: 600–800;
PREC_VH: >800. Slope Angle (scarp landslide). SLO_L: 0◦–25◦; SLO_M: 25◦–35◦; SLO_H: >35◦; Slope
Angle (hillslope landslide). SLO_L: 0◦–15◦; SLO_M: 15◦–30◦; SLO_H: 30◦–45◦; SLO_VH: >45◦.

3.5.2. Category Variables

• Landform classification (LCL). Using an ArcMap open source tool, the LCL variable was derived
directly from the DEM. LCL provides a simple and repeatable method to classify the landscape
into slope position and landform category comparison. The different landform category classes
can be determined by classifying the combination of a small and large neighborhood topographic
position index (TPI) computed for each cell from different scales. The TPI is simply the difference
between a cell elevation value and the average elevation of the neighborhood around that cell.
Positive values mean the cell is higher than its surroundings, while negative values mean it is
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lower [61]. To compute the LCL, the small and the large neighborhood areas were set to 500 and
100 m, respectively. Ten landform classes were thus obtained (Table 2);

• Outcropping lithology (LITH). Together with the slope itself, the lithological conditions of an area
are the most important factors influencing the geomorphological processes on the slope. The
lithology controls the response of the slope in terms of the trigger-time of the collapse because of
rainfall or seismic forces and evolution of the process. The lithotypes cropping out in the map of
the Sicilian region were used in this research and grouped into 9 different “lithological complexes”,
according to their geotechnical characteristics. The output lithological complexes were named as
shown in Table 2. The clay complex is the most widespread one in the Sicilian territory, as it crops
out in almost 35% of the area (more than 50,000 hectares);

• Soil use (USE). In this test, we used a soil use map derived from the 1:100,000 Corine Land Cover
project (2006) based on a revised version of the Corine Land Cover 2000 dataset with the results of
Landsat 1988 and photointerpretation of aerial photos. Table 2 shows land cover characteristics in
11 different classes, for terrain units larger than 0.25 km2. The Corine 2006 map was converted
into a soil cover digital map provided by the Sicilian region, using the second level of the Corine
legend, except for the “urban areas” class, which has been divided into continuous (USE_111)
and discontinuous (USE_112) urban fabric, corresponding to level III of the Corine Land Cover
classification. Arable land (USE_21) covers more than 30% of the research area. Forest crops cover
about 7% of the area and mainly appear in the northeastern sectors. Areas covered by shrubby
and herbaceous vegetation associations are dispersed around the study area: they cover 17%.
Urban area cover is only 4.5%;

• Rainfall (RAIN). For rainfall, 280 rainfall stations were used to create the GRID rainfall map using
the inverse distance weighted method. The database from the Sicilian regional administration
office (http://www.osservatoriodelleacque.it) was used to extract the mean annual precipitation
(for the period 1921–2009). Regarding precipitation, Sicily can be divided into three main sectors
with three different pluviometric regimes: the northern sector: includes all the Tyrrhenian coast of
the island. Rainfall here is characterized by a rainy season (autumn–winter) and a dry spring
and summer. Eastern Sicily: in this area, rainfall is also greater in winter. Precipitation is often
concentrated into short spells and is sometimes very violent. This is because the precipitation
depression bearers come from Africa and are very hot and humid, favoring strong thermal
contrasts. Southern Sicily: includes all the area bordered by the Mediterranean Sea. As in the rest
of the island, winter is the rainy season. The number of rainy days is less than in the northern area
(<60 days per year). In some areas, rainfall is sparse, especially in the coastal zone. The areas with
the highest rainfall are the Madonie, Nebrodi, and Peloritani peaks, Etna, and the area south of
Palermo. The driest areas are the Plain of Catania and the southern coast, in particular, Gela city.

Generally, there are two reasons that lead us to choose the smallest possible number of
geo-environmental variables for the construction of the forecasting model, which allow the realization
of what is called the “best model” for a specific area, capable of providing an acceptable performance
forecast. On the one hand, achieving or obtaining each parameter requires spending a considerable
amount of time and money, on the other, a large number of environmental variables results in a large
number of possible combinations characterizing each of the territorial units chosen in an excessively
specific manner, as the basis for statistical analysis. A high number of combinations bring a progressive
decrease in the distribution of each combination class. The consequence is an unexpected decrease
in the performance of the susceptibility model caused by the inclusion of variables which are closely
related to a small number of cells, but poorly correlated to the global distribution of the remaining part,
thus affecting the choice of the most predictive variables. Even the selection of factors is an essential
step in landslide susceptibility assessment procedures, in which the nature of geomorphological criteria
takes priority.

An expert-driven univariate analysis procedure for the following 5 processing control variables
was carried out (Figure 3). Depending on the type of landslides, a maximum moderation criterion in

http://www.osservatoriodelleacque.it
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the number of factors used is necessary to identify a first set of control factors that can be justified based
on morphodynamic models, defined as heuristic at first approximation, for the distribution of the
observed phenomena. Then, regression techniques may be applied to highlight the actual role played
by each of the geo-environmental variables considered. However, it is also common practice, and
recommended by applied statistics handbooks, to maintain certain diagnostic values of the variables
(i.e., slope), even when stepwise regression procedures have greatly reduced their influence. A type of
approach which, in a certain way, is the opposite of the analytical-geomorphological way, relying on
deterministic or physically based methods.

That is why, for example, for “Slope angle”, values were reclassified into 4 different classes (for
hillslope landslide) and 3 classes (landslide scarp). At this point, a new univariate analysis was carried
out and the results are shown in Figure 3.

4. Model-Building Strategy

The five reclassified geo-environmental variables were combined in unique conditions units
(UCUs) aiming to get all the possible combinations of the classes of the different factors in order to
assess the landslide susceptibility. The UCU layers were laid over with the landslide ones (SCR_LSN
and HILL_LSN, respectively). The landslide densities were computed for each UCU class combination,
as the ratio between landslide area counts and total pixel counts: according to Bayes’ theorem [26,45],
these values express the conditional probability of landslide occurrence, given a factor condition.
The variables were combined and a UCU layer was derived from these. The combination produced
a large number of combination classes (8355 for the HILL_LSN; 4173 for the SCR_LSN). The CA
method requires that the combination of output factors has total areas which are large enough to
guarantee the statistical significance of the “observed” sample. Table 3 shows the combination classes
of the most susceptible UCUs. The UCUs found to have the highest susceptibility values are those
characterized by predominantly consistent lithologies in SCR_LSN, (LITH_Ca), LCL_MNTPS (as
landform classification), and high and very high slope angle values. Though uncommon, these UCU
combinations have a susceptibility value of 100%. For hillslope landslides, clayey lithologies and open
space LCLs are the most widespread combinations capable of generating slope failures (Table 3).

Table 3. Most susceptible unique conditions units (UCUs) in the target area.

Most diffused UCUs for SCR_LSN

UCU Code Area (Ha) LCL LITH USE SLO RAIN δ

1502 2 LCL_MNTPS LITH_Ca USE_112 SLO_VH RAIN_VH 100.00%
1515 3 LCL_UPDRN LITH_Ca USE_23 SLO_VH RAIN_VH 100.00%
1204 8 LCL_USHP LITH_SaCa USE_13 SLO_H RAIN_H 100.00%
1517 3 LCL_MNTPS LITH_Ca USE_13 SLO_H RAIN_L 100.00%
1217 3 LCL_MNTPS LITH_Ca USE_13 SLO_VH RAIN_VH 100.00%
1001 2 LCL_UPDRN LITH_SaCa USE_13 SLO_H RAIN_VH 100.00%
4095 1 LCL_USHP LITH_CoSa USE_13 SLO_M RAIN_H 100.00%
1075 2 LCL_UPDRN LITH_Ca USE_13 SLO_VH RAIN_M 100.00%
3403 1 LCL_USHP LITH_Ca USE_13 SLO_VH RAIN_M 100.00%
3850 3 LCL_UPDRN LITH_CoSa USE_112 SLO_H RAIN_VH 100.00%

Most diffused UCUs for HILL_LSN

UCU Code Area (Ha) LCL LITH USE SLO RAIN δ

2778 14 LCL_OPEN LITH_CI USE_13 SLO_VH RAIN_VH 100.00%
3230 11 LCL_UPDRN LITH_CI USE_21 SLO_H RAIN_H 89.00%
2759 34 LCL_OPEN LITH_CI USE_21 SLO_L RAIN_M 62.00%
2777 17 LCL_OPEN LITH_CI USE_13 SLO_VH RAIN_M 57.00%
3370 13 LCL_UPDRN LITH_CI USE_32 SLO_VH RAIN_VH 36.00%
2711 45 LCL_OPEN LITH_CI USE_13 SLO_H RAIN_VH 31.00%
4376 14 LCL_OPEN LITH_SaCa USE_21 SLO_H RAIN_H 25.00%
2735 32 LCL_OPEN LITH_CI USE_13 SLO_M RAIN_L 24.00%
1272 14 LCL_UPDRN LITH_SaCa USE_21 SLO_M RAIN_VH 24.00%
3381 7 LCL_USHP LITH_CI USE_32 SLO_VH RAIN_VH 23.00%
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5. Results and Validation

Regardless of the statistical approach, models and susceptibility maps should always be validated
to test the forecasting performance of the proposed protocol. Generally, a statistical validation procedure
correlates the performance forecast (the expected landslides) that represents the space distribution of
the model created by using a part of the observed phenomena (training dataset) with the distribution
of a set of landslides which are not used in model-building (test dataset). This test dataset should
therefore be temporally or spatially different from the training dataset used for model building, but the
regional administration does not provide a systematic and continuous mapping of new landslides
which occur reasonably often and in all Italian regions and worldwide. Many validation approaches
have been presented in the last two decades in the relevant literature. In this paper, the random
partition strategy was used, based on the random partition of the slope failures in two balanced
populated training and test subsets to compare and estimate the robustness and reliability of the
susceptibility models proposed.

The models presented in this research were derived using the CA and BLR statistical approaches,
as the result of the average of 100 different replicas obtained by splitting the dependent variable, in
75% TRN_Subset and 25% TST_Subset randomly 100 times.

A reliable approach to test the performance of susceptibility models is the receiver operating
characteristic (ROC) curve, allowing the comparison of the predictive performance models. The ROC
curve is a plot of the probability expressing the sensitivity (TP rate) that represents the area classified
correctly as susceptible (x-axis) versus the 1-specificity (FP rate), representing the probability of false
prediction in response to an event for all the cutoff probability values (y-axis). ROC curve analysis
allows the differentiation between two classes of events: unstable and stable cells [62]. The quantitative
measure of model performance can be tested by computing the area under the curve (AUC) ranging
from 0 to 1 [63]. The closer the AUC values are to 1, the higher the predictive performance of the model
will be, while the closer the values are to 0.5 (random performance) the higher the inaccuracy of the
model will be [50,64,65]. A value equal to 1 denotes a perfect discrimination between positive and
negative cases. ROC curves were created for each of the two different statistical approaches (CA and
BLR). In Figure 4, the ROC curves for both CA and BLR models were drawn for the training and test
subsets with the aim of evaluating the model fitting for both approaches.

The BLR approach has been applied for forward stepwise selection independent predictive
variables [28]. As shown in Table 4, average results for the 100 different splits of dependent variables
in terms of SUCU. The model suite produced for SCR_LSN is characterized by a mean error rate of
0.17 (St.dev. 0.004) and AUC > 0.9 (outstanding). The graphs (Figure 4) show the average AUC values
are close to excellent for HILL_LSN (>0.77) according to Hosmer and Lemeshow [49].

For HILL_LSN, the mean error rate is higher (about 0.29) but still very stable (St. dev. 0.001): a
ranking of predictor variables derived from exploiting the forward stepwise statistical procedure.

Using BLR grid-cell-based models, the positive cases (unstable cells) are dramatically less than
the negative cases (stable cells) and a suite of 10 different models (both for SCR_LSN and HILL_LSN)
were prepared in order to estimate the model fitting, prediction skill, and robustness of the proposed
approach [22,28,30,36,66]. Each suite model is made up of a subset of the unstable/positive cells and
by an ever-changing subset which contains the stable/negative cells. The SCR_LSN grid-cell models
were prepared by merging 6674 positive cells (5% of the total area) with 10 different subset, randomly
selected negative 100 × 100 m cells. As for the HILL_LSN, suite models were created by merging
101,860 unstable cells (about 80% of the total area) and an equal number of stable cases. The negative
cases in the subset were randomly selected in order to prevent stable cells from overlapping.
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Figure 4. Receiver operating characteristic (ROC) curves: (a) conditional analysis (CA) for scarp
landslide (SCR_LSN); (b) CA for hillslope landslide (HILL_LSN); (c) binary logistic regression (BLR)
analysis for SCR_LSN; (d) BLR analysis for HILL_LSN.

Categorical variables were binarized and BLR was applied. Each model underwent the BLR
procedure 10 times. An open source statistical package (TANAGRA) was used to generate the
contingency tables (Table 4) and automatically extract the true positive (TP) and true negative (TN),
and single estimates of the sensitivity or hit rate (TP/(TP + FN)) and 1-specificity (FP/(TP + FN); [66–70].

For SCR_LSN, drawing from 18 predictors, 13 were always selected in all 100 model repeats
of the models. SLO, LCL_MNTPS, and USE_321 were systematically extracted as the first three
significant factors, and with positive coefficients. The regression coefficients, for each selected predictor,
were marked by conceptually coherent signs. A scan was easily imagined, and LCL_PLAINS and
LCL_OPEN had a negative coefficient instead (Table 5).
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Table 4. Contingency table for the 10-model suite. a for the SCR_LSN; b for HILL_SLN. TP = true
positives, TN = true negatives, FP = false positives, FN = false negatives.

(a)
TEST SUBSET-PREDICTION SKILL

PREDICTED YES PREDICTED NO RECALL FALL-OUT ERROR
RATE

AUC

YES NO YES NO YES
TP/oP

NO
TN/oN

YES
FP/pP

NO
FN/pN

M
O

D
EL

S

1 13,648 2850 3011 13,861 0.819 0.829 0.173 0.178 0.176 0.916
2 13,672 2853 3008 13,837 0.820 0.829 0.173 0.179 0.176 0.916
3 13,849 2686 2831 14,004 0.830 0.839 0.162 0.168 0.165 0.921
4 13,802 2634 2878 14,056 0.827 0.842 0.160 0.170 0.165 0.923
5 13,686 2814 2994 13,876 0.821 0.831 0.171 0.177 0.174 0.917
6 13,735 2743 2945 13,947 0.823 0.836 0.166 0.174 0.170 0.919
7 13,732 2817 2948 13,873 0.823 0.831 0.170 0.175 0.173 0.917
8 13,794 2755 2896 13,935 0.826 0.835 0.166 0.172 0.169 0.918
9 13,790 2622 2890 14,068 0.827 0.843 0.160 0.170 0.165 0.923

10 13,781 2688 2902 14,002 0.826 0.839 0.163 0.172 0.168 0.917

ALL
13,748.9 2746.2 2930.3 13,945.9 0.824 0.835 0.166 0.174 0.170 0.919

65.1 86.2 60.9 83.6 0.004 0.005 0.005 0.004 0.004 0.003

(b)
TEST SUBSET-PREDICTION SKILL

PREDICTED YES PREDICTED NO RECALL FALL-OUT ERROR
RATE

AUC

YES NO YES NO YES
TP/oP

NO
TN/oN

YES
FP/pP

NO
FN/pN

M
O

D
EL

S

1 206,596 100,179 48,054 154,471 0.811 0.607 0.327 0.237 0.291 0.776
2 206,596 100,179 48,054 154,471 0.811 0.607 0.327 0.237 0.291 0.775
3 207,100 100,614 47,550 154,036 0.813 0.605 0.327 0.236 0.291 0.776
4 206,960 101,894 47,550 154,036 0.813 0.602 0.330 0.236 0.293 0.772
5 206,275 99,734 48,375 154,916 0.810 0.608 0.326 0.238 0.291 0.776
6 206,665 100,608 47,659 153,889 0.813 0.605 0.327 0.236 0.291 0.766
7 206,991 100,761 47,659 153,889 0.813 0.604 0.327 0.236 0.291 0.775
8 206,455 99,808 48,195 154,842 0.811 0.608 0.326 0.237 0.291 0.775
9 206,755 101,015 47,895 153,635 0.812 0.603 0.328 0.238 0.292 0.773

10 206,880 101,576 47,770 153,074 0.812 0.601 0.329 0.238 0.293 0.775

ALL
206,727 100,636 47,876 154,125.9 0.811 0.604 0.327 0.237 0.292 0.774

259.0 710.5 285.3 562.8 0.001 0.002 0.001 0.001 0.001 0.003

The main significant controlling factors for SCR_LSN in the study area which showed a slope
angle for LCL_MNTPS was landform classification (positive coefficient), and LCL_PLAINS with a
negative coefficient.

On to the HILL_LSN, the predictors extracted by BLR, are more than those extracted for SCR
LSN, and above all, this slope angle variable does not appear to be as highly significant as may have
been imagined. This is probably due to the fact that the diagnostic areas used here (whole landslide
body area) are not so discriminant and able to determine the preparatory conditions for landslides.
Additionally, it may owe something to the reasonably large cell size. The PAI landslide inventory
is not characterized by high accuracy and some landslide typologies, like for “Areas with diffused
landslide”, do not allow a true discrimination of the geo-environmental variables which influence the
slope stability conditions. Among the variables, LCL PLAINS ranks as the first predictor extracted in
the analysis with a negative coefficient. Among all the variables, 20 were systematically extracted in all
100 different repeats, lithological conditions being those selected most frequently, and with a higher
weight. Among them, LITH_Ca is characterized by having a negative coefficient value (Table 6).
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Table 5. Factors analysis for SCR_LSN.

FACTORS ANALYSIS

SCR_LSN

Attribute Avg. (β) Avg. (Std-dev) Avg. Wald Avg. Signif Avg. OR Avg. RK n

SLO 0.111 0.003 1046.925 0.0000 1.118 1.0 100
LCL_MNTPS 0.822 0.084 95.372 0.0000 2.281 2.0 100

USE_321 0.977 0.070 195.690 0.0000 2.664 3.0 100
USE_111 2.237 0.207 116.737 0.0000 9.419 4.7 100

LCL_PLAINS −2.071 0.164 159.161 0.0000 0.127 5.1 100
LITH_Ca 0.624 0.091 53.558 0.0000 1.886 8.3 100
LITH_Ev 0.934 0.120 63.700 0.0000 2.596 8.5 100
USE_23 0.599 0.084 51.154 0.0000 1.827 9.4 100
USE_112 1.571 0.220 51.222 0.0000 4.901 9.7 100

LCL_OPEN −0.562 0.072 61.954 0.0000 0.570 10.0 100
LITH_SaCl −0.644 0.111 37.426 0.0062 0.531 10.1 100

LITH_PhMe −0.898 0.143 42.396 0.0002 0.413 10.3 100
LCL_USHP −0.743 0.178 18.055 0.0005 0.480 13.8 100
LITH_CDC 0.650 0.130 25.732 0.0003 1.947 12.0 97

USE_22 0.308 0.095 10.624 0.0024 1.362 15.2 52
LITH_Cl −0.028 0.106 5.054 0.2675 1.008 9.3 38

LITH_CoSa 0.576 0.179 10.373 0.0030 1.802 16.3 25
LITH_SaCa 0.329 0.156 7.230 0.1161 1.427 13.3 14

Table 6. Factors analysis for HILL_LSN.

FACTORS ANALYSIS

HILL_LSN

Attribute Avg. (β) Avg. (Std-dev) Avg. Wald Avg. Signif Avg. OR Avg. RK n

LCL_PLAINS −1.7649 0.0561 5788.5652 0.0050 0.1807 1.0 100
RAIN_H 0.0042 0.0001 3906.3562 0.0000 1.0042 2.0 100
LITH_Cl 4.2016 0.0893 2217.0432 0.0000 66.9131 3.0 100

LITH_SaCl 4.0756 0.0898 2062.8770 0.0000 58.9854 4.1 100
LITH_CoSa 4.3585 0.0930 2200.4857 0.0000 78.2727 4.9 100

LITH_Ev 4.0339 0.0927 1895.9701 0.0000 56.5819 6.0 100
LCL_MNTPS −0.5599 0.0548 775.7442 0.0334 0.6012 7.2 100

USE_22 −0.5557 0.0242 930.3611 0.0031 0.5768 8.0 100
USE_31 −0.7374 0.0296 930.1456 0.0000 0.4809 8.8 100

LITH_PhMe 3.6490 0.0927 1552.2501 0.0000 38.5212 10.4 100
LITH_CDC 3.6064 0.0919 1543.0805 0.0000 36.8982 11.4 100
LITH_Ca −3.3053 0.0903 1343.2796 0.0000 27.3051 12.4 100

LITH_SaCa 3.2414 0.0923 1234.5050 0.0000 25.6089 13.4 100
LCL_UPPSL −0.5569 0.0665 311.2864 0.0315 0.6040 14.4 100

USE_22 −0.6382 0.0565 133.4693 0.0000 1.9036 16.7 100
SLO 0.0130 0.0009 196.2342 0.0000 1.0130 16.8 100

LCL_USHP 0.4612 0.0612 171.5003 0.0001 1.6692 17.4 100
LCL_MRDG −0.3298 0.0699 106.7273 0.0154 0.7555 18.7 100

USE_51 −1.2700 0.1325 94.3962 0.0000 0.2827 20.1 100
USE_32 −0.1319 0.0225 85.1833 0.0019 0.8815 20.7 100
USE_14 −11.0917 79.2952 0.0235 0.8809 0.0000 22.9 94

LCL_CANY 0.3067 0.0563 114.4982 0.0005 1.4338 19.4 90
USE_33 −0.4630 0.1721 7.4578 0.0137 0.6318 12.3 47
USE_112 0.2241 0.0632 11.5918 0.0035 1.2653 23.0 43
USE_13 −0.3685 0.1254 8.7318 0.0044 0.6923 23.6 31
USE_21 0.0654 0.0419 10.9851 0.0024 1.0881 23.9 24

LSC_OPEN 0.2898 0.1851 63.6125 0.0693 1.5858 17.4 20
LCL_MDRG 0.2982 0.2121 25.2307 0.0123 1.6133 21.1 18

USE_23 0.3639 0.0903 15.6449 0.0003 1.4481 23.9 8
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6. Discussion

These analyses allow the generation of the susceptibility maps for SCR_LSN and HILL_LSN for
both CA and for BLR.

The GRID UCU layers were intersected with 100 different TRNsubset landslide layers (SCR_LSN
and HILL_SCR) and the mean density was calculated for each mapping unit. The susceptibility
model derived from the CA approach was obtained by assigning each UCU to its corresponding class,
according to its computed density. For each landslide type, the computed density corresponds to the
susceptibility function (SUCU) equivalent to the conditional probability of a new landslide, given the
selected predictive variables [44].

Although numerous studies on landslide susceptibility zoning have been published, no global
approach is yet shared by the scientific community to classify susceptibility maps. In the studies,
where the classification of territories in accordance with their level of landslide susceptibility is the aim,
it is appropriate to determine the optimal cutoff classification values which are capable of dividing
the mapping units mainly into two large domains: stable areas (susceptibility values are less than the
cutoff) to the left of the cutoff and unstable terrain (susceptibility greater than the cutoff) to the right
of the cutoff [66]. When statistical approaches such as CA and BLR are used, the statistical software
sets the significant cutoff (mcutoff) as equal to 0.5 by default [54,71–74] in order to correctly classify
the predicted stable or unstable cells. This research area is quite extensive (>25,000 km2), therefore,
it is useful to divide the territory into a few different classes, depending on the value of susceptibility,
and define some useful class range boundaries for the susceptibility (or density) index. The aim is to
be able to divide the entire Sicilian territory into four classes of susceptibility: very low, moderate,
high, and very high. To such an end, three cutoff values are required: the low cutoff (lcutoff), the central
cutoff (mcutoff), and the high cutoff (hcutoff). Operationally, the mcutoff is first identified graphically,
on the ROC curves, as the maximum value of the difference between the FP and TP rate. Subsequently,
with the same method, were identified the other limits of the classes for the areas to the right of the
mcuoff (high) and for the areas of the left of the mcuoff (low).

Table 7 shows the identification of mcutoff for the model obtained by following the CA for
SCR_LSN. The susceptibility maps based on both statistical approaches have been derived and with
test inventory subsets verified. Therefore, the maps presented in Figure 5 classify the Sicilian territory
with low, moderate, high and very high susceptibility values according to their degree of propensity to
instability and second cutoff probability values identified objectively.

Table 7. Cutoff range for (a) HILL_LSN and (b) SCR_LSN.

(a)
CA

Landslide Tipology

SCR_LSN HILL_LSN

Classes

Very Low 0–0.34 0–0.04
Moderate 0.34–2.5 0.04–0.07

High 2.5–12 0.07–0.16
Very High 0.78–1.00 0.16–1.00

(b)
BLR

Landslide Tipology

SCR_LSN HILL_LSN

Classes

Very Low 0–0.10 0–0.10
Moderate 0.1–0.15 0.1–0.28

High 0.15–0.48 0.28–0.48
Very High 0.48–1.00 0.48–1.00
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Figure 5. Susceptibility distribution for HILL_LSN using CA (a) and BLR analysis (b); susceptibility
distribution for SCR_LSN using CA (c) and BLR analysis (d).

The presented research is focused on verifying two main concepts: the first, to explore the
possibility of using existing data (landslide inventories, thematic maps of predictor variables) to create
regional landslide susceptibility models; the second, to verify the exploitability of CA, comparing it
with models based on BLR, in order to create landslide susceptibility models for areas and studies
bigger than 1:100,000.

When analyzing the maps presented in Figure 5, it is noteworthy that those created by BLR (b, d)
have a chromatic gradation indicating susceptibility conditions for Sicily which are generally higher
than those created by CA (a, c). Therefore, this remains an open question: Which statistical approach is
more representative of the conditions of susceptibility?

To answer this question, we analyzed the various sectors of the research area in detail and the
different maps were compared and analyzed (Figure 6).

In order to single out the targets in the present study, 75% of instability phenomena (training
subset) surveyed in the regional inventory of landslides, produced by the Environment and Territory
Department of the Sicilian region (ARTA) was used to create two different landslide susceptibility
maps: one based on the conditional analysis approach, and another on the binary logistic regression
approach. The slope failure archive was simplified into two main types based on expert judgment
of which preparatory variables they shared: the scarp landslide and hillslope landslide. The results
obtained by CA showed an outstanding predictive ability for models based on a small number of
predictive parameters combined in UCUs which were verified through spatial validation using a
test subset randomly extracted from the Sicilian regional landslide inventory that covers the entire
territory. ROC curve validation of the 100 different models showed the unquestionable excellence
and stability of the forecasting performance for both SCR_LSN and HILL_LSN. A quality control test
on four susceptibility maps was applied according to the degree of fit approach (DF) [24,27,73–75].
DF represents the percentage of an area subject to landslides for each range of classes of susceptibility
and is determined by cross-tabulation of the landslide test subset with the susceptibility class of maps.
DF can be expressed with the following formula:
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DF =
LSNi/Si∑

LSNi/Si
(3)

where LSN is the area occupied in the i-class of susceptibility and Si is the area of the i susceptibility
class [74,75].
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Figure 6. Different classifications of susceptibility values for HILL_LSN (d,e,f) and SCR_LSN (a,b,c)
using BLR (a,d) and CA (b,e) reclassified. Figures (c) and (f) show the susceptibility values obtained
with the BLR technique and are shown with continuous values.

The percentage of area subject to landslides falling into the null or moderate susceptibility class
may be considered as a false negative error. The histograms shown in Figure 7 highlight an excellent
predictive ability of new landslides not seen in the construction of maps. The percentages of relative
accuracy are understood as the sum of the degrees of fit of the high and very high susceptibility
classes [27] and the value of R2 of the trend line confirms the goodness of the susceptibility performance
models created.



Hydrology 2020, 7, 37 20 of 27

Hydrology 2020, 7, x FOR PEER REVIEW 21 of 29 

 

maps: one based on the conditional analysis approach, and another on the binary logistic regression 

approach. The slope failure archive was simplified into two main types based on expert judgment of 

which preparatory variables they shared: the scarp landslide and hillslope landslide. The results 

obtained by CA showed an outstanding predictive ability for models based on a small number of 

predictive parameters combined in UCUs which were verified through spatial validation using a test 

subset randomly extracted from the Sicilian regional landslide inventory that covers the entire 

territory. ROC curve validation of the 100 different models showed the unquestionable excellence 

and stability of the forecasting performance for both SCR_LSN and HILL_LSN. A quality control test 

on four susceptibility maps was applied according to the degree of fit approach (DF) [24,27,73–75. DF 

represents the percentage of an area subject to landslides for each range of classes of susceptibility 

and is determined by cross-tabulation of the landslide test subset with the susceptibility class of maps. 

DF can be expressed with the following formula: 

𝐷𝐹 =
𝐿𝑆𝑁𝑖/𝑆𝑖

∑𝐿𝑆𝑁𝑖/𝑆𝑖
 

(3) 

where LSN is the area occupied in the i-class of susceptibility and Si is the area of the i susceptibility 

class [74,75]. 

The percentage of area subject to landslides falling into the null or moderate susceptibility class 

may be considered as a false negative error. The histograms shown in Figure 7 highlight an excellent 

predictive ability of new landslides not seen in the construction of maps. The percentages of relative 

accuracy are understood as the sum of the degrees of fit of the high and very high susceptibility 

classes [27] and the value of R2 of the trend line confirms the goodness of the susceptibility 

performance models created. 

 

Figure 7. Distribution of landslides by susceptibility classes. 

The propensity of a territory to be affected by new landslides and the degree of hazard or risk 

that characterizes it are usually expressed with the help of a map in which the area is divided into 

different zones according to the different values that qualify it. In this mapping, the territory is zoned 

or divided into homogeneous zones or user-defined fields/areas, the ranking of which is defined 

according to their real or potential degree of landslide susceptibility [8].  

From among the Italian regions, Sicily is one of areas most affected by geomorphological 

instability. Landslide activity is a clear threat to the territory, facilities, and people present there. From 

this point of view, each part of the territory is characterized by a landslide vulnerability value. 

Generally, it depends on the territorial level of exposure to the threat, determined by the socio-

economic value of the assets as well as by their resistance to the stresses expected. Interaction between 

Figure 7. Distribution of landslides by susceptibility classes.

The propensity of a territory to be affected by new landslides and the degree of hazard or risk that
characterizes it are usually expressed with the help of a map in which the area is divided into different
zones according to the different values that qualify it. In this mapping, the territory is zoned or divided
into homogeneous zones or user-defined fields/areas, the ranking of which is defined according to
their real or potential degree of landslide susceptibility [8].

From among the Italian regions, Sicily is one of areas most affected by geomorphological instability.
Landslide activity is a clear threat to the territory, facilities, and people present there. From this
point of view, each part of the territory is characterized by a landslide vulnerability value. Generally,
it depends on the territorial level of exposure to the threat, determined by the socio-economic value of
the assets as well as by their resistance to the stresses expected. Interaction between humans and the
natural environment is a very complex and diverse issue, not often approached in a systematic way,
as resources are primarily invested in risk-mitigating measures, while being severely limited when
it comes to the medium- and long-term research needed to understand the environment better and
more effectively. The current PAI archive version is highly dependent on the past instability scenario.
By looking at those that were counted and catalogued using a matrix system of evaluation, it is possible
to derive the conditions of the associated geomorphological risk. This last concept represents a big
step forward as it is now necessary to consider strongly the concept of landslide susceptibility which
would represent the adoption of a spatial analysis tool with predictive power. On this scale, output
cuts will be based on administrative boundaries (municipalities).

To meet this goal, the mean values of susceptibility (CA) and probability (BLR) were assigned to
each municipality of the Sicily region (the calculation was only performed for the 382 municipalities
included within the main island) in a GIS environment.

The output susceptibility values obtained by means of the two methods (CA and BLR) for the
municipal boundaries are represented as maps in Figure 8. The picture shows the susceptibility
maps relating to both conditional methods (a, b) and BLR (c, d) for the SCR_LSN and HILL_LSN
typologies, respectively. In particular, it is possible to observe that for the SCR_LSN types, maps (a, c)
are very different with regard to the distribution of the susceptibility values among the municipal
boundaries. On the other hand, the comparison between the maps concerning the HILL_LNS type
shows a convergence among the results and suitable differentiation for the urban units. Both statistical
approaches (CA and BLR) show higher susceptibility landslide values in the northeastern portion of
the island, in correspondence with the mountainous chains of Nebrodi and Peloritani in the province
of Messina.
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7. Final Remarks and Management Implications

The research results presented here have demonstrated the ability to leverage a set of existing
data already in the public administration to generate regional landslide susceptibility maps. A total of
100 performances executed for both the CA and BLR approaches have allowed susceptibility patterns
characterized by excellent performance to be obtained, with remarkable stability, robustness, and
reliability, even if CA generated more powerful models in terms of forecasted performance (AUC
curves). With the goal of creating, for the whole Sicilian territory, susceptibility maps that could be
useful for the purposes of effective land management and spatial urban planning, this study proposes
a reclassification method into four susceptibility map classes. The reclassified susceptibility maps,
determined by the identified cutoff boundaries, were validated quantitatively with the degree of fit
technique. Validations demonstrated the reliability of the maps created and the explorability of the
proposed protocol. However, some differences may be highlighted when comparing the final maps
generated with two different approaches. In fact, the maps generated with CA seem to better represent
the conditions leading to the failure of a territory than those created by BLR-generated ones. This is
more realistic for the SCR_LSN than for HILL_LSN. This is probably due to the fact that the BLR tries
to find a correlation equation between landslides and predictor training models, using a diagnostic
area (the entire area subject to landslides) not only representative of the trigger conditions, involving
areas only passively affected by the landslide and, in some cases generating an overestimation of the
susceptibility value.

Of the 382 of Sicilian municipalities examined, 244 (nearly 64%) were correctly classified as unstable
(i.e., prone to landslide instability) as they fall in the classes of high and/or very high susceptibility,
both for scarp and for hillslope landslides. We particularly want to highlight that susceptibility is
predicted as being very high in 90 of 108 municipalities in the province of Messina (more than 80%). The
municipalities featuring lower susceptibility values were those within the provinces of Syracuse and
Ragusa. This approach is based on the propensity for gravitational instability, unlike PAI, and allows
the concept of landslide density or density index to be overcome. Table 8 lists the top 10 municipalities
in order, compared to the size of an area that may be affected by new landslides in the future.

For each municipality surface area, the extension area has been reported, the density (D) which
corresponds to the landslide density for the current phenomena surveyed in the PAI and the P (or the
area which is located to the right of mcutoff) for each municipality, and finally, the difference between
the current framework of the landslide and that provided (Odd).

The table shows that the towns of Isola delle Femmine and Roccafiorita, which despite having a
higher SCR_LSN density (respectively 7.04% and 6.04%) are the last two municipalities in the table,
because of the difference, in terms of Odd, between the density and the future probability, which is
lower than that seen in the municipalities of San Vito Lo Capo and Frazzanò. Almost 4 km of new
territory in the municipality of San Vito Lo Capo, for example, could be affected by new SCR_LSN
activations in the future. Similarly, we can say that linked to HILL_LSN, the territory of Alcara Li Fusi
is the Sicilian municipality with the highest HILL_LSN density value, but the municipalities of Ficarra
(with 8 km2) and Sinagra (with 6.54 km2), both in the province of Messina, will be most affected by
new activations of hillslope landslides.

The large and widespread use of known geostatistical methods has gone through at least three
decades of landslide hazard studies, but still does not eliminate some of the conceptual and operational
bottlenecks, only sporadically resulting in the safety enforcement schemes by the authorities involved
in studying landslide risk in Italy.
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Table 8. The top 10 municipalities ordered according to the size of the area that may be affected by new
landslides in the future ((a) SCR_LSN in Table; (b) HILL_LSN).

(a) Munipality Area
(km2) P D odd km2

SAN VITO LO CAPO 3.6 4.42% 1.98% 2.44% 3.91
FRAZZANO’ 1.2 5.90% 3.02% 2.88% 1.46

GIARDINELLO 50.8 5.76% 2.33% 3.42% 0.89
ISNELLO 6.9 6.76% 3.70% 3.05% 0.82

TORRETTA 26.0 4.28% 1.61% 2.67% 0.69
SAN MARCO D’ALUNZIO 12.8 5.85% 2.58% 3.27% 0.23

BORGETTO 26.0 5.12% 2.97% 2.16% 0.14
CINISI 33.0 4.81% 2.57% 2.24% 0.14

ISOLA DELLE FEMMINE 60.2 10.70% 7.04% 3.66% 0.13
ROCCAFIORITA 25.5 9.49% 6.04% 3.45% 0.04

(b) Munipality Area
(km2) P D odd km2

FICARRA 215.6 88.85% 3.72% 85.13% 8.03
SINAGRA 70.0 93.26% 9.34% 83.91% 6.54

ALCARA LI FUSI 31.1 91.98% 16.74% 75.24% 5.21
CASTELL’UMBERTO 30.2 92.05% 7.31% 84.74% 2.21

SAN PIERO PATTI 14.4 89.30% 9.77% 79.52% 1.40
MONTAGNAREALE 11.4 89.73% 11.07% 78.66% 1.26

RACCUJA 15.8 88.78% 5.60% 83.19% 0.88
UCRIA 26.1 94.39% 3.14% 91.25% 0.82

SANT’ANGELO DI BROLO 18.5 89.90% 4.34% 85.56% 0.80
TORTORICI 23.9 89.21% 2.76% 86.46% 0.66

Since economic problems, which are common to all countries, do not allow either investment in
research projects on a medium- and long-term scale, the concept of landslide susceptibility should
represent, for all political and administrative actors dealing with environmental and territorial policies,
a new approach to the problem associated with mass movements. For this reason, the scientific
community is engaged in a continuous search for methods and techniques to estimate the degree of
real and potential instability, using the minimum amount of equipment, data, and economic resources
possible. Generally, substantial difficulty exists in identifying the most reliable procedures, allowing
this matter to be approached in a non-traditional manner based on modelling and investigative
techniques built on the exchange of experiences between experts, studies, and experiments on every
continent, and showing different strategies and possible technical combinations, depending on the
type and/or the number and complexity of the investigation, producing susceptibility, hazard, and risk
maps, used as the basis for decision-making processes in land management. In this framework, further
effort is needed in trying to make the different methods more objective and shared by all, in order to be
simple and repeatable and, most of all, in transferring the knowledge gained to laws that underpin
territorial planning, building regulations, and in civil defense plans [22].

Over the decades, many research groups and national and international commissions have tried to
provide precise definitions, in order to generate maps indicating the different urban planning vocation
of an area. For this reason, the scientific community is engaged in a continuous search for methods
and techniques to estimate the degree of real and potential instability, using the minimum amount of
equipment and possible economic resources.
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