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ABSTRACT 

 

Extracting geospatially rich knowledge from microtexts such as tweets is of utmost importance 

for location-based systems in emergency services to raise situational awareness about a given 

emergency (i.e. natural or man-made disasters), such as earthquakes, floods, pandemics, car 

accidents, terrorist attacks, shooting attacks, etc. (Vieweg et al., 2010; Crooks et al., 2013; 

Imran et al., 2014; Jongman et al., 2015; Martínez-Rojas et al., 2018; C. Zhang et al., 2019; 

Siriaraya et al., 2019). In other words, emergency responders and competent authorities need to 

understand where the incident happened, where people are in need of help, and/or which areas 

were affected, with the aim of coordinating effective and immediate aid and allocating resources 

in the affected areas and/or to the affected persons. Such systems could potentially help save 

lives and/or prevent further damage to environmental or urban areas in emergency- and crisis-

related contexts. 

The problem is that the wide majority of tweets are not geotagged (Middleton et al., 2014), 

so we need to resort to the messages in the search of geospatial evidence (Wallgrün et al., 2018). 

In this context, we present LORE, a multilingual, rule-based location-detection system for 

English, Spanish, and French tweets that leverages lexical datasets of place names and location-

indicative words together with linguistic knowledge through Natural Language Processing and 

computational techniques. We also present nLORE, a Deep Learning model that feeds off the 

linguistic knowledge provided by LORE. One of the main contributions of our models is to 

capture fine-grained complex locative references, ranging from geopolitical entities (e.g. towns, 

cities, regions, countries, etc.) and natural landforms (e.g. mountains, rivers, lakes, hills, valleys, 

etc.) to points of interest (e.g. squares, cathedrals, universities, residences, restaurants, museums, 

etc.) and traffic ways (e.g. streets, avenues, roads, highways, etc.). LORE outperforms well-

known, general-purpose, off-the-shelf entity-recognizer systems typically used in benchmarking 

(Schmitt et al., 2019): Stanford NER, spaCy, NLTK, OpenNLP, Google Natural Language 

Cloud, and Stanza. LORE achieves an unprecedented trade-off between precision and recall, 

while showing similar performance when applied to other corpora. nLORE outperforms LORE 

by a slight margin, and confirms the usefulness of linguistic-based feature engineering in 

Artificial Intelligence (Linzen, 2019). Therefore, our models provide not only a quantitative 

advantage over other well-known entity-recognizer systems in terms of performance and 

accuracy but also a qualitative advantage in terms of the diversity and semantic granularity of 

the locative references extracted from the tweets. 

 

Keywords: location detection, location extraction, geolocation, named-entity recognition, 

natural language processing, deep learning, emergencies, disasters 



xv 

 

RESUMEN 

 

La extracción de información geoespacial rica de microtextos como los tweets es sumamente 

importante para sistemas geolocalizadores en servicios de emergencias para contribuir a la 

conciencia situacional sobre una emergencia como desastres naturales o producidos por el 

hombre, ya sean terremotos, inundaciones, pandemias, accidentes de tráfico, ataques terroristas, 

tiroteos, etc. (Vieweg et al., 2010; Crooks et al., 2013; Imran et al., 2014; Jongman et al., 2015; 

Martínez-Rojas et al., 2018; C. Zhang et al., 2019; Siriaraya et al., 2019). Dicho de otra manera, 

los servicios de emergencias y autoridades competentes necesitan comprender dónde ha 

ocurrido el incidente, dónde necesita la gente ayuda y/o qué lugares han sido afectados con el 

objetivo de proporcionar asistencia inmediata y destinar recursos en aquellas áreas o a aquellas 

personas afectadas. Estos sistemas podrían servir para salvar vidas y prevenir futuros daños a 

zonas urbanas o áreas medioambientales en contextos de crisis o emergencias. 

El problema reside en la escasez de tweets geoetiquetados (Middleton et al., 2014); por 

tanto, ha de recurrirse a los mensajes de texto en búsqueda de esa evidencia geoespacial 

(Wallgrün et al., 2018). En este contexto, presentamos LORE, un sistema multilingüístico de 

detección de localizaciones en tweets en inglés, español y francés basado en reglas que integra 

recursos léxicos de nombres de lugar y de palabras que indican localización junto con 

conocimiento lingüístico proporcionado por diversas técnicas computacionales de 

Procesamiento de Lenguaje Natural. También introducimos nLORE, un modelo basado en Deep 

Learning que se nutre del conocimiento lingüístico proporcionado por LORE. Una de las 

contribuciones más notables de nuestros modelos tiene que ver con la granularidad semántica de 

los tipos de localizaciones extraídas, desde entidades geopolíticas (e.g. pueblos, ciudades, 

regiones, países, etc.) y accidentes geográficos (e.g. montañas, ríos, lagos, colinas, valles, etc.) 

hasta puntos de interés (e.g. plazas, catedrales, universidades, residencias, restaurantes, museos, 

etc.) y vías de tráfico (e.g. calles, avenidas, carreteras, autovías, etc.). LORE supera a sistemas 

conocidos de dominio general de reconocimiento de entidades nombradas que se utilizan con 

frecuencia en sistemas de evaluación (Schmitt et al., 2019) como Stanford NER, spaCy, NLTK, 

OpenNLP, Google Natural Language Cloud y Stanza, alcanzando unas puntuaciones récord de 

evaluación en términos de precisión y cobertura, a la vez que muestra un rendimiento similar 

cuando se aplica a otros corpora. nLORE llega a superar LORE por un margen estrecho y 

confirma la utilidad de la implementación de características lingüísticas en la Inteligencia 

Artificial (Linzen, 2019). En este sentido, nuestros modelos proporcionan, no solo un salto 

cuantitativo respecto a la competencia en términos de rendimiento y precisión, sino también un 

salto cualitativo dada la diversidad y granularidad semántica de las referencias locativas que se 

pueden extraer de los tweets. 
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1. INTRODUCTION 

 

The microtext genre permeates the Internet, especially in the form of micro-blogging and social 

media services. Twitter, in particular, is one of the most widely used and popular micro-

blogging sites, and the tweet subgenre, a prototypical example of microtext, is one of the most 

investigated in event detection, sentiment analysis and/or tweet geolocation, among many other 

Natural Language Processing (NLP) and Artificial Intelligence (AI) research areas (Murthy, 

2018; Stock, 2018). The large volume of user-generated content on Twitter can be exploited in 

social sensing settings where disaster and crisis management and tracking become of utmost 

importance for disaster and crisis relief operations (Vieweg et al., 2010; Crooks et al., 2013; 

Imran et al., 2014).  In this respect, Twitter can function as a real-time social sensor system that 

provides multidirectional channels of communication in emergency and crisis events between 

the affected persons and disaster management agencies (Aggarwal, 2013; Martínez-Rojas et al., 

2018; C. Zhang et al., 2019). Having a rapid understanding about these events can help handle 

human and economic resources effectively through immediate and timely decisions and actions 

taken by aid organizations and competent authorities. Emergency responders can then 

coordinate effective aid and help allocate resources in the affected areas and/or to the affected 

persons. Obtaining geographic information from tweets proves to be a difficult task, considering 

that geotagged metadata (i.e. coordinates) attached to tweets represent around 1% of tweets only 

(Middleton et al., 2014), which hinders any further geographical-based application. Moreover, 

Twitter has restricted sharing precise geotagged metadata in June 2019. Given the low volume 

of geotagged tweets, its recent sharing restrictions, and thus the sparse geographic metadata, it 

becomes necessary to turn to other geospatial evidence, such as that found in tweet text 

materialized by the presence of locative references. In fact, locative references in tweet text are 

usually much more frequent than geotagged data (Wallgrün et al., 2018), and therefore can be a 

very valuable piece of information for emergency responders and other competent authorities in 

the absence of other geospatial cues. Twitter has in fact been exploited in many geolocation 

systems that handle real-life scenarios, ranging from natural or human-made disaster detection 

and tracking in floods, earthquakes, storms, civil unrest, war, crime, etc. (Vieweg et al., 2010; 

Crooks et al., 2013; Imran et al., 2014; Jongman et al., 2015; Martínez-Rojas et al., 2018; C. 

Zhang et al., 2019; Siriaraya et al., 2019), health surveillance and disease tracking (Eke, 2011; 

Dredze et al., 2013), e.g. the current COVID-19 pandemic (Singh et al., 2020), to marketing and 

advertising purposes (Mourad et al., 2019), or traffic incident detection, road traffic control 

and/or traffic congestion (Ahmed et al., 2019; Das & Purves, 2019; Gonzalez-Paule et al., 2019; 

Khodabandeh-Shahraki et al., 2019). All these studies highlight that the extraction of fine-

grained geospatial information from Twitter is a key component in intelligent systems for crisis 

management services. In this sense, the location dimension proves to be critical for raising 
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situation awareness of crisis-related events and understanding their impact; in other words, 

understanding where the incident happened, where people are in need of help, and/or which 

areas were affected. Such systems could, as a last resort, potentially help save lives and/or 

prevent further damage to environmental or urban areas in emergency- and crisis-related 

contexts. 

Given the importance of geolocation systems in real-life scenarios and the sparsity of 

geospatial data, the present thesis aims to exploit tweet text in search of geospatial evidence in 

the form of locative references. The thesis is split into two main parts. The first part focuses on 

LORE (LOcative Reference Extractor), a multilingual, linguistically-aware, fine-grained 

location-detection model for tweets that leverages linguistic knowledge through NLP techniques 

such as tokenization, part-of-speech (POS) tagging, n-gram detection, regular expressions 

(regex) for linguistic-based rules and patterns (Jurafsky & Martin, 2018b), location-indicative 

noun datasets retrieved from EuroWordNet (Miller, 1995; Fellbaum, 1998), a place-name 

dataset obtained from the geographic database GeoNames (Ahlers, 2013), and other lexical 

datasets for locative markers or place abbreviations. LORE can capture any type of simple or 

complex locative reference found in tweets written in English, Spanish, or French: geopolitical 

entities (e.g. towns, cities, provinces, states, regions, countries, neighborhoods, districts, etc.), 

natural landforms (e.g. lakes, rivers, mountains, parks, ridges, valleys, beaches, shores, seas, 

etc.), points of interest (POIs) (e.g. schools, churches, cinemas, casinos, bus stations, airports, 

gardens, taverns, museums, commercial centers, police stations, etc.), and traffic ways (e.g. 

street, st, avenue, av, boulevard, blvd, turnpike, tpike, tpk, highway, hwy, freeway, fwy, route X, 

I-X, M-X, etc. where X represents a given number). Our model can target any kind of crisis-, 

environment- or disaster-related event, local or global, from a given corpus of tweets. To the 

best of our knowledge, our rule-based model is the first that implements a multilingual system 

leveraging language-specific, lexically-rich datasets of place names together with location-

indicative nouns from EuroWordNet and semi-automatic methods for the language-specific 

inventories of lexico-syntactic rules for a fine-grained location-detection system. This contrasts 

with traditional and current geolocation models that focus on coarse-grained location types such 

as geopolitical entities and natural forms, leaving aside geospatially-rich information such as 

traffic ways and POIs (Wang & Hu, 2019). Moreover, most research on tweet location detection 

does not propose linguistically-rich, rule-based methods such as ours (Stock, 2018). The present 

research originates with the purpose of implementing this microtext geo-extraction application 

into CASPER (CAtegory and Sentiment-based Problem FindER) (Periñán-Pascual & Arcas-

Túnez, 2017, 2018, 2019), a multi-domain problem detection system that deals with 

environment-related issues in tweets. Besides English, LORE provides support for other 

languages such as Spanish and French by means of semi-automatic methods, making it ideal in 

multilingual contexts. 
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The second part focuses on neuronal LORE (nLORE), a proof-of-concept Deep Learning 

(DL) computational model for English tweets. By means of an implemented bi-directional 

Recurrent Neural Network algorithm, nLORE automatically learns the linguistic features 

provided by LORE in the training phase to extract locative references in the evaluation corpus 

with even greater accuracy than LORE, thus outperforming LORE and achieving state-of-the-art 

performance in the task of locative reference extraction. 

We provide a definition of a locative reference, setting its formal, structural, and semantic 

boundaries, and establish a typology of locative references; then, we describe the building 

process of the corpora and the creation of a gold standard of locative references for each of the 

languages and models, all of which became the cornerstone that underlie the development and 

training stages of LORE and nLORE. Accordingly, the evaluation stage was split into two 

experiments. In the first experiment, we developed and assessed the performance of LORE with 

development and evaluation corpora for English, Spanish, and French. We also compared the 

performance of our model in terms of processing speed and the evaluation metrics precision, 

recall, and F1 scores obtained by our model against well-known, open-source, state-of-the-art 

Named Entity Recognition (NER) tools. In the second experiment, we used training, validation, 

and evaluation corpora of only English tweets to train and assess our probabilistic-based model 

nLORE. The aims of the second experiment were trifold: i) we wished to elucidate whether 

nLORE could outperform LORE, ii) whether enriching the probabilistic-based model with 

linguistic features could improve the performance of nLORE, and ii) whether we could 

overcome the conundrum of finding and labeling a large training dataset by using these built-in 

linguistic features, thus alleviating the computational cost, time and resources typical of 

probabilistic-based approaches. Other objective was to check whether the performance of LORE 

would remain similar with other evaluation corpora, since in the NLP community concerns are 

constantly being voiced about the necessity to train models that can be generalized and applied 

with the same success to new, unseen collections of data. 

 The corpus compilation process was carried out using text-based data retrieval techniques 

(Hu, 2018a) that considered the prototypical emergency and crisis-related keywords 

‘earthquake’, ‘flood’, ‘flooding’, ‘car accident’, ‘bombing attack’, ‘shooting attack’, ‘terrorist 

attack’, and ‘incident’, and their near-equivalents in Spanish and French to mine tweets of 

issues of different nature. In the first experiment, for the development and evaluation stages of 

LORE for English tweets, we compiled a development corpus of 500 tweets and an evaluation 

corpus of 800 tweets. In the case of Spanish, we built a development corpus of 100 tweets and 

an evaluation corpus of 500 tweets containing the keywords ‘terremoto’, ‘inundaciones’, 

‘accidente de coche’, ‘ataque terrorista’, ‘bombardeo’, ‘tiroteo’, and ‘incidente’. For French 

tweets, we only compiled an evaluation corpus of 391 tweets using keywords such as ‘séisme’, 

‘tremblement de terre’, ‘inondations’, ‘coups de feu’, ‘attentat terroriste’, ‘attentat à la bombe’, 
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‘fusillade’, ‘accident de voiture’, ‘accident de la route’, ‘incident’, since we departed from the 

assumption that the rules, which were already developed for Spanish, could be automatically 

extended to French due to their similarities as Romance languages. Afterwards, we explain the 

building process of the lexical resources used in LORE, together with a typology of the 

linguistic-based rules which underlie LORE. After that, we offer a thorough explanation of the 

modular architecture of LORE. All this is followed by a technical explanation for the training of 

our probabilistic-model nLORE with regards to the implemented neuronal networks and word 

embeddings. In the first experiment, for the English, Spanish and French evaluation corpora, 

LORE achieved an F1 score of 0.81, 0.68, and 0.62, respectively. For all languages, those scores 

would be considered state-of-the-art performance. We also show that, under the same conditions, 

the evaluation measures of our model outperformed other well-known, open-source named-

entity recognizers such as Stanford NER, spaCy, NLTK, Google Cloud Natural Language, 

OpenNLP, and Stanza, which rely on probabilistic-based algorithms (Schmitt et al., 2019). Only 

in the case of English was the processing speed of LORE slightly superior to the others. In the 

second experiment, we show that nLORE, leveraging the linguistic features provided by the 

rule-based model, achieves greater performance than LORE. Overall, the present results suggest 

that our rule-based approach achieves, in comparison with other NER tools, the highest scores 

in location extraction without the high computational cost, time and resources characteristic of 

probabilistic-based approaches grounded on Machine Learning (ML) or DL algorithms. This 

involves a quantitative advantage in terms of the performance achieved and a qualitative 

advantage in terms of the diversity, variety and semantic granularity of the location types. At the 

same time, nLORE, exploiting the linguistic power of LORE and trained on a relatively small 

corpus of tweets, achieves even greater results, suggesting that linguistic-based feature 

engineering in such probabilistic-based approaches may still provide a much-valued added 

benefit –though slight–, which could pave the way for more linguistic-oriented computational 

work in the field of NER. This research goes in line with recent calls in the linguistic and 

computational communities, requesting a greater interaction between linguistics and AI (Linzen, 

2019). 

The present thesis is structured as follows. Section 2 introduces the theoretical background 

that underlies the development of LORE and nLORE. In Section 2.1., we explain what 

Computational Linguistics and Natural Language Processing are about, the undervalued yet 

prominent role of linguists in practical applications derived from those fields, and how the 

present thesis attempts to lay the basis for future work of linguists in these linguistic-related 

computational disciplines. Section 2.2. introduces the task of location detection and how it 

works in relation to the field of Geographic Information Retrieval in combination with Natural 

Language Processing and Computational Linguistics. Section 2.3. introduces the practical 

applications of tweet-based geolocation systems in social-sensing settings, where extracting 
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geospatial evidence from tweets becomes essential to come to the rescue of persons and to the 

affected areas in times of natural or man-made disasters, helping save lives and/or prevent 

further damage to urban and environmental areas. Section 2.4. explains the concept of Twitter 

as a social sensor, and how tweets and ‘voluntweeters’ provide sensorial information that 

contributes to raising emergency situation awareness, leveraged by competent authorities to take 

immediate action in emergency-related situations. Section 2.5. provides the linguistic basis for 

how spatial knowledge is represented in natural languages, in terms of the structure, function, 

and conceptualization of space in human languages. Section 2.6. presents the techniques and 

main frameworks used in location detection in symbolic- and probabilistic-based models. 

Section 2.7. introduces a comprehensive typology of Twitter-based geolocation models where 

we present previous work on location extraction with different techniques and objectives, with 

special emphasis on works dealing with the extraction of locative references. Section 3 presents 

an overview of the research challenges offered by the present thesis, in terms of research issues 

and limitations (Section 3.1.), research questions (Section 3.2.), and research hypothesis and 

justification (Section 3.3.). Section 4 describes the objectives which guided our research. 

Section 5 explains the model and methodology, with a focus on a characterization of what we 

mean by locative references in terms of their form, semantics and structure (Section 5.1.), the 

compilation phase of the corpora used in the development and training of our models (Section 

5.2.), the development of linguistic resources in LORE (Section 5.3.), and the neuronal 

networks and other deep-learning techniques that were used in nLORE and how nLORE was 

trained (Section 5.4.). Section 6 gives details about the computational implementation of the 

models, i.e. the under-the-hood work on the development of the models and their corresponding 

tools and resources, using programming languages such as C# or Python. Section 6.1. and 

Section 6.2. explain the apps of and files required by LORE and nLORE, respectively, to 

operate. Section 6.3. introduces the evaluation tool developed to assess the performance of the 

models. Section 7 presents how the evaluation was carried out for each of the models and which 

evaluation measures were taken into account. Section 7.1. gives the results of the evaluations 

performed for LORE and nLORE, and Section 7.2. provides an account of the evaluation 

numbers presented in the tables and figures with many examples explaining the strengths and 

weaknesses of the models presented, concluding with an account of the limitations and future 

lines of improvement. Section 8 presents the conclusions with final remarks, highlighting the 

pros and cons of our models. Section 9 gives the bibliography, and the Appendix section 

provides flowcharts of the internal rules that operate in LORE. 

 

 

2. BACKGROUND 
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2.1. Computational Linguistics and Natural Language Processing: definition, uses, and 

role of linguists 

 

Computational Linguistics (CL) or Language Engineering (LE) are umbrella terms that 

encompass NLP and other sub-disciplines such as Natural Language Understanding (NLU). 

Despite that, CL and NLP are often used interchangeably (Llisterri, 2003). CL is a very hot 

discipline in today’s digital world. It integrates insights and knowledge from Linguistics and 

Computer Science. In this sense, CL requires the expertise of the humanities in combination 

with engineering skills. CL can be defined as the scientifically motivated study of human 

languages from a computational view (Periñán-Pascual, 2012). Computational linguists develop 

models, tools, and algorithms with the aim of resolving a particular linguistic phenomenon, or 

for technological purposes in commercial or research contexts that require handling text in 

human-machine interaction (e.g. automatic speech recognition, conversational agents, text-

based geolocation systems, etc.). These computational models can be developed using 

symbolic-based or rule-based techniques through heuristics (i.e. hand-crafted rules that exploit 

morphological or lexico-syntactic knowledge), lexical resources, and/or ontologies typically 

grounded on linguistic knowledge. They can also be developed using probabilistic-based 

techniques that rely on statistical and mathematical models for the inference of patterns and 

rules. The latter approaches generally rely on ML or DL algorithms, which may or not need 

some degree of linguistic feature engineering, i.e. built-in linguistic knowledge and expertise 

(Periñán-Pascual, 2012). Nowadays, we are still far off from a human-like computational model 

capable of understanding language with all its intricacies and complexities. Still, substantial 

progress is being made in many sub-areas such as Information Extraction and Retrieval, 

Opinion Mining, Machine Translation, etc. 

NLP is in many ways related to the practical applications of CL. In other words, NLP can be 

defined as sub-discipline that deals with the understanding, analysis and interpretation of human 

languages through computational tasks which may have direct real-world applications or be part 

of a larger computational system (Cambria & White, 2014). In this sense, the aim of NLP is not 

so much about understanding how languages internally work or why they work in the ways they 

do, or how speakers use language in actual discourse, or resolving a particular linguistic 

phenomenon, but about implementing practical solutions to real-world problems in commercial 

or research settings that demand the processing of natural-language texts (Periñán-Pascual, 

2012). Some of the commonest NLP tasks are: 

 

 Tokenization: splitting sentences into tokens where each token usually corresponds to a 

word or a punctuation mark. 
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 Lemmatization or stemming: the removal of inflections of words to obtain their roots or 

stems. 

 POS tagging: the assignation of grammatical categories to tokens. 

 Syntactic parsing: the extraction and delimitation of phrases and clauses contained in 

sentences, and analysis of constituency or dependency relations among syntactic 

elements. 

 Terminology Extraction: the retrieval of relevant words from a given corpus. 

 NER: the identification and classification of named entities such as person, organization 

and/or location entities found in text. 

 Relation Extraction: extracting relevant connections between different named entities. 

 Sentiment Analysis: inferring the sentiment of people’s opinions about a particular 

product, idea or topic on the basis of the use of positively and negatively oriented words 

and depending on the linguistic context and the speaker’s intention. 

 Topic Analysis or Topic Detection: given a sentence, text, or collection of texts, 

determining its theme or what is talked about, or clustering them on the basis of 

thematic similarity. 

 Text Summarization: providing a summary from a piece of text, using relevant phrases 

and sentences or rephrasing the main ideas. 

 Machine Translation: the automatic translation of texts from one language to another. 

 Question-Answering and Conversational Agents: engaging in dialogs that require 

machine-human interaction by means of questions and answers or taking turns. 

 

Linguists can play a prominent role in Human Language Technologies (HLT) that require 

expertise in CL and NLP (Llisterri, 2003). Usually, their role has involved compiling corpora 

and linguistic resources for the implementation of computational models, or devising rules in 

symbolic-based systems (Periñán-Pascual, 2012). Their role as developers or engineers in the 

development and implementation of computational models has been non-existent or very 

limited at best. In this sense, we could claim that their role has been underappreciated and 

undervalued, if not outright ignored, both in Humanities and Computer Science. Though many 

NLP tasks successfully perform with probabilistic-based models without built-in linguistic 

knowledge, symbolic- and rule-based approaches and linguistic-based feature engineering still 

can provide immense value to any computational system insofar as these systems deal with text 

and human languages. This consideration, that linguists can play a key role in HLT, drove our 

interest to develop a rule-based location-detection model that relies on NLP techniques and 

language-specific resources, as well as a probabilistic-based model that feeds off linguistic 

knowledge, for their implementation in and application with microtexts to extract locative 
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references. In this respect, the present PhD project is grounded on an interdisciplinary approach 

because of its heavy focus on Applied and Theoretical Linguistics, Natural Language 

Processing, and Human Language Technologies, with the aim of developing original location-

detection models based on linguistically-aware NLP techniques and linguistic-based features to 

tackle real-life issues such as helping competent authorities find the location of a given 

emergency, incident or crisis event and thus coordinate effective aid and resources to the 

affected areas and/or persons. 

 

2.2. Location detection and Geographic Information Retrieval 

 

A location refers to a named space that can be computed by means of geographic coordinates or 

polygons, among other geographic representations (Purves & Derungs, 2015). These named 

entities of places have been coined ‘place names’ or ‘toponyms’ in the linguistic and geographic 

literature (Levinson, 2003). Location detection or extraction is an Information Extraction task 

that focuses on the identification and retrieval of locative references from natural language texts 

(Middleton et al., 2018; Purves et al., 2018). This task corresponds to the area of Geographic 

Information Science (GIS) or, more concretely, Geographic Information Retrieval (GIR) (Jones 

& Purves, 2008), a very hot topic that interconnects CL and NLP with Geospatial Artificial 

Intelligence (GeoAI) (Janowicz et al., 2019). All this reinforces the great relevance and 

momentum of the field of Digital Humanities in its quest to merge computational methods with 

the humanistic research, especially in GIS and GIR (Murrieta-Flores & Martins, 2019). All 

these research areas deal with unstructured text data and the geospatial information contained 

therein, which is particularly plentiful in the World Wide Web, and one of the most frequently 

asked queries in web-search engines (i.e. where-questions) (Jones & Purves, 2008; Purves et al., 

2018; Yingjie Hu, 2018b; Hamzei et al., 2019; Yingjie Hu & Adams, 2020). 

As of today, most online social-network sites deliver location-based services, and many 

social-media microtexts are brimming with locative mentions which could be further utilized 

with these services (Yingjie Hu & Adams, 2020), all of which reinforcing the importance and 

relevance of GIS and GIR systems in today’s digital world (Sui & Goodchild, 2011). Indeed, 

handling online unstructured text through geolocation systems becomes of utmost importance 

for many up-to-date location-based services such as web-search queries, recommendation-based 

services, sentiment analysis, or emergency-based services (Purves et al., 2018; Yingjie Hu & 

Adams, 2020). Natural language ambiguity characteristic of unstructured text constitutes in 

itself a great challenge for GIR systems in the retrieval of locative references, the extraction of 

spatial relationships, and the location disambiguation process of the extracted spatial knowledge 

(Frank & Mark, 1991; Al-Olimat et al., 2019). Natural language ambiguity is further 

exacerbated by the noisy, informal and abbreviated nature of the microtext genre (Baldwin et al., 
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2013; Eisenstein, 2013). In this regard, expertise in Theoretical and Applied Linguistics and 

Computational Linguistics may prove to be essential for the extraction and representation of 

locative references and spatial expressions in a structured, digitalized format (Stock et al., 2019). 

Location detection from text receives other names in the literature, such as toponym 

recognition (Middleton et al., 2018), geoparsing (Leidner & Lieberman, 2011; F. Liu et al., 

2014), geotagging (Gritta et al., 2018, 2019), georeferencing (Purves et al., 2018), or location 

extraction (Dutt et al., 2018). It should not be confused with geocoding (Middleton et al., 2018), 

which deals with the assignation of spatial coordinates to location mentions after going through 

a location disambiguation phase (Gritta et al., 2018). Geocoding is also typically used 

interchangeably with geotagging. On some occasions, geoparsing or georeferencing is said to be 

composed of two phases, those of location detection and location disambiguation or geocoding 

respectively (Gelernter & Balaji, 2013; Purves et al., 2018; Wallgrün et al., 2018). Due to the 

terminological confusion, we will use and retain henceforth the expressions location detection, 

location extraction, and location recognition interchangeably to refer to the identification and 

extraction of locative references from unstructured text. Also, any system that deals with the 

extraction of location information from either text or other sources will be termed a ‘geolocation 

system’. 

 

2.3. Practical applications of tweet-based geolocation systems in social-sensing settings 

 

Geolocation systems deal with the extraction, disambiguation and/or visualization of geospatial 

information from text, images and other resources (Hu, 2018a; Janowicz et al., 2019). The focus 

of the present thesis lies in those geolocation systems that process textual data from Twitter. 

Most of these text-based geolocation systems incorporate, in their geoparsing modules, a 

location extractor that is in charge of the detection of locative references found in the texts. 

Geolocation systems play a key role in social sensing settings, that is, in diverse real-life 

scenarios where geospatial information proves vital to allocate resources and services to 

affected areas and/or persons in times of crisis and emergencies (Martínez-Rojas et al., 2018; C. 

Zhang et al., 2019; Dutt et al., 2019). For instance, in health-related scenarios such as health 

surveillance or disease tracking, geospatial information obtained from tweets can be exploited 

by public health and medical officials for tracking or prevention measures in disease 

propagation (Eke, 2011; Dredze et al., 2013) such as tracking the location of people infected 

with the influenza virus (Santillana et al., 2015; Vilain et al., 2019) or infected with the current 

COVID-19 (Singh et al., 2020), or to perform opinion mining together with geolocation about a 

controversial medical issue such as vaccination to know about the sentiment expressed by 

people depending on their location (Luo et al., 2019). With regards to the current COVID-19 

outbreak, Singh et al. (2020) highlighted the importance of geolocation systems in the extraction 
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of location mentions in tweets for disease forecasting and prevention purposes. In this regard, 

they claimed that a greater incidence of confirmed cases of people infected with COVID-19 in 

particular locations highly correlated with a greater number of tweets that dealt with the 

coronavirus pandemic mentioning those locations. 

Not only can these applications be derived from tweets, but also from biomedical texts 

(Magge et al., 2018), which can be further utilized for medical research. Other uses in other 

types of text genres involve drawing on cultural, historical and/or literary texts to study heritage 

data on the basis of the locations mentioned in such texts (Gregory et al., 2015; Kew et al., 2019; 

McDonough et al., 2019).  

Many emergency-based services employ natural and/or human-made disaster detection and 

tracking systems with a geolocation module for tweets in the case of floods, earthquakes, storms, 

civil unrest, war, crime, etc. (Vieweg et al., 2010; Crooks et al., 2013; Imran et al., 2014; 

Jongman et al., 2015; Martínez-Rojas et al., 2018; C. Zhang et al., 2019; Siriaraya et al., 2019). 

Tweet-based geolocation systems can also be vital for real-time traffic-incident detection, road-

traffic control and/or traffic congestion (Ahmed et al., 2019; C. Zhang et al., 2019; Gonzalez-

Paule et al., 2019; Khodabandeh-Shahraki et al., 2019), where user-generated content, either in 

the form of attached GPS coordinates or through microtexts mentioning locative references, can 

help track the location of vehicle accidents on roads, highways, streets, avenues, etc. and thus 

send this valuable information to competent authorities to coordinate further action. Another 

practical application derived from tweet geolocation systems is that of marketing and 

advertising, where the locations mentioned by Twitter users can be exploited to suggest 

potential places for these users to visit or attend to or local products to buy (Li & Sun, 2014). 

 

2.4. Social sensors and emergency situation awareness 

 

Sensors are devices that detect an input signal –typically, from the physical environment– for its 

subsequent processing. For instance, a thermometer is a sensor that receives temperature as 

input and processes it to display such data in centigrade and/or Fahrenheit degrees. Likewise, 

Twitter can act as a real-time social sensor for crisis events, whereby each Twitter user is seen 

as a social sensor and their tweets as sensory information used for the reading of a particular 

crisis-related event (Aggarwal, 2013). In times of crisis events, people, or the so-called 

‘voluntweeters’ (Starbird et al., 2011), increasingly turn to Twitter to report and inform about 

the occurrence and ongoing circumstances of disaster-related emergencies (Potts et al., 2011), 

e.g. the epicenter and trajectory of those disaster-related events, especially when there is 

potential damage to places or to people around them (Martínez-Rojas et al., 2018). In other 

words, when a car accident happens, for instance, witnesses as Twitter users (i.e. social sensors) 

may post about it (i.e. input signals) to report the incident to competent authorities for them to 
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come to the rescue of the injured persons, or to advise other drivers to take another route. 

Emergency responders react to these signals by coordinating effective aid and relief efforts and 

allocating resources in the affected areas and to the affected persons (Cameron et al., 2012). 

Tweets containing location information, either geotagged or mentioned by means of locative 

references, in critical emergency-related situations are more likely to circulate, which means 

that Twitter users are aware of the great importance of attaching geospatial information in 

raising emergency situation awareness (Imran et al., 2014).  

 

2.5. The representation of spatial knowledge in natural languages: a linguistic-based 

approach 

 

According to the linguistic literature (Herskovits, 1985; Landau & Jackendoff, 1993; Talmy, 

2000; Kracht, 2002; Levinson, 2003; Coventry & Garrod, 2004; Bennett & Agarwal, 2007; 

Radke et al., 2019; Stock et al., 2019), spatial knowledge, typically represented by spatial 

prepositions in analytical languages, indicates a spatial relationship held by different entity 

types or arguments, formally expressed as S(x, y), where S determines the kind of spatial 

relationship held by x and y, x refers to what is spatially defined, and y represents the region of 

space occupied by x. 

 

2.5.1. The structural, syntactic, conceptual and pragmatic features of spatial expressions 

 

From a structural standpoint, in Western European languages such as English, Spanish, or 

French,  a spatial expression is generally composed of a ‘subject’ (i.e. what is located) and a 

prepositional phrase (PP) made up of a preposition and an ‘object’ (i.e. where is located). This 

PP can modify a noun (e.g. the glass on the table), or predicate something about a noun phrase 

(NP) (e.g. John is at school) or a clause (e.g. He is buying groceries at the market) (Geis, 1975; 

Herskovits, 1985; Creary et al., 1989). The object or ‘place’ refers to a physical location, real or 

imaginary, which describes the position, direction/path, or distance of a given entity (Kracht, 

2002; Coventry & Garrod, 2004; Bennett & Agarwal, 2007; Cinque & Rizzi, 2010). Whereas 

position indicates a spatial relationship of location among objects, path specifies a trajectory 

understood in terms of source and goal, and distance provides a measure of space among two or 

more entities. 

In natural languages, places are typically encoded as nouns, which can be proper if used to 

identify a specific and unambiguous spatial region or portion (e.g. Granada, Valencia, Spain, 

France), receiving the name of ‘toponym’ or ‘place name’ (Levinson, 2003; Stock et al., 2019), 

or common when they are used in a generic sense, often representing a semantic type of 

different granularity (e.g. neighborhood, city, country, beach, canyon, street, road). They can 
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also be formally represented by means of complex NPs (e.g. the black chair next to the table 

standing in the corner), which can recursively become very intricate, especially if multiple 

reference frames are mentioned (Stock et al., 2019). Places can be formally represented in 

ontologies where subsumption relationships specify the type of place or other conceptual 

relationships held by toponyms (e.g. Madrid-IsA-city, California-IsPartOf-United States, etc.) 

(Bateman et al., 2010; Hu, 2018b).  

As far as syntax is concerned, in the clause spatial expressions can go either at the 

beginning (e.g. In Tokyo the earthquake caused great damage) or at the end (e.g. Floodings 

were reported in New Jersey). As mentioned above, they specify different semantics, such as 

position (e.g. John lives in New York), direction (e.g. An ambulance is heading to Glenwood 

Avenue), or distance (e.g. Mary drove for 35 miles southwest of London) (Quirk et al., 1985: ch. 

8). Their referent can be the subject (e.g. Paul flew to Los Angeles), the direct object (e.g. I 

parked the car at Nevada Shopping) or even both (e.g. I met Anna at the National Museum). 

Spatial expressions typically perform the adverbial function in the clause (Geis, 1975), although 

they can also act as postmodifiers of a noun in an NP when formally realized as PP (e.g. The 

man outside the bus station is waiting for his friends) (Quirk et al., 1985). According to Quirk et 

al. (1985), spatial expressions performing the adverbial syntactic function of space adjuncts can 

be either obligatory (e.g. *John lives) or optional (e.g. We bought groceries (at Tesco)) (Geis, 

1975). When obligatory, these syntactic units additionally perform the function of postmodifiers 

with verbs of stative meaning (e.g. be, live, stand, lie…). The formal realization of these phrases 

as space adjuncts can be NP (e.g. John walked five miles), PP (e.g. Mary was a teacher in 

Newcastle), Adverbial Phrase (AP) (e.g. The warriors died there) or subordinate clauses of 

distinct complexity (e.g. The missing boy was found where the police could have not ever 

imagined). PP is the most typical phrasal realization and the most connected with spatial 

expressions (Quirk et al., 1985: Ch. 9). Also, since our interest is in place names, and these are 

nouns, we only take into account NPs and PPs that introduce these NPs. 

Spatial prepositions act as linkers to encode spatial relations between objects or between an 

object and a region/place (Landau & Jackendoff, 1993). A distinction should be made between 

those spatial prepositions indicating location (i.e. locative prepositions in, at, near, en, à, dans, 

sur, etc.) and spatial prepositions indicating direction (i.e. directional prepositions such as 

to/from, hacia, vers) (Coventry & Garrod, 2004). Locative prepositions can be further divided 

into topological terms that express topological relations among entities (e.g. in, at, on, near, en, 

dans, sur, à, etc.) and projective terms that need a frame of reference (e.g. in front of, above, to 

the right, arriba de, à droite de, etc.). The prepositions in and at are prototypical items of 

locative prepositions in English (Levinson, 2003), en in Spanish, and dans, en and à in French. 

In English, these prototypical locative prepositions obey different patterns for their usage in 

discourse: in is usually reserved for large geopolitical entities such as districts, regions, cities, 
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countries, continents, etc., or to refer to the dimensional side of buildings (e.g. John works in a 

record company), whereas at is rather used with small geopolitical entities (e.g. Mary lives at 

Stratford-upon-Avon) and buildings in the institutional and functional sense (e.g. John works at 

a record company) (Quirk et al., 1985; Vasardani et al., 2013). In Spanish, en goes with 

practically any location type, from geopolitical entities or POIs to traffic ways, etc. (e.g. en 

España, en Murcia, en el museo Reina Sofía, en la carretera Montejícar). In French, à 

accompanies towns (e.g. à Paris), some POIs (e.g. au restaurant Le Ciel), and countries in the 

masculine gender (e.g. aux Etats-Unis), whereas en is reserved for countries in the feminine 

gender (e.g. en France) and dans for many POIs, especially in the physical sense (e.g. dans la 

cathédrale Notre Dame), and traffic ways (e.g. dans la rue Bellevue). 

From a conceptual standpoint, a spatial relationship is said to hold between a figure (object) 

and ground (reference object) in a spatial scene (e.g. the car near the house) (Talmy, 2000). 

Spatial relations can be binary consisting of one figure and one ground (e.g. x in y, x across y, 

etc.) or n-ary consisting of one figure and several grounds (e.g. x between y and z, x in front of y 

and z, etc.) (Landau & Jackendoff, 1993). Each of these spatial arguments is conceptually 

defined in different terms. In the case of the figure, its spatial properties are unknown, it is more 

relevant to the speakers and is thus the topic to be informed about to the addressee. In the case 

of the ground, it acts as a reference entity and background for the figure with less relevance and 

permanently fixed in space. Large and fixed objects are usually used as ground because of their 

salience (e.g. Your wallet is in the car). However, this condition is less strict and more volatile 

with certain locative prepositions such as next to or behind, where it may deviate to some extent 

(e.g. pick the glass next to John). In this sense, spatial meaning underlying some prepositions 

can be described in terms of systematicity and idiosyncrasy (Herskovits, 1985). In other words, 

pragmatic principles such as relevance, salience, tolerance, and typicality play a key role in the 

choice and interpretation in the use of locative expressions. An ideal or prototypical-like 

meaning characterizes each preposition. For instance, in involves a relation of containment (e.g. 

clothes in the closet), which occasionally may slightly shift (e.g. the bird in the tree). Between 

the speaker’s representation of the physical world and the use of spatial expressions lies 

geometric conceptualizations, in that the use of distinct spatial prepositions with respect to their 

context signal different geometric descriptions, relations, or schemas. For example, to and from 

indicate a geometric line between the ground and the figure (e.g. from the airport to the hotel); 

in signals a three-dimensional geometric space (e.g. the crack in the glass); other prepositions 

signal a frame of reference (e.g. in front of, behind, to the left, to the right…), etc. From a 

pragmatic point of view, the purpose of spatial expressions is to tell the addressee about the 

location of a given figure or to identify it (Talmy, 2000). 

 

2.5.2. Named entities of places: toponyms and geographical names 
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On the one hand, toponyms or place names can be defined as named place specifications which 

by themselves do not provide a precise frame of reference, typical of quantitative methods 

involving coordinate systems (Levinson, 2003). They can be accordingly casted into a generic 

semantic class (e.g. London:city) (Bennett & Agarwal, 2007). Ascribing a place name to a 

particular location is a special type of topological relation whereby the place name acts as the 

ground location of a given figure (e.g. John lives in London) (Levinson, 2003). In this sense, as 

Levinson (2003: 69) claims, toponyms offer an “underlying mental map of locations” which 

speakers can have access to and more or less place on a map.  

Geographical names include place names in their lexical scope with the addition of location-

indicative nouns, also called “descriptors” with an “appositive function” (Quirk et al., 1985: 

1317): e.g. Mount Everest, New York State, Sunset Boulevard, etc. In the English language, the 

‘name-first construction’ is especially common, where location-indicative nouns typically 

follow toponyms (e.g. Nile Valley, Quebec Province). It is not rare, however, to find examples 

of location-indicative nouns preceding place names (e.g. River Thames). At times, both can be 

reversed (e.g. Cork County or County Cork). At other times, location-indicative nouns and place 

names can be linked by the preposition of as in the State of Missouri, the Island of Cyprus, or 

the coast of New Zealand. In Spanish and French, location-indicative nouns precede place 

names (e.g. calle Vicente Montuno, residencia La Inmaculada, École Thérèse D'avila, la ville 

de Lyon), and can also be linked by the preposition de in both languages and/or definite 

determiners such as el, la, or le (e.g. ciudad de Granada, barrio del Albaicín, la ville de Lyon, 

Hôtel La Residence Du Vieux Port). 

Toponyms and geographical names alike are often preceded by spatial prepositions (Al-

Olimat et al., 2019), though they do not necessarily need to be accompanied by them (e.g. 

Madrid is the capital of Spain). Also, toponyms do not always act as grounds but may act as 

figures in certain spatial configurations (e.g. Granada se encuentra entre las ciudades de Jaén, 

Almería, Málaga, and Córdoba). 

Overall, spatial knowledge as lexicalized by means of toponyms and geographical names in 

natural languages is fuzzy and ambiguous, needing further contextual clues and approximation 

for computing systems (Al-Olimat et al., 2019). This is especially problematic when locative 

markers (e.g. south of, 30 min away from, 45 miles SW from, 35 kms al noroeste de, 10 

kilomètres au sud de, etc.) precede named place nouns, which pose a greater problem for 

quantitative geographic positioning (e.g. latitude/longitude, the commonest Geographic 

Coordinate System (GCS)), since locative markers do not usually provide a precise, specific 

geographic landmark that can be easily mapped to coordinates. Recent proposals have been put 

forward for a more precise delimitation of toponyms in geocoding systems involving the use of 

polygons, instead of coordinates (Al-Olimat et al., 2019). 
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The present research focuses on topological relations involving both toponyms and 

geographical names. This means that our models have been developed taking into account 

named entities of places together with the most relevant and also the least ambiguous spatial 

prepositions of the languages supported, mainly of locative type, as one of the contextual clues 

used in the retrieval of locative references. Further details about the formal and semantic criteria 

followed in the delimitation and classification of named entities of places, henceforth called 

‘locative references’, are discussed in Section 5. 

 

2.6. Microtext genres: the tweet subgenre 

 

Among social media and, in particular, among microblogging services, Twitter stands out as 

one of the most popular worldwide microblogging platforms for information sharing and 

communication purposes (Murthy, 2018; Stock, 2018). Moreover, since its application program 

interface (API) is research-friendly (Gelernter & Balaji, 2013), it is the development platform of 

preference for researchers who can have almost unlimited free access to vast amounts of data 

that can be handled for many NLP tasks. In Twitter, users can post microtexts, called tweets, 

which are brief, character-limited (280 characters max.) messages that typically express the 

users’ thoughts, activities, and opinions about their daily lives or about a given topic (Yuheng 

Hu et al., 2013). 

 

Figure 1. Tweet about an accident. 

 

 

Microtexts are usually informal, noisy and abbreviated. This means that language conventions 

generally deviate from the linguistic norm through informal language devices such as 

abbreviations (e.g. pls instead of please), acronyms (e.g. FYI instead of the phrase for your 

information), misspellings (e.g. madrizz instead of Madrid), lack of capitalization (united 

kingdom instead of United Kingdom), ungrammatical forms (e.g. you was instead of you were), 

ellipsis and truncated sentences (e.g. incident in Newcastle instead of There was an incident in 

Newcastle) (Baldwin et al., 2013; Eisenstein, 2013). In this regard, one particular challenge in 

the identification of locative references in tweets is related to the linguistic peculiarities of the 

microtext genre. Most NLP systems, which have historically been trained on formal genres such 

as the news genre, face problems when applied to tweets and, as a result, their performance is 

usually much degraded (Hoang & Mothe, 2018). This occurs because these systems rely on 
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proper spelling, capitalization and grammatical patterns for different NLP tasks (i.e. POS 

tagging, chunking, etc.) and, in the absence of that, their predictive power decreases. Several 

strategies have been proposed to overcome the present linguistic difficulties in NLP systems 

applied to Twitter, such as the normalization of the tweet text (Liu et al., 2012), and/or the 

adaptation of NLP tools to social media genres and their linguistic idiosyncrasies (Eisenstein, 

2013). However, despite the widely-believed claim that tweets are noisy and informal, Yuheng 

Hu et al. (2013) disagree as to the apparent degree of informality of the tweet genre, arguing 

that tweets, surprisingly enough, are not as informal as other microtext genres (e.g. SMS). In 

fact, according to the authors, tweets can be considered as a projection of other formal textual 

genres onto a size-restricted format. 

Tweets may also encode metadata or additional information about author profile, time of 

posting, and spatial coordinates when they are geotagged, which can also be useful for 

geographic applications. Given the informal and noisy character of tweets and the little amount 

of geotagged tweets, it comes as no surprise that the scientific literature that has dealt with 

location extraction models and techniques has struggled to provide high performance tools to 

address those issues (Gelernter & Balaji, 2013; de Bruijn et al., 2018; Hoang & Mothe, 2018; 

Middleton et al., 2018, among many others). 

 

2.7. Techniques and main frameworks used in location detection 

 

Location detection involves recognizing and extracting locative references in unstructured text 

through probabilistic-based methods grounded on ML or DL frameworks and/or symbolic- or 

rule-based methods that exploit linguistic evidence with hand-crafted rules and lexical resources 

(Yingjie Hu, 2018a). Some of the NLP techniques used in geolocation models are tokenization, 

POS tagging, n-grams, and syntactic chunking. The commonest approach to location detection 

is NER, which is a line of research in NLP in the fields of Information Extraction and 

Information Retrieval that deals with the identification and classification of named entities,  not 

only location names but person names and organization names, inter alia, extracted from a 

corpus of texts (Barrière, 2016; Goyal et al., 2018).  

Most existing NER approaches to location extraction in text perform reasonably well 

(Karimzadeh et al., 2019), especially those developed with and implemented for formal genres 

(de Bruijn et al., 2018). To tackle the noisy and informal nature of tweets, Twitter-specific 

NER-based tools for microblogging services have been implemented (Karimzadeh et al., 2019). 

As a rule of thumb, NER systems usually experience performance drops when dealing with non-

standard spelling, typographical, and grammatical characteristics of social-media microtexts. 

Another issue is related to the coarse semantic granularity of standard NER tools with locative 

references, since the location types matched by standard NER tools are not clearly delimited 
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(Van et al., 2013). In this regard, most NER systems, including those specifically targeting 

tweets, can detect geopolitical entities, a few natural landforms, and a few POIs and addresses, 

at the most.  

According to Jurafsky & Martin (2018a) and Li et al. (2018), there are mainly three types of 

NER models:  

 

 feature-based NER, which employs ML algorithms such as Conditional Random Fields 

(CRF) (Finkel et al., 2005; Han, Jimeno-Yepes, et al., 2014) or Hidden Markov Models 

(Sarkar, 2015), 

 neural NER, which uses DL techniques such as bidirectional Long Short Term Memory 

(biLSTM) (Gerguis et al., 2016; Limsopatham & Collier, 2016), usually in combination 

with Convolutional Neural Networks (CNN) (Dugas & Nichols, 2016; Aguilar et al., 

2018), and 

 rule-based NER, which is based on hand-crafted lexico-syntactic rules typically using 

regexes and lexical resources (Malmasi & Dras, 2016; Dutt et al., 2018; Yang-Lim et al., 

2019). 

 

2.7.1. Feature-based NER 

 

In feature-based NER, sentences are tokenized, where each token or word is taken as a vector 

with a set of attributes or linguistic features, typically returning string or Boolean values, i.e. 

either true or false (Nadeau & Sekine, 2007; Leidner & Lieberman, 2011; Middleton et al., 

2018). Some of these linguistic features are capitalization, POS tags, affixes, gazetteer inclusion, 

or shallow syntactic features (i.e. chunk labels such as NPs, VPs, etc.). Two steps are essential 

to build any ML model: a training phase and a testing phase. First, we train an ML algorithm 

with a training corpus, which contains manually-tagged data in the form of the different 

linguistic features, represented in a tabular-based format. In the case of NER, named entities are 

delimited in terms of their boundaries with different tagging schemes such as IOB (Inside-

Outside-Beginning) or BMESO (Beginning-Medial-End-Single-Outside), together with their 

POS tag (Figure 2). 

 

Figure 2. Tabular-based representation of tokens in NER. 
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After this phase, the model is applied to a test corpus, i.e. unseen data, to measure the 

performance of the model; in other words, we evaluate how well the model was trained with the 

training corpus by making some predictions on the test corpus. For example, the Stanford NER 

tool uses a CRF algorithm, achieving very high performance in the news genre (Finkel et al., 

2005), but that performance considerably degrades in the Twitter medium. However, its 

performance increases when the model is retrained with tweet data (Lingad et al., 2013; Hoang 

& Mothe, 2018). In this regard, Ritter et al. (2011) implemented a well-known feature-based 

Twitter-specific NER tool which can detect named entities such as locations, person names and 

organization names. Le et al. (2016) used a CRF model in their Twitter-based NER system, 

using a great variety of spelling, lexical, and syntactic features fed into the training stage of their 

model. 

 

2.7.2. Neural NER 

 

Neural NER models achieve very good performance in many NER tasks (Espinosa et al., 2016; 

Yadav & Bethard, 2019), despite generally not needing any manual feature engineering of 

linguistic features or lexica. DL models can automatically discover features in the training 

process. The architecture of DL-based NER is characterized by three different components: 

distributed representations for input, context encoder, and tag decoder (Li et al., 2018). The 

distribution representation component may incorporate linguistic-based features such as 

capitalization, spelling, POS tags, chunk tags, gazetteer inclusion, and word- and/or character-

embeddings, thus adopting a tabular-based format as in feature-based NER. The context encoder 

component captures contextual information from text using CNN, Recurrent Neural Networks 

(RNN) and/or biLSTM or, more recently, using Transformers and language models (Devlin et 

al., 2018). Recently, the later has gained traction, especially thanks to Bidirectional Encoder 

Representations from Transformers (BERT) (Devlin et al., 2018), a language model based on 

bidirectional encoder representations using Transformers that yield promising results in any 

kind of NLP task and in NER tasks in particular. The tag decoder component is in charge of 

predicting the final output or labels from a text sequence by means of, for instance, a CRF or 
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softmax layer. With regard to Twitter-specific NER tasks, biLSTM and/or CNN have been 

successfully applied (Dugas & Nichols, 2016; Espinosa et al., 2016; Aguilar et al., 2018). The 

most successful and popular neural NER systems consist of biLSTM networks with an added 

CRF layer on top, resulting in state-of-the-art sequence labeling performance (Limsopatham & 

Collier, 2016). Current research emphasizes that neural NER models should still consider 

linguistic-based feature engineering to achieve superior performance (Yadav & Bethard, 2019), 

especially in the case of user-generated content such as tweets (Li et al., 2018). In this regard, 

emerging research is corroborating such claims (Aguilar et al., 2019). 

 Since neural NER is considered a state-of-the-art approach and is also the framework used 

in the development of our DL-based model, we present a brief introduction on the theoretical 

principles behind neuronal networks to understand their working mechanisms. 

 

2.7.2.1. Neuronal networks: layers, neurons and hyperparameters 

Neural NER models rely on Artificial Neuronal Networks (ANN) which, imitating the 

functioning of biological neurons, receive data as input to learn and infer patterns that are then 

put to the test to see whether they can generalize with good performance (Gurney, 1997; Cole, 

2018). An ANN consists of the following parts: an input layer, a hidden layer, and an output 

layer (Figure 3). These layers are nodes that transform real-world data into numerical values and 

process them to obtain an output that is then learned by the algorithm. The hidden layer, placed 

between the input and the output layers, receives weighted inputs and produces an output by 

means of an activation function. Usually, neuronal networks contain multiple hidden layers, in 

which case they receive the name of ‘deep neuronal networks’. The number of neurons in an 

input layer depends on the number of properties or features, where each neuron represents a 

given feature. In the case of the output layer(s), the number of output layers depends on the 

nature of the algorithm. In neural NER, since NER is a multi-class classification task, the output 

layer consists of as many layers as instances need to be identified. For instance, in the task of 

location extraction, we could use a scheme such as IOB whereby the classes to be identified are 

B-LOC, I-LOC, and O. The number of hidden layers and neurons in them depends on the nature 

of the algorithm and the task, too. Usually, 1-5 layers are employed with 1-300 neurons each. 

 

Figure 3. Layers and neurons in a simple neuronal network. 
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Each layer is made up of neurons defined in terms of weights and biases. When a neuron 

processes input data, the neuron computes the network hyperparameters, often set randomly, 

through a linear function, where W represents the weight, X the input data, and b the biases 

(Equation (1)). 

 

    𝑍 = 𝑊 · 𝑋 + 𝑏       (1) 

 

Z represents a linear regression. However, since a neuronal network must also learn non-linear 

patterns, another different function, the activation function (Equation (2)), must be computed 

after calculating Z (Figure 4). 

 

   𝐴 =  𝑔(𝑍)  =  𝑔(𝑊 ·  𝑋 +  𝑏)    (2) 

 

Figure 4. The computation of the activation function in a neuron. 

 

 

The role of the activation function is to process a node’s input signal to convert it into an output 

signal, which is, in turn, used as input for the next layer. A neuron fires or not depending on the 
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activation function. Activation functions can be of different types, depending on the nature of 

the neural network: sigmoid, hyperbolic tangent, rectified linear unit, etc. 

In the training phase of a neuronal network, the layers of neurons learn the values of the 

parameters by going forward and backward in an iterative process, usually called epoch or 

iteration (see Figure 5 below). Such movements are termed ‘forward propagation’ and 

‘backpropagation’. First, training data pass through all the layers and their neurons, which apply 

the activation function with the set parameter values, and reach the final layer with an output 

label predicted on the basis of the previous computations. By means of a loss function, the 

algorithm estimates and measures the degree of success in determining the output label by 

comparing the predicted label with the correct label: the closer to zero, the less divergence there 

is between the output label and the correct label. During the training process, the weight values 

are gradually adjusted to obtain better predictions so that our neuronal networks learn optimal 

parameters. While our algorithm computes the loss function, it propagates this information 

backwards through backpropagation. In other words, from the output later, the hidden layers 

receive the contribution of the loss function relative to each neuron. 

 

Figure 5. Forward propagation and backward propagation (Negrov et al., 2015). 

 

 

On the basis of this process, weights are also adjusted to achieve a better prediction. In order to 

minimize the loss function, gradient descent, a very useful technique in neuronal networks, is 

introduced by slightly modifying the weights with small increments in each iteration through the 

computation of the derivative of the loss function multiplied by the learning rate. The learning 

rate is a hyperparameter which affects the learning speed by determining how quick the weights 

shift in each training epoch. The learning rate value usually ranges from 0.001 to 1. The lower 

the learning rate, the more accurate the estimation because of smaller increments in weights, but 

the more time it takes to train the network. It thus remains a matter of finding the most adequate 

value to balance accuracy and computational cost and time. The end result in the training phase 
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of the neuronal network must be such that the loss function is gradually minimized in each 

iteration which, in turn, helps increase the accuracy of the trained neuronal network (Figure 6). 

 

Figure 6. The interaction of the loss function, accuracy and iterations. 

 

 

Besides the hyperparameters above mentioned, there are others which can positively impact the 

training performance of the neuronal network. One of such hyperparameters is called 

regularization. Regularization prevents overfitting, which refers to the phenomenon of achieving 

great accuracy with the training dataset at the expense of poorer performance with unseen data. 

Regularization works by decreasing the weights’ increments so that they become more regular. 

This is done by adding a cost to the loss function. One of the commonest regularization 

techniques is called dropout, whereby a number of random output values are set to zero during 

training. Dropout values typically range from 0.2 to 0.5, representing a fraction of output values. 

Another important hyperparameter is called batch size, which selects a random subset of 

training data (i.e. a mini-batch) to be used in each iteration, usually ranging from 10 to 1000. 

Optimal performance in terms of speed and accuracy has been observed with minibatch sizes of 

2 up to 32. The process of finding optimal hyperparameter values is termed 

hyperparameterization or hyperparameter tuning or optimizing, traditionally performed with 

manual tuning or trial and error. 

Focusing on improving accuracy alone in the training phase can lead to overfitting or 

underfitting problems. In other words, the resulting neuronal network is a highly accurate one, 

but only when applied to the training dataset. This means that it might not generalize well when 

presented with new data. The main objective of training a neuronal network is to obtain a 

neuronal network capable of making accurate predictions with unknown data, that is, to be 
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generalizable. To avoid overfitting and underfitting, the training phase is complemented with a 

validation process. In probabilistic-based frameworks, validation means that the dataset used for 

training is split into two datasets: a training set of, usually, 70-90% of the samples, and a 

validation set of 10-30% of the samples. The validation process is performed in each iteration to 

test the performance of the trained neuronal network. When training accuracy increases but 

validation accuracy decreases, this leads to overfitting (Figure 7). 

 

Figure 7. Overfitting. 

 

 

This phenomenon can be avoided by using more training data or, in the case in which the 

amount of data is not the source of the problem, reducing the complexity of the neuronal 

network by changing the number of layers and/or neurons, or with regularization techniques. On 

the other hand, when both training accuracy and validation accuracy decrease, we may be 

presented with underfitting. This phenomenon results from low complexity in the model, and 

can be solved by adding more layers or neurons. 

 

2.7.3. Rule-based NER 

 

Both feature-based NER and neural NER are based on probabilistic models, whose performance 

when applied to unseen corpora of texts largely depends on the coverage, quantity, and quality 

of the training data (Purves et al., 2018). In general, these NER models require large annotated 

corpora, whose annotation and preparation process is time-consuming and labor-intensive (Li et 

al., 2018). In contrast, rule-based NER is based on a symbolic model, which makes use of hand-

crafted lexico-syntactic rules and lexical resources that help extract locative references from the 

text. These rules can usually take the form of regexes, which are formal notations that follow a 

specific syntax for finding patterns in text strings. They are used in rule-based NER to capture 

linguistic patterns in text strings from the knowledge provided by NLP tasks such as 

tokenization and POS tagging. For example, the presence of locative prepositions followed by 

proper nouns is usually taken as a strong linguistic cue that can be exploited to extract locative 
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references (Hoang & Mothe, 2018). Other cues that can be exploited involve the combination of 

different phrasal patterns, such as verbs of movement followed by prepositional phrases (Béchet 

et al., 2011; Van et al., 2013; Moncla et al., 2014). One of the most well-known rule-based NER 

system is GATE (Cunningham et al., 2002), which leverages regexes, linguistic knowledge, and 

resources to detect named entities with great precision. Overall, rule-based NER alone can 

achieve very high precision but low recall (J. Li et al., 2018; Jurafsky & Martin, 2018a; Yadav 

& Bethard, 2019). In the NLP research community, rule-based approaches are seen as a dead-

end technology, whereas DL and ML-based approaches heavily dominate the NLP landscape 

(Chiticariu et al., 2013). According to Chiticariu et al. (2013), this disregard of rule-based 

approaches in academia contrasts with the preference of companies and industries which still 

opt for rule-based approaches in the business world. As noted by the authors, the reason for this 

preference in business settings is due to the domain specificity of the rules and the lack of need 

of large amounts of data for their development, which translates to better suited practical 

applications, and the runtime efficiency of the rules. Moreover, the reusability and scalability of 

a rule-based model facilitate debugging and adapting the rules to new scenarios, whereas 

probabilistic-based models require gathering large and extensive labeled data and a more 

demanding fine-tuning process in the case of retraining phases with heavier computational costs, 

time, and resources. On the other hand, NLP researchers in academia consider that manually 

devising rules is a labor-intensive, time-consuming task that requires domain-specific 

knowledge and expertise in areas such as linguistics, steering away from their mathematical or 

computational background. Be that as it may, in biomedical NER, rule-based systems still show 

superior performance to those based in ML or DL (Gorinski et al., 2019). 

 

2.7.4. Named Entity Matching 

 

On the other hand, another frequently used approach to location detection is Named Entity 

Matching (NEM) (Leidner & Lieberman, 2011; Middleton et al., 2018). NEM consists in the 

use of digitalized lexical lists or gazetteers of named entities of places retrieved from geographic 

databases (Laurini & Kazar, 2016; Yingjie Hu, 2018b) such as GeoNames1 (Ahlers, 2013) or 

OpenStreetMaps2 (Acheson et al., 2017) for their application in the identification of locative 

references in text through a lookup, typically by exploiting n-grams (Middleton et al., 2014; 

Malmasi & Dras, 2016; de Bruijn et al., 2018). In computational linguistics, n-grams are 

described as linear sequences or combinations of n words in a given sample of text. Thus, in the 

sentence The quick brown fox jumps over the lazy dog, we can find unigrams or n-grams of size 

n = 1 (e.g. {the}, {quick}, {brown}, {fox}...), bigrams or n-grams of size n = 2 (e.g. {the quick}, 

                                                   
1 www.geonames.org  
2 https://www.openstreetmap.org/  
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{quick brown}, {brown fox}…), trigrams or n-grams of size n = 3 (e.g. {the quick brown}, 

{quick brown fox}…), and so on.  

The GeoNames database is one of the most widely used in location-detection systems. It is a 

very large and comprehensive database of geographic references containing around 25 million 

places. Some of the location types stored are, using the GeoNames terminology, administrative 

places (i.e. geopolitical entities), natural features (i.e. natural landforms), and some urban 

features (i.e. POIs and traffic ways). Besides named entities of places, it contains other 

geographic-related data such as population size and latitude-longitude coordinates, which can be 

very helpful for location disambiguation purposes and map geovisualization (Purves et al., 

2018). However, despite including a high number of places, GeoNames lacks location subtypes 

such as addresses, roads, buildings, etc. (Ahlers, 2013; Dutt et al., 2018). NEM systems for 

location detection in tweets seem to achieve greater performance than NER systems (Middleton 

et al., 2014). Sometimes, both are used jointly (Stock, 2018). However, NEM presents several 

drawbacks. First, geographic databases are finite, so they might not capture the full range of 

existing places (Purves et al., 2018). Second, these models cannot disambiguate proper nouns of 

named entities of places from proper nouns of person names, e.g. the city of Paris from Paris 

Hilton (Gritta et al., 2019): this phenomenon is known in the literature as geo/non-geo 

ambiguity (Amitay et al., 2004). 

Finally, Middleton et al. (2018) suggested that a hybrid approach, based on the combination 

of NER with NEM, can greatly reduce the number of errors. Although most location-detection 

models perform relatively well with a few or even without linguistic features, it is our 

contention that they fail to fully exploit the linguistic knowledge that permeates natural-

language texts, e.g. locative prepositions (e.g. in, at, near, etc.), location-indicative nouns (e.g. 

avenue, city, province, road, school, street, etc.), or locative markers (e.g. south of, XX kms 

away from, etc.) that signal the presence of named entities of place (Hoang & Mothe, 2018). 

This view emphasizes the need to develop rule-based location-detection systems that could 

improve state-of-the-art performance without requiring the significant amount of processing 

time and computational resources involved in ML and DL techniques (Gelernter & Balaji, 2013; 

Malmasi & Dras, 2016; Dutt et al., 2018; Middleton et al., 2018). In this context, one of the 

main contributions of our research lies in the heavy linguistic focus and the fine granularity of 

the extracted locative references, unlike previous NER and/or NEM models. 

 

2.8. A typology of Twitter-based geolocation models  

 

There exists a great range of location-based systems for Twitter that take into account different 

variables and data according to the targets, aims and methods (Ikawa et al., 2016; Stock, 2018; 

Zheng et al., 2018). We present a typology of geolocation systems for Twitter that considers, on 
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the one hand, the targets and aims, on the other hand, the methods employed and, finally, the 

data used. For each classification, we cite the most relevant and important pieces of research 

and models and a brief description of some of their main contributions. 

 

2.8.1. Classification of Twitter-based geolocation systems in terms of target 

 

2.8.1.1. User location 

Some approaches are aimed at extracting the user location on the basis of the user’s profile 

information, tweet metadata, and/or the user’s tweet history (Cheng et al., 2010; Kinsella et al., 

2011; W. Li et al., 2011; Han, Cook, et al., 2014; Alex et al., 2016; Miyazaki et al., 2018; 

Mourad et al., 2019). For instance, W. Li et al. (2011) studied the linguistic and social 

implications attached to POIs by tweet users using tweet geotagged metadata. In the case of 

Kinsella et al. (2011), they created language models of locations on the basis of geotagged tweet 

data for advertising content and nearby places to Twitter users. Han et al. (2014) proposed a 

geolocation prediction system for user location at city level through location-indicative words in 

tweets and user profile information and examined the influence of non-geotagged tweets, 

language variation, and metadata for geolocation inference. Leveraging non-geotagged tweets 

significantly improved location accuracy from 12.6% to 28% on a benchmark dataset. Dredze et 

al. (2013) introduced CARMEN, a geolocation algorithm that detects toponyms of different 

administrative levels (country, state, county, city) of Twitter users through their tagged 

coordinates and profile information aimed at public health and medical applications such as 

disease surveillance and propagation. Miyazaki et al. (2018) devised a knowledge-based neural 

network framework for Twitter user geolocation that exploits the user’s tweet history with 

semantic relations (e.g. isLocatedIn, livesIn, happenedIn…).  

 

2.8.1.2. Tweet location 

Not be confused with the extraction of locative references from tweets, approaches that target 

tweet location focus on where the tweet was posted using, typically, tweet geotagged metadata 

and/or user profile information (Sakaki et al., 2010; Priedhorsky et al., 2014; Chong & Lim, 

2018; Gao & Li, 2019; Gonzalez-Paule et al., 2019; Khodabandeh-Shahraki et al., 2019). For 

example, Gonzalez-Paule et al. (2019) proposed a geolocation model that targets non-geotagged 

tweets by exploiting similarity content of geotagged tweets for traffic incident detection 

purposes. Sakaki et al. (2010) presented a spatiotemporal algorithm that locates disaster-related 

events from tweets using tweet geotagged data and user profile information. Khodabandeh-

Shahraki et al. (2019) proposed a model for event geolocation that takes into account multiple 

variables such as tweet text, user profile location, geotagged data, and posting time to estimate 

the location of a particular event. They noted that location references in tweet text are not 
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always a reliable variable to predict the location of an event. Gao & Li (2019) introduced a 

geolocation model for English microtexts such as tweets that estimates the location of the 

microtext using a weight probability model, where words or phrases that express location are 

given a higher weight than others. Izbicki et al. (2019) presented a multilingual model based on 

a neural network that exploits character-level features in tweet text to estimate tweet location 

without, theoretically, drawing on linguistic-based features (i.e. tokenization, POS tagging, etc.), 

and achieving great results. The authors suggest that their model can transfer the knowledge 

learnt in language to at least more than 100 languages, and that their training dataset contained 

at least 900 million tweets. Unfortunately, we are not explicitly provided with textual evidence 

of its capabilities, or an in-depth explanation of how location is captured across many languages, 

and what types of location can be extracted. Elad et al. (2020) devised a system that estimates 

the location of a tweet on the basis of an ad-hoc list of location types using linear classifiers and 

neuronal networks to asses which of these probabilistic-based frameworks performs best. 

 

2.8.1.3. Locative reference extraction 

The focus of the present thesis deals with the identification and extraction of locative references 

that are mentioned in the tweet text. Usually, tweet texts related to emergency-related situations 

contain geospatial information more relevant to the locus of the event than to user location in 

such scenarios (Arthur et al., 2018). Because of that, tweet text is a very valuable source of 

information in emergency-tracking systems to locate emergency-related events. A 

comprehensive case-by-case analysis is given for each location-detection model in 

chronological order, with an emphasis on the most impactful works in this area.  

Gonzalez et al. (2012) introduced TweoLocator, a framework that focuses mainly on 

location mentions in tweets to infer user location patterns. Given a tweet text, the model applies 

a set of heuristics that take into account n-grams, different gazetteers (i.e., Wikipedia and 

GeoNames), and rule-based techniques to detect locative references, as well as different 

syntactic combinations to estimate user location. The location types considered are geopolitical 

entities and POIs. However, it presents some limitations, such as the restriction of n-gram size 

to trigrams, or considering only one location mention in the tweet text to infer user location, 

ignoring many other potential location mentions. Given their focus on user location and 

geocoding, no evaluation metrics are offered to test their location extractor. 

Gelernter & Balaji (2013) proposed a microtext location-detection model using regex-based 

rules, the Open Calais NER software, ML techniques for abbreviation disambiguation, and 

NEM with a National Geospatial Intelligence Agency gazetteer for the identification of places 

in New Zealand and Australia at and within city level such as administrative places, buildings, 

and streets. It was, to the best of our knowledge, the first research work in the literature of 

locative reference extraction from tweets that made explicit use of linguistic knowledge for its 
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regex-based module. The authors created a training dataset with tweets from the 2011 

Christchurch earthquake and two evaluation datasets, one about this event, and another for the 

2011 Texas wildfire in the US. In the first evaluation dataset, the algorithm achieved an F1 

score of 0.85 for streets, 0.86 for buildings, 0.96 for administrative places, and 0.88 for place 

abbreviations, giving an average of 0.9. In the second dataset, it obtained an F1 score of 0.71. 

The reason why this algorithm achieved a very high F1 score for the first dataset is explained by 

the fact that the training dataset and test dataset shared the same emergency event and also the 

gazetteer was preloaded with locative references from New Zealand. In other words, the model 

may have been particularly skewed for the location types mentioned in the Christchurch 

earthquake. The F1 score of the Texas fire evidenced that in other events the algorithm may 

suffer from poorer performance. On that note, it has been reported that case studies of particular 

disaster events with well delimited spatial boundaries usually yield higher evaluation results 

(Karimzadeh et al., 2019). It would thus remain to be seen whether such greatly high 

performance could be replicated with global-scale events or local events other than those that 

may occur in New Zealand. Another issue has to do with the lack of explicit information about 

the type of evaluation conducted: were precision, recall and F1 scores obtained in terms of 

entity-based matching or token-based matching? 3  If the latter, evaluation numbers tend to 

correlate higher. Another downside of this study has to do with the building and street 

identification module. Although the authors constructed a rich list of building types from the 

Wikipedia4, they decided to create an ad-hoc list of traffic ways with few references: st, street, 

ln, lane, dr, drive, boulevard, blvd, road, rd, avenue, ave, pl, way, wy. Despite being a valid 

method, its scientific rigor might be debatable.  

Lingad et al. (2013) aimed at investigating the effectiveness and the accuracy of existing 

NER tools in recognizing location mentions of type geopolitical entities, natural landforms, and 

POIs from tweet text using the pre-defined NER categories LOCATION and ORGANIZATION. 

They compared the performance of these out-of-the-box NER tools against their retrained 

counterparts, and found that existing NER tools such as Stanford NER, once retrained with 

tweet data, can yield great overall NER performance, outperforming even Twitter-based NER 

tools (e.g. Twitter NLP). For that purpose, they compiled and annotated a gold standard dataset 

of 3203 disaster-related tweets from 2010 to 2012. This training dataset comprised tweets from 

the 2012 flooding in Queensland (Australia), the 2011 earthquake in Christchurch (New 

Zealand), the 2011 England riots, the 2012 flooding in York (England), and the 2012 Hurricane 

Sandy (US). Evaluation measures were provided on a per-token basis, rather than on a per-entity 

                                                   
3 A more detailed explanation about different types of NER-specific evaluation criteria is given in the 

Section 7. 
4 https://en.wikipedia.org/wiki/List_of_building_types 
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basis, for out-of-the-box NER tools, and their retrained counterparts considering or not hashtags. 

The best F1 score, 0.902, was achieved by the retrained Stanford NER tool. 

Daly et al. (2013) focused on the study and detection of traffic-related incidents from tweets 

and SMS messages. In their model, a georeferencing module was developed to extract locative 

references and assign them coordinates. For the extraction of locative references, they used the 

OpenStreetMaps geodatabase for an n-gram-based lookup of location names. Despite a lack of 

an explicit characterization of the location types, their focus was on POIs as well as traffic ways, 

the latter extracted by means of rule-based methods. No evaluation metrics were provided for 

the location-extraction module but for the accuracy of the assigned coordinates. 

Ghahremanlou et al. (2014) devised OzCT Geotagger, a geoparsing algorithm that targeted 

toponym recognition and toponym resolution. It can automatically find location mentions at a 

fine-grained level (streets, suburbs…) from tweet text using NEM (gazetteer-matching with a 

lexicon and GeoNames, and Google Maps API querying) and the Stanford NER tool before 

linking them to geographic coordinates. Each tweet was classified into definite, ambiguous or 

no-loc for unambiguous geospatial information, ambiguous geospatial information and non-

existent geospatial information, respectively. The authors collected tweets for their training and 

test datasets from 2012 natural disaster events in Australia, obtaining an F1 score of 0.804 for 

the detection of definite locations. 

Han et al. (2014) focused on the detection and classification of location mentions (countries, 

cities and POIs) in tweet data by training their own CRF classifier and re-engineered a 

supervised ML model on the basis of previous feature-engineered tools such as Stanford NER, 

TwitterNER and Washington NER, achieving an F1 score of 0.7261. 

Malmasi & Dras (2016) proposed a linguistic-based unsupervised location-detection model 

based on linguistic techniques and rules such as NP extraction and n-gram matching techniques 

using regex-based rules and GeoNames. It targeted geopolitical entities, POIs, addresses, and 

surrounding distance and direction markers, giving an F1 score of 0.792. This research work 

provided a more linguistic-based focus for the task of location detection. However, there are a 

number of drawbacks that need to be discussed: first, the debatable rigor in the authors’ decision 

to create ad-hoc lists of location-indicative words (addresses, POIS…) and second, a loose 

evaluation metric standard performed on a per-token basis, rather than on a per-location entity 

basis, both of which might have contributed to a higher F1 score. 

Inkpen et al. (2017) presented an ML-based model with a CRF classifier for the detection of 

US and Canada geopolitical entities (cities, provinces/states, and countries) in tweet text with 

the help of NEM using GeoNames for business and marketing purposes. For the training phase 

of their algorithm, they employed linguistic features such as POS tags, contextual grammatical 

information, and GeoNames membership. They reported evaluation metrics on a per-token and 
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per-entity basis for each type of geopolitical entity. The best F1 score for the entity-based 

evaluation at city level was 0.81, at state and province levels 0.86, and at country level 0.90. 

Middleton et al. (2018) developed a rule-based location-detection model for English tweets 

using the OpenStreetMaps database. The location-detection model was based on previous work 

(Middleton et al., 2014) with additional improvements. It has an important linguistic component 

in that it used NLP techniques such as the NLTK sentence tokenizer5, entity-based matching 

with OpenStreetMaps using an n-gram-based module, their own corpus of building and street 

types, and the NLTK stopword list enriched with a list of names. They focused on geopolitical 

entities, buildings, and streets. The evaluation stage was carried out for separate corpora of 

tweets about different incidents (i.e. blackout, earthquake, and hurricane) in different 

geographic areas (i.e. Christchurch, Milan, New York, and Turkey) for which the geodatabase 

was preloaded with locations for those specific areas for the evaluation of each corpus. 

Precision numbers were impressive, ranging from 0.93 to 0.99, and F1 scores ranged from 0.90 

to 0.97, except for the Turkey earthquake dataset where it achieved an F1 score of 0.28. They 

also compared the performance of other microtext location-detection models, such as that of 

Gelernter & Balaji (2013) or one that used Stanford NER with regex-based patterns for 

matching sequences of nouns. The first one achieved an F1 score of 0.27, 0.67, 0.55, and 0.66 

for the Turkey earthquake corpus, the New York hurricane corpus, the Milan blackout corpus, 

and the Christchurch earthquake corpus, respectively. The second one achieved lower F1 scores, 

the best one being 0.52 in the Milan blackout corpus. As the authors, noted, a disadvantage of 

their model is its very slow processing speed, since it has to preload many locations in memory 

before deploying the location-extraction module, lasting many minutes. Overall, the authors 

highlighted the importance of implementing linguistic knowledge and using geodatabases in 

location extraction from tweets to achieve great results. It would be interesting to see whether 

the application of their model to global-scale corpora of tweets about different issues and 

targeting more location types delivers the same results, and how processing speed becomes 

affected. 

de Bruijn et al. (2018) built TAGGS, a model specifically designed for toponym recognition 

and resolution purposes, which exploits metadata and contextual geospatial information from 

disaster-related clusters of tweets, instead of individual tweets only. TAGGS was used to 

research flood locations at coarse-grained levels (i.e. geopolitical entities such as towns, cities, 

countries, regions, etc.) from 55.1 million flood-related tweets in twelve languages extracted in 

real time from the Twitter API using flood-related keywords. TAGGS first performs toponym 

recognition with NEM using n-grams and GeoNames, and then performs toponym resolution 

                                                   
5 NLTK is a Python library for NLP tasks. Further information about NLTK is given in Section 7, in 

which we used the NER module in NLTK to benchmark its performance against LORE. 
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thanks to Twitter metadata, such as GPS coordinates, and geospatial clues from individual 

tweets and clusters of tweets. TAGGS achieved an F1 score of 0.865.  

Hoang & Mothe (2018) explored how the combination of different models and methods 

developed in NLP to perform location extraction on tweets (e.g. Ritter’s NER tool, Gate NLP 

and Stanford NER) could help improve recall and precision. Then they used DBpedia6 , a 

knowledge base, to filter locative references. They also proposed a location-prediction system 

which involved selecting only location-specific tweets for improved location-extraction 

performance. This system used the third-party NER tools Ritter NER, Gate NLP, and Stanford 

NER together with NEM using Gate NLP framework’s gazetteer and linguistic knowledge 

through leveraging locative prepositions and location-indicative words. The best combination 

consisting of Ritter NER, Stanford NER, and DBpedia yielded an F1 score of 0.85 in the Ritter 

test dataset (Ritter et al., 2011). 

Al-Olimat et al. (2018) proposed an unsupervised location-detection model for tweet text 

drawing on NEM (GeoNames) with gazetteer augmentation and filtering and an n-gram model 

complemented by collocational information. It was applied on three tweet datasets 

corresponding to three local flood events in Chennai, Louisiana and Houston respectively, 

achieving an F1 score of 0.81 on a per-token evaluation basis. However good the results are, we 

are not provided with an explanation about the location types extracted by their model. 

Dutt et al. (2018) developed an unsupervised location-detection model for tweets based on 

regex-based rules, ad-hoc lists of location-indicative words, syntactic chunking and dependency 

parsing, the Spacy NER tagger7, and GeoNames that achieved an F1 score of 0.81 on a per-

entity-based evaluation. It was applied to a large test corpus of tweets (239,256 tweets) collected 

using the keywords dengue and flood for emergency-related events of those types located in 

India. The methodology followed is linguistic-based, since they made use of linguistic 

knowledge and NLP techniques for NER and NEM. The authors did not present information 

about the location types extracted by their model. 

Avvenuti et al. (2018) devised GPS, a geoparsing and geotagging tool drawing on ML 

techniques that uses semantic annotation and entity linking with knowledge-based resources (i.e. 

RDF-based resources). It can detect location mentions at a fine-grained level and then 

disambiguate them with geographic coordinates, obtaining an F1 score of around 0.738 for 

English tweets and 0.885 for Italian tweets.  

Karimzadeh et al. (2019) presented GeoTxT, a scalable geoparsing tool that detects and 

disambiguates global-scale location mentions in unstructured text, with the help of six 

implemented third-party NER tools. For the toponym-resolution phase, they leveraged the 

                                                   
6 https://wiki.dbpedia.org/ 
7 SpaCy is a Python library for NLP tasks. Further information about this library and its NER module is 

presented in Section 7. 
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GeoNames database. Apparently, they targeted geopolitical entities, natural landforms, and 

some POIs (i.e. buildings), which are the location types typically recognized by NER tools. The 

NER system CogComp alone achieved the best F1 score of 0.7854 on a per-entity-based 

evaluation. 

Kumar & Singh (2019) tackled the issue of tweet-location extraction in several earthquake 

events by means of a supervised DL-based approach using a CNN algorithm without linguistic-

based feature engineering. The per-token-based evaluation achieved an F1 score of 0.96. The 

authors did not provide a sound theoretical basis of what location types were targeted by their 

model. 

Hernandez-Suarez et al. (2019) proposed a NER system for detecting and geocoding 

toponyms (i.e. street, avenue, country, region, building) in Spanish tweets from the 2017 

Mexico City earthquake through a DL-based model based on a bi-LSTM neural network with a 

CRF top layer, and pre-trained word embeddings using the corpus of Spanish tweets as training 

data. Their model achieved an F1 score of 0.80. 

Di Rocco et al. (2019) introduced a knowledge-driven model for the location detection and 

geocoding of sub-city level locative references using LinkedGeoData, a semantically enriched 

version of OpenStreetMaps, and openStreetMaps Facet Ontology. The algorithm performs 

entity-based matching with the geographic databases and then extract the geospatial coordinates 

attached to the location names extracted. The evaluation, centered on the accuracy of the 

geocoding part, was performed on two datasets, GeoText (Priedhorsky et al., 2014) and 

FollowTheHashtag (Yuan et al., 2015), using only tweets geolocated in New York City (US) 

and London (UK). 

Y. Zhang et al. (2019) presented a probabilistic-based framework based on coarse-grained 

syntactic knowledge that automatically learns syntactic patterns to discover locative references 

in abnormal traffic events. They evaluated their model using tweet datasets containing traffic 

incidents in New York and Los Angeles, and compared their results against Google Named 

Entity Detection8, Stanford Core NLP, and spaCy. The F1 scores ranged from 0.6 to 0.7 using 

distinct evaluation procedures, outperforming the previously mentioned NER tools. 

Yang-Lim et al. (2019) introduced TEXT, a rule-based location-detection model that only 

focused on the extraction of traffic ways from 1500 English tweets, comparing their system 

against other generic NER systems such as Stanford NER or NLTK. TEXT outperformed all of 

them by a large margin, achieving an F1 score of 0.9128 for the task of extracting traffic ways. 

To the best of our knowledge, this is the only piece of work in the literature that addressed this 

specific location type. 

                                                   
8  It is an API web service that makes use of Google Natural Language Cloud capabilities. Further 

information about it and its NER capabilities is provided in Section 7. 
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Xu et al. (2019) devised a DL pipeline with a bidirectional LSTM–CRF network for 

location detection and disambiguation of locative references in tweets, achieving an F1 score of 

0.80. Although there is no explicit mention of using linguistic features for the training phase of 

the model, feature engineering was performed with character-level information, pre-trained 

embeddings, and with a gazetteer of POIs to label location mention candidates. 

Das & Purves (2019) presented a hybrid location-detection system consisting of a 

supervised-learning algorithm, using OpenNLP and Stanford NER with retrained data, and a 

rule-based module for the detection of traffic-related locations in Greater Mumbai (India) in the 

context of traffic-event location detection. The rule-based module infers locative references on 

the basis of the presence of locative prepositions, obtained from a database, and location-

indicative words. No information is provided as to which criteria were used in the process of 

constructing a location-indicative word dataset. They retrained each of the NER systems with 

their own data and tried several combinations to obtain the best performing model. As the 

authors explained, they achieved a fairly poor precision score (0.53) but high recall (0.79) which 

is due to a high number of false positives because of the functioning of the rules together with 

the location-indicative noun dataset. 

Singh et al. (2020) provided an in-depth study of the current coronavirus COVID-19 

pandemic in which they also focused on locative references mentioned in tweets dealing with 

the COVID-19 outbreak. They used NEM with Wikipedia and Statoids9, two major databases to 

extract geopolitical entities such as countries, states, provinces, and cities. With this geospatial 

information, they analyzed the correlation between confirmed number of cases in different 

regions of the world and number of location mentions in the tweets, finding a high correlation 

between both: the more confirmed cases of coronavirus in a given area, the more that area 

appeared mentioned in the tweets. Singh et al. (2020) underlined the importance of location 

extraction techniques to study the evolution and spread of pandemics and for disease forecasting. 

Wang et al. (2020) built a location extractor called NeuroTPR, which used a bidirectional 

RNN with LSTM enriched with linguistic-based features for the task of location extraction from 

tweets. The process of feature engineering was carried out using character embeddings, word 

embeddings, and linguistic-based features such as POS tags and deep-contextualized word 

embeddings. The tagging scheme adopted in the datasets was the IOB, which is the typical of 

NER tools. For the training phase, they employed 599 tweets from a dataset called WNUT 2017, 

together with automatically annotated location-related chunks from the Wikipedia that were 

split into 140-character chunks and purposefully introducing misspellings to make them 

resemble tweets. For the evaluation of their tool, they used different corpora. They built a tweet 

corpus from the 2017 Hurricane Harvey dataset; moreover, they used GeoCorpora (Wallgrün et 

                                                   
9 http://www.statoids.com/ 
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al., 2018), which is also made up of tweets and another dataset called Ju2016, with chunks from 

the Web. For the compilation of the Harvey2017 corpus, they created a regex-based rule with 70 

location-indicative nouns and abbreviations to mine 1000 location-rich tweets containing at 

least one locative reference. The location types were geopolitical entities, natural landforms, 

POIs, and a few traffic ways. They did not consider, in their definition of location, demonyms, 

metonymical references, and vague and unspecific location mentions. In the evaluation stage, 

they compared their model against standard, off-the-shelf NER tools such as Stanford NER, 

using the standard and caseless models, and a retrained model with the same training data used 

for NeuroTPR, spaCy NER, a basic biLSTM-CRF model and another DL model from the 2019 

SemEval geoparsing competition, both using also the same training data as NeuroTPR. The 

evaluation phase was carried out using exact matching of location references. The best 

NeuroTPR model, consisting of 3000 Wikipedia articles and 599 tweets, achieved a precision 

score of 0.787, a recall score of 0.678, and an F1 score of 0.728 on the Harvey2017 corpus. 

They tried to expand their training dataset by adding 50 tweets from the original 2017 Hurricane 

Harvey dataset to their training corpus, and, although evaluation numbers improved (i.e. 

precision score of 0.832, recall score of 0.843, and F1 score of 0.837), they pointed to the fact 

that the model might have suffered from overfitting. They noticed that, for training NeuroTPR, 

using a different number of Wikipedia chunks which resembled tweets through the introduction 

of misspellings performed worse (i.e. F1 scores lower than 0.5) than using those chunks 

untouched. They also noticed that adding more of these raw Wikipedia chunks did not improve 

the performance of the model but actually worsened it. When comparing the best NeuroTPR 

with the other models and tools, they noticed that the standard Stanford NER was not successful 

in extracting fine-grained location types such as POIs and traffic ways, although it showed great 

precision numbers (0.828), and much better evaluation numbers than the caseless or the 

retrained models. SpaCy obtained much worse numbers (i.e. F1 score of 0.366), whereas the 

basic biLSTM-CRF model and the 2019 SemEval geoparsing model achieved evaluation 

numbers closely resembling those of NeuroTRP (i.e. F1 scores of 0.649 and 0.703, respectively). 

With GeoCorpora, NeuroTPR achieved a precision score of 0.8, a recall score of 0.761, and an 

F1 score of 0.78. In the discussion of the errors committed by their tool, they pointed out that 

highway names, especially US interstates (e.g. I-45) were not captured by their tool, or that 

concatenated location names at the end of tweets were not properly delimited and captured. For 

the first type of error, they suggested using regexes. Overall, many of the location types targeted 

by this model and encountered issues were already addressed by LORE and nLORE since the 

inception of the present research project. Wang et al., (2020) showed that the topic of location 

detection from tweets is a very active line of research gaining momentum in the last few years 

and months. 
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2.8.2. Classification of Twitter-based geolocation systems in terms of method 

According to the type of model, location-detection systems can be based on probabilistic 

models, such as ML or DL (Cheng et al., 2010; Sakaki et al., 2010; Lingad et al., 2013; Yin et 

al., 2014; Ghahremanlou et al., 2014; Han, Cook, et al., 2014; Han, Jimeno-Yepes, et al., 2014; 

Inkpen et al., 2017; Avvenuti et al., 2018; Miyazaki et al., 2018; Chong & Lim, 2018; Xu et al., 

2019; Gonzalez-Paule, 2019; Hernandez-Suarez et al., 2019; Wang et al., 2020), symbolic-

based or rule-based models (Gelernter & Balaji, 2013; Malmasi & Dras, 2016; Al-Olimat et al., 

2018; Dutt et al., 2018; Middleton et al., 2018; Yang-Lim et al., 2019) or a combination of both 

(Hoang & Mothe, 2018; Das & Purves, 2019; Y. Zhang et al., 2019). 

 

2.8.3. Classification of Twitter-based geolocation systems in terms of data and resources 

Another criterion is related to which type of Twitter data is used for a geolocation model. For 

instance, many rely on tweet text (Lingad et al., 2013; C. Li & Sun, 2014; Ghahremanlou et al., 

2014; Han, Jimeno-Yepes, et al., 2014; Malmasi & Dras, 2016; Ikawa et al., 2016; Inkpen et al., 

2017; Avvenuti et al., 2018; Middleton et al., 2018; Miyazaki et al., 2018; Dutt et al., 2018; Y. 

Zhang et al., 2019; Das & Purves, 2019; Hernandez-Suarez et al., 2019; Karimzadeh et al., 2019; 

Wang et al., 2020), whereas others rely on tweet geotagged metadata only (W. Li et al., 2011), 

user profile information and the user’s tweet history (Cheng et al., 2010; Alex et al., 2016; 

Chong & Lim, 2018; Mourad et al., 2019) or a combination of the previous data (Sakaki et al., 

2010; Kinsella et al., 2011; Dredze et al., 2013; Han, Cook, et al., 2014; Yin et al., 2014; 

Gonzalez-Paule, 2019). 

 

 

3. RESEARCH CHALLENGE 

 

3.1. Research issues and limitations 

 

There are some research issues and limitations that should be taken into consideration: 

 

i) Lack of a heavy linguistic basis: although there is some NLP-based research in location-

detection models that makes use of tokenization, POS tagging, n-grams, some basic 

regex-based rules and different lexical lists and gazetteers, few, if any, provide a sound, 

linguistic-focused theoretical basis of what a locative reference is, how it can surface in 

the clause, and which linguistic-based rules, on the basis of linguistic evidence, can be 

devised to enable their identification and avoid the extraction of wrong instances. Most 

models follow a result-oriented approach that potentially ignores the underlying 

linguistic knowledge encapsulated in texts. 
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ii) Lack of sufficient semantic granularity: as of now, most location-detection systems lack 

a sufficiently fine-grained semantic coverage of location types. In this sense, many still 

rely on coarse-grained location types such as geopolitical entities and a few natural 

landforms (Wang & Hu, 2019), or a few roads and POIs (Gelernter & Balaji, 2013). 

iii) Geo/non-geo ambiguity in text (Amitay et al., 2004) harms location-detection models, 

especially those that make use of NEM approaches. The granularity level in those 

models have a direct impact on the level of ambiguity that might surface. In this regard, 

country-level toponyms are easier to identify correctly than other geopolitical entities, 

which, in turn, are easier to identify than other location types. 

iv) Most research has focused on case studies of particular disaster-related events with 

well-delimited spatial boundaries. This facilitates the training and testing phases of their 

models, since the scope of locations is greatly reduced and much restricted. Those 

approaches using NEM frameworks especially benefit from local-scale events. It thus 

remains to be seen whether performance on different global-scale crisis and emergency-

related scenarios remains equally good. 

v) There are no clear, strict guidelines in the evaluation phase of location-detection models: 

some elaborate on the per-token-based and per-entity-based statistics, others only offer 

the evaluation numbers without a critical assessment of what is measured and how. This 

potentially compromises the validity and interpretability of the evaluation statistics 

offered. 

vi) Real-time application of these tools is a chimera in most cases, since the processing 

speed of most location-detection models is overall slow, especially when they rely on 

huge geographic databases such as OpenStreetMaps. 

vii) Challenges and research directions in corpus construction (Wallgrün et al., 2018): there 

is an ongoing body of research that studies the relationship between the degree of 

success of a given location-detection model and corpus size and type. In this respect, 

probabilistic-based models require a tremendous amount of corpus data to train their 

algorithms. 

viii) Linguistic-based feature engineering in ML and DL approaches for location 

detection mostly relies on token, POS tag and embedding features at best and at worst 

such linguistic features are not even used in these models. Whether extended linguistic-

based feature engineering provides a real benefit or not in a DL-based location-

detection framework remains to be addressed. 

 

3.2. Research questions 

 

These are the questions that guided our research: 
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i) Can we build a location-detection model for tweets with a heavy linguistic basis that 

can exploit linguistic knowledge using NLP-based techniques only? If so, can it detect 

any fine-grained location types? Can it provide almost instant, real-time results? Can it 

be applied to languages other than English so that it can be adapted to multilingual 

contexts? Can this multilingual adaptation be facilitated with semi-automatic methods? 

ii) Can we use our model with any type of crisis-related or emergency event on a global-

scale and can it perform well on a regular basis? Can we ensure that our model can 

generalize well with new, unseen corpora of tweets? 

iii) Can we train a successful probabilistic-based model that relies on a DL algorithm using 

a relatively small corpus? If so, can we prove that linguistic-based feature engineering 

can still play a decisive role in cutting-edge computational NLP approaches? Can this 

probabilistic-based model be more intelligent and thus have greater performance in the 

task of location extraction than its rule-based counterpart? 

 

3.3. Research hypothesis and justification 

 

Our initial hypothesis is that, by exploiting the explicit linguistic and contextual knowledge in 

microtexts, we can build a location-detection model which (a) can detect any fine-grained 

location type in English, Spanish and other languages almost instantly, (b) which can perform 

on a global scale in any kind of emergency or crisis scenario, and (c) which achieves state-of-

the-art performance without the high computational cost, time and resources characteristic of 

ML and DL frameworks. Another hypothesis that resulted from our foray into AI and 

Computational Linguistics is whether we can prove the importance of linguistic-based feature 

engineering in cutting-edge NLP computational approaches, by developing a DL model that 

feeds off the linguistic knowledge provided by our rule-based method. In relation to this, 

another research hypothesis revolves around the question whether our DL model can outperform 

our rule-based system. In this regard, the present research project meets the current needs of 

research development in digital humanities, interdisciplinarity among linguistic-related 

computational disciplines and real-world practical applications that have a direct impact on 

society in the resolution of logistical problems in any kind of crisis-related or emergency 

situation. 

 

 

4. OBJECTIVES 

 

The goals that we intend to reach in this research are as follows: 
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i) Our primary aim is to develop an original and innovative multilingual, 

linguistically-aware, fine-grained location-detection model that can capture any kind of 

location type from tweets in English, Spanish and other languages through rich linguistic 

knowledge for its subsequent implementation into CASPER, a multi-domain problem 

detection system for tweets that targets environment-related issues. This system could 

ultimately be of great help for emergency-based services and responders for the detection of 

locations in not only environment-related problems but also any kind of real-world incidents 

and issues, such as car accidents, pandemics, or terrorist attacks. 

ii) Another primary aim is the development of a DL model that exploits the 

linguistic features provided by the previous model to automatically learn and infer linguistic 

patterns in the extraction of locative references from English tweets. This is a proof-of-

concept implementation which could pave the way for future computational work in the 

field of NER, while showing the potential capabilities of linguistic knowledge in cutting-

edge computational approaches. 

iii) One specific objective, in relation to the previous ones, is the compilation of 

different and representative enough corpora of tweets in different languages for the 

development, building, training, and evaluation phases of the models. 

iv) Another specific objective is to test the models in the evaluation stages with the 

previously compiled evaluation corpora that represent real-life scenarios of crisis-related 

and emergency events. In this light, we wanted to check (a) whether LORE excelled in the 

identification of locative references with respect to other state-of-the-art, off-the-shelf NER 

tools, (b) whether the performance of LORE can remain stable and unchanged with other 

evaluation corpora, and (c) whether nLORE, the DL counterpart of LORE, can achieve 

greater performance than LORE. 

 

 

5. MODEL AND METHODOLOGY 

 

In this section, we present the methodology used in the development and deployment of 

multilingual LORE and English-based nLORE, and the datasets used in these processes, that is, 

the development corpus (dev corpus), the test or evaluation corpus (eval corpus), training corpus 

(train corpus), and validation corpus (valid corpus), which became essential components in the 

building and evaluation phases of the location-detection models. Before doing so, it becomes 

necessary to provide a thorough definition of what we mean by locative references, and their 

formal and semantic boundaries. Afterwards, we present the corpus compilation phase, 

accompanied by several tables and figures that offer some statistics regarding the nature of the 
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corpora compiled. Then, we explain the steps carried out in the development of multilingual 

LORE, the lexical datasets used, and the modular architecture of LORE. Afterwards, we 

introduce the DL implementation of LORE for English, nLORE, from the basics of neuronal 

networks to the details of the specific type of neuronal networks and word embeddings used and 

the linguistic-based feature-engineering process. 

 

5.1. Formal, semantic and structural boundaries of locative references 

 

A locative reference, location entity or location mention is a subtype of named entity that 

designates a specific, unambiguous, and precise physically-locatable geographic reference, i.e. 

one that can be typically rendered into geographic coordinates or other geospatial measurements 

and thus pinpointed on a map (Leidner & Lieberman, 2011; Gelernter & Balaji, 2013; F. Liu et 

al., 2014; Gritta et al., 2018; Hoang & Mothe, 2018). In linguistic terms, locative references are 

typically proper nouns that designate named entities of place (i.e. toponyms or geographical 

names). Attending to their morphology, locative references can be realized as full words (e.g. 

Bruxelles, city of London, costa del Levante), abbreviations (e.g. FR, bcn), acronyms (e.g. UK, 

US), alphanumeric codes (e.g. M-40), or also as a combination of them (e.g. I-90 SW, NE of 

Budapest). As for their semantics, we establish five main locative categories: geopolitical 

entities (e.g. New York), natural landforms (e.g. Mount Everest, río Pisuerga), POIs (e.g. 

Victoria Coach Station, musée du Louvre), and traffic ways (e.g. 110 Croydon Road, I-290, Rue 

Adolphe-Thiers). From a structural point of view, we distinguish between simple and complex 

locative references according to the number and complexity of lexical units that make up one 

locative reference. In this respect, a simple locative reference is composed of one or several 

proper nouns (e.g. toponyms such as Granada, United Kingdom), whereas a complex locative 

reference offers a rich lexical network by means of the juxtaposition of location-indicative 

nouns and locative markers to the proper noun: e.g. Lake Michigan, Meseta Central, Quartier 

du Marais, or 25 miles NW of London. Taking into account the surrounding lexical elements 

that comprise locative references in the form of location-indicative nouns and/or locative 

markers offers more detailed geospatial information (Van et al., 2013), which could ultimately 

be more useful for competent authorities to trace the location of a given emergency or persons 

affected by emergency-related scenarios. To illustrate the complexity of locative references, 

Figure 8 presents the phrasal structure of locative references, where the asterisk is used to mark 

optionality, and double asterisk refers to the optional presence of locative markers either at the 

beginning or at the end of the locative reference. 

 

Figure 8. The phrasal structure of locative references. 
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A fine-grained taxonomy is provided to show the semantic richness and variety of locative 

references. In this taxonomy, we offer a few examples of location-indicative words that may 

accompany proper nouns in complex locative references: 

 

1. Geopolitical entities: country, state, region, province, city, town, kingdom, villa, ciudad, 

provincia, estado, región, pueblo, ville, pays, département… 

2. Natural landforms: mountain, mount, ridge, volcano, valley, lake, river, shore, beach, 

park, canyon, meseta, río, golfo, cabo, islote, playa, cordillera, île, montaigne, fleuve, 

plaine… 

3. POIs: building, museum, school, station, stadium, garden, café, tavern, hospital, court, 

theater, residence, zoo, casino, square, catedral, universidad, tienda, museo, teatro, hôtel, 

bâtiment, supermarché, gare, église… 

4. Traffic ways (addresses, roads, highways): street, st, boulevard, blvd, avenue, av, alley, 

road, rd, highway, hwy, freeway, fwy, turnpike, tpk, calle, c., carretera, avenida, avda, 

callejón, ruta, rue, route, voie, I(-)n, M(-)n, SR-n (where n represents a given number), 

etc. 

 

The wide majority of location-detection systems target coarse-grained locations of type (1) and 

(2) (Wang & Hu, 2019), though a few models have begun to consider (3) and (4) (Gritta et al., 

2018). However, to the best of our knowledge, location types (3) and (4) have not been 

thoroughly addressed in any location-detection model yet. With regards to location type (4), 

location-detection models such as those in Gelernter & Balaji (2013), Malmasi & Dras (2016), 

or Middleton et al. (2018) mostly focus on prototypical traffic ways (e.g. streets and roads), and 

mostly talk about their ubiquitous presence, without providing ways or rules to extract them. 

Yang-Lim et al. (2019) seems to be the only study that focuses on the extraction of “location 

and traffic state” from tweets, but we could not find what they meant by these. Overall, a 
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comprehensive study of highways and other roads has been neglected in all models. Moreover, 

most works that focus on POIs, such as Gelernter & Balaji (2013), Malmasi & Dras (2016), or 

Zou et al. (2019), depart from ad-hoc lists of location-indicative nouns instead of retrieving 

those items from reliable and comprehensive lexical resources. We also provide a typology of 

locative markers according to their semantics: 

 

 Distance marker: 4 Kms from Narok Town, 5miles from Dublin, 20 kilómetros hacia 

la ciudad de Atenas, 45 kilomètres de Paris, etc. 

 Directional markers: East Coast of Honshu, east of Exit 55, sur de Portugal, ouest 

de la France, 20 km NW of Durrës, etc. 

 Movement markers: southbound I-91, northbound J19, eb J19, etc. 

 Temporal markers: 1h away from London, 25min out of Melbourne, 5 minutos para 

la Gran Vía, 10 mins du parc de Bagatelle, etc. 

 

The following examples illustrate the taxonomy presented in Figure 8, and the possible 

combinations of proper nouns, location-indicative words, and/or locative markers which 

represent actual locative references: 

 

 China, New York, Buenos Aires (proper noun(s)) 

 Sur de Madrid, 66km NW of Kota Ternate (locative marker [directional] + 

proper noun(s)) 

 35 kilomètres de Bordeaux (locative marker [distance] + proper noun(s)) 

 1h away from London, 25min out of Melbourne (locative marker [temporal] + 

proper noun(s)) 

 Hotel Park Villa, Sierra Nevada (location-indicative noun + proper noun(s)) 

 Province of Ontario (location-indicative noun(s) + preposition + proper noun(s)) 

 Costa del Sol, restaurant du Pelvet (location-indicative noun(s) + preposition + 

determiner + proper noun(s)) 

 Dyckman Street Station, Fox Valley Animal Referral Center (proper noun(s) + 

location-indicative noun(s)) 

 5 minutos de la calle Mesones (locative marker [temporal] + location-indicative 

noun(s) + proper noun(s)) 

 I 95 NB (proper noun(s) + locative marker [movement]) 

 Francis Scott Key Brg SB (proper noun(s) + location-indicative noun(s) + 

locative marker [movement]) 
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 4kms from Narok Town (locative marker[distance] + proper noun(s) + location-

indicative noun(s)) 

 

There is some controversy regarding the semantic nature of some locative references when they 

represent the people of that place (e.g. US officials), organizations (e.g. New Orleans Police 

Department), government units (e.g. London Councils), or events (e.g. New Zealand mass 

shooting) (F. Liu et al., 2014; Gritta et al., 2018). These are, according to Gritta et al. (2019), 

‘embedded literal toponyms’ and ‘embedded associative toponyms’ that are nested within larger 

NPs. The difference between both of them lies in the fact that the later takes part in organization 

and government names. In these cases of attribute usage (Wolf et al., 2014), the locative 

reference accompanied by other nouns of events or organizations might not always correspond 

to the location of the action or event described in the tweet. Metonymic instances of locative 

references still possess, though very loosely, a locative meaning (e.g. The US and Iran appear 

to have stepped away from the brink of full-blown conflict). They usually refer to government 

units or sports teams (e.g. Madrid played against Barcelona). We only considered the former, 

i.e. government units, as cases of locative references, because government units may, though 

loosely, refer to actual locative events. In the case of sports team, locative meaning is almost 

non-existent. In other words, sports teams do not tell much about the location of the event (i.e. a 

match) but about the origin of the sports team; hence, we have excluded them in the annotation 

of our corpora, and count as false positives if matched by the model. 

Geography experts consider all these instances as borderline cases of locative references 

(Wallgrün et al., 2018). Some location-detection models filter them out (F. Liu et al., 2014; 

Gritta et al., 2018), whereas others extract the locative reference from all these instances 

(Malmasi & Dras, 2016). We could argue that, though not explicitly referring to physical 

locations, the majority is to be fundamentally understood in terms of the locative reference 

alluded to. This means that we should not be categorical when dealing with these non-standard 

uses of locative expressions, since geospatial meaning still underlies these uses.  

 

(1) California parties trash. The DJ just said make some noise if u got earthquake 

insurance 

 

For instance, in Example (1) ‘California parties’ is an instance of ‘embedded literal toponym’ 

that represents an event, i.e. parties thrown in California. The location meaning might not hold 

for the entire clause but for the alluded metonymic instance. Thus, our location-detection model 

would mine the locative reference California. The same goes for parts of organization names, as 

long as they reveal rich geospatial information (Example (2)). 
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(2) C. Sulawesi earthquake sends shocks across Makassar Strait - The Jakarta Post - 

Jakarta Post 

 

The Jakarta Post is an ‘embedded associative toponym’ that refers to an Indonesian newspaper 

organization whose headquarters is in Jakarta. In this regard, it makes sense to extract the 

locative reference Jakarta from that instance. 

We also explain what we do not mean by locative references to ensure clear and crisp 

semantic and formal boundaries. To this end, we need to refer to commonplace or informal 

locative expressions (Herskovits, 1985; F. Liu et al., 2014). These are phrasal chunks in the 

clause that contain vague, ambiguous and unspecific geospatial information that usually appear 

in noun phrases containing common noun words or pronouns (e.g. at home, in the garden, in 

front of you, on the street), or in adverb phrases with co-referential adverbs (e.g. here, there).  

Since they are too unspecific and vague for crisis and emergency-related events and because 

they cannot be pinpointed on a map without any further contextual clue, we left them out. Other 

ambiguous cases such as demonyms (e.g. Spanish citizen) or adjectival modifiers (e.g. Spanish 

olive oil) were likewise discarded, except when these adjectival modifiers are followed by 

location-indicative words (e.g. Iranian power plant). 

 

5.2. Corpus compilation phase 

 

For the corpus compilation phase, we used the FireAnt app10, a tweet collector application, to 

perform an automatic extraction of the corpora, using text-based data retrieval techniques 

(Yingjie Hu, 2018a). 

 

Figure 9. The FireAnt app for tweet collection. 

                                                   
10 Documentation details can be found on https://www.laurenceanthony.net/software/fireant/ 
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In other words, for our automatic search of tweets we employed up to seven keywords related to 

crisis and emergency events which were earthquake, flood, car accident, bombing attack, 

shooting attack, terrorist attack, and incident, so that we could extract tweets mentioning issues 

of different nature. We used their near-equivalents terremoto, inundaciones, accidente de coche, 

ataque terrorista, bombardeo, tiroteo, and incidente for the corpus construction stage of the 

Spanish corpora. For French tweets, we used the keywords séisme, tremblement de terre, 

inondations, coups de feu, attentat terroriste, attentat à la bombe, fusillade, accident de voiture, 

accident de la route, and incident. Moreover, we strictly followed corpus linguistic principles in 

the compilation phase to comply with representativeness (Reppen, 2010). In this sense, our 

corpora are representative because they contain sufficiently enough tweets dealing with 

incidents, crises, and emergencies. In other words, since our interest is in studying and 

discovering locative references in microtexts, we expect the corpora to be composed of 

microtexts that have a sufficiently high number of locative references and that talk about 

different issues. 

Since our interest was in raw tweet text only, we discarded tweet metadata. While the great 

majority of tweets contained one of these crisis-related keywords, it was the case that some 

tweets were repeated on multiple occasions, split into different lines, or empty. In this respect, 

we performed a pre-processing or pruning step for tweet text data which consisted in: 
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i) grouping multi-line tweets into a single line where each line represented one tweet 

by means of a regex that takes into account line breaks, 

ii) removing retweets by means a regex that finds those retweets and discards it, and 

iii) removing duplicates and very similar tweets through fuzzy matching algorithms. 

 

Fuzzy matching algorithms calculate the degree of similarity among text strings. The ones that 

we used were the Levenshtein distance (Navarro, 2001) and the cosine distance using n-grams. 

The Levenshtein distance computes the minimum number of characters that have been added, 

deleted or replaced in a text string with respect to another, whereas the cosine distance using n-

grams takes into account different combinations of n-grams in two strings to determine their 

degree of similarity. Table 2 below specifies which of these algorithms were used for each the 

different corpus. Further details about the computational implementation of this pre-processing 

step are provided in Section 6.1. 

Our goal was to ensure that the majority of tweets were fairly unique and thus obtain a very 

representative dataset of unique tweets. The output of this pruning step resulted in the 

compilation of the corpora used for the models. Table 1 summarizes the main usages of the 

corpora employed in the present thesis. 

 

Table 1. Corpus types and their usages. 

Corpus 

type 
Usage 

Dev Used to build a rule-based model 
Train Used to train a ML or DL model 

Valid Used to test the performance of the ML or DL model in the training process  

Eval Used to test the performance of the model 

 

Table 2 presents the different compiled corpora in terms of their language, type, size, date of 

extraction, whether they were used in LORE and/or nLORE, and in which experiment they were 

used. 

 

Table 2. Corpora’s features. 

Language Type 
Size 

(tweets) 

Date of 

extraction 

Pre-

processing 

algorithm 

Model Experiment 

English 
Dev 

corpus 
500 8 April 2019 

Levenshtein 

distance 
LORE I 

English 
Eval 

corpus I 
800 11 April 2019 

Levenshtein 
distance 

LORE I 

English 
Train 

corpus 
7000 

17 November 

2019, 30 
November 2019, 

Cosine 

distance 
with n-

nLORE II 
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1 December 2019, 

2 and 9 January 

2020 

grams 

English 
Valid 
corpus 

1063 

17 November 

2019, 30 

November 2019, 
1 December 2019, 

2 and 9 January 

2020 

Cosine 

distance 
with n-

grams 

nLORE II 

English 

Eval 

corpus 
II 

1372 5 January 2020 

Cosine 
distance 

with n-

grams 

LORE 

and 
nLORE 

II 

Spanish 
Dev 

corpus 
100 28 May 2019 

Levenshtein 

distance 
LORE I 

Spanish 
Eval 

corpus 
500 27 August 2019 

Levenshtein 
distance 

LORE I 

French 
Eval 

corpus 
391 1 October 2019 

Cosine 

distance 

with n-
grams 

LORE I 

 

Here, the reader may have noticed the distinct use of the labels ‘dev corpus’ and ‘train corpus’ 

in each of the models. Such distinction is grounded on the fact that, for our rule-based model 

LORE, we did not use a train corpus per se because LORE does not rely on data to train an ML 

or DL algorithm. The dev corpus was thus manually investigated for the study of locative 

references and for the extraction of linguistic patterns and cues that may help in the task of 

locative extraction. However, as opposed to LORE, for the training phase of nLORE we fed the 

neuronal network with the English train corpus. As can be seen, the English train and valid 

corpora are heterogeneous, with many incidents of different nature retrieved in different dates to 

capture incidents from as many places as possible. The reason why the Spanish dev corpus is 

five times smaller than its English counterpart is due to the fact that most of the modular blocks 

and stages of the models had already been developed with the English dev corpus. Moreover, 

we did not employ a dev corpus for French, since the capabilities of LORE only needed to be 

extended to French with semi-automatic methods. 

For the evaluation stage, we conducted two experiments: in the first one, LORE is assessed 

with the English eval corpus I, the Spanish eval corpus and the French eval corpus against its 

competitors and, in the second experiment, LORE and nLORE are pitted against each other 

using the English eval corpus II. To avoid overfitting when training nLORE, the English eval 

corpus II was obtained on a different date, meaning it may have locative references different 

from the ones included in the English train and valid corpora. 

Also, the format adopted by the corpora was subject to the nature of each experiment. In the 

first experiment, the corpora used for LORE followed a layout such that each tweet was 
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represented by a tweet ID indicating the number of the tweet, followed by the tweet text in the 

next column. A sample of the English dev corpus format is provided in Table 3. 

 

Table 3. Sample of the English dev corpus. 

Tweet 

ID 

Tweet 

01 Cleared: Incident on #GardenStateParkway NB at North of New Gretna Toll Plaza 

05 RT @naqvi1966: Another incident of police harassment at street 13 of off-sunset 
boulevard Karachi. Reportedly the squad of AIG Karachi stop. 

09 RT @califortia: California parties trash. The DJ just said make some noise if u got 

earthquake insurance 
14 #M4 : Westbound : J33 Capel Llanilltern to J34 Miskin : Incident : Accident : Lanes 

closed : Delays #TrafficWalesAlert 

 

The corpora used in Experiment II, the English train corpus, valid corpus, and eval corpus II 

followed a token-based tabular representation, where each row represents a given token, and 

each column indicates a given feature (i.e. original token, POS tag, presence in the place-name 

dataset, presence in the location-indicative noun dataset, locative marker) and label, following 

the BMESO tagging scheme. With BMESO, one-token locative references are labeled as 

S_LOCATION, two-token locative references are labeled as B_LOCATION and 

E_LOCATION, and those with more than two tokens are labeled as B_LOCATION, 

M_LOCATION, and E_LOCATION. If a token does not take part in a locative reference, the 

label used is O. Except the token and POS tag features, the other features were represented by 

means of Boolean values, that is, either 0 or 1: 0 when the feature is absent (e.g. not present in 

the place-name dataset) and 1 if the feature exists. To delimit tweets, an empty row is 

introduced to separate them. Such layout is the convention used in training probabilistic-based 

NER models. A sample of the English eval corpus II is provided in Table 4. 

 

Table 4. Sample of the English eval corpus II. 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Tag 

Cleared VBN 0 0 0 O 

: : 0 0 0 O 

Incident NN 0 0 0 O 
on IN 0 0 0 O 

Frank NNP 1 0 0 B_LOCATION 

Lind NNP 1 0 0 M_LOCATION 

Roosevelt NNP 1 0 0 M_LOCATION 
Drive VB 0 1 0 M_LOCATION 

NB NN 0 0 0 E_LOCATION 

at IN 0 0 0 O 
58th NNP 0 0 0 B_LOCATION 

Street NNP 1 1 0 E_LOCATION 

 



48 

 

One key part in the testing phases of our models was the annotation or labeling of locative 

references to have a ground truth or gold standard with which we can realistically assess the 

performance of our models. For the first experiment, we created a dataset of manually-annotated 

locative references related to their tweet ID which were retrieved from each of the dev and eval 

corpora. This dataset constituted our ground truth or gold standard to test the results generated 

by LORE and by the other NER tools. A sample of the gold standards of the English and 

Spanish dev corpora is shown in Table 5 and Table 6.  

 

Table 5. Sample of the gold standard of the English dev corpus. 

Tweet 

ID 
Locative Reference 

01 North of New Gretna Toll Plaza 

01 Garden State parkway NB 

05 off-sunset boulevard  

05 street 13 
05 Karachi 

05 Karachi 

09 California 
14 M4 Westbound 

14 J33 

14 Capel Llanilltern 

14 J34 
14 Miskin 

14 Wales 

 

Table 6. Sample of the gold standard of the Spanish dev corpus. 

Tweet 

ID 
Locative Reference 

39 Arrendario 
39 Altares 

39 Hermosillo 

43 PANAMERICANA SUR 4 
47 Perú 

48 Yabucoa 

48 San Lorenzo 
50 BRASIL 

53 zona 2 de Santiago Sacatepéquez 

55 bodega de Haro 

58 Puerto Rico 
60 Nueva Jersey 

61 Paraje el cerro del mono 

 

As we can observe, for tweets without any locative reference, we did not include those. Also, 

when a given tweet contained two or more locative references, each of these was represented 

with the same ID number but in different rows. The reason behind using this layout lies in the 

fact this is also the format adopted by LORE in the output. 
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For the second experiment, the English eval corpus II (as shown above in Table 4), as well 

as the other corpora, was first semi-automatically labeled with the tags generated by LORE, and 

then manually inspected to correct any deficiency, that is, any missing or wrongly-delimited 

locative reference. In this way, we obtained our ground truth of locative references, but 

following the token-based tabular format. In both experiments for both models, we strictly 

followed the aforementioned definition and typology of locative references.  

Table 7 presents the number of locative references for each corpus, respectively, in terms of 

n-grams, and Table 8 offers some statistics about the ratios of locative references per tweet in 

each of the corpora for each of the languages, where all corpora are overall very rich in locative 

references. 

 
Table 7. Distribution of locative references in terms of n-gram size in the corpora. 

 Experiment I Experiment II 

 
English 

dev 

corpus 

English 

eval 

corpus 

I 

Spanish 

dev 

corpus 

Spanish 

eval 

corpus 

French 

eval 

corpus 

English 

train 

corpus 

English 

valid 

corpus 

English 

eval 

corpus 

II 

No of 

unigrams 
213 264 37 197 119 2702 178 376 

No of 
bigrams 

109 190 16 59 55 1430 101 176 

No of 

trigrams 
48 60 8 46 37 411 27 63 

No of n-

grams 

where n 
≥ 4 

13 23 3 19 13 259 16 29 

Total 383 537 64 321 224 4802 322 644 

 

 

Table 8. Corpora’s statistics. 

Corpus 

type 

No of 

locative 

refs. 

No of tweets 

with locative 

refs. 

Average of locative 

refs. per locative-rich 

tweet 

Average of 

locative refs. per 

tweet 

English dev 
corpus 

383 199 1.92 0.77 

English eval 

corpus I 
537 259 2.07 0.67 

English 

train corpus 
4802 2877 1.67 0.67 

English 

valid corpus 
322 188 1.71 0.3 

English eval 

corpus II 
644 351 1.83 0.47 

Spanish dev 
corpus 

64 40 1.6 0.64 

Spanish 

eval corpus 
321 215 1.49 0.64 

French eval 224 143 1.57 0.57 
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corpus 

 

 

Finally, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16 

provide, whenever possible, a list for the 13 most frequent locative references found in the 

corpora. 

 
Table 9. Most frequent locative references in the English dev corpus. 

Locative 

reference 
Category Occurrences # 

Iran Geopolitical entity (country) 41 

Edison station POI (station) 4 
Indonesia Geopolitical entity (country) 4 

Trenton station POI (station) 4 

Auburn Geopolitical entity (city) 3 
EB I-84 Traffic way (highway) 3 

Fort Lauderdale Geopolitical entity (city) 3 

Garda POI (headquarters) 3 

Halifax Geopolitical entity (city) 3 
Halifax library POI (library) 3 

I 5 NB Traffic way (highway) 3 

New Zealand Geopolitical entity (country) 3 
Syria Geopolitical entity (country) 3 

 

Table 10. Most frequent locative references in the English eval corpus I. 

Locative 

reference 
Category Occurrences # 

Iran Geopolitical entity (country) 20 

India Geopolitical entity (country) 11 

Pulwama Geopolitical entity (city) 6 

San Bernadino Geopolitical entity (city) 5 
J18 Traffic way (highway) 5 

Japan Geopolitical entity (country) 5 

M74 Traffic way (highway) 5 
New Zealand Geopolitical entity (country) 4 

Grapevine Geopolitical entity (city) 4 

Pakistan Geopolitical entity (country) 4 
Sr4 E Traffic way (highway) 4 

Kingston Geopolitical entity (district) 4 

Balakot Geopolitical entity (town) 4 

 

Table 11. Most frequent locative references in the English train corpus. 

Locative 

reference 
Category Occurrences # 

Iran Geopolitical entity (country) 91 

Puerto Rico Geopolitical entity (country) 74 

US Geopolitical entity (country) 59 
Jakarta Geopolitical entity (city) 54 

India Geopolitical entity (country) 42 

America Geopolitical entity (country) 41 

Indonesia Geopolitical entity (country) 39 
Australia Geopolitical entity (country) 39 
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Hong Kong Geopolitical entity (region) 34 

California Geopolitical entity (state) 29 

Venice Geopolitical entity (city) 29 
Israel Geopolitical entity (country) 28 

UK Geopolitical entity (country) 27 

 

Table 12. Most frequent locative references in the English valid corpus. 

Locative 

reference 
Category Occurrences # 

Texas Geopolitical entity (state) 6 

Japan Geopolitical entity (country) 5 

California Geopolitical entity (state) 4 

NY Geopolitical entity (city) 4 
America Geopolitical entity (country) 3 

Venice Geopolitical entity (city) 3 

US Geopolitical entity (country) 3 
London Bridge POI (bridge) 3 

Nnewi Geopolitical entity (town) 2 

Toronto Geopolitical entity (city) 2 

ENGLEWOOD Geopolitical entity (town) 2 
Mississipi Geopolitical entity (state) 2 

Morocco Geopolitical entity (country) 2 

 

Table 13. Most frequent locative references in the English eval corpus II. 

Locative 

reference 
Category Occurrences # 

Iran Geopolitical entity (country) 40 

America Geopolitical entity (country) 15 

Indonesia Geopolitical entity (country) 12 
Iraq Geopolitical entity (country) 9 

US Geopolitical entity (country) 9 

Hong Kong Geopolitical entity (region) 9 

Jakarta Geopolitical entity (city) 8 
LA Geopolitical entity (city) 6 

Us Geopolitical entity (country) 6 

USA Geopolitical entity (country) 5 
IN Geopolitical entity (state) 5 

New Zealand Geopolitical entity (country) 4 

Oklahoma Geopolitical entity (state) 4 

 

Table 14. Most frequent locative references in the Spanish dev corpus. 

Locative reference Category Occurrences # 

Puebla Geopolitical entity (state) 6 
Puerto Rico Geopolitical entity (country) 4 

San Lorenzo Geopolitical entity (town) 3 

Acatzingo Geopolitical entity (town) 2 
Cuota Traffic way (highway) 2 

MEX-150D Traffic way (highway) 2 

Perú Geopolitical entity (country) 2 

Autopista Puebla-
Acatzingo 

Traffic way (highway) 2 
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Table 15. Most frequent locative references in the Spanish eval corpus. 

Locative reference Category Occurrences # 

Madrid Geopolitical entity (city) 42 

Arganda del Rey Geopolitical entity (town) 7 
Arganda Geopolitical entity (town) 7 

M-40 Traffic way (highway) 6 

Comunidad de Madrid Geopolitical entity (region) 5 
Valladolid Geopolitical entity (city) 5 

EEUU Geopolitical entity (country) 4 

Monterrey Geopolitical entity (city) 4 

Valdemoro Geopolitical entity (town) 4 
Borox Geopolitical entity (town) 4 

Fuenlabrada Geopolitical entity (town) 3 

Rivas Geopolitical entity (town) 3 
Nuevo León Geopolitical entity (state) 3 

 

Table 16. Most frequent locative references in the French eval corpus. 

Locative 

reference 
Category Occurrences # 

Rouen Geopolitical entity (city) 11 

France Geopolitical entity (country) 5 
Seveso POI (factory) 4 

Paris Geopolitical entity (city) 3 

Ligne H POI (train station) 3 
Inde Geopolitical entity (country) 3 

Vallée de la 

Marne 
Natural landform (valley) 3 

Finlande Geopolitical entity (country) 3 

usine Seveso POI (factory) 3 

 

Those locative references with a higher number of occurrences may be a more informative and 

credible source of information about the locus of an event (Middleton et al., 2014), which could 

in turn provide emergency-based services and responders with vital information for the 

deployment of effective aid and resources in the relevant areas. In other words, their frequency 

was, more than likely, indicative of emergency-related scenarios in those places. 

 

5.3. LOcative Reference Extractor (LORE) 

 

5.3.1. Development phase 

 

In the development phase of LORE, we did not use a train corpus per se because our model does 

not rely on data to train an ML or DL algorithm. Instead, the reason why we departed from a 

dev corpus was to study and extract rich linguistic patterns. The extraction of rich linguistic 

patterns was carried out by paying special attention to the linguistic idiosyncrasies of the 

geospatial features of natural languages and the microtext genre, as discussed in Section 2.5 and 

Section 2.6, respectively. In other words, we thoroughly analyzed the different combination of 
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n-grams and the part-of-speech of tokens, the presence of locative-contextual clues such as 

locative prepositions, location-indicative words, and locative markers, which usually signal the 

presence of locative references. All this knowledge was materialized in the formulation of 

regexes that took into account the aforementioned linguistic variables. Through engaging in 

continuous evaluations in an ‘iterative refinement process’ of our rule-based approach (Barrière, 

2016), the regexes had to be tweaked and fine-tuned to tackle natural language ambiguity and 

the noisy nature of tweets, up to their current high-performance state. This involved looking at, 

not individual errors or missed locative references, which could potentially lead to overfitting 

and ad-hoc decisions, but different error-prone patterns derived from poorly-defined regex-

based rules. Our goal was to anticipate and prevent erratic behavior of the model when applied 

to any other corpus of tweets. Obviously, this process led to more restrictive rules than those 

elaborated at the initial stages. The extracted linguistic patterns and rules, though each language 

expresses locative relations in slightly different ways, could theoretically be applied to 

languages other than those supported by LORE. By means of semi-automatic methods, most 

language-specific resources (i.e. the stopword, place-name and location-indicative noun datasets) 

are retrieved from the Web, except the locative-marker dataset, which needs to be manually 

supplied. Table 17 provides a summary of the language-specific resources used in LORE. 

Further details about these language-specific resources are given below in Section 5.3.2. 

 

Table 17. Language-specific resources in LORE. 

Type Definition 

Extraction and 

compilation 

process 

Examples 

Stopword 

dataset 

List of the most frequent words that 

appear in a given language. 

Sometimes it can also include a list of 

person names and surnames. 

Semi-automatic 
car, boy, the, 

table, John, Mary 

Place-name 
dataset 

List of place names, mostly 

toponyms, taken from a geographic 

database. 

Semi-automatic 

London, Vienna, 

Italy, New York 

City 

Location-
indicative 

noun dataset 

List of location-indicative nouns that 

typically accompany place names, 

taken from knowledge bases such as 
WordNet. 

Semi-automatic  
beach, road, pub, 
school, avenue, 

museum 

Locative-

marker 

dataset 

List of words that indicate direction, 

distance or time in phrasal locative 

patterns. 

Manual 

south, northwest, 

kms, miles, 

hours 

 

Thus, the multilingual adaptation of the model to other languages did not start from scratch, and 

only required a few tweaks in the regex-based rules together with semi-automatic methods for 

the retrieval of lexical resources. These tweaks and modifications involved taking into account 

the linguistic peculiarities of Romance languages, which express spatial relations in different 

ways. For instance, Spanish geographical names start with the location-indicative noun(s) and 
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may incorporate different combinations of prepositions and determiners before arriving at the 

toponymic part (e.g. Avenida de la Constitución). Also, Spanish locative-marker constructions 

are different from the English ones. For instance, complex locative-marker constructions have a 

different lexico-grammatical profile (e.g. XX mins away from ____ vs XX mins hasta/de ___). 

Since these phrasal structures are also found in French and are grammatically encoded in the 

same way as in Spanish, multilingual support was extended to French using the same built-in 

regex-based rules, thus not needing a specific development phase for French. 

 

5.3.1.1. A typology of the linguistic regex-based rules 

We present a typology of the regex-based rules that exploit linguistic knowledge and contextual 

evidence for their application on any of the languages supported in LORE. We tested these rules 

with the English, Spanish, and French eval corpora, showing their effectiveness in the task of 

extracting locative references from tweets. We provide examples from the eval corpora to 

illustrate the strengths and weaknesses of our rules. Whenever the rules failed in the extraction 

of locative references, we provide an explanation to account for their faulty behavior, and 

suggest potential solutions for a future refinement process.  

 

5.3.1.1.1. Rules for n-gram combinations of locative references using a geodatabase 

These rules are language-independent and apply to n-grams. In particular, the rules deal with 

bigrams and unigrams when matching the tokens in the tweets against the tokens found in our 

place-name dataset built from GeoNames (see Flowchart 1 in Appendix): 

 

i) For bigrams, if (a) the first token is not a noun, and (b) the second token is not a proper 

noun, or the second token is a directional marker (e.g. South, sur), it is very likely that 

the n-gram is not a locative reference. Examples of bigrams taken from the corpora that 

were found in the place-name dataset but are not actual locative references according to 

the linguistic context are the country, beautiful isle, nice airport, the South, el tiroteo 

(‘the shooting’), la bomba (‘the bomb’), buenas tardes (‘good evening’), de armas (‘of 

weapons’), el Sur (‘the South’) la femme (‘the woman’), le signal (‘the signal’), la 

piscine (‘the swimming pool’), etc. 

ii) For unigrams, (a) if the unigram is not a proper noun, or (b) if the unigram is in the 

stopword dataset, the location-indicative noun dataset or the locative marker dataset, it 

is very likely that it is not a locative reference. Examples of unigrams taken from the 

corpora that were found in the place-name dataset but are not actual locative references 

according to the linguistic context are police, going, Ashley, accident, Clinton, Gracias 

(‘thanks’), terremoto (‘earthquake’), camping, compartir (‘share’), López, amor (‘love’), 

coche (‘car’), grand (‘big thing/person’), etc. 
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At times, these rules were bypassed by certain n-grams that were captured in place-name dataset 

but that were unfortunately not filtered by the stopword dataset, especially in the case of person 

names (e.g. Jam, Yao, Robles, Nemo, Obama, etc.). The rules and datasets thus play a 

preventive role which might not always avoid the extraction of wrong instances, since these 

person names can also be actual locations and only the linguistic context can disambiguate them. 

Therefore, we searched for a trade-off between precision and recall when using these rules and 

datasets. 

 

5.3.1.1.2. Rules that exploit locative prepositions 

The following rules are language-independent. If a token is a locative preposition, then it is very 

likely that any succeeding combination of proper nouns is a locative reference, except when (a) 

the proper noun is a date, or (b) the proper noun is a person name or any other type of named 

entity, ruled out by the stopword dataset (see Flowchart 2 in Appendix). The following 

examples of actual tweets from the corpora illustrate the extracted locative references. Example 

(3) shows the extracted unigram Palakkad, thanks to the presence of the locative preposition at. 

 

(3) Visited home of Mr. Shobha Aboobacker Sahib at Palakkad who passed away today 

morning in an accident 

 

in and across are other locative prepositions that can signal a locative reference, illustrated by 

Example (4), Example (5), Example (6), and Example (7). 

 

(4) When you're doing your show in San Bernardino...and you need a listener to tell 

you about a 3.5 earthquake 

(5) Golestan province N Iran Three weeks after the floods, the houses are still 

surrounded by floods in Aqqala. 

(6) Floods in #Iran - Villages in #Khuzestan surrounded by floods, no sign of state 

relief. #IranFloods #IranRegimeChange. 

(7) #GhassemSoleymani very clearly doesn't care about #flood and its victims across 

Iran. 

 

In Spanish, en is the most prototypical locative preposition: 

 

(8) La #Tormenta en MADRID pone de manifiesto, otra vez, el lamentable estado de 

las infraestructuras 

‘The storm in Madrid exposes, once again, the lame conditions of the infrastructures’ 
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(9) Vuelve a caer más fuerte que antes en Valdemoro, ahora con aparato eléctrico. 

‘It rains more heavily than before in Valdemoro, now with thunder and lightning’ 

(10) Inundaciones en Arturo Soria. Garajes inundados, ahora cae piedra #Madrid 

 @112cmadrid @E112Andalucia. 

 ‘Floods in Arturo Soria. Flooded garages, dropping stones now #Madrid 

 @112cmadrid @E112Andalucia’ 

(11) #NuevoLeon Fuertes lluvias en Nuevo León dejan dos muertos e inundaciones 

 ‘#NuevoLeon Heavy rains in Nuevo León kill two people and cause floods’ 

(12) Agresiones al ejército en Michoacán - Severos daños por lluvias en Sinaloa 

 ‘Assaults on the army in Michoacán – Serious damage caused by rains in 

 Sinaloa’ 

 

In French, dans, en, and à introduce many locative references: 

 

(13) Au moins un mort et de nombreux blessés après une #attaque dans un lycée 

 professionnel en #Finlande 

 ‘At least one killed and many wounded after #attack in technical college in 

 #Finland’ 

(14) Nouvel incident dans une usine " #Seveso seuil haut" à #Rouen 

 ‘New incident in a factory “ #Severo high threshold” in #Rouen’ 

(15) j'me promenais tranquillement dans Madrid quand soudain j'ai entendu des 

 coups de feu !! 

 ‘I was calmly walking in Madrid when suddenly I heard gunshots !!’ 

  

Now we present other tweets in which our rules and datasets did not manage to detect the 

locative references. In Example (16), Indinapuram was missed because between was not 

considered a locative preposition in the English lexical dataset due to its ambiguity in some 

contexts and its less-than-prototypical spatial nature11. In this regard, we also excluded the 

directional prepositions to and from, considering the cost-benefit ratio of their ambiguous nature, 

since they appear with ditransitive constructions (e.g. give, obtain, receive, etc.) typically 

followed by person names. 

 

(16) Pls consider asking the #NHAI to close the central verge on #NH24 between 

 #Indirapuram and… 

 

                                                   
11 Ambiguity from an NLP perspective refers to the inability of machines to disambiguate more than one 

meaning. This phenomenon is more commonly known as ‘polysemy’ in Theoretical Linguistics. 
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Rules were constructed with respect to the languages supported by LORE. Therefore, only 

proper nouns that follow locative prepositions are considered, so the rules cannot for now 

handle the combinations of proper nouns with words of different grammatical categories, e.g. 

determiners, prepositions, etc., as shown in Example (17) and Example (18). 

 

(17) Se desborda rio en Los Reyes 

 ‘Overflowed river in Los Reyes’ 

(18) Pollution à l'arsenic dans l'Aude 

 ‘Arsenic contamination in l’Aude’ 

 

At other times, n-gram combinations were wrongly detected as locative references. In Example 

(19), Mandarin was extracted as a locative reference because, according to the POS tagger, its 

grammatical category is proper noun. Since it was preceded by the preposition en, and the 

stopword dataset could not filter it out, it was wrongly retrieved as a locative reference. 

 

(19) Si claro como no...ahora digame el chiste en Mandarin por favor!! 

 ‘Yeah, yeah, of course…now tell me the joke in Mandarin, please!!’ 

 

5.3.1.1.3. Rules that exploit location-indicative nouns 

These rules are language-dependent. On the one hand, in the case of English, there are several 

cases in which a combination of tokens including a location-indicative noun refers to a locative 

reference (see Flowchart 3 in Appendix). For example: 

 

i) when location-indicative nouns are preceded by one or a combination of proper nouns, 

 

(20) Pattonville Fire Protection District is currently responding to an emergency 

 incident for a(n) 13 Diabetic Problems QD 

(21) Westville Public Schools is having a mock accident today at 10 am. Please do 

 not be alarmed at all of the EMS 

(22) Incident on #LLine Both directions from Myrtle Avenue Station to Rockaway 

 Parkway-Canarsie Station 

(23) Rising Seas May Mean Tampa Bay Floods Even During Sunny Days 

 

ii) when one of the preceding tokens is an Arabic numeral, since it is very likely that the 

locative reference is an address, 

 

(24) South LA 13219 S Penrose Ave **Hit and Run No Injuries** 
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iii) when one of the preceding tokens is a directional marker, 

 

(25) Accident cleared in #Edmond on NW 178th St at N Pennsylvania Ave 

 #OKCtraffic 

 

iv) when they are followed by one or a combination of proper nouns, including numbers or 

directional or movement markers (e.g. Mount Everest, River Thames), 

 

v) if they are followed by the preposition of, and while they are followed by one or a 

combination of proper nouns, then it is very likely that they refer to a locative reference, 

 

(26) I'm from an upper middle class suburb of Boston. 

 

No examples of missed locative references were found in relation to the functioning of the rules 

themselves. It is true, however, that a few were missed because the POS tagger assigned 

grammatical categories other than nouns for a few location-indicative words in some contexts. 

In Example (27), ST was assigned the adjective POS tag. 

 

(27) Motor Vehicle Accident - WATERBURY #RT8 South at Exit 34 (WEST MAIN ST 

 #1) at 4/11/2019 10:58:08 AM #cttraffic 

 

There were a few cases of wrongly retrieved instances, as those in Example (28) and Example 

(29). In Example (28), Dr. was wrongly taken as the abbreviation for the location-indicative 

noun drive, and since the tokens that preceded it were all proper nouns, the whole set of tokens 

were wrongly considered within the boundaries of a false locative instance. Again, context and a 

deep-semantic system could have proven essential in disambiguating this type of cases.  

 

(28) #RoadSafetyInitiativeByDSS Saint Dr. MSG has come up with the initiative to 

 tie reflector belts on the stray animals 

 
In Example (29), 1st church and 2nd church were wrongly extracted by means of the rules that 

searched for Arabic numerals, which may sometimes be ordinal numbers (e.g. 101th street). 

 

(29) @TalbertSwan The 1st church burned, everyone thought it could have been an 

 accident. After the 2nd church burned, deacons… 
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On the other hand, in the case of Spanish or French, a combination of tokens refers to a locative 

reference when location-indicative nouns are followed by one or a combination of proper nouns, 

sometimes introduced by (a) a preposition, (b) a determiner, or (c) a preposition + determiner, 

or followed by one number (see Flowchart #4 in Appendix). The following examples illustrate 

the locative references extracted on the basis of this rule: 

 

(30) Incidente vial entre bus ?? ?y un ciclista ????? en la Av. Boyacá con Calle 12, 

 sentido norte- sur.  Unidad de ?? @TransitoBta y ?? asignada. 

 ‘Road incident between bus and a cyclist in the Boyacá Ave with 12 Street, 

 northbound-southbound. @TransitoBta unit assigned.’ 

(31) #26Ago Accidente vial de camionetas del Sebin en la carretera Higuerote-

 Curiepe dejó un fallecido. 

 ‘#26Aug Road incident between Sebin vans in the Curie-Higuerote road 

 kills one person.’ 

(32) INUNDACIONES EN LA M-40. Imagen de la cámara de la M-40 en el barrio 

 de La Fortuna, en el kilómetro 30. 

 ‘FLOODS IN M-40. Picture from the M-40 camera in the La Fortuna 

 neighborhood, in kilometer 30.’ 

(33) La peor parada: inundaciones en Baños de Río Tobía por las tormentas 

 ‘Worst off: floods in Tobía River Baths caused by storms’ 

(34) Patrulla de vialidad permanente y campaña concientización, después de 

 accidente en carretera a Boquilla 

 ‘Ongoing road management patrol and awareness campaign after 

 accident in the road to Boquilla’ 

(35) Un appel à témoins a été lancé par le commissariat d'Ivry suite à un accident de 

 la route 

 ‘A call for witnesses was launched by the Yvri police station following a road 

 accident’ 

 

However, there were a few examples of missed locative references. In Example (36), only 

provincias de Ávila could be extracted, because the regex-based rules could not capture the 

coordinated items in the NP. Since the number of coordinating items is subject to variation, it is 

hard to formalize a general pattern without finding exceptions to the rule. 

 

(36) Inundaciones en las provincias de Ávila, Segovia y Valladolid 

 ‘Floods in the provinces of Ávila, Segovia, and Valladolid’ 
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In Example (37), Calzada is not in the location-indicative noun dataset, because it was not 

subsumed by any of the synsets extracted from EuroWordNet, so the rules could not detect the 

locative reference.  

 

(37) Vecinos de #Naucalpan se manifiestan sobre Calzada San Agustín para exigir 

 reforzamiento de muros del Río Hondo  

 ‘#Naucalpan residents protest over San Agustín road to demand the 

 reinforcement of walls in Hondo river’ 

 

Moreover, symbols such as the dash, which might occur within the boundaries of locative 

references, as in Example (38), are not currently dealt with by the rules because these could 

appear in any position, making the formalization of patterns very hard. 

 

(38) Alrededor de las 9:10 de esta mañana, una volcadura en la carretera Navojoa - 

 Los Mochis dejó sin vida a una persona. 

 ‘Around 9:10 this morning, rollover in Navojoa – Los Mochis road killed 

 one person.’ 

 

In Example (39), the reason why this instance was extracted is due to the fact that cámara is a 

location-indicative noun in the Spanish location-indicative dataset. Since there is not a word-

sense disambiguation system in LORE, it is for now impossible to avoid matching ambiguous 

items whose meaning is different from the location-based one.  

 

(39) INUNDACIONES EN LA M-40. Imagen de la cámara de la M-40 en el barrio 

 de La Fortuna, en el kilómetro 30. 

 ‘FLOODS IN M-40. Picture from the M-40 camera in the La Fortuna 

 neighborhood, in kilometer 30.’ 

 

In Example (40), the regex-based rules could not capture the locative reference because of the 

complexity of the NP, in which a determiner appeared between two proper nouns. 

 

(40) Plusieurs riverains ont composé le « 17 » ce dimanche soir à Montpellier, dans 

 le quartier de la Croix d'Argent 

 ‘Several local residents composed the "17" this Sunday evening in Montpellier, 

 in the Croix d'Argent district.’ 
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We developed a language-independent rule on the basis of road and highway naming 

conventions used in English-speaking, Spanish-speaking countries, and French-speaking 

countries obtained from Wikipedia12. For example, the regex-based rule can extract highways 

and roads such as the following, where round brackets indicate the optionality of the dash, and 

where n indicates a given number: A(-)n, B(-)n, J(-)n,  I(-)n, H(-)n, N(-)n, TX(-)n, US(-)n, SR(-

)n, CR(-)n, RT(-)n, RTE(-)n,  HWY(-)n, NH(-)n, MD(-)n, etc. The rule states that, if a token 

includes one or two letters, accompanied or not by the dash symbol, and then followed by a 

number between 0 and 9999 and an optional letter at the end, then it is very likely that it is the 

locative reference of a traffic way (i.e. highway or road) (see Flowchart 5 in Appendix): 

 

(41) Cortadas por inundación tras la tormenta la M-506, la M-40 y al menos 6 

 líneas de Metro 

 ‘M-506 and M-40 and at least 6 underground lines blocked because of  floods 

 after storm’ 

(42) Gracias a la #Tormenta llevamos dos horas parados en la A-42 por 

 inundaciones y sin previsiones de movernos. Genial oye. 

 ‘Thanks to the #Storm we have been kept for two hours in A-43 because 

 of floods, and not expecting to move. Great, huh.’ 

 

In English, directional or movement markers may precede or follow highways, which are also 

captured within the boundaries of the extracted locative references. In Spanish and French, 

directional markers may follow highways. Moreover, by means of another rule, we account for 

whitespaces between characters (e.g. I 84): 

 

(43) Update - #M5 northbound J19 #Gordano towards J18 #Avonmouth. Our traffic 

 officers have driven through the area 

(44) accident:NorthWest Pkwy (TX-114 alt) eastbound TX-26 Grapevine various 

 Lns blocked 

(45) Incident on #I278 EB from 3rd Avenue to Exit 26 - Hamilton Avenue 

(46) Motor Vehicle Accident - WATERBURY #RT8 South at Exit 34 (WEST MAIN ST 

 #1) at 4/11/2019 10:58:08 AM #cttraffic 

(47) One person was killed in an accident on southbound I-91 in New Haven on 

 Thursday morning.  

(48) #INCIDENT: #A40 est 

 ‘#INCIDENT: #A40 east’ 

                                                   
12  For instance, see https://en.wikipedia.org/wiki/List_of_motorways_in_the_United_Kingdom or 

https://en.wikipedia.org/wiki/Highways_in_Spain, or https://en.wikipedia.org/wiki/Autoroutes_of_France 
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Example (49) and Example (50) contain locative references missed by these rules.  

 

(49) Accident on 35W NB @ County Road 96 

 

In Example (50), the slash symbol, which is not captured by the rules, hampers a successful 

extraction of the whole locative reference. 

 

(50) *UPDATE* 15:20??  #M8 E/B J22 Plantation - J18 Charing Cross 

 remains ?CLOSED? due to a police incident on the Kingston. 

 

Other instances, such as Example (51), Example (52), and Example (53), were wrongly taken as 

locative references. 

 

(51) Today #Afghan Army helicopter (MD-530) crashed dawn due to technical 

 issues while returning from a training operation 

(52) I have done this by accident and printed tickets A2... 

(53) Terremoto M5.0 - Ryukyu Islands, Japan 

 ‘M5.0 earthquake - Ryukyu Islands, Japan’ 

 

5.3.1.1.4. Rules that exploit locative markers 

This type of rules can be divided into two main groups: (a) rules that apply to directional 

markers, and (b) rules that apply to distance and temporal markers (see Flowchart 6 in 

Appendix). On the one hand, a combination of tokens containing a directional marker is very 

likely to refer to a locative reference: 

 

i) when the tokens following the directional marker are proper nouns or locative 

references previously retrieved, which could be preceded by a preposition (e.g. de, 

of); this rule is language-independent. 

 

(54) South LA 13219 S Penrose Ave **Hit and Run No Injuries** 

(55) Cleared: Incident on #US9 SB from South of CR 522/Throckmorton St to Exit 

 26 - Hamilton Avenue 

(56) Incident on #I78 WB at East of Exit 55 - CR 602/Lyons Ave 

(57) #VIDEO   Este fin de semana, se registraron severas inundaciones al norte de 

 #LosMochis´ 
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 ‘#FOOTAGE This weekend several floods were recorded in the north of 

 #LosMochis’ 

(58) Inondations meurtrières dans le nord de l'Inde 

 ‘Deadly floods in northern India’ 

 

ii) when the tokens following the directional marker are proper nouns or locative 

references previously retrieved preceded by a preposition (e.g. of), and if the 

preceding token is a distance marker (e.g. km, miles) preceded by a number; this 

rule is English-specific. 

 

(59) A 3.5 magnitude earthquake occurred 1.86mi SW of San Bernardino, CA. 

(60) #Earthquake (#tërmet) M2.7 strikes 20 km NW of #Durrës (#Albania) 42 min 

 ago 

 

iii) when the tokens following the directional marker are proper nouns or locative 

references previously retrieved preceded by a preposition (e.g. de), and the 

preceding tokens are a number followed by a distance marker (e.g. kms, millas) 

followed by a preposition + determiner (e.g. al, del, au, du), e.g. 20 kilómetros al 

sur de Granada or 100 kms au sud de Paris; this rule is specific of Spanish and 

French. 

 

On the other hand, a combination of tokens containing a distance marker (e.g. km, mile, metro, 

kilomètre) or temporal marker (e.g. horas, hrs, mins, heures) is very likely to refer to a locative 

reference: 

 

i) when these markers are preceded by a number and followed by an optional adverb 

+ preposition + optional definite determiner (e.g. away from, out of, from the, of) 

and the following tokens are proper nouns or locative references previously 

retrieved; this rule is English-specific. 

 

(61) 18:03 Very bad accident just 4 Kms from Narok town 

(62) Cleared: Motor Vehicle Accident - HARTFORD #I84 West 0.02 miles before 

 Exit 51 (I-91NB) at 4/11/2019 10:56:03 AM 

 

ii) when these markers are preceded by a number and followed by a preposition + 

optional definite determiner (e.g. de, de la, du, hacia el, ver le) and the following 
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tokens are proper nouns or locative references previously retrieved; this rule is 

Spanish- and French-specific. 

 

(63) Se desploma helicóptero matrícula XB-GIL a 6 kilómetros de Tuxtepec, Oaxaca, 

 en la Finca Nuevo Mundo 

 ‘XB-GIL helicopter crashes 6 kilometers away from Tuxtepec, Oaxaca, at Finca 

 Nuevo Mundo’ 

(64) A las 22:37 horas, un terremoto de 7.3 grados Richter, con epicentro a 111 km 

 de puerto El Triunfo 

 ‘At 22:37 hours, an earthquake of 7.3 degrees Richter, with epicenter 111 km 

 away from Puerto El Triunfo’ 

(65) Tremblement de terre mag 4.5 à 23,36km de Ak-Chaganak 

 ‘Earthquake mag 4.5 at 23.36km away from Ak-Chaganak’ 

 

At times, the rules missed or wrongly retrieved locative references. That was the case of 

Example (66), where N Iran was not extracted but only Iran, due to the fact that the rules 

belonging to the location-indicative word module previously extracted Golestan province N. 

 

(66) April 11 -Aqqala, Golestan province N Iran Three weeks after the floods, the 

 houses are still surrounded by floods in Aqqala. 

 

In Example (67), the coordinated items could not be captured by the rules due to the lack of a 

formalized pattern for coordination. 

 

(67) Preocupación por las inundaciones en las zonas este y sur de Madrid, tras la 

 tormenta 

 ‘Worries over floods in the eastern and southern areas of Madrid after storm’ 

 

In Example (68), the rules could not capture the locative reference because they did not account 

for a directional marker following a proper noun. 

 

(68) #Duplessis nord, hauteur boulevard du Versant-Nord, VD bloquée 

 ‘Duplessis north, to the height of Versant-Nord boulevard, VD blocked’ 

 

5.3.1.1.5. Safe-checking rules 

The successful application of the linguistic-based rules must be accompanied by safe-checking 

rules to ensure that (i) the same extracted locative reference is not repeated, (ii) that boundaries 
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between locative references do not overlap, and (iii) that the boundaries of locative references 

are well delimited. 

In particular, when delimiting the boundaries of locative references, if a detected proper-

noun token takes part in another locative reference, either (a) discard the proper-noun token and 

leave the previously detected locative reference intact, or (b) remove the locative reference, 

probably wrongly delimited, and add it again with decreased or expanded boundaries. Case (a) 

applies in all the linguistic processing modules as the last safe-checking rule before adding a 

potential locative reference that might have already been extracted. For instance, if proper nouns 

follow a locative preposition, and the first of those was contained in an already-extracted 

locative reference from the place-name search in the geodatabase, the safe-checking rule 

discards those proper nouns. Case (b) is specific to how the linguistic processing module 

handles location-indicative nouns by expanding the boundaries of previously detected locative 

references (e.g. Athens → city of Athens, M-30 → autovía M-30, Versant-Nord → boulevard du 

Versant-Nord), and also applies to the addition of locative markers to previously detected 

locative references by expanding their boundaries with these markers (e.g. Silicon Valley → 

40miles SW of Silicon Valley, calle Menéndez Pelayo → 15 minutos de la calle Menéndez 

Pelayo, Paris → 30kms au sud de Paris). 

 

5.3.2. Language-specific lexical datasets 

 

Our location-detection model exploits five language-specific lexical resources: a POS-tag and 

locative-preposition dataset, a place-name dataset, a location-indicative noun dataset, a locative-

marker dataset, and a stopword dataset. 

 

5.3.2.1. POS-tag and locative-preposition dataset 

This dataset defines the language-specific grammatical categories and locative prepositions fed 

into the system for multilingual location detection. The relevant POS tags considered were 

common nouns, proper nouns, prepositions, determiners, and definite determiners. The choice 

of the locative prepositions was rigorously considered on the basis of the manual linguistic 

analysis performed on the corpora, together with the results derived from preliminary studies on 

the use of locative prepositions in microtexts (Vasardani et al., 2013; Dittrich et al., 2014; 

Radke et al., 2019). All these were materialized with regexes and configuration files. Table 18 

shows the locative prepositions considered for each of the languages supported. 

 

Table 18. Locative prepositions in LORE. 

Language Locative prepositions 

English at, @, in, near, along, across 

Spanish en, hacia, hasta 
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French à, au, aux, en, vers 

 

Further details about the layout of the file and regexes used for this dataset are given in Section 

6.1.1.1. 

 

5.3.2.2. Place-name dataset 

The place-name dataset was automatically retrieved from the geographic database GeoNames 

for each of the languages. Each place-name dataset contains location types such as geopolitical 

entities, some natural landforms, POIs, and traffic ways. We carried out an automatic filtering 

and pre-processing process that consisted of the following two consecutive tasks:  

 

(i) Retrieve place names only, whose population size is greater than 100 inhabitants. 

The population size filter was needed to avoid the retrieval of place names that 

corresponded to very common words, and whose presence resulted in the retrieval 

of many false positives. 

(ii) Remove names of historical places that no longer exist, which are marked by the tag 

“historical” (e.g. ancient Roman provinces). 

 

All this greatly contributed to speeding up the performance of our model. Indeed, the population 

size filter served to dramatically decrease the rate of false positives, although it slightly 

increased the number of false negatives. The English place-name dataset is the largest, 

containing 792,060 entries, whereas the Spanish and French ones store 217,900 and 98,989, 

respectively. This lower number of place names in the Spanish and French datasets had an 

impact on the lower recall scores achieved by LORE in those languages. Further details about 

the computational methods used for the processing and compilation of the place-name datasets 

are given in Section 6.1.1.2.  

 

5.3.2.3. Location-indicative noun dataset 

The location-indicative noun dataset was built from the EuroWordNet lexicon (Miller, 1995; 

Fellbaum, 1998). We automatically extracted all the hyponyms as lexicalized in each of the 

languages subsumed by the synsets that had a locative meaning: “road.n.01", "building.n.01", 

"facility.n.01", "junction.n.01", "district.n.01", "area.n.01", "geological_formation.n.01", 

"body_of_water.n.01", "tract.n.01", "way.n.06", and "beach.n.01”. In the filtering process, 

duplicates, more-than-two-word items, and multi-word lexical units containing place names (e.g. 

Roman Empire, Baltic state, etc.) were automatically removed. Then we manually discarded 

items that are not typically accompanied by proper nouns, and that are not included in our 
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definition of locative references (e.g. bed, melting pot, scene of action, junk pile, parts, etc.) in 

the English, Spanish, and French datasets.  

In the end, the resulting English dataset, containing 1217 lexical items, was expanded with a 

list of traffic-way and other place abbreviations obtained from the US postal service database13, 

with a sum total of 1766 items. Table 19 provides a sample of some of English location-

indicative nouns organized in terms of the proposed typology of locative references. 

 
Table 19. Sample of the English location-indicative noun dataset. 

Geopolitical 

Entities 
Natural landforms POIs Traffic ways 

barrio beach art school alley 
caliphate canyon bus station avenue 

city gulf café boulevard 

country hill castle driveway 

county lake cathedral freeway 
jurisdiction mountain embassy highway 

province ridge hospital street 

region river hospital parkway 
state valley hotel road 

town volcano university street 

 

Likewise, the Spanish dataset, after the pre-processing step, contained 644 items and was 

subsequently expanded with additional items of abbreviated location-indicative nouns retrieved 

from the Web14. Table 20 offers a sample of some of the Spanish location-indicative nouns 

following the same proposed typology of locative references. 

 

Table 20. Sample of the Spanish location-indicative noun dataset. 

Geopolitical 

Entities 
Natural landforms POIs Traffic ways 

barrio afluente academia acceso 
ciudad cima albergue autovía 

condado cuenca fluvial biblioteca avenida 

distrito desierto centro médico calle 

dominio isla cine camino 
localidad lago escuela carretera 

municipio litoral hospital carril 

país llanura museo intersección 
provincia montaña restaurante parada 

urbanización río teatro vía 

 

In the case of French, we only obtained location-indicative nouns from EuroWordNet with 

automatic methods using the synsets for words of location meaning in this language. Table 21 

                                                   
13 http://cool.conservation-us.org/lex/abbr_suf.html 
14  http://www.wikilengua.org/index.php/Lista_de_abreviaturas_de_v%C3%ADas and 

https://www.abreviaciones.es/edificios-lugares-y-negocios/  
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shows a sample of some of the French location-indicative nouns following the same proposed 

typology of locative references. 

 

Table 21. Sample of the French location-indicative noun dataset. 

Geopolitical 

Entities 
Natural landforms POIs Traffic ways 

arrondisement aquifère aérodrome allée 

califat bassin ambassade arrêt 
capitale canal boulangerie autoroute 

département canyon caféteria avenue 

etat désert église chémin 
ghetto île galerie route 

municipalité littoral gym rue 

pays mer hôtel ruelle 
province plateau palais sortie 

ville prairie station voie 

 

Further details about how these datasets were compiled are given in Section 6.1.1.3. and Section 

6.1.1.4. 

 

5.3.2.4. Locative-marker dataset 

The locative-marker dataset was, on the other hand, manually constructed. The proposed 

typology for locative markers comprises directional markers, movement markers, distance 

markers, and temporal markers. These act as optional phrases in complex locative references. 

Table 22 illustrates a few examples of these markers for the English language, whereas Table 23 

and Table 24 present a few of those locative markers used for the Spanish and French languages, 

respectively. In sum, the English locative-marker dataset contains 71 items, while the Spanish 

and French datasets stores 45 items each. Further information about the compilation of these 

datasets are provided in Section 6.1.1.4. 

 

Table 22. A sample of the English locative-marker dataset. 

Directional 

markers 

Movement 

markers 
Distance markers 

Temporal 

markers 

North, N Northbound, NB kilometre(s), kilometer(s), 

km(s) 

hour(s), hr(s), h(s) 

Southwest, sw Southbound, SW metre(s), meter(s), m(s) minute(s), min(s) 
East-North-East, 

ENE 

Eastbound, EB mile(s), mi(s)  

North, N Westbound, WB yard(s), yd(s)  

South, S    
Western     

South-east, SE    

 

Table 23. A sample of the Spanish locative-marker dataset. 

Directional Distance markers Temporal markers 
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markers 

norte, n kilómetro(s), km(s) hora(s), hr(s), h(s) 

sur, s metro(s), m(s) minuto(s), min(s) 

este, e milla(s), mi(s)  
oeste, s   

noreste, ne   

suroeste, so   

 

Table 24. A sample of the French locative-marker dataset. 

Directional 

markers 
Distance markers Temporal markers 

nord, n kilomètre(s), km(s) heure(s), hr(s), h(s) 

soud, s mètre(s), m(s) minute(s), min(s) 

est, e mile(s), mi(s)  
ouest, s   

nord-est, ne   

sud-ouest, se   

 

5.3.2.5. Stopword dataset 

The stopword dataset was automatically built and processed from different sources for each of 

the languages. The goal of this module is to filter and discard very frequent words in the place-

name search or in the linguistic processing modules which, in most cases, do not correspond to 

actual place names, and may thus compromise the precision of the model. In the case of English, 

the English stopword dataset contains the 5000 most frequent English words downloaded from 

the Corpus of Contemporary American English (COCA)15 together with 5541 common names 

and surnames16, plus the words for week days and months. For Spanish, the Spanish stopword 

dataset containing 1989 lexical items was obtained from the Corpus del Español17, enriched 

with a list of Spanish names and surnames of 558 items from a GitHub repository18. For French, 

the frequent word-lists and name lists were automatically retrieved and processed from GitHub 

repositories19. Table 25, Table 26, and Table 27 display samples of the different stopword 

datasets used in each of the languages, alphabetically organized. 

 

Table 25. English stopword dataset. 

Common Names 

                                                   
15  The 5000 most frequent English words were retrieved from COCA on 

https://www.wordfrequency.info/ 
16  The names and surnames were compiled from https://names.mongabay.com/ and 
https://surname.sofeminine.co.uk/w/surnames/most-common-surnames-in-great-britain.html, and then 

those that matched the names of cities and countries were filtered out (e.g. Nevada, Verona, Milan, Paris, 

Kenya, Valencia, etc.). 
17  The 20k most frequent Spanish words were retrieved from the Corpus del Español on 

https://www.wordfrequency.info/files/spanish/spanish_lemmas20k.txt  
18 The names and surnames datasets can be found on https://github.com/olea/lemarios 
19  The repository for frequency word lists can be found on 

https://github.com/hermitdave/FrequencyWords/tree/master/content/2018 and the repository for lists of 

names on https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/names.zip  
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words 

a Aaron 

abandon Abbey 

ability Abbie 
able Abby 

abortion Abdul 

about Abe 
above Abel 

abroad Abigail 

absence Abraham 

absolute Abram 

 

Table 26. Spanish stopword dataset. 

Common 

words 
Names 

abdicar Aarón 

abeja Abdón 
abolengo Abel 

abolir Abelardo 

abonado Abrahán 

abrasar Absalón 
abrazo Acacio 

absurdamente Adalberto 

absurdo Adán 
abundancia Adela 

 

Table 27. French stopword dataset. 

Common 

words 
Names 

abaisser Aamir 

abandon Aaron 
abdiquer Abbey 

abeille Abbie 

abolir Abbot 
aborder Abbott 

aboutir Abby 

aboyer Abdel 
abrasif Abdul 

abreuver Abdulkarim 

 

5.3.3. The pipeline of LORE 

 

The pipeline of our rule-based location-detection model consists of four main blocks or modules 

that run sequentially, the fourth of which is further divided into three distinct sub-modules. The 

model makes use of multiple NLP libraries and techniques for tokenization, POS tagging, and 

an n-gram algorithm for the extraction of locative references from tweets. The functioning of 

the location-detection pipeline of LORE is depicted through the visual workflow of Flowchart 7 

from the Appendix section, here reproduced, which shows the process of how the model 

processes a tweet corpus up to the final output of locative references. 
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Flowchart 7. The pipeline of LORE. 

 

 

As we can observe, the location-detection pipeline runs sequentially. First, tweets are 

preprocessed before being tokenized and labeled with POS tags. Then, the place-name search 

module makes use of the place-name dataset constructed from the GeoNames database to 

extract locative references. The linguistic-based modules leverage the linguistic context to 

extract more locative references through linguistic cues such as locative prepositions, location-

indicative nouns, and locative markers. Each of the submodules makes use of the 
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aforementioned language-specific datasets and regex-based rules. The pipeline is sequential 

because (a) the processing speed of each module is already fast enough and concurrent 

functioning does not add much of a speed improvement, and (b) the sequential character of the 

modules is paramount for the proper identification and delimitation of locative references. In 

this regard, the locative-marker submodule must come last to ensure that these locative markers 

are added to previously mined location references (e.g. Cambie rd →south of Cambie rd). 

Through the different safe-checking rules explained in Section 5.3.1.1.5., any location-detection 

module and submodule secure, to the best of their capabilities, that the same location reference 

is not added twice, and if added but wrongly delimited, the modules take care of removing the 

wrongly delimited one and adding the well-delimited instance. In the following sections, we 

introduce a more detailed explanation of the modular architecture of LORE and its sequential 

steps. 

 

5.3.3.1. Pre-processing 

At this stage, tweet text is pre-processed and cleaned for the later stages of the model. The 

consecutive tasks performed by this block are as follows: 

 

i) Replace user mentions and URLs by the tokens “user” and “url” respectively. 

ii) Remove emojis and other special characters and leave punctuation marks and other 

commonly used characters (/, @, |…). 

iii) Remove genitive marker since it may interfere with the matching module. 

iv) Remove extra white spaces. 

v) Segment words in hashtags for possible location references contained therein. 

 

All these tasks were performed by means of regexes. The model employs a third-party word 

segmentation algorithm20 to split up words embedded in hashtags, since these usually contain 

otherwise missed location references. These steps are performed on any of the languages 

supported, except the word segmentation algorithm, which is language-specific. Example (69) 

and Example (70) show how the pre-processing stage is applied to a given English tweet. 

 

(69) Accident with injury in #EastBatonRouge on Airline SB at I 12 #traffic 

 https://t.co/1WyWN3ulTM 

(70) Accident with injury in East Baton Rouge on Airline SB at I 12 Traffic url 

 

5.3.3.2. Tokenization and POS tagging 

                                                   
20 WordSegmentationTM: https://github.com/wolfgarbe/WordSegmentationTM 
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In this step, the Stanford POS tagger through the DAMIEN web service API (Periñán-Pascual, 

2017) performs tokenization and POS tagging.  

Tokenization involves splitting the tweets into unique tokens, such as words, punctuation 

marks, symbols, etc. Tokenizing a sentence of a given language presupposes knowledge about 

how that language, in textual form, is represented, and which element(s) determines the 

boundaries of each token. This knowledge can be provided by linguist experts, and materialized 

by means of rules or probabilistic-based algorithms. In the particular case of English (i.e. a 

Germanic language) or Spanish (i.e. a Romance language), tokens usually align to words, split 

by spaces and punctuation marks. Other languages such as Chinese pose a much greater 

challenge, since what we know as words appear together, and splitting by whitespace is thus not 

a good predictor of word boundary. On top of that, the irregular idiosyncrasy of the microtext 

genre provides at times greater difficulty in determining word boundaries due to the abundance 

of misspellings, hashtags, etc.  

POS tagging assigns grammatical categories to each of these tokens. Assigning these 

implicitly assume knowledge about the morphology of the split tokens (e.g. inflections) and, 

above all, about the syntactic function that these tokens perform in the clause. In NLP, each 

language has its own set of part-of-speech labels, derived from their naming conventions. The 

Twitter medium makes it harder for POS taggers to perform reasonably well, due to 

grammatical errors, disjointed items, irregular spelling conventions, etc. As will be discussed 

below in Section 7.2., such error-prone behavior of the POS tagger with the tweets had an 

impact on the retrieval of locative references and on the discarding of false positives. 

The Stanford POS tagger returns the split tokens from the tweets with their respective POS 

tags (Example (71) and Example (72)), which, together with their original form and their 

position in the tweet, are stored as attributes for each token object (Table 28). 

 

(71) Police have also closed the Kingston Bridge on the M8 because of this incident. 

 https://t.co/L6MBWJz3lw  

(72) Police/NNS/1 have/VBP/2 also/RB/3 closed/VBN/4 the/DT/5 Kingston/NNP/6 

 Bridge/NNP/7 on/IN/8 the/DT/9 M8/NN/10 because/IN/11 of/IN/12 this/DT/13 

 incident/NN/14 ././15 url/NN/16 

 

Table 28. The matrix representation of token objects. 

wfi (string 

value) 
pti (string value) pi (integer value) 

Police NNS 1 

have VBP 2 

also RB 3 
closed VBN 4 

the DT 5 
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Kingston NNP 6 

Bridge NNP 7 

on IN 8 
the DT 9 

M8 NN 10 

because IN 11 
of IN 12 

this DT 13 

incident NN 14 

. . 15 
url NN 16 

 

In other words, for every token object ti, the model stores an attribute original word form wfi,, an 

attribute POS tag pti, and an attribute position pi.. Tweets are then stored as an object list {twj,, 

twj+1, twj+2…}, each of which comprises a list of associated token objects {ti, ti+1, ti+2…} and 

their corresponding tweet ID number idk (Table 29).  

 

Table 29. The matrix representation of a list of tweet objects. 

idk twj 

j {ti, ti+1, ti+2…} 

j+1 {ti, ti+1, ti+2…} 

j+2 {ti, ti+1, ti+2…} 

j+n {ti, ti+1, ti+2…} 

 

5.3.3.3. Place-name search 

The place-name search module aims to match n-grams of different size from the tweets with the 

place names included in the place-name dataset. The n-gram-based matching is grounded on a 

depth-search algorithm. It works in a decreasing fashion, starting from the highest n-gram of n 

tokens and iterating through its embedded n-grams until a match takes place or unigrams are 

reached. If no match is found, it iterates to the following tokens and starts all over again. Figure 

10 shows a graphical example of the functioning of the n-gram-based matching. 

 

Figure 10. N-gram-based matching. 

 

 

As explained in Section 5.3.1.1.1., regex-based rules apply to discard different overmatching-

prone n-gram combinations which are found in the place-name dataset and produce false 
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positives. These rules are indistinctively applied to all the languages supported, since, as we 

have attested in the development process of the model, the rules provide a sufficiently good 

benefit-cost ratio. By this ratio, we mean that the rules do not compromise the performance of 

the model or overload the system with long-winded regexes. 

 

5.3.3.4. Linguistic processing 

This module does not use the place-name dataset to mine locative references. Instead, it exploits 

language-specific linguistic knowledge and contextual clues found in the tweets to expand 

previously-detected locative references or discovering new locative references whose presence 

is signaled by locative prepositions, location-indicative nouns, and/or any kind of locative 

marker. The linguistic processing module is the result of the comprehensive linguistic analysis 

performed on the dev corpus and the extracted linguistic regex-based patterns and rules. 

 

5.3.3.4.1. For locative references introduced by locative prepositions 

The first task searches for proper nouns followed by locative prepositions that were not captured 

by the place-name dataset, in an n-gram window size of n words. Thus, following the regex-

based rules in Section 5.3.1.1.2., if the current token ti is a locative preposition and when the 

following tokens (i.e. ti+1, ti+2, ti+n) are proper nouns, there is a high chance that these take part 

in a locative reference. The locative prepositions can be provided by the end user who specifies 

the language-specific locative prepositions of interest. For instance, for English, the prepositions 

considered were in, at, @, near, across, along. The reason why other English prepositions that 

signal location and direction (e.g. on, to, from) were not included was because these also have 

non-spatial senses in many ubiquitous contexts (Radke et al., 2019). In other words, those 

prepositions tend to overproduce many false positives when, for instance, they function as 

indirect objects (e.g. in giving verbs as in John gave a present to Mary) or oblique objects (e.g. I 

received a present from John). Only the stopword and location-indicative noun datasets are used 

to discard unlikely locative references. Acronyms and abbreviations of place names that went 

unnoticed in the place-name search module can now be retrieved thanks to the presence of 

locative prepositions (e.g. in TX). 

 

5.3.3.4.2. For locative references introduced by location-indicative nouns 

This second task expands locative references already retrieved by the previous modules or find 

new ones signaled by the presence of location-indicative nouns. This sub-module first matches 

location-indicative nouns, either unigrams or bigrams (i.e. ti, or ti  and ti+1), found in the 

location-indicative noun dataset and then considers a range of n-grams of size n to the left (e.g. 

ti-1, ti-2, ti-n) or to the right (e.g. ti+1, ti+2, ti+n) in search of proper nouns, resulting in the extraction 

of complex locative references. In other cases, the preposition of can be found between the 
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location-indicative noun(s) and the proper noun(s) in English locative references (e.g. district 

of___, city of___, or province of___, coast of___, etc.), or prepositions plus optional definite 

determiners in the case of Spanish and French (e.g. barrio de ____, montaña del ____, region 

du ____, place de la ____). This sub-module is also in charge of extracting traffic ways such as 

streets, highways, and roads. The regex-based rules that apply in this submodule as well as 

examples supporting their use are detailed in Section 5.3.1.1.3. 

By means of the safe-checking rules explained in Section 5.3.1.1.5., this submodule also 

checks whether locative references found by the place-name search stage were wrongly 

delimited or, in other words, when locative references were shorter than expected or truncated: 

High School instead of Batavian High School, Sichuan instead of South Sichuan Basin, or 

Glenwood instead of Glenwood Ave, to name but a few. Boundaries would then be accordingly 

expanded in each of the locative references.  

 

5.3.3.4.3. For locative markers 

By means of the regex-based rules explained in Section 5.3.1.1.4. and the locative-marker 

dataset, locative references that were found in the previous modules can be expanded with any 

of the locative markers contained in the locative marker datasets, with the purpose of capturing 

the full scope of complex locative references (e.g. Milan → 25kms SE of Milan). Moreover, 

besides expanding already-retrieved locative references, this sub-module could in practice 

leverage these rules and the locative markers as contextual clues to identify new complex 

locative references missed by previous modules by looking at proper nouns that follow these 

markers in an n-gram window size of n words. 

 

5.4. Neuronal LORE (nLORE) 

 

Departing from LORE and the state-of-the-art approaches in NER, we decided to implement a 

neuronal network of type deep bidirectional RNN with LSTM as hidden layer structure and a 

CRF layer on top exploiting linguistic-based feature engineering and semantic information 

contained in the vectorial representations of tokens (i.e. word embeddings). Our aim was tri-fold. 

First, we wanted to assess whether the addition of linguistic-based features in a neuronal 

network can provide further benefits than using token form and POS tags as the only features. 

Second, we wanted to check whether linguistic-based feature engineering can somehow 

overcome the conundrum of finding and labeling a large train corpus, thus alleviating the 

computational cost, time, and resources typical of probabilistic-based approaches. Thirdly, we 

wished to elucidate whether a DL-based location-detection model can outperform our rule-

based approach. 
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This section is organized as follows. First, we provide an explanation of the functioning of 

the neuronal network and word embeddings used. Then, we introduce the implementation of the 

neuronal network together with the training phase, followed by a description of the process of 

linguistic-based feature engineering and the hyperparameterization process undertaken in the 

training phase of the algorithm. 

 

5.4.1. Deep Learning: RNN, CRF and word embeddings 

 

5.4.1.1. Bidirectional RNN with LSTM and CRF on top 

The underlying idea in the use of RNNs in NLP scenarios is that language must be treated as a 

temporal phenomenon, that is, language as a sequence of tokens that are combined one after 

another, where the prediction of a given word is dependent on earlier words (Jurafsky & Martin, 

2019a). In a simple RNN network, also called Elman network (Elman, 1990), the output value is 

calculated on the basis of the input unit, multiplied by a weight matrix, which is then used in an 

activation function to calculate an activation value for the layers of hidden units. On the basis of 

these hidden units, an output value is obtained. The neuronal network is recurrent in the sense 

that the activation value of the hidden layer depends on the current input value and also on the 

output value of the previous hidden layer via backpropagation (Figure 11). 

 

Figure 11. A graphical representation of a simple RNN. 

 

 

 

In mathematical terms, this would be expressed as follows, where the value for a given hidden 

layer ht at a given time t results from the activation function g that takes into account the sum of 

two values, the multiplication of a weight matrix U by the value of the previous hidden layer ht-1 

and the multiplication of a weight matrix W by the input unit xt (Equation (3)). For the output 

value yt, we apply another activation function resulting from the multiplication of the hidden 

layer ht by a weight matrix V, as seen in Equation (4). 

 

    ℎ𝑡 = 𝑔(𝑈ℎ𝑡−1 + 𝑊 𝑥𝑡)     (3) 

    𝑦𝑡 = 𝑓(𝑉ℎ𝑡)       (4) 

 

In this sense, the previous hidden layer acts as contextual information or memory that captures 

earlier information for its later processing. 

The network structure that we used is named ‘bidirectional RNN’. A bidirectional RNN 

network consists of two simple RNNs stacked on top of each other, where, not only the previous 

xt ht yt 
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values are taken into account, but also the following ones, by means of backpropagation and 

forward-propagation (Schuster & Paliwal, 1997). In other words, if we had a sentence such as 

The cat is on the mat, if the current token is on, the network takes into account the previous 

word is and the following word the. Figure 12, taken from Ogawa & Hori (2015), illustrates the 

functioning of a bidirectional RNN. 

 

Figure 12. A bidirectional RNN (Ogawa & Hori, 2015). 

  

 

Mathematically expressed, a bidirectional RNN takes into account the preceding context by 

backpropagation and the following context by forward propagation, and then both outputs are 

concatenated by their addition or multiplication, as observed in Equation (5), Equation (6), and 

Equation (7). 

 

    ℎ𝑡
𝑓 = 𝑅𝑁𝑁𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥1

𝑡)      (5) 

    ℎ𝑡
𝑏 = 𝑅𝑁𝑁𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥𝑡

𝑛)     (6) 

    ℎ𝑡 = ℎ𝑡
𝑓
∙  ℎ𝑡

𝑏       (7) 

 

For the hidden layer structure, we used LSTM units because they keep in memory distant 

contextual information (Hochreiter & Schmidhuber, 1997), which is appropriate given the 

nature of language, where nearby contextual information is not enough to predict sequences of 

words. Consider, for instance, the sentence The man who wore a hat on the top of his head and 

his wife were crossing the street. A language model based on a bidirectional RNN would have 

missed subject-verb agreement because of the long nature of this complex NP containing two 

NPs, since in the local context, before the auxiliary form were, we find wife, which is attached 

by means of coordination to the previous NP. A simple bidirectional RNN would have not been 
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able to take into account the whole complex NP and would have assigned fewer probabilities to 

were, opting for the singular form was instead. LSTM networks provide an additional context 

layer, besides the recurrent hidden layer, and also neural units that, by operating on the input 

units, previous hidden layer and context layers, employ ‘gates’ or ‘gating mechanisms’ which 

are in charge of controlling the flow of information in and out of these neural units. A LSTM 

network receives a context layer as input, the previous hidden state, and the current input vector 

to produce updated context and hidden vectors as output. A forget gate erases unnecessary 

contextual information by calculating the weighted sum of the previous state’s hidden layer and 

the current input, which is then computed by a sigmoid function and whose result is multiplied 

by a context vector. 

Equation (8) and Equation (9), where ft stands for forget gate, σ represents the sigmoid 

function and ct-1 the context vector, exemplify the functioning of a LSTM network. 

 

    𝑓𝑡 = 𝜎(𝑈𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡)     (8) 

    𝑘𝑡 = 𝑐𝑡−1 ∙ 𝑓𝑡        (9) 

 

Afterwards, we need to compute the current information from the previous hidden state and 

current inputs, where tanh represents a hyperbolic function in Equation (10). 

 

    𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑔ℎ𝑡−1 + 𝑊𝑔𝑥𝑡)     (10) 

 

Then, with the add gate, we provide the information relevant to the current context, as observed 

in Equation (11) and Equation (12). 

 

    𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡)     (11) 

    𝑗𝑡 = 𝑔𝑡 ∙  𝑖𝑡       (12) 

 

The context vector gets updated in Equation (13). 

 

    𝑐𝑡 = 𝑗𝑡 + 𝑘𝑡        (13) 

 

Another gate (i.e. the output gate) selects the information relevant for the current hidden state, 

as seen in Equation (14) and Equation (15). 

 

    𝑜𝑡 = 𝜎(𝑈𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡)     (14) 

    ℎ𝑡 = 𝑜𝑡 ∙  𝑡𝑎𝑛ℎ(𝑐𝑡)      (15) 
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Figure 13 summarizes in a graphical way the functioning of LSTM networks as hidden layers in 

a bidirectional RNN structure. 

 

Figure 13. A bidirectional RNN structure with LSTM as hidden layers. 

 

 

For the output layer structure, we used a CRF layer on top of the bidirectional RNN with LSTM, 

which can more accurately predict the tokens’ labels. 

 

5.4.1.2. CRF: output layer structure 

For the output layer structure, we used a CRF layer on top of the bidirectional RNN with LSTM. 

CRF is a discriminative model for sequential data that is able to predict a given label on the 

basis of contextual information (Lafferty et al., 2001). This is commonly expressed in Equation 

(16) as the probability of a given tag or label y on the basis of an input x, measured by the 

exponential of a weight parameter w multiplied by a feature function ψ, divided by the sum of 

all the exponentials. In mathematical notation, this is expressed as follows: 

 

    𝑃 (𝑦|𝑥) =
exp(𝑤· 𝜓(𝑥,𝑦))

∑𝑦 exp(𝑤· 𝜓(𝑥,𝑦))
     (16) 

 

The feature function determines whether a given feature exists or not. Figure 14 represents the 

functioning of a CRF algorithm, where each feature function is dependent on the estimation of 

the previous feature function. 

 

Figure 14. A graphical representation of a CRF. 
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5.4.1.3. Vector semantics: dense, static word embeddings 

Vector semantics deals with the vectorial representation of words in an n-dimensional spaces 

using sparse or dense vector semantic models to capture meaning from text (Jurafsky & Martin, 

2019b). Vector semantics depart from the all-time linguistic assumption that the meaning of a 

word lies in its neighboring company (Firth, 1957). Sparse vectorial representations (e.g. co-

occurrence vectors) usually focus on word co-occurrence to determine their vectorial space. For 

instance, given the sentences I like apples and I like reading, we can compute sparse vectorial 

representations by means of a co-occurrence matrix (Table 30). 

 

Table 30. Co-occurrence matrix in sparse vectorial representations. 

 I like apples reading 

I 0 2 0 0 
like 2 0 1 1 

apples 0 1 0 0 

reading 0 1 0 0 

 

Thus, the vectors for the words are as follows: I [0, 2, 0, 0], like [2,0,1,1], apples [0,1,0,0], 

reading [0,1,0,0]. The number of vectorial spaces is determined by the vocabulary size of a 

given corpus which, if large, can produce vectorial spaces of thousands of dimensions, with 

many zero values. This can be very costly in computational terms. To solve this issue, dense, 

static word embeddings such as Word2Vec can store fewer dimensional spaces of vectors and 

dense vectors (i.e. where the value is not zero) by means of the skip-gram algorithm (Mikolov et 

al., 2013). The skip-gram algorithm, instead of counting words that co-occur together, performs 

a binary classification task that computes the probability of one word appearing next to another, 

that is, it predicts the context of words on the basis of a given word (Figure 15). 

 

Figure 15. Skip-gram algorithm. 
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In the sentence __ ___ sat ___ ___ ___, the skip-gram algorithm computes the probability of the 

tokens in the syntagmatic axis that appear next to sat, selecting, for instance, The cat in subject 

position and on the mat in the prepositional object position as the most probable tokens. 

Another similar algorithm, the continuous bag of words, predicts a word given its context 

(Figure 16). 

 

Figure 16. Continuous bag of words algorithm. 
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Thus, in the sentence The cat ___ on the mat, given the context, thanks to the continuous bag of 

words algorithm we could predict the most probable tokens for that gap in the paradigmatic axis: 

sat, lay, slept, etc. Thanks to both models, we can quantify or categorize semantic similarity 

among words (Figure 17). 

 

Figure 17. A reduced three-dimensional space for word embeddings. 
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As illustrated by Figure 17, we can capture semantic similarity with word embeddings in terms 

of, for instance, gender relationships, besides synonymy and other semantic relationships (e.g. 

tense forms, hyponymy). In mathematical notation, semantic similarity between two words is 

computed by calculating the cosine similarity between the word vector of a and the word vector 

of b, where θ is the angle between the two vectors, and whose range will cover values between 

0 and 1 (i.e. from no similarity to full similarity), as shown in Equation (17). 

 

     cos θ =  
�⃗� · �⃗� 

||�⃗� ||·||�⃗� || 
     (17) 

 

5.4.2. Training phase 

 

We trained up to eight models, according to the variables corpus size and linguistic-based 

features. With respect to the first variable, using a different corpus size responded to our aim to 

determine the effect of additional linguistic-based features in the performance of our model. In 

other words, our goal was to check whether linguistic-based feature engineering can overcome 

the problem of sparse corpus data in a probabilistic-based framework. Considering that one of 

our purposes was to examine whether the addition of extended linguistic-based features other 

than the basic ones, i.e. token form and POS tag, could enhance the performance of our model, 

we differentiate between a basic and an extended model: a basic one with token form and POS 

tag as main features, and an extended one with token form, POS tag, presence in the place-name 

dataset, presence in the location-indicative noun dataset, and locative marker. Further details 
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about the computational implementation of nLORE can be found in Section 6.2. and its 

subsections. Table 31 displays the characteristics of the eight trained models. 

  

Table 31. Trained nLORE models. 

Model 
Corpus size 

(tweets) 
Linguistic-based feature engineering 

1 1000 Token + POS tag 

2 1000 
Token + POS tag + place-name dataset + location-indicative noun 
dataset + locative marker 

3 3000 Token + POS tag 

4 3000 
Token + POS tag + place-name dataset + location-indicative noun 
dataset + locative marker 

5 5000 Token + POS tag 

6 5000 
Token + POS tag + place-name dataset + location-indicative noun 
dataset + locative marker 

7 7000 Token + POS tag 

8 7000 
Token + POS tag + place-name dataset + location-indicative noun 

dataset + locative marker 

 

5.4.3. Linguistic-based feature engineering 

 

It is widely accepted in the AI and NLP communities that, for the task of achieving optimal 

performance, constructing a set of meaningful features proves to be an effective strategy. For 

the training phase, we employed template features, context template features, and word 

embedding features to leverage linguistic-based features. As already sketched in the corpus 

compilation phase (Section 5.2.), the corpora used in nLORE follow a token-based tabular 

representation, where each column indicates a given feature, and the last column represents the 

token label. The token-form and POS-tag features are the same as those used in LORE; however, 

the membership of a given token or a combination of tokens in the place-name or location-

indicative noun datasets are indicated by Boolean values, regardless of any of the rules used in 

the modules of LORE. In other words, no pre-processing or filtering step was applied, such as 

the stopword filtering step or the discarding of words that are not tagged as proper nouns. The 

only criterion is that, as long as a given word or combination of words is captured by the place-

name dataset or the location-indicative noun dataset, they get the Boolean value 1; otherwise, 

their Boolean value is 0. The reason for this lies in our belief that the neuronal network used can 

automatically learn and infer, implicitly, the rules that we manually devised for the place-name 

search and linguistic processing modules without any manual input on our part. For the locative-

marker feature, we did make use of the rules in the annotation process to find locative markers 

and label each locative-marker item or combination of items as 1. Also, the Boolean value 1 was 

assigned to tokens that are locative markers through a lookup in the locative-marker dataset, in 

case the rules missed any locative marker. The following subsections explain the 

implementation of the different feature types used in nLORE. 
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5.4.3.1. Template features 

Also known as sparse features, these features exploit the CRF top layer to capture contextual 

information through feature sets that take into account tokens’ position, POS tags, presence in 

the place-name dataset, presence in the location-indicative noun dataset, and locative markers. 

We took into account the current token form ti, its previous token form ti-1 and the following 

token form ti+1; the POS tag of the current token pti, the POS tag of the previous token pti-1 and 

the POS tag of the following token pti+1; the combination of these token forms with their POS 

tags; the presence in the place-name dataset pni of the current token in combination with its POS 

tag, the presence in the place-name dataset pni-1 of the previous token in combination with its 

POS tag, and the presence in the place-name dataset pni+1 of the following token in combination 

with its POS tag; the presence in the location-indicative noun dataset lii of the current token 

together with its token form and the presence in the location-indicative noun dataset lii+1 of the 

following token together with its token form; and whether the current token is a locative marker 

lmi, whether the previous token is a locative marker lmi-1, and whether the following token is a 

locative marker lmi+1. All these rules provided the best results considering the cost-benefit ratio, 

since adding rules is costly in terms of computational resources and time in the training and 

evaluation phases. Table 32 provides the configuration of template features. An explanation of 

the notation used can be found in Section 6.2.1.3. 

 

Table 32. Template features for the extended nLORE model. 

Prefix Feature type Rule string features 

U01:%x Unigram token [-1,0] 

U02:%x Unigram token [0,0] 
U03:%x Unigram token [1,0] 

U04:%x Unigram POS tag [-1,1] 

U05:%x Unigram POS tag [0,1] 

U06:%x Unigram POS tag [1,1] 
U07:%x Unigram POS tag [-1,0]/%x[-1,1] 

U08:%x Unigram POS tag [0,0]/%x[0,1] 

U09:%x Unigram POS tag [1,0]/%x[1,1] 
U10:%x Unigram place-name [-1,2]/%x[-1,1] 

U11:%x Unigram place name [0,2]/%x[0,1] 

U12:%x Unigram place name [1,2]/%x[1,1] 

U13:%x Unigram location-indicative noun [0,3]/%x[0,0] 
U14:%x Unigram location-indicative noun [1,3]/%x[1,0] 

U15:%x Unigram locative marker [-1,4] 

U16:%x Unigram locative marker [0,4] 
U17:%x Unigram locative marker [1,4] 

 

Since one of our aims was to assess the impact on performance of additional linguistic-based 

features other than token form and POS tag, we also trained our model with only these two 

features, which meant deleting the other ones (Table 33). 
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Table 33. Template features for the basic nLORE model. 

Prefix Feature type Rule string features 

U01:%x Unigram token [-1,0] 

U02:%x Unigram token [0,0] 
U03:%x Unigram token [1,0] 

U04:%x Unigram POS tag [-1,1] 

U05:%x Unigram POS tag [0,1] 

U06:%x Unigram POS tag [1,1] 
U07:%x Unigram POS tag [-1,0]/%x[-1,1] 

U08:%x Unigram POS tag [0,0]/%x[0,1] 

U09:%x Unigram POS tag [1,0]/%x[1,1] 

 

To understand how template features work, let us consider the example John lives in the south 

of New York. If the current token is south, the features generated would correspond to the 

following: 

 

Table 34. Features generated for the example in the extended nLORE model. 

Prefix Features generated 

U01: the 
U02: south 

U03: of 

U04: DT 
U05: NNS 

U06: IN 

U07: the/DT 

U08: south/NNS 
U09: of/IN 

U10: 0/DT 

U11: 1/NNS 
U12: 0/IN 

U13: 0/south 

U14: 0/of 
U15: 0 

U16: 1 

U17: 1 

 

Since south of is a locative marker, the locative-marker phrase was assigned the Boolean value 1. 

South was also a word found in the place-name dataset, hence its Boolean value 1 in the place-

name dataset feature column. 

 

5.4.3.2. Context template features 

Here we explicitly indicate whether the template features can also apply to tokens other than the 

current one. The context window takes into account the preceding token, the current token, and 

the following token, so that the previous features can be combined for the previous and 

following tokens, too. Considering the example from the previous section, features would be 
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generated, not only to south, but also to the previous token the and the following token of. This 

feature is computationally heavy and costly, too, since the wider the contextual window, the 

more time and computational resources the training phase consume. Considering the cost-

benefit ratio, widening the contextual window was discarded. 

 

5.4.3.3. Word embedding features 

These features, also known as dense features, provide rich semantic information in the training 

phase. We used a different corpus for the training of the word embeddings, one which was 

unlabeled and much larger, having 3,844,612 English tweets, used in and collected by Cheng et 

al. (2010)21. The settings used were the following: 

 

Table 35. Word embeddings settings. 
Vector 

dimensional 

size 

Context 

window 

(no of 

words) 

Minimum 

frequency 

Occurrence 

threshold 

Continuous 

bag of words 

No of 

threads 

Save 

step 

Negative 

examples 

Iterations 

200 5 5 1e-4 No 

(skipgram 

model) 

1 100M 15 5 

 

These dense features were fed into the training phase of nLORE. Table 36 shows an example of 

the semantic and syntactic information captured by the word embeddings for the token city. 

 

Table 36. Semantic similarity of city with respect to other words in the word embeddings. 

Words Cosine distance 

state 0.709802897326614 
valley 0.697769563451627 

region 0.68459698768071 

village 0.681373935435019 
area 0.681025145287523 

town 0.675501859846169 

neighborhood 0.675385347272232 
county 0.673755104766063 

lobby 0.644855317278645 

desert 0.642095013376314 

western 0.639060831540725 
country 0.636974015778523 

border 0.633752032202236 

river 0.632661068591006 
forest 0.622150292139476 

 

Those words with higher cosine distance values were words which had a similar syntactic 

behavior in the corpus and thus a certain degree of semantic similarity. This could be helpful in 

the training process of nLORE to attach more importance to, for instance, words that are related 

                                                   
21 Available on the following link: https://archive.org/details/twitter_cikm_2010 
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to location-indicative words, even when, for any reason, they were not captured by the location-

indicative noun dataset, thus helping in the task of location extraction. Also, since we selected 

the skip-gram model, location-indicative nouns could also signal the high probability of 

neighboring tokens that are part of or that predict a given a locative reference, such as 

prepositions, proper nouns, etc. 

We specified a context window for word embeddings that takes into account the current 

token, the past two tokens, and the following two tokens. This context window was found 

optimal for our purposes. 

 

5.4.4. Hyperparameterization: parameter tuning and settings 

 

One key step in training a model is the process of hyperparameterization where parameters are 

adjusted to achieve optimal performance. The model structure of the deep bidirectional RNN 

with LSTM and CRF was specified in the training process. Table 37 shows the parameters used 

in each of the trained models. 

 

Table 37. Parameter settings in trained nLORE models. 

Paramaters Values 

Network type Bidirectional 

Dropout 0.5 
Hidden layer type, 

numer, and size 

LSTM, 1, 200 neurons 

Output layer type Simple, CRF 
Learning rate 0.1 

Minibatch size 16 

Save step 200K 
Maximum iterations 0 (unlimited) 

 

Models were saved when they achieved the best result in the valid corpus. Iterations ranged 

from 20 to 25: the larger the corpus, the greater number of feature types that were taken into 

account, the greater time it took to train each model, from a few hours to more than one day. We 

also used the English valid corpus which was used to validate the results obtained in each 

iteration for the automatic tuning of the model in the following iterations. 

 

 

6. IMPLEMENTATION 

 

In this section we describe the computational implementation of our models and different tools 

used for different purposes. We describe the LORE tool in Section 6.1. and the nLORE tool in 
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Section 6.2., explaining the files and other apps required for them to operate. In Section 6.3. we 

present the evaluation tool used for the evaluation stage of the models. 

 

6.1. LORE 

 

The pipeline of LORE was computationally implemented from scratch in the C# programming 

language using the .NET framework22. This involved learning the basics of programming, such 

as variables, data types and structures, the syntax that work with these (e.g. conditionals, loops) 

and methods, and applying all this knowledge in the development of the applications. The 

functionalities of our models were encapsulated in a static class, where we specified the 

different fields, properties, internal classes for tokens and tweets, and methods for different 

functions such as reading files, determining the language of the tweets, pre-processing the tweet 

text, tokenizing and POS tagging the tweets, loading the language-specific datasets, performing 

the different sub-modules, saving the locative references in a file, etc. Figure 18 shows a 

glimpse of the code from the method in the LORE static class that performs the task of locative 

reference extraction from a given corpus of tweets. 

 

Figure 18. A glimpse of the coding of LORE. 

 

 

The application’s User Interface (UI) of LORE is presented in Figure 19. 

 

Figure 19. UI of LORE. 

                                                   
22 LORE is freely accessible from the FunGramKB website (http://www.fungramkb.com/nlp.aspx). 
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Pressing the File button lets us browse our files in search of a TXT file (i.e. the pre-processed 

tweet corpus), which is then loaded as the input file. Afterwards, we can select which location 

extraction modules apply and the language of the tweets. The Execute button is in charge of 

processing the corpus up to the extraction of locative references. Table 38 shows the files that 

are externally received (i.e. input files) and generated (i.e. output files) in LORE. 

 

Table 38. Input and output files in LORE. 

File type Function Input/Output 

Preprocessed tweet 

corpus (TXT file) 

File loaded by the end user with tweet 

texts, where each line represents a 
given tweet. 

Input 

Tweet corpus 

(CSV file) 

Each tweet is marked by its ID number 

and its text in each line. 
Output 

Locative references 
(CSV file) 

Locative references are extracted and 
organized according to their tweet ID. 

Output 

 

The preprocessed tweet corpus was obtained out of the raw tweet corpus by means of our tweet 

corpus pre-processor tool. Also developed in C#, our command-line tool (Figure 20) makes use 

of the capabilities offered by the StringSimilarity.NET library23, in particular the Levenshtein 

distance or the cosine distance using n-grams. The tool loads as input the CSV file delivered by 

the FireAnt app and obtains as output the preprocessed tweet corpus in TXT format for its 

processing in LORE or nLORE.  

 

Figure 20. Our tweet corpus pre-processor command-line tool. 

                                                   
23 https://github.com/feature23/StringSimilarity.NET 
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6.1.1. Internal files in LORE 

 

LORE requires several files to work properly. Table 39 provides a summary of the internal files 

required by LORE to operate. 

 

Table 39. Internal files required by LORE, their function, and data type or structure. 

File type Function 
Data 

type/structure 

ISO language 
codes (TXT file) 

Facilitates the automatic retrieval of 
the language-specific datasets in case 

these are missing and prepares LORE 

for expanding its multilingual 
adaptation in the future. 

String 

Configuration file 

(TXT file) 

Provides regexes with language-

specific POS tags and locative 

prepositions chosen for each of the 
languages supported. 

IEnumerable 

Place-name dataset 

(CSV file) 

Stores place names, obtained and pre-

processed from GeoNames. 
Hashset 

Location-
indicative noun 

dataset (CSV file) 

Stores location-indicative nouns, 

obtained and pre-processed from 

EuroWordNet using our 

EuroWordNet hyponym extractor tool. 

Hashset 

Place abbreviation 
list (CSV file) 

Stores place abbreviations for nouns 

contained in the location-indicative 

noun dataset. 

Hashset 

Locative marker 

dataset (CSV file) 

Stores the locative markers manually 

provided by the end user. 
Hashset 

Stopword dataset 

(CSV files) 

Composed of two files: common 
words CSV file and names and 

surnames CSV file(s). They are used 

to filter false positives. 

Hashset 
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Frequency 

dictionary (TXT 

file) 

Used for the word segmentation 
algorithm. 

String 

 

All are language-dependent except the ISO language codes file. Also, in all the files each line 

represents a given entry of an item. If the language-dependent datasets are empty or absent, the 

program automatically retrieves and generates those language-independent resources, except the 

place abbreviation list and the locative marker dataset that need to be manually supplied. Those 

files with the largest number of entries are loaded in the program as hashsets because hashsets 

can perform faster lookups than lists, arrays, and other data structures. The following 

subsections explain the nature of the files for the datasets used. 

 

6.1.1.1. The configuration file 

Language-specific divergences can be handled by the end user in a configuration file by 

providing the language-specific POS tags and locative prepositions, which are subsequently fed 

into the built-in regex-based rules. For this, an external file is available for the end user to 

provide or modify the corresponding POS tags of their language, and those most relevant 

locative prepositions used in the linguistic processing task of the model 

The layout of the configuration files follows the conventions used in regexes, since this 

grammatical and lexical information is directly fed into the system’s rules. ^ and $ indicate the 

beginning and end of a string, respectively. The asterisk * is a quantifier whose function is to 

match the preceding symbol or character zero or more times. The dot . matches any character 

except line breaks. Round brackets are used to capture a multiple group of strings where the 

symbol | acts as the logical operator OR. For instance, in Table 40, Table 41, and Table 42 we 

can observe the specified POS tags and locative prepositions chosen for English, Spanish, and 

French in their configuration files. 

 

Table 40. English config file. 

POS tags and locative prepositions Regex 

Common noun POS tag ^NNS?$ 
Proper noun POS  ^NNPS?$ 

Preposition POS tag ^IN$ 

Determiner POS tag ^DT$ 
Definite determiner POS tag ^DT$ 

Locative prepositions ^(at|in|near|along|across|@)$ 

 

Table 41. Spanish config file. 

POS tags and locative prepositions Regex 

Common noun POS tag ^nc.*$ 

Proper noun POS  ^np.*$ 
Preposition POS tag ^sp.*$ 

Determiner POS tag ^d.*$ 
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Definite determiner POS tag ^da$ 

Locative prepositions ^(en|hacia|hasta)$ 

 

Table 42. French config file. 

POS tags and locative prepositions Regex 

Common noun POS tag ^(NC|N)$ 
Proper noun POS  ^NPP$ 

Preposition POS tag ^P$ 

Determiner POS tag ^DET$ 
Definite determiner POS tag ^DET$ 

Locative prepositions ^(à|au|aux|en|vers)$ 

 

6.1.1.2. The place-name dataset files 

For the extraction of place names, we used the third-party C# library NGeoNames24 integrated 

in the static methods in LORE. The language parameter was automatically set, according to the 

language of the tweet corpus, to obtain place names of that language. For instance, for English, 

it downloaded a very large file that contained English place names for all countries and another 

file for alternate names (both weighing around 1.92 GB in total). Not only did it include place 

names, but it also contained information in relation to the type of location, geographic 

coordinates, etc. The pre-processing and filtering steps were automatically performed using 

LINQ queries and regexes due to the extremely large size of the files and the possible 

performance drops derived from using those files in memory, and also due to unnecessary data 

that these files contained. This pre-processing step generated a much smaller file of only 12.4 

MB for English place names, 3.62 MB for Spanish place names, and 1.45 MB for French place 

names. If our program did not detect these files, it would automatically retrieve them and 

perform the pre-processing step. Also, thanks to the ISO language codes, we could 

automatically compile place-name datasets for many other languages. Figure 21 shows a 

screenshot of the original GeoNames files. 

 

Figure 21. A screenshot of the English place-names file retrieved from the GeoNames database. 

                                                   
24 NGeoNames: https://github.com/RobThree/NGeoNames 



95 

 

 

 

6.1.1.3. The location-indicative noun dataset files 

The extraction of location-indicative nouns in each of the languages supported was carried out 

through a EuroWordNet hyponym extractor command-line tool developed in Python using the 

NLTK library. First, we enter a given word to get its hyponyms. Usually, this would be a 

general word of locative meaning. Then, we enter the language using any of the ISO codes. 

Afterwards, we select the synset in which we are interested. We are offered a list of hyponyms 

and then we can save them into a CSV file. In Figure 22 we can see all these steps to obtain the 

hyponyms of the synset that refers to the Spanish word calle. 

 

Figure 22. A screenshot of the EuroWordNet hyponym extractor. 
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If any of location-indicative noun dataset files were missing, we integrated in the static class of 

LORE a method that would perform the same actions taken by our command-line tool, using the 

synsets described in Section 5.3.2.3. to generate and process the dataset files in an automatic 

manner. 

 

6.1.1.4. Place abbreviation list and locative marker dataset files 

These are the only files that need to be manually supplied in LORE. If the place abbreviation 

list file were missing, LORE would only take into account the location-indicative noun dataset. 

If the locative marker dataset file were absent, the submodule in charge of processing locative 

markers would not perform its task. 

 

6.1.1.5. The stopword dataset and frequency dictionary files 

They were manually obtained for the sources cited in Section 5.3.2.5. If the stopword dataset 

files were missing, the files would be automatically generated from (a) the frequency dictionary, 

which is in turn automatically retrieved from a GitHub repository25, and (b) from a list of person 

names from another GitHub repository26. 

 

6.2. nLORE 

 

nLORE was also computationally implemented in C#. Departing from LORE, we used a 

different functioning under the hood and different elements in the UI. In this case, since we had 

to train and test our DL models, we embedded the functionalities of the RNNSharp library27 in 

our code for the training and testing phases. With RNNSharp we can employ neuronal networks 

suited for sequence-labeling tasks such as NER. Specifically, we made use of its functionalities 

to implement a deep bidirectional RNN-CRF network with LSTM for the hidden layer structure. 

It supports different feature types, which we leveraged for linguistic-based feature engineering. 

On the other hand, Text2Vect provides friendly ready-made functionalities to build a word-

embeddings model on the basis of an unlabeled corpus, generating vectors for the words and 

phrases contained in that corpus. It can also display the cosine similarity among words captured 

by the generated model in its command-line application. The generated word-embeddings 

model was used as dense features in nLORE. 

Figure 23 shows the UI of nLORE, where we select (a) Automatic labeling if we want to 

format our tweet corpus in a token-based tabular representation using the capabilities of LORE 

to represent the linguistic-based features selected and using the BMESO tagging scheme for the 

                                                   
25 https://raw.githubusercontent.com/hermitdave/FrequencyWords/master/content/2018/ 
26 https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/names.zip 
27 https://github.com/zhongkaifu/RNNSharp 
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labels of tokens, (b) Training if we want to train our location-detection model, and (c) Testing if 

we want to test our model. 

 

Figure 23. UI of nLORE. 

 

 

For obvious reasons, depending on the option that we choose, we would need to browse and 

select the files required for such option. For automatic labeling, we browse and select our raw 

corpus, and select the linguistic-based features that are to be represented in that newly formatted 

corpus. After clicking on Execute, the modules of LORE would be in charge of representing the 

linguistic-based features and the labels for each token, generating a TXT file with the newly 

formatted corpus. Afterwards, since LORE does not have a 100% accuracy, the end user would 

have to manually revise the labels to check for erroneous labels and assigning the right ones. 

For training, we browse and select a train corpus and a valid corpus with the token-based tabular 

representation, and enter the training hyperparameters. After the training phase, we would 

obtain as output the location-detection model in a BIN format together with the template 

features generated by the train corpus in DART and TEMPLATE formats. For testing, we need 

the eval corpus without the last column of labels, since the aim of the testing phase is to load the 

trained model and predict the correct labels for that corpus. The trained model file and template 

files would be used as input here. After the testing phase, a newly formatted corpus would be 

generated with the predicted labels for each of the tokens. Table 43 summarizes the input and 

output files of nLORE. 

 

Table 43. Input and output files in nLORE. 

File type Function Input/Output 

Raw corpus (TXT 
file) 

File loaded by the end user with tweet 

texts, where each line represents a 
given tweet, to generate a token-based 

tabular representation of the tweets and 

assigning the linguistic-based features 
and labels provided by the modules of 

LORE. 

Input 



98 

 

Train corpus (TXT 
file) 

Formatted corpus of tweets with 

features and correct labels for the 

training phase of the model. 

Input 

Valid corpus (TXT 

file) 

Formatted corpus of tweets with 

features and correct labels for the 

validation phase of the model in its 
training stage. 

Input 

Eval corpus (TXT 

file) 

Formatted corpus of tweets with 

features but without the last column of 

labels for the testing phase of the 
model. 

Input 

Trained model 

(BIN file) 

The output file after the training phase. 

It acts as input in the testing phase, 
since it will be used for predicting the 

labels. It is usually large, taking a few 

gigabytes. 

Input and 

output 

Template features 

(DART and 
TEMPLATE files) 

The output files after the training 

phase. They act as input in the testing 

phase, since they will be used for 

predicting the labels. 

Input and 

output 

New eval corpus 
(TXT) 

Formatted corpus of tweets with 

features and predicted labels after the 

testing phase of the model. 

Output 

 

6.2.1. Internal files in nLORE 

 

Besides the internal files of LORE (Table 38), nLORE needs a few internal files to operate, as 

summarized in Table 44, and explained in the following subsections. 

 

Table 44. Internal files required by nLORE, their function, and context of usage. 

File type Function Context of usage 

Neuronal network 

configuration 

(TXT file) 

Contains essential info for the 
training and testing phases of the 

models, such as model type, 

neuronal network type, and other 

hyperparameters. 

Training and testing 

Tags (TXT file) 

Provides the labels used in the 

tagging scheme of tokens (e.g. 

BMESO, IOB). 

Training and testing 

Template features 
(TXT) 

Specifies contextual features based 

on the linguistic-based features of 

the corpora used. 

Training 

Word embeddings 

(BIN file) 

Generated by the Txt2Vec 

command-line tool, it is used as 

dense features in the training phase. 

Training 

 

6.2.1.1. Neuronal network configuration file 

This file, as used in RNNSharp, encapsulates the nature of the neuronal network used, other 

hyperparameters used for the training phase, and the specification of dense features and other 
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types of features in the model. Table 45 provides the different parameters that can be specified 

in the configuration file for the training and testing of the neuronal network. 

 

Table 45. Settings, functions and possible options in the neuronal network configuration file. 

Specification Function Parameters 

Model type The type of model used. 

Sequence labeling (e.g. used in 

NER)/sequence to sequence (e.g. 

used in automatic translation) 

Network type The type of neuronal network used. 
Forward RNN/Bidirectional 

RNN/Forward seq2seq 

Model file path 
The file path of the trained model 
for the testing stage. 

- 

Dropout 
Hyperparameter used for the 

training stage. 
Default value: 0.5 

LSTM and hidden 

layer settings 

Number of LSTM layers used and 

size. 

As many as desired with as many 

neurons as desired. Default value 

is one LSTM layer of size 200. 

Output layer 
settings 

Defines nature of the output layer. Simple/softmax/sampled softmax 

CRF layer 
Specifies whether we use a CRF 

layer on top or not. 
True/false 

Template features 

Filename, contextual window of 

tokens, and weight type used in the 

template features for the training 
and testing stages. 

Default value contextual window: 
0,1,2 

Weight type: binary/frequency 

Pre-trained 
features type 

Used as dense features in the 

training and testing stages of the 

model. 

Embedding/autoencoder 

Word embeddings 

file path, context 

window and 
column 

The file path of the pre-trained word 

embeddings, the contextual window 

of tokens and the column in the 
corpus where they are applied. 

Default value contextual window: 
-1,0,1 

Default column: 0 

Runtime features 

Takes into account tokes in training 

sequence to sequence models, does 

not apply to sequence to label tasks. 

Default value: -1 

 

6.2.1.2. Tags file 

We indicate the tagging scheme used in the corpora and necessary to predict the labels in the 

testing stage, by writing the initial letters of each label, and the nature of the labels (i.e. 

B_LOCATION, M_LOCATION, E_LOCATION, S_LOCATION, O). 

 

6.2.1.3. Template features file 

Known as sparse features, they are specified in the file following the notation of Nn:%x[i,j], 

where N represents the prefix for n-grams (e.g. unigram, bigram), n the ID number, and %x[i,j] 

the rule-string feature where i and j represent a specific row (e.g. preceding token, current token, 

following token) and column (e.g. POS tag, locative marker) of features in the corpora, 

respectively. We can also combine rule-string features by adding a slash (e.g. U04:%x[-



100 

 

1,0]/%x[0,0]). In this way, we can provide different feature combinations to be exploited by the 

CRF layer for predicting the right labels. 

 

6.2.1.4. Word embeddings file 

The pre-trained word embeddings, used as dense features, can be obtained using the Txt2Vec 

library28, based on Word2Vec. Using the command-line tool of that library and a corpus, we can 

extract those word embeddings, generating a BIN file that is fed into the training stage to 

capture the semantic and syntactic information of tokens. Table 46 presents the settings that can 

be adjusted to train a word embeddings model with Txt2Vec. 

 

Table 46. Word embedding settings in Txt2Vec, functions, and parameters. 

Setting Function Parameters 

Vector 
dimensional size 

Sets the number of dimensions of 
word vectors. 

Default value: 200 

Context window 
Sets the maximum number of words 

skipped in a context window. 
Default value: 5 

Minimum 

frequency 

Sets the minimum number of words 

to be taken into account. 
Default value: 5 

Occurrence 

threshold 

Minimizes or downsamples those 
words which appear much more 

frequently, such as grammatical 

words. 

Default value: 0 (off) 

Continuous bag of 
words 

Sets the continuous bag of words 
model or skip-gram model. 

skip-gram model/continuous bag 
of words model 

Number of threads Sets the number of threads. Default value: 1 

Save step 
Saves the model after a number of 
words have been processed. 

Default value: 108 

Negative 

examples 

Sets the number of negative 

examples. 
Default value: 5 

Iterations 
Sets the number of training 

iterations. 
Default value: 5 

Train file 
Specifies file path of corpus for 

training word embeddings. 
- 

Model file 
Specifies name and file path of 

generated word embeddings. 
- 

Pre-trained model 
file 

Specifies file path of pre-trained 
word embeddings  

- 

Update corpus 

words 

Updates corpus words or all the 

words. 

0 (update all the words)/1 (update 

corpus words only) 

 

6.3. Evaluation tool 

 

To perform our evaluation stage, two main steps were carried out: (a) we implemented the 

functionalities of well-known, general-purpose, off-the-shelf NER tools in the UI of LORE for a 

comparison of the performance of LORE against these tools and (b) we developed a command-

                                                   
28 https://github.com/zhongkaifu/Txt2Vec 
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line tool that provides the evaluation numbers achieved by every model or tool. Figure 24 shows 

the implementation of these NER tools in the UI of LORE.  

 

Figure 24. UI of LORE with the implemented NER tools. 

 

 

The same eval corpus fed into LORE was fed into these NER systems with the same pre-

processing techniques applied to the tweet corpus. For obvious reasons, considering that each 

NER software includes their own tagging and output format, their output had to be 

automatically standardized and accommodated to the format adopted by our model (see Table 5 

in Section 5.2.), so that comparison could be effected under the same circumstances. Further 

details about the comparison stage are given in Section 7.1.1.2. 

Figure 25 presents a screenshot of the command-line tool developed for our evaluation 

purposes. 

 

Figure 25. A screenshot of our evaluation tool. 
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Our evaluation tool receives as input the gold standard of locative references of the tweet corpus 

(i.e. the format used for LORE) or a corpus of tweets with their correctly labeled locative 

references (i.e. the format used for nLORE). Then, we also provide as input the files of the 

output delivered by LORE, nLORE, or the other NER tools, which are processed in the 

appropriate format. Next, we select the type of evaluation that we wish to conduct, after which 

we are presented with the evaluation numbers, which can be saved as an output file. Further 

details about the different types of evaluations and the evaluation results are given in Section 7. 

 

 

7. EVALUATION 

 

We present the evaluation metrics for the evaluation stage of our model. We followed the 

evaluation measures that are most widely used in Information Extraction for NER: precision (P), 

recall (R), and the F1 measure, which is the harmonic mean of precision and recall (Grossman 

& Frieder, 2004; Jurafsky & Martin, 2018a): 

 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (18) 

    𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (19) 

    𝐹1 = 2 ·  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (20) 

 

True Positive (TP) refers to a correctly identified locative reference. False Positive (FP) refers to 

instances that have been wrongly identified as locative references. False Negative (FN) is the 

label used for those locative references that were missed. Departing from these variables and 

depending on where the focus is placed, we arrive at different evaluation metrics, i.e. precision, 

recall and F1. All these measures range from 0 to 1. 

The evaluation process was performed on the English, Spanish, and French eval corpora of 

tweets following the metrics presented above. The evaluation stage was carried out with two 

different evaluation methods: entity-based evaluation and token-based evaluation (Gritta et al., 

2018), also called complete and fuzzy matching, respectively (Das & Purves, 2019). In both 

methods, exact matches count as TP. However, they differ in the treatment of cases of partial or 

inexact matches. In entity-based evaluation, partial matches are penalized, since they count 

either as FP when the boundaries of the extracted instance exceed the boundaries of the locative 

reference (e.g. Off East Coast of Honsu instead of East Coast of Honsu) or as FN when the 

boundaries of the extracted instance fall short (e.g. Camino instead of Camino Pablo). In token-

based evaluation, partial matches of the type commented above, besides counting as FP or FN, 

also count as TP. Thus, entity-based evaluation is the strictest evaluation method, and also the 



103 

 

commonest for benchmarking NER systems (Jurafsky & Martin, 2018a). On the other hand, 

token-based evaluation works more leniently, yielding higher numbers. In general, achieving an 

F1 score of 0.9 across multiple domains is the ultimate goal of location-detection models for 

near-human-level competence in location detection (Gritta et al., 2018). 

 

7.1. Results 

 

In Experiment I in Section 7.1.1., we present the results of LORE in the different languages 

supported, as well as in comparison with well-known, general-domain, off-the-shelf NER tools. 

In Experiment II in Section 7.1.2., we introduce the results achieved by the trained nLORE 

models, by LORE with the English eval corpus II, and we benchmark LORE against the trained 

nLORE models. 

 

7.1.1. Experiment I 

 

Experiment I involved testing LORE, our rule-based approach, with the English eval corpus I, 

Spanish eval corpus, and French eval corpus, and against other well-known, general-purpose, 

off-the-shelf NER tools. 

 

7.1.1.1. Multilingual LORE 

Table 47, Table 48, and Table 49 below show the P, R, and F1 scores of the evaluation phase 

performed on the English eval corpus I, the Spanish eval corpus, and the French eval corpus, 

respectively, following a per-token basis and a per-entity basis. For each of these corpora, we 

also provide the evaluation measures for the individual working modules, the place-name search 

module and the linguistic processing module, and as a whole, to observe the contributions made 

by each of these modules and the substantial improvement in the F1 scores resulting from their 

combination. The best results for each type of evaluation are highlighted in bold.  

 

Table 47. Evaluation with the English eval corpus I. 

 
Token-based 

evaluation 

Entity-based 

evaluation 

 P R F1 P R F1 

Only with place-name search 0.84 0.48 0.61 0.59 0.40 0.47 

Only with linguistic processing 0.90 0.56 0.69 0.86 0.52 0.65 
Place-name search + linguistic 

processing 
0.85 0.83 0.84 0.81 0.81 0.81 

 

Table 48. Evaluation with the Spanish eval corpus. 

 
Token-based 

evaluation 

Entity-based 

evaluation 
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 P R F1 P R F1 

Only with place-name search 0.74 0.56 0.64 0.55 0.49 0.52 

Only with linguistic processing 0.82 0.41 0.54 0.70 0.34 0.46 
Place-name search + linguistic 

processing 
0.73 0.74 0.74 0.64 0.72 0.67 

 

Table 49. Evaluation with the French eval corpus. 

 
Token-based 

evaluation 

Entity-based 

evaluation 

 P R F1 P R F1 

Only with place-name search 0.95 0.38 0.54 0.77 0.33 0.46 

Only with linguistic processing 0.86 0.34 0.48 0.82 0.30 0.44 

Place-name search + linguistic 

processing 
0.90 0.55 0.68 0.81 0.51 0.62 

 

Table 50, Table 51, and Table 52 provide entity-based evaluation numbers in terms of n-gram 

size for each of the languages.  

 

Table 50. Evaluation with the English eval corpus I in terms of n-gram size for the place-name 
search + linguistic processing modules. 

N-gram 

size 
P R F1 

Unigrams 0.78 0.81 0.79 

Bigrams 0.85 0.86 0.85 
Trigrams 0.88 0.72 0.79 

Fourgrams 0.67 0.63 0.65 

Fivegrams 0.67 0.8 0.73 
Sixgrams 1 1 1 

Sevengrams N/A 0 N/A 

Eightgrams N/A N/A N/A 

 

Table 51. Evaluation with the Spanish eval corpus in terms of n-gram size for the place-name 

search + linguistic processing modules. 

N-gram 

size 
P R F1 

Unigrams 0.67 0.74 0.70 

Bigrams 0.52 0.77 0.62 
Trigrams 0.74 0.67 0.70 

Fourgrams 0.60 0.50 0.55 

Fivegrams 0.50 0.33 0.4 
Sixgrams 1 0.25 0.4 

Sevengrams N/A N/A N/A 

Eightgrams N/A N/A N/A 

 

Table 52. Evaluation with the French eval corpus in terms of n-gram size for the place-name 

search + linguistic processing modules. 

N-gram 

size 
P R F1 

Unigrams 0.83 0.68 0.75 

Bigrams 0.79 0.35 0.48 



105 

 

Trigrams 0.71 0.32 0.44 

Fourgrams 1 0.25 0.40 

Fivegrams N/A 0 N/A 
Sixgrams N/A N/A N/A 

Sevengrams N/A N/A N/A 

Eightgrams N/A N/A N/A 

 

Figure 26, Figure 27, and Figure 28 provide a graphical representation of the F1 scores in terms 

of n-grams for each of the languages. 

 

Figure 26. F1 of English LORE in terms of n-gram size. 

 

 

Figure 27. F1 of Spanish LORE in terms of n-gram size. 

 

 

Figure 28. F1 of French LORE in terms of n-gram size. 
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7.1.1.2. LORE vs off-the-shelf NER tools 

We also benchmarked the performance of our model against other well-know, general domain, 

off-the-shelf NER systems that are commonly employed in benchmarking (Schmitt et al., 2019). 

This evaluation and comparison stage was performed under the same conditions for an unbiased 

analysis and study of their performance. In other words, this stage was carried out under the 

same computing environment (i.e. i5-6200U @ 2.30 GHz with 2 cores and 8GB RAM). Some 

of these tools did not offer extended support to languages other than English. Before presenting 

the evaluation numbers of the NER systems, a brief, technical description of them is provided to 

contextualize the nature of the performance tests: 

 

 Stanford NER: Originally written in Java, we used the Stanford.NLP.NET port that 

implements a probabilistic algorithm based on a CRF linear classifier for NER in 

unstructured text (Finkel et al., 2005)29. The model makes use of three labels PERSON, 

LOCATION, ORGANIZATION for named entities. Stanford NER for English is 

trained on news corpora from CoNLL 2003, MUC 6 and MUC 7, ACE 2002 and 

additional data. We only considered the entity type LOCATION for the extraction of 

locative references. 

 Natural Language Toolkit (NLTK) 3.4.4 is a Python library for a wide variety of NLP 

tasks such as tokenization, lemmatization, POS tagging, chunking, NER, semantic 

tagging, parsing, among others (Bird, 2006)30. Its NER module is based on a Maximum 

Entropy algorithm trained on the ACE corpus 

(http://catalog.ldc.upenn.edu/LDC2005T09), and uses the entity classes 

ORGANIZATION, PERSON, LOCATION, DATE, TIME, MONEY, PERCENT, 

                                                   
29 https://sergey-tihon.github.io/Stanford.NLP.NET/  
30 http://nltk.org/  
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FACILITY, and GPE. Since our focus is in locative references, the only relevant 

categories were FACILITY (for POIs), GPE (for geopolitical entities), and LOCATION 

for any other location type.  

 spaCy 2.1.6. is another increasingly popular and widely used library for Python used for 

many NLP and NLU tasks and applications31. The Entity Recognizer component for the 

English language is based on a deep-learning CNN algorithm trained on OntoNotes 5.0 

data (https://catalog.ldc.upenn.edu/LDC2013T19). spaCy can recognize many entity 

types, of which we selected GPE (for geopolitical entities), FAC (for POIs), and LOC 

for the remaining location types. 

 The Google Cloud Natural Language (GCNL) API is a state-of-the-art commercial 

platform that provides a free trial for resources and functionalities in NLP and NLU 

tasks and applications through an accessible Web Service32. Some of the functionalities 

offered are Sentiment Analysis, Syntactic Analysis, Entity Analysis, or Content 

Classification. Unfortunately, we could not find documentation details about the 

algorithm implementation of the Entity Analysis functionality. The Entity Analysis 

component detect many entity types among which we only considered LOCATION and 

ADDRESS and, from these, those locative references that had the metadata property, 

since the label LOCATION was also attached to informal, vague and unspecific 

locative expressions realized as common nouns. 

 C# OpenNLP is a C# port of a Java-based NLP tool for basic NLP tasks such as 

sentence splitting, tokenization, POS tagging, chunking, and NER (Ingersoll et al., 

2013)33. Its NER system is based on a Maximum Entropy model trained on a variety of 

corpora such as MUC6, MUC7, ACE, CONLL 2002 and CONLL 2003. The built-in 

location types are DATE, LOCATION, MONEY, ORGANIZATION, PERCENTAGE, 

PERSON, and TIME, of which LOCATION was only considered. 

 Stanza is a novel Python library for NLP with pretrained neural networks for 66 human 

languages (Qi et al., 2020). One of the main functionalities in its NLP pipeline is that of 

NER. The algorithm used for NER is a biLSTM with a CRF layer on top. The English 

version of NER was trained on the OntoNotes corpus and provides tags for many 

entities, of which our interest is in LOC, FAC, and GPE, standing for location, facilities 

and geopolitical entities, respectively. For Spanish and French, Stanza was trained on 

the CoNLL02 and WikiNER datasets, respectively. 

 

                                                   
31 https://spacy.io/  
32 https://cloud.google.com/natural-language/docs/  
33 https://github.com/AlexPoint/OpenNlp  
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Tables 53, Table 54, and Table 55 offer the performance tests in terms of the processing speed 

according to each NER system for each of the languages supported, with the best speed 

numbers highlighted in bold.  

 

Table 53. Processing speed for the English eval corpus I. 

English location-detection 

model 
Processing speed (min:sec.cs) 

LORE 00:08.69 

Stanford NER 00:09.82 
NLTK 00:10.88 

spaCy 00:12.15 

GCNL 02:50.90 
OpenNLP 03:35.10 

Stanza 08:26.63 

  

Table 54. Processing speed for the Spanish eval corpus. 

Spanish location-detection 

model 
Processing speed (min:sec.cs) 

LORE 00:56.75 
Stanford NER 00:06.41 

NLTK 00:06.37 

spaCy 00:31.16 
GCNL 02:48.82 

OpenNLP N/A 

Stanza 05:00.97 

 

Table 55. Processing speed for the French eval corpus. 

French location-detection 

model 
Processing speed (min:sec.cs) 

LORE   00:06.36 

Stanford NER N/A 

NLTK 00:05.61 

spaCy 00:11.81 

GCNL 01:38.14 

OpenNLP N/A 
Stanza 04:05.77 

 

Table 56, Table 57, and Table 58 provide the performance tests in terms of the evaluation 

numbers achieved by each NER system for each of the languages supported. The best numbers 

are highlighted in bold.  

 

Table 56. Evaluation metrics for each English location-detection model. 

English location-detection 

model 

Token-based evaluation Entity-based evaluation 

P R F1 P R F1 

LORE 0.85 0.83 0.84 0.81 0.81 0.81 

Stanford NER 0.89 0.42 0.57 0.79 0.37 0.50 

NLTK 0.55 0.29 0.38 0.43 0.24 0.31 
spaCy 0.75 0.33 0.46 0.66 0.28 0.39 
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GCNL 0.85 0.43 0.57 0.74 0.38 0.51 

OpenNLP 0.73 0.27 0.40 0.56 0.21 0.30 

Stanza 0.84 0.52 0.64 0.72 0.43 0.53 

 

Table 57. Evaluation metrics for each Spanish location-detection model. 

Spanish location-detection 

model 

Token-based evaluation Entity-based evaluation 

P R F1 P R F1 

LORE 0.73 0.74 0.74 0.64 0.72 0.67 

Stanford NER 0.87 0.49 0.63 0.62 0.37 0.48 

NLTK 0.33 0.27 0.30 0.23 0.21 0.22 
spaCy 0.71 0.62 0.66 0.58 0.55 0.57 

GCNL 0.96 0.56 0.71 0.84 0.53 0.65 

OpenNLP N/A N/A N/A N/A N/A N/A 
Stanza 0.88 0.64 0.74 0.73 0.59 0.65 

 

Table 58. Evaluation metrics for each French location-detection model. 

French location-detection 

model 

Token-based evaluation Entity-based evaluation 

P R F1 P R F1 

LORE 0.90 0.55 0.68 0.81 0.51 0.62 

Stanford NER N/A N/A N/A N/A N/A N/A 
NLTK 0.18 0.13 0.15 0.14 0.11 0.12 

spaCy 0.64 0.50 0.56 0.49 0.40 0.44 

GCNL 0.95 0.41 0.57 0.81 0.36 0.50 
OpenNLP N/A N/A N/A N/A N/A N/A 

Stanza 0.64 0.59 0.62 0.45 0.47 0.46 

 

Figure 29, Figure 30, and Figure 31 represent, by means of a bar chart, the information from the 

evaluation metrics. 

 

Figure 29. Bar chart for the evaluation metrics for each English location-detection model. 

 
 

Figure 30. Bar chart for the evaluation metrics for each Spanish location-detection model. 
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Figure 31. Bar chart for the evaluation metrics for each French location-detection model. 

 
 

7.1.2. Experiment II 

 

In the second experiment, our goal was trifold: we wanted to (a) examine which of the eight 

trained models for nLORE works best and whether the implementation of linguistic-based 

feature engineering provides superior performance, (b) check whether the performance of our 

first model, LORE, could remain stable and regular with another eval corpus (i.e. 

generalizability), and (c) compare which model, LORE or nLORE, performs best. For this, we 

used the newer eval dataset of English tweets composed of 1372 tweets, the English eval corpus 

II. 

 

7.1.2.1. nLORE 

In this experiment, our interest is in the assessment of the impact of linguistic-based feature 

engineering on the performance of nLORE. For that purpose, as explained in section 5.4.2, we 

trained eight different models with different corpus size and different linguistic-based features 
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(i.e. either basic or extended). Figure 32, Figure 33, and Figure 34 provide a graphical summary, 

by means of line graphs, of the precision, recall, and F1 scores of nLORE in its eight trained 

environments, testing the basic and extended models with 1000, 3000, 5000, and 7000 tweets. 

 

Figure 32. Precision of nLORE. 

 

 

Figure 33. Recall of nLORE. 

 

 

Figure 34. F1 of nLORE. 
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Table 59 offers the performance tests in terms of the processing speed of each of the trained 

models (in bold the quickest model). 

 

Table 59. Processing speed for each of the nLORE models. 

nLORE model Processing speed (min:sec.cs) 

1k with basic features 00:53.27 

1k with extended features 01:20.17 

3k with basic features 01:07.04 
3k with extended features 01:39.52 

5k with basic features 01:14.97 

5k with extended features 01:50.45 

7k with basic features 01:17.16 
7k with extended features 01:58.39 

 

Table 60 shows the evaluation numbers of the nLORE models with the English eval corpus II in 

terms of each evaluation method with the best results highlighted in bold.  

 

Table 60. Evaluation of nLORE with the English eval corpus II. 

Model Token-based evaluation Entity-based evaluation 

 P R F1 P R F1 

nLORE (7k with extended features) 0.91 0.79 0.85 0.85 0.74 0.79 

nLORE (7k with basic features) 0.87 0.81 0.84 0.79 0.78 0.79 

nLORE (5k with extended features) 0.90 0.77 0.83 0.82 0.73 0.77 

nLORE (5k with basic features) 0.88 0.78 0.83 0.80 0.74 0.77 

nLORE (3k with extended features) 0.85 0.76 0.80 0.77 0.70 0.74 

nLORE (3k with basic features) 0.87 0.76 0.81 0.79 0.71 0.75 
nLORE (1k with extended features) 0.82 0.70 0.75 0.74 0.63 0.68 

nLORE (1k with basic features) 0.85 0.64 0.73 0.76 0.57 0.65 

 

The F1 scores of the basic and extended 7k models were 0.7858 and 0.7926 respectively, 

though in the table they appear approximated. On the basis of the precision, recall and F1 scores 

obtained, we picked the extended 7k model, despite the fact that it took more time than the 
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others to process the tweets. Table 61 shows the evaluation numbers for the best nLORE model 

in terms of n-gram size. 

 

Table 61. Evaluation of the extended 7k nLORE model with the English eval corpus II in terms 

of n-gram size. 

N-gram size P R F1 

Unigrams 0.88 0.74 0.80 

Bigrams 0.87 0.78 0.83 
Trigrams 0.78 0.60 0.68 

Fourgrams 0.64 0.88 0.74 

Fivegrams 0.69 0.75 0.72 
Sixgrams N/A 0 N/A 

Sevengrams N/A N/A N/A 

Eightgrams N/A N/A N/A 

 

7.1.2.2. LORE with the English eval corpus II 

We endeavored to test the performance of LORE with a second eval corpus, the English eval 

corpus II, the one that we used to test nLORE. Table 62 and Table 63 show the evaluation 

numbers of LORE with the English eval corpus II. Processing the corpus and extracting the 

locative references took 12.15 secs. 

 

Table 62. Evaluation of LORE with the English eval corpus II. 

Token-based evaluation Entity-based evaluation 

P R F1 P R F1 

0.79 0.83 0.81 0.73 0.79 0.76 

 

Table 63. Evaluation of LORE with the English eval corpus II in terms of n-gram size. 

N-gram 

size 
P R F1 

Unigrams 0.73 0.83 0.77 

Bigrams 0.77 0.78 0.78 
Trigrams 0.74 0.59 0.65 

Fourgrams 0.60 0.81 0.68 

Fivegrams 0.50 0.75 0.60 

Sixgrams 0 0 N/A 
Sevengrams N/A N/A N/A 

Eightgrams N/A N/A N/A 

 

7.1.2.3. LORE vs nLORE 

In Table 64, we provide the evaluation numbers for the trained nLORE models against LORE 

using the English eval corpus II, with the best numbers highlighted in bold.  

 

Table 64. Evaluation of LORE vs nLORE with the English eval corpus II. 

Model Token-based evaluation Entity-based evaluation 

 P R F1 P R F1 

LORE 0.79 0.83 0.81 0.73 0.79 0.76 
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nLORE (7k with extended features) 0.91 0.79 0.85 0.85 0.74 0.79 

nLORE (7k with basic features) 0.87 0.81 0.84 0.79 0.78 0.79 

nLORE (5k with extended features) 0.90 0.77 0.83 0.82 0.73 0.77 
nLORE (5k with basic features) 0.88 0.78 0.83 0.80 0.74 0.77 

nLORE (3k with extended features) 0.85 0.76 0.80 0.77 0.70 0.74 

nLORE (3k with basic features) 0.87 0.76 0.81 0.79 0.71 0.75 
nLORE (1k with extended features) 0.82 0.70 0.75 0.74 0.63 0.68 

nLORE (1k with basic features) 0.85 0.64 0.73 0.76 0.57 0.65 

 

Table 65 shows the processing speed of each model, where the fastest model appears indicated 

in bold. 

 

Table 65. Processing speed for each of the LORE and nLORE models. 

Model 
Processing speed 

(min:sec.cs) 

LORE 00:12.15 

nLORE (1k with basic features) 00:53.27 

nLORE (1k with extended features) 01:20.17 

nLORE (3k with basic features) 01:07.04 

nLORE (3k with extended features) 01:39.52 
nLORE (5k with basic features) 01:14.97 

nLORE (5k with extended features) 01:50.45 

nLORE (7k with basic features) 01:17.16 
nLORE (7k with extended features) 01:58.39 

 

Figure 35, Figure 36, and Figure 37 present, by means of a line graph, a depiction of the 

performance of both LORE and the best nLORE model, the extended 7k model, in terms of n-

grams (X axis) and precision, recall and F1 scores (Y axis), respectively. 

 

Figure 35. Precision of LORE vs nLORE. 

 

 

Figure 36. Recall of LORE vs nLORE. 
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Figure 37. F1 of LORE vs nLORE. 

 

 

7.2. Discussion 

 

In Experiment I in Section 7.2.1., we discuss the performance of LORE by providing examples 

supporting its strengths and weaknesses, and comment on the results achieved by LORE against 

the competition. In Experiment II in Section 7.2.2., we explain the results obtained by nLORE 

by confronting the best two nLORE models, the basic and extended 7k models, providing 

evidence of their performance. We also comment on the performance of LORE with the English 

eval corpus II and the issue of generalizability of results in NLP, and then we comment on the 

performance of LORE against the best nLORE model providing examples of the output of both. 

 

7.2.1. Experiment I 
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As can be observed in Table 47, Table 48, and Table 49 in Section 7.1.1.1., the combination of 

the working modules of LORE provides more balanced scores in terms of precision, recall, and 

F1. Their combination outperforms any of the individual modules, except for precision in the 

linguistic processing module, which delivers greater precision scores overall. It is true, however, 

that using the place-name search module on top of the linguistic processing module helped 

improve recall, presumably because the place-name search module found locative references 

that the rule-based patterns could not capture due to a lack of enough contextual clues. At the 

same time, using the place-name search module also slightly reduced overall precision, since 

this module tended to overmatch instances that were not actual locative references, despite our 

attempts to minimize this overmatching-prone behavior. With regards to using the place-name 

search module only, it is also noteworthy to highlight the enormous score differences between 

the token-based and entity-based evaluation methods. This can be explained by how these 

evaluation methods handle partial or inexact matches, which, in the case of entity-based 

evaluation, had a negative impact on the evaluation numbers. Put differently, the place-name 

search module mostly matches proper nouns as found in simple locative references and of type 

geopolitical entity and natural geographic references, which means that this module is generally 

not able to extract the full scope of complex locative references, nor can it extract traffic ways 

and most POIs. Only our regex-based rules and patterns can recognize most POIs and traffic 

ways, as illustrated by the following examples: 

 

(73) Cleared: Motor Vehicle Accident - HARTFORD #I84 West 0.02 miles before 

 Exit 51 (I-91NB) at 4/11/2019 10:56:03 AM 

(74) Extremist Pleads Guilty to Planning Mass Shooting Attack at Texas Mall 

(75) South LA 13219 S Penrose Ave **Hit and Run No Injuries** 

(76) Vecinos de #Naucalpan se manifiestan sobre Calzada San Agustín para exigir 

 reforzamiento de muros del Río Hondo 

  ‘#Naucalpan neighbors demonstrate on Calzada San Agustin to demand  

  reinforcement of Rio Hondo walls’ 

(77) SanMiguel // Vehículo volcado tras accidente de tránsito sobre la carretera 

 hacia San Jorge, en El Tránsito 

 ‘SanMiguel // Vehicle overturned after a traffic accident on the road to San 

 Jorge, in El Tránsito’ 

(78) INCIDENTE #NoticiasPSK Precaución Vial por percance vehicular en la 

 Autopista México - Puebla a la altura de calle José Alfredo Jiménez. 

 ‘INCIDENT #NoticiasPSK Road safety due to car accident on the Mexico 

 - Puebla highway at José Alfredo Jiménez street.’ 
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(79) Terminé*** ?? #Duplessis nord, hauteur boulevard du Versant-Nord, VD 

 bloquée – Incident 

 ‘Done***? #Duplessis north, at boulevard du Versant-Nord, VD blocked - 

 Incident’ 

 

In this sense, the linguistic processing module alone achieved very high precision thanks to its 

fine-grained semantic coverage, but low recall, in line with the results typically obtained by 

rule-based NER system, because it cannot retrieve locative references if not signaled by locative 

prepositions, location-indicative nouns, or locative markers. This lower false-positive rate of 

rule-based approaches could be particularly useful for emergency situations that place greater 

importance on precision over recall (Middleton et al., 2014). Geopolitical entities embedded in 

hashtags lacked sufficient linguistic or contextual clues for the linguistic processing module to 

recognize them, as seen in Example (80) and Example (81), 

 

(80) #Incident #Ottawa #HWY417 WB at Metcalfe St (IC 119A) 

(81) CLEAR - #BCHwy10 EB vehicle incident at #BCHwy91 overpass. #DeltaBC 

 

unless when followed, for instance, by locative prepositions (Example (82)). 

 

(82) Accident with injury in #EastBatonRouge on Airline SB at I 12 #traffic  

 

Likewise, geopolitical entities that appeared as NPs in the subject position (Example (83)) or 

object position (Example (84)) could not be inferred with regex-based rules, since there was not 

a distinguishing linguistic clue in that position that made place names different from person 

names or other proper nouns.  

 

(83) New Zealand's new gun laws going into effect less than a month after mosque 

 shootings 

(84) #Estados  | Lluvias azotan #Monterrey Nuevo León, donde este fin de semana 

 se registraron severas inundaciones. 

 ‘#States | Rains hit #Monterrey Nuevo Leon, where severe flooding was 

 recorded this weekend.’ 

 

Thus, in the absence of any contextual clue, only the place-name search module can detect them, 

as observed in the following examples: 
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(85) #Nacional | ¡Fuertes lluvias e inundaciones cobran vidas humanas! - - 

 #Inundaciones #Monterrey 

 ‘#National | Heavy rains and floods take lives! #Floods #Monterrey’ 

(86) Cortadas casi todas las líneas del metro por inundaciones. En fin, las cosas de 

 Madrid. 

 ‘Almost all the subway lines were cut off due to flooding. In short, the things of 

 Madrid.’ 

(87) #Montpellier : coups de feu à la #Kalachnikov, la police judiciaire est saisie. 

 ‘#Montpellier: shots fired using a Kalashnikov, the judicial police is seized.’ 

(88) Conséquences de l'accident de personne :  #TER839122 Châlons-en-

 Champagne 10:17 

  ‘Consequences of the person’s accident: #TER839122 Châlons-en- Champagne  

  10:17’ 

 

In short, to compensate for the pitfalls presented in each of these modules, the integration of 

both modules provided the best of both worlds without compromising precision or recall.  

The performance benchmarks of the models in Section 7.1.1.2. show that the processing 

speed is fast with similar timing among all models except for GCNL, OpenNLP and Stanza, 

which are the slowest of all (Table 53, Table 54, and Table 55). However, LORE was almost 

10x times slower when applied to the Spanish eval corpus (Table 54), the reason being that the 

POS tagger took most of the time to tag the tokens. It would probably take fewer than 10 

seconds if another POS tagger were used. The enormous delay by GCNL with all the eval 

corpora can probably be explained by the time-consuming nature of the API requests to the Web 

Service. Only our model excelled at processing speed by only a few seconds in the English eval 

corpus I, the Stanford NER tool closely following on second position (Table 53). In the case of 

the French eval corpus, our model came very close to the first position, only closely surpassed 

by NLTK (Table 55). With regard to the evaluation numbers, all NER models, except LORE, 

achieved low or very low recall (Table 56, Table 57, Table 58, Figure 29, Figure 30, and Figure 

31), except the Stanza tool in the token-based evaluation of the French eval corpus (Table 58, 

Figure 31), where it narrowly outperformed LORE. A reason for these low recall scores can be 

attributed to the lack of sufficient granularity in their NER systems, which could not address the 

full semantics of locative references. In other words, although they performed well in the 

identification of location types such as geopolitical entities (mainly towns, cities, and countries) 

and a few POIs and addresses, many suffered to recognize natural landforms, most POIs and 

addresses, or traffic ways, let alone the locative markers or location-indicative nouns that 

accompanied proper nouns. Despite that, their precision was fairly high, especially in the case of 

Stanford NER, GCNL, and Stanza. These evaluation numbers support what recent studies have 
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found regarding the performance of Stanford NER, which is known to perform best in different 

NER-based evaluation tasks and scenarios (Schmitt et al., 2019). All in all, given that their 

recall was low, their F1 score was not very high. In this regard, we argue that their coarse-

grained semantics was the main reason behind their low evaluation numbers. LORE achieved 

the best evaluation results in the evaluation metrics and had excellent processing speed on most 

occasions, outperforming the state-of-the-art NER systems used in the performance tests. 

 

7.2.1.1. Error analysis 

At this stage, we analyze the commonest sources of errors committed by LORE (i.e. place-name 

search + linguistic processing) and offer an explanation of their occurrence, as well as provide 

some possible solutions and alternatives that we leave for future research. We distinguish 

between errors of omission and errors of commission. By errors of omission, we mean those 

instances of locative references that were missed by the model (i.e. FNs), while errors of 

commission took place when instances that were not actual locative references were wrongly 

extracted (i.e. FPs). 

 

7.2.1.1.1. Errors of omission 

The population-size filtering of the place-name dataset, despite helping increase precision, 

affected recall because of some cases of FNs, particularly of geopolitical entities. These FNs, at 

times, could not be mitigated by the regex-based rules in the linguistic processing module either. 

In Example (89), Indinapuram is a locative reference of geopolitical-entity type which were 

missed exactly for the reasons mentioned above. 

 

(89) @MORTHRoadSafety Pls consider asking the #NHAI to close the central verge 

 on #NH24 between #Indirapuram and […] 

 

Obviously, retrieving the full GeoNames database could have avoided many FNs and therefore 

increased recall, but at the expense of many more cases of FPs, dramatically affecting precision, 

and a slower performance. Considering the benefit-cost ratio, we opted for the population size 

restriction. 

At other times, the GeoNames database, for languages other than English, lacked a 

sufficiently large coverage of locative references, as evidenced in the omission of a few locative 

references that were not affected by the population filtering step: 

 

(90) Que barbaridad!!! ????? #ArgandaDelRey #Madrid 

 ‘Outrageous!!! ????? #ArgandaDelRey #Madrid’ 
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(91) Como se ve relampagear y tronar desde Lizarra-Estella por la zona de la Sierra 

 de Urbasa y Lokiz 

 ‘What a sight of lightning and thunder from Lizarra-Estella in the area of the 

 Urbasa and Lokiz mountains’ 

(92) Gambetta (incident technique) Le départ d'Epron prévu à 12h19 ne sera pas 

 effectué 

 ‘Gambetta (technical incident) The departure from Epron scheduled at 12.19pm 

 will not be carried out.’ 

(93) Orage au péage de #Villefranche #Limas sur #A6 ?@VoyageAPRR? 

 ‘Storm at the Villefranche tollbooth, Limas on A6 ?@VoyageAPRR?’ 

 

This could have possibly been avoided if we had enriched the place-name dataset with other 

geographic databases such as OpenStreetMaps. However, that could have had a negative impact 

on the processing speed of the model, and on the precision of the model, since the number of 

FPs would have augmented.  

Another source of omission errors has to do with bad spelling or lack of proper 

capitalization, as observed in the following examples: 

 

(94) […] a video in 2016 at the east west highway 

(95) 00:36 Magpie Swamp Rd/mingbool Rd, Pleasant Park - Tree Down going (one 

 appliance, CFS region 5) 

(96) Y por si fuera poco con las tormentas e inundaciones, tornado en campillos 

 @AEMET_SINOBAS @AEMET_Esp. 

 ‘And as if that wasn't enough with the storms and floods, tornadoes in campillos 

 @AEMET_SINOBAS @AEMET_Esp.’ 

(97) en eeuu se sabe que tu hijo ha madurado despues de su primer tiroteo, q rapido 

 crecen?????? 

 ‘in the u.s., your son is known to have matured after his first shooting, how fast 

 they grow?????’ 

 

The Stanford POS tagger mislabeled the underlined instances as common nouns instead of 

proper nouns because of lack of proper capitalization in the initial letter.  

Since one key linguistic clue in all modules is that locative references must contain proper 

nouns, and the modules highly depend on the performance of the third-party POS tagger, the 

model could not avoid these cases of FNs. This affected the performance of both modules, the 

place-name search and the linguistic processing. To mitigate this type of errors, we 
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implemented a third-party library for text normalization34  which could a priori help in the 

performance of the POS tagger. Although it helped in this regard, it however delayed the 

performance of the model up to 3x times slower. Considering the cost-benefit ratio, we 

preferred not to perform text normalization. Perhaps by using a Twitter-specific POS tagger the 

model could reduce the number of FNs without compromising the quick processing speed, but 

this remains an issue for future research. However, not always did the POS tagger fail to 

recognize proper nouns when they lacked proper capitalization (Example (98)). 

 

(98) Jajajajksks fui al oftalmólogo y me dijo ""sos algo del zavalia radical de 

 santiago del estero 

 ‘hahhhahah I went to the ophthalmologist and he told me ""you are something 

 from the radical zavalia of santiago del estero’ 

 

Another important source of errors of omission relates to the difficulties in handling 

abbreviations and acronyms (Example (99) and Example (100)), which often go unnoticed in 

location-detection systems. In these cases, if these were neither contained in the place-name 

dataset nor recognized by regex-based rules, they would simply be missed. 

 

(99) Just passed a terrible car accident on jfk ?? seeing that got my stomach hurting 

 right now 

(100) We had an earthquake in the IE? 

 

We are also aware of the existence of complex locative expressions other than those containing 

locative markers. By this we mean, for instance, coordinated place names (e.g. in the US and the 

UK, between Madrid and Barcelona, etc.) or other more complex locative formulas (e.g. close 

to London but not far away from Croydon). A few instances of these were found in the Spanish 

and French eval corpora, as shown in Example (101) and Example (102). 

 

(101) Preocupación por las inundaciones en las zonas este y sur de Madrid, tras la 

 tormenta 

 ‘Concern over flooding in eastern and southern Madrid following the storm’ 

(102) ADSL / SDSL:: Incident départements 31 et 33.: Nous rencontrons actuellement 

 une dégration de service 

 ‘ADSL / SDSL:: Incident in departments 31 and 33: We are currently 

 experiencing a service degradation’ 

                                                   
34 SymSpell library: https://github.com/wolfgarbe/SymSpell 
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These are quite challenging and offer problems to current models, since the linguistic patterns 

that underlie them are unpredictable and obscure and remain elusive to formalize in regex-based 

rules. Perhaps using a syntactic parser could help delimit locative references within their phrasal 

boundaries. In preliminary versions of our model, we used a syntactic chunker for this, but it 

dramatically slowed down performance and did not offer much improvement. For now, locative 

references found in such complex locative expressions can usually be identified individually, 

and our model has been able to detect some complex locative patterns, especially those 

involving locative markers. 

In the languages supported other than English, there are quite a few complex locative 

patterns involving the use and combination of location-indicative nouns and determiners, 

prepositions and/or punctuation marks plus proper nouns that could only be partially captured 

by our current rules, or not captured at all. Examples of these are as follows: 

 

(103) A mi me tomó 8 meses para que me instalarán aba aquí en San Antonio del 

 tachira 

 ‘It took me 8 months to get aba installed here in San Antonio del tachira’ 

(104) El lamentable accidente ocurrió en la carretera libre Aguascalientes-

 Encarnación de Díaz 

 ‘The unfortunate accident occurred on the free highway Aguascalientes-

 Encarnación de Díaz’ 

(105) @AlertesRER ??? - INCIDENT AFFECTANT LA VOIE (2)  Ligne E : Paris 

 Chelles ralenti  ? Entre Chelles Gournay et Paris. 

 ‘@AlertesRER ??? - INCIDENT AFFECTING THE ROAD (2) Line E: Paris 

 Chelles slowed down ? Between Chelles Gournay and Paris.’ 

(106) Plusieurs riverains ont composé le « 17 » ce dimanche soir à Montpellier, dans 

 le quartier de la Croix d'Argent 

 ‘Several local residents composed the "17" this Sunday evening in Montpellier, 

 in the Croix d'Argent district.’ 

 

7.2.1.1.2. Errors of commission 

The overmatching-prone behavior of the place-name dataset generates some FPs, as in Example 

(107) where the animal name Nemo was wrongly identified as a locative reference, or as in 

Example (108) where the person name Chaparro was not filtered by the stopword dataset, or 

also in Example (109) where another person name, Julien, was not filtered by the stopword 

dataset either. 
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(107) Happy #NationalPetDay and I really miss my Nemo (cat) passed away in car 

 accident. 

(108) Se puede ser más falsa y sobreactuada que Carme Chaparro ?? Sobran sus 

 caras absurdas , sus aspavientos 

 ‘Can you be more false and over-acting than Carme Chaparro? No more absurd 

 faces, no more fuss’ 

(109) @Julien_Db Bonjour Julien. Navré de cet incident. Je vous invite à échanger en 

 DM pour que nous puissions régler le problème. 

 ‘@Julien_Db Hello Julien. Sorry about this incident. I invite you to exchange 

 DM so that we can solve the problem.’ 

 

All of them exist as locative references in the place-name dataset. Contextual evidence suggests, 

however, that they do not refer to actual locative references. Indeed, they were correctly 

identified as proper nouns by the POS tagger, but then bypassed the safe-checking rules because 

they were not captured by the stopword dataset. 

Despite our conscious efforts to mitigate FPs by leveraging safe-checking rules, we blame 

some cases of FPs on the performance of the Stanford POS tagger, which sometimes considered 

common nouns and other parts of speech to be proper nouns because of wrong capitalization 

patterns, as shown in Example (110), Example (111), and Example (112). 

 
(110) y'ALL THIS AU IS SPOT ON!!! IT'S SO BEAUTIFULLY MADE I CRIED 

 OMGGGGGGGGGGGGG 

(111) @MckarloFernan Honestly go awf fam ???? if the put cheese in by accident 

 next time call me and I'll eat it for you LOL 

(112) Por favor señores todo o lo que pasa ahora es el Presidente y usted si en 

 realidad quisiera a su vástago… 

 ‘Please gentlemen, everything that happens now is due to the President and you, 

 if you really want your offspring…’ 

 

MADE, LOL, and el Presidente were wrongly retrieved as locative references. Surprisingly, 

Made is a Dutch and also an Indonesian village35, Lol refers to a South Sudan state36, and El 

Presidente is a mountain in Mexico37. These erroneous instances of locative references can be 

explained by the confluence of different factors: their POS tag was wrongly assigned as proper 

noun, they were captured in the place-name dataset, and finally they bypassed the safe-checking 

                                                   
35 https://www.geonames.org/2751272/made.html and https://www.geonames.org/6407244/made.html 
36 https://www.geonames.org/11550548/lol.html 
37 https://www.geonames.org/3521135/el-presidente.html 
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rules involving the use of the stopword dataset. In this respect, the place-name search module 

does not have a corrective capacity, but a preventive one only, which occasionally might fail as 

in this case. 

On the other hand, the location-indicative noun matching submodule also led to the 

extraction of wrong locative references, as shown in the following examples: 

 
(113) @BrianBLevinson I like how they list Lief Green next to Jim Greenleaf. No 

 way that was by accident. 

(114) @manishinsha93: #RoadSafetyInitiativeByDSS Saint Dr. MSG has come up 

 with the initiative to tie reflector belts on the stray animals 

(115) CLEARED HUDSON VALLEY: Slow traffic […] 

(116) Mauranne et Laura, deux jeunes étudiantes cousines, se feront égorgées par un 

 terroriste sur le parvis de la Gare S. url 

 ‘Mauranne and Laura, two young cousin students, will have their throats cut by 

 a terrorist on the square in front of the S. Station url’ 

(117) Cortadas por inundación tras la tormenta la M-506, la M-40 y al menos 6 

 líneas  de Metro 

 ‘M-506, M-40 and at least 6 subway lines cut by flooding after the storm’ 

 
In Example (113), green, a location-indicative noun used to denote an area of land covered with 

grass, mismatched Green in the tweet and, since the model found that the previous word was a 

proper noun, Lief Green was mined as a locative reference. In Example (114), dr mismatched 

the abbreviation of the location-indicative noun drive, which coincides with the abbreviation for 

the word doctor, and took the preceding proper nouns as part of a locative reference. In 

Example (115), the location boundary was wrongly delimited because CLEARED was tagged as 

a proper noun, again a case of a malfunctioning POS tagger. In Example (116), the locative 

reference Gare S. url was partially matched, since url does not take part in it, but was 

nevertheless taken into account for being mislabeled as proper noun by the Stanford POS tagger. 

In Example (117), líneas de Metro was mistaken as a locative reference because línea is a 

location-indicative noun followed by a preposition and a proper noun, which is one of the 

formalized regex-based rules in the Spanish and French location-indicative noun matching 

submodule. 

Finally, another source of error lies in the regex-based rules for capturing address numbers 

in the English location-indicative noun matching submodule, as shown in Example (118). 

 

(118) The 1st church burned, everyone thought it could have been an accident. After 

 the 2nd church burned, deacons. 
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7.2.2. Experiment II 

 

Since in Experiment I we already focused on the capabilities and performance offered by LORE, 

in Experiment II we compare the basic and extended nLORE models in Section 7.2.2.1., then 

we check the generalizability of LORE with the new eval corpus in Section 7.2.2.2., and last we 

benchmark the best nLORE model against LORE in Section 7.2.2.3.  

 

7.2.2.1. nLORE 

nLORE was trained departing from a series of basic or core linguistic-based features, the token 

form and POS tag, extended with those that were applied in its rule-based counterpart, the 

presence in the place-name dataset, the presence in the location-indicative noun dataset, and 

being part of locative marker or not, and using different train datasets with varying corpus size 

with the aim of testing the impact of the different combinations of features and corpora. The 

addition of extra linguistic-based features, other than token and POS tag, in the process known 

as linguistic-based feature engineering, was carried out with the objective of endowing nLORE 

with the capacity to learn and infer linguistic patterns in the process of locative reference 

extraction. 

In this sense, having examined Figure 32, Figure 33, Figure 34, and Table 60 in Section 

7.1.2.1., we can appreciate that the precision scores, which were higher in the basic 1k and 3k 

models, grow exponentially larger in favor of the extended model when the train dataset is 

larger, outnumbering the precision scores of the basic 5k and 7k models, as observed in the 

extended 5k and 7k models. In the case of recall scores, the opposite is true: while recall scores 

were better for the extended 1k model, they are eventually outnumbered by the basic 3k, 5k and 

7k models, with the divide exponentially growing larger and larger. Thus, the contribution of 

the extended linguistic-based features seems to be, at best, poorly significant and, at worst, only 

incidental. Though a trend can be noted, especially with the smallest corpus, results remain 

certainly inconclusive. If we were to sketch the main reasons in support of the use of the 

extended linguistic-based features, these would be the slightly better performance, especially 

when corpus size is fairly limited. However, things tend to level out as soon as corpus size 

becomes increasingly larger, and even in this scenario providing extra linguistic features might 

seem a bit counterproductive, since they worsen performance very slightly, as can be concluded 

from the recall scores, while also affecting the processing speed, despite improving precision 

scores. 

In this sense, our intuition is that the extended features may help avoiding the extraction of 

wrong instances that cannot be properly discarded by the token and POS tag features alone, 

hence the higher precision scores in the extended 5k and 7k models. However, adding such 
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features might have a negative impact –though very slight– on the identification of right 

locative references, as spotted in the recall scores. Having those extra linguistic-based features 

may have incidentally made the process of locative reference extraction stricter, which explains 

the fewer number of FPs and the greater number of FNs. 

The following examples from the English eval corpus II serve to illustrate the powerful 

capacity for prediction of the basic and extended 7k models when identifying locative 

references. Given that corpus data format follows a token-based tabular representation and that 

the assignation of the correct label was important for the evaluation stage, we provide such 

format for the examples in the tables below. We picked the two best nLORE models, i.e. the 

basic and extended 7k models. In red, we highlight the source of errors, if any. 

As previously stated, both models had state-of-the-art performance, despite being 

confronted with many different location types in many different emergency-related tweets 

(Table 66 and Table 67). 

 

Table 66. Example of the basic 7k nLORE model.  

Token POS tag Label 

Incident NN O 
on IN O 

I684 NN B_LOCATION 

NB NN E_LOCATION 

at IN O 
Exit NN B_LOCATION 

6A NN E_LOCATION 

- : O 
NY NNP B_LOCATION 

22 CD E_LOCATION 

to TO O 
NY NNP S_LOCATION 

138 CD E_LOCATION 

- : O 

Goldens NNP B_LOCATION 
Bridge NNP E_LOCATION 

( ( O 

Northbound NNP B_LOCATION 
Exit NN M_LOCATION 

Ramp NN E_LOCATION 

) ) O 

 

Table 67. Example of the extended 7k nLORE model. 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

Incident NN 0 0 0 O 
on IN 0 0 0 O 

I684 NN 0 0 0 B_LOCATION 

NB NN 0 0 0 E_LOCATION 
at IN 0 0 0 O 

Exit NN 0 1 0 B_LOCATION 
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Despite this great performance, there were instances of partially or fully missed locative 

references. For instance, let us have a look at how the basic nLORE model could extract the 

whole locative reference (Table 68) whereas the extended model could only capture it partially 

(Table 69), having a negative impact on recall. 

  

Table 68. Example of the basic 7k nLORE model.  

Token POS tag Label 

FAAN NNP O 

shuts VBZ O 

down RP O 
Port NNP B_LOCATION 

Harcourt NNP M_LOCATION 

airport NN E_LOCATION 
temporarily RB O 

over IN O 

bush JJ O 
fire NN O 

incident NN O 

 

Table 69. Example of the extended 7k nLORE model.  

 

6A NN 0 0 0 E_LOCATION 

- : 0 0 0 O 

NY NNP 1 0 0 B_LOCATION 
22 CD 0 0 0 E_LOCATION 

to TO 0 0 0 O 

NY NNP 1 0 0 B_LOCATION 
138 CD 0 0 0 E_LOCATION 

- : 0 0 0 O 

Goldens NNP 1 0 0 B_LOCATION 

Bridge NNP 1 1 0 E_LOCATION 
( ( 0 0 0 O 

Northbound NNP 0 0 0 B_LOCATION 

Exit NN 0 1 0 M_LOCATION 
Ramp NN 0 1 0 E_LOCATION 

) ) 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

FAAN NNP 0 0 0 O 

shuts VBZ 0 0 0 O 
down RP 1 0 0 O 

Port NNP 1 1 0 B_LOCATION 

Harcourt NNP 1 0 0 E_LOCATION 
airport NN 0 1 0 O 

temporarily RB 0 0 0 O 

over IN 1 0 0 O 
bush JJ 1 0 0 O 

fire NN 0 0 0 O 

incident NN 0 0 0 O 
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Even though the location-indicative noun dataset feature was supposed to help in the 

identification of location-indicative nouns that take part in locative references, in Table 69 it 

simply failed to leverage such clue. This was not the case in many other instances, where this 

feature, together with the place-name dataset feature, may have helped to a great extent, as 

shown in Table 71, as opposed to the basic model which could only capture part of the locative 

reference (Table 70). 

 

Table 70. Example of the basic 7k nLORE model.  

Token POS tag Label 

and CC O 

your PRP$ O 

Bronx NNP B_LOCATION 
River NNP E_LOCATION 

Neighborhood NNP O 

Coordination NN O 

Officers NNS O 

 

Table 71. Example of the extended 7k nLORE model. 

 

In Table 72, we can observe how the basic nLORE model failed to capture the two locative 

references and instead extracted a whole one, assigning wrong labels, whereas the extended 

Nlore model could effectively extract the two locative references (Table 73), probably thanks to 

the linguistic-based features. All this had an impact on precision. 

 

Table 72. Example of the basic 7k nLORE model.  

Token POS tag Label 

Two CD O 
vehicle NN O 

incident NN O 

, , O 
48 CD B_LOCATION 

St NNP E_LOCATION 

and CC M_LOCATION 

32 CD M_LOCATION 
Ave NN M_LOCATION 

NE NNS E_LOCATION 

 

Table 73. Example of the extended 7k nLORE model. 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

and CC 0 0 0 O 

your PRP$ 0 0 0 O 

Bronx NNP 1 0 0 B_LOCATION 
River NNP 1 1 0 M_LOCATION 

Neighborhood NNP 1 0 0 E_LOCATION 

Coordination NN 0 0 0 O 

Officers NNS 0 0 0 O 
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In Table 75, we believe that the linguistic-based features, especially the locative-marker feature, 

helped correctly delimit the scope of the locative reference in the extended nLORE model, as 

opposed to the basic nLORE model that missed the locative marker phrase (Table 74). 

 

Table 74. Example of the basic 7k nLORE model.  

Token POS tag Label 

earthquake NN O 

995 CD O 

km NN O 

north-east NN M_LOCATION 
of IN M_LOCATION 

Whangarei NNP E_LOCATION 

 

Table 75. Example of the extended 7k nLORE model. 

 

Sometimes, both models failed to capture locative references properly, such as the locative 

items Tel Aviv Elevator (Table 76 and Table 77) or American Iraq airbase (Table 78 and Table 

79), by assigning wrong labels and not capturing the full locative reference, affecting recall. 

 

Table 76. Example of the basic 7k nLORE model. 

Token POS tag Label 

Killing NNP O 

2 CD O 
in IN O 

Tel NNP S_LOCATION 

Aviv NNP S_LOCATION 

Elevator NNP O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

Two CD 0 0 0 O 

vehicle NN 0 0 0 O 

incident NN 0 0 0 O 
, , 0 0 0 O 

48 CD 0 0 0 B_LOCATION 

St NNP 0 1 0 E_LOCATION 
and CC 0 0 0 O 

32 CD 0 0 0 B_LOCATION 

Ave NN 1 1 0 M_LOCATION 
NE NNS 1 0 1 E_LOCATION 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

earthquake NN 0 0 0 O 
995 CD 0 0 1 B_LOCATION 

km NN 0 0 1 M_LOCATION 

north-east NN 1 0 1 M_LOCATION 
of IN 1 0 1 M_LOCATION 

Whangarei NNP 1 0 0 E_LOCATION 
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Table 77. Example of the extended 7k nLORE model. 

 

Table 78. Example of the basic 7k nLORE model.  

Token POS tag Label 

Anti-War JJ O 

Protests NNS O 

Flood NNP O 
U.S. NNP S_LOCATION 

Streets NNPS O 

As IN O 
American NNP O 

Iraq NNP S_LOCATION 

Airbase NNP O 
Attacked VBD O 

 

Table 79. Example of the extended 7k nLORE model. 

 

At other times, both models were unable to identify locative references, especially a few roads 

(Table 80 and Table 81), impacting recall. 

 

Table 80. Example of the basic 7k nLORE model. 

Token POS tag Label 

Road NNP O 

closed VBD O 

and CC O 
queueing VBG O 

traffic NN O 

due JJ O 
to TO O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

Killing NNP 0 0 0 O 

2 CD 0 0 0 O 
in IN 0 0 0 O 

Tel NNP 1 0 0 S_LOCATION 

Aviv NNP 1 0 0 E_LOCATION 
Elevator NNP 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

Anti-War JJ 0 0 0 O 

Protests NNS 0 0 0 O 
Flood NNP 1 0 0 O 

U.S. NNP 0 0 0 S_LOCATION 

Streets NNPS 0 1 0 O 

As IN 1 0 0 O 
American NNP 0 0 0 O 

Iraq NNP 1 0 0 S_LOCATION 

Airbase NNP 0 0 0 O 
Attacked VBD 0 0 0 O 
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accident NN O 

on IN O 

M32 NN O 

 

Table 81. Example of the extended 7k nLORE model. 

 

Overall, having analyzed the extracted locative references, although the models struggled with a 

few traffic ways and POIs, it seems that both models were quite successful in extracting many 

location types such as geopolitical entities or natural landforms. 

 

7.2.2.2. LORE with the English eval corpus II 

One of the many critical issues in NLP is that of the generalizability of results. By this, NLP 

practitioners refer to the more than desirable outcome of any computational model of being able 

to derive the same performance to new, unseen collections of data. Generalizability can thus be 

tested by using more than one eval corpus and comparing performance. If performance remains 

the same or similar, we could conclude that the model is indeed successful in the task for which 

it was trained or developed. Having this in mind, we can conclude, on the basis of the 

evaluation results which show a more or less regular and homogeneous performance (Table 62 

and Table 63 in Section 7.1.2.2.), that the methodological foundations of LORE have been 

successfully laid out. Though performance has degraded only by a very little margin, it can be 

revealing to sketch out the main reasons behind this. Since the performance of LORE has 

already been thoroughly analyzed in Experiment I of Section 7.2.1., we do not intend to offer a 

detailed explanation here, but a few examples. For instance, let us consider Example (119). 

 

(119) Cleared: Incident on #FranklinDRooseveltDrive NB at 58th Street 

 

In this tweet, only a part of the locative reference contained within the hashtag was retrieved. 

The reason why it was not fully extracted was due to the fact that (a) the hashtag was wrongly 

segmented into Frank Lind Roosevelt Drive and (b) Drive was tagged as a verb. Lind is an 

actual place found in the place-name dataset, hence its extraction. Besides errors of omission 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative noun 

dataset 

Locative 

marker 
Label 

Road NNP 0 1 0 O 

closed VBD 0 0 0 O 

and CC 0 0 0 O 
queueing VBG 0 0 0 O 

traffic NN 1 0 0 O 

due JJ 1 0 0 O 
to TO 0 0 0 O 

accident NN 1 0 0 O 

on IN 0 0 0 O 

M32 NN 0 0 0 O 
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like these, errors of commission were also frequent for the same reasons that were sketched in 

Experiment I, as shown in Example (120) and Example (121). 

 

(120) ALERT: Two vehicle incident, 48 St and 32 Ave NE, blocking the right lane.   

 #yyctraffic #yycroads  

(121) Many Feared Dead As Gas Explosion Rocks Kaduna 

 

In Example (120), 48 St and 32 Ave NE were not extracted because of a regex-based rule that 

avoids the extraction of any location-indicative noun preceded by an Arabic numeral, since they 

commonly denote quantity (e.g. 5 churches, 2 restaurants). It is not the case, however, with 

ordinal numbers (e.g. 58th street), as seen in Example (119). Yyc Traffic Yyc Roads was 

extracted as a locative item when the hashtag was split into tokens because Roads was taken as 

a location-indicative noun preceded by proper nouns. Another source of errors, as previously 

analyzed, had to do with the functioning of the POS tagger because it mislabeled some parts of 

speech as proper nouns which coincidentally matched with the items contained in the place-

name dataset, as was the case with Rocks in Example (121). 

Overall, it thus becomes evident that our rule-based model brings with itself the same erratic 

behavior shown with the English eval corpus I, while also retaining its powerful capabilities 

when confronted with other corpora. The slight drop in performance does not indicate anything 

beyond the more than expected irregularity and randomness that comes with new, unseen 

collections of data. In other words, LORE may perform the same, slightly better or worse with 

new corpora for no apparent reason other than the unpredictability associated with new data. 

Unlike an intelligent DL-based system which might be able to infer from the linguistic context 

when a given token is or is not a location-indicative noun or a locative reference, LORE is not 

able to make such distinction because of its pattern-based matching behavior. All in all, it is 

both the more or less stable performance and fast processing speed that make LORE a very 

effective and powerful rule-based model for location extraction, despite its known limitations. 

 

7.2.2.3. LORE vs nLORE 

The extended nLORE models feed off the linguistic knowledge provided by LORE. In other 

words, they leveraged the labels provided by LORE in the train corpus, later manually revised, 

to target the same semantic location types. At the same time, with the addition of the extended 

linguistic-based features and word embeddings as dense features we hoped to endow nLORE 

with symbolic-based knowledge on the basis of which it could more intelligently infer and 

predict locative patterns in the tweets. Our aim was, in a sense, to be able to improve the 

extraction of locative references by alleviating some of the commonest source of errors caused 

by, for instance, mislabeled POS tags and mismatched locative items from the place-name 
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dataset. This was confirmed by the results shown in Table 64, Figure 35, Figure 36, and Figure 

37 in Section 7.1.2.3. In this section, we provide examples of LORE against the best nLORE 

model, the 7k extended model, following the token-based tabular format, where errors are 

highlighted in red. Such examples provide evidence that supports the success of our aims. Let us 

consider Table 82, Table 83, Table 84, and Table 85. 

 

Table 82. Example of LORE. 

 

Table 83. Example of the 7k extended nLORE model. 

 

Table 84. Example of LORE. 

 

Table 85. Example of the 7k extended nLORE model. 

 

nLORE was, indeed, capable of avoiding these errors of commission since it was able to learn, 

by the linguistic context, that these instances were not actual locative references, but for 

different reasons. In Table 82 and Table 83, Clancy, a proper noun, coincides with a locative 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

I PRP 0 0 0 O 

've VBP 0 0 0 O 

read VBN 0 0 0 O 
all DT 0 0 0 O 

of IN 1 0 0 O 

Clancy NNP 1 0 0 S_LOCATION 
novels NNS 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative noun 

dataset 

Locative 

marker 
Label 

I PRP 0 0 0 O 

've VBP 0 0 0 O 
read VBN 0 0 0 O 

all DT 0 0 0 O 

of IN 1 0 0 O 

Clancy NNP 1 0 0 O 
novels NNS 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

WTH NNP 0 0 0 O 

DID NNP 1 0 0 S_LOCATION 
YOU PRP 0 0 0 O 

EXPECT VBP 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative noun 

dataset 

Locative 

marker 
Label 

WTH NNP 0 0 0 O 
DID NNP 1 0 0 O 

YOU PRP 0 0 0 O 

EXPECT VBP 0 0 0 O 
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item in the place-name dataset. LORE (Table 82), based on rules, automatically extracts it, 

without taking into account the linguistic context: Clancy is the author of a novel, not a location. 

nLORE was somehow able to disambiguate the context and did not extract it (Table 83). In 

Table 85, we can observe how a mislabeled token, DID, which is a verb and not a proper noun, 

was appropriately discarded by nLORE, because it realized that DID was actually a verb, not a 

noun, and definitely not a location (Table 84). The reason why nLORE could infer probably lies 

in the contextual window of tokens to the left and to the right and the semantic information 

provided by the word embeddings. 

At other times, LORE could extract locative items thanks to the patterns formalized by the 

regex-based rules (Table 86 and Table 88), helping recall, which nLORE could not (Table 89) 

or only partially (Table 87). 

 

Table 86. Example of LORE. 

 

Table 87. Example of the 7k extended nLORE model. 

 

Table 88. Example of LORE. 

 

Table 89. Example of the 7k extended nLORE model. 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

FAAN NNP 0 0 0 O 
shuts VBZ 0 0 0 O 

down RP 1 0 0 O 

Port NNP 1 1 0 B_LOCATION 
Harcourt NNP 1 0 0 M_LOCATION 

airport NN 0 1 0 E_LOCATION 

temporarily RB 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

FAAN NNP 0 0 0 O 

shuts VBZ 0 0 0 O 

down RP 1 0 0 O 

Port NNP 1 1 0 B_LOCATION 
Harcourt NNP 1 0 0 E_LOCATION 

airport NN 0 1 0 O 

temporarily RB 0 0 0 O 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative 

noun dataset 

Locative 

marker 
Label 

Police NN 1 0 0 O 

activity NN 0 0 0 O 

on IN 0 0 0 O 
I-

39NB 
NN 

0 0 0 S_LOCATION 

Token 
POS 

tag 

Place-name 

dataset 

Location-indicative noun 

dataset 

Locative 

marker 
Label 
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All these examples support with evidence the evaluation metrics presented in Section 7.1.2.3., 

and reinforce the claim that LORE helps extract otherwise missed locative references, which 

translated to improved recall, whereas nLORE helps avoid the extraction of wrong items, which 

means better precision scores. Also, in Table 65 from that section, we can observe that LORE 

clearly outperformed the extended 7k nLORE model, being almost 10x times quicker than its 

probabilistic-based counterpart. This supports the claim that rule-based models show better 

runtime efficiency than probabilistic-based models (Chiticariu et al., 2013). 

 

7.2.3. Issues, limitations, and areas of improvement 

 

Overall, despite the optimal performance of our rule-based and probabilistic-based models, we 

attested some issues and limitations. We address these and suggest some areas of improvement 

that could help our model be less error-prone.  

In this regard, we would like to emphasize that using a Twitter-specific POS tagger that 

handles with greater effectivity the noise-prone character of tweets could probably help improve 

the recognition of many locative references that go unnoticed due to wrongly assigned POS tags. 

Since our rule-based model heavily relies on the detection of proper nouns captured by the 

place-name dataset or signaled by location-indicative nouns and locative markers to capture and 

delimit locative references, this could very much improve the performance of LORE. By the 

same token, nLORE could largely benefit from a POS tagger like the one suggested to learn and 

infer predictions with greater accuracy, although it has shown greater capabilities in handling 

mislabeled POS tags in the task of location detection. 

A robust and fast abbreviation and disambiguation system together with spell checking for 

fast text normalization might also improve the performance of our models. However, we have 

not found enough grounded reasons to perform spell checking, since tweet texts were, as 

observed in the development stage of LORE, mostly well-written and not as informal as widely 

believed in the literature. Moreover, any spell checking process could severely affect timing 

with a poor cost-benefit ratio, as demonstrated in the use of a spell checker in the initial stages 

of the present thesis. Due to the very slight margin in performance improvements, we opted not 

to use one, though we do not discard this possibility in future research. 

In addition, our models might benefit from knowing the affected locations beforehand, since, 

in that case, we could retrieve from geographic ontologies and databases the full scope of 

Police NN 1 0 0 O 

activity NN 0 0 0 O 

on IN 0 0 0 O 
I-

39NB 
NN 

0 0 0 O 
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specific geographic areas where emergency-related events take place and thus effectively 

perform entity-based matching with even increased granularity and accuracy. In this regard, 

detecting locative references at a local level has, in fact, been shown to be a much easier task 

than global-scale location detection (Wallgrün et al., 2018). However, as our focus lay in the 

reusability and generalizability of our models with any emergency or crisis-related event, past or 

future and local or global, as represented in tweet corpora, we did not focus on retrieving 

particular geographic areas from the GeoNames database, but the full GeoNames database for 

our place-name dataset. 

Furthermore, many cases of natural language ambiguity, especially geo and non-geo 

ambiguity, may not be solved with current NER and NEM techniques because these methods 

cannot as yet parse the underlying semantics of sentences. In other words, relying on linguistic 

clues alone cannot disambiguate all locative references in sentences of the type Paris (person 

name) said that Parisian (demonym) artists don’t have to live in Paris (place name) without an 

adequate deep-semantics and syntactic framework (Gritta et al., 2019). However, in the 

discussion of nLORE, we provided examples that showed the potential of neural networks in 

understanding the syntactic context, and thus solving this ambiguity. In other words, 

probabilistic-based methods that rely on neural networks and recent AI methods may be able to 

capture the linguistic context with greater depth and accuracy than rule-based methods. Another 

way of approaching this conundrum, from a linguistic point of view, would involve developing 

a system based on deep semantics and syntactic parsing that could tackle, with great solvency, 

the challenges posed by natural languages. If we had a semantic and syntactic representation of 

each tweet, we could unveil the conceptual and syntactic relationships among the events and 

participants expressed in the tweets, and derive logical conclusions from these relationships. In 

this sense, we could exploit FunGramKB capabilities, a lexico-conceptual knowledge base that 

integrates rich semantic and syntactic knowledge (Periñán Pascual & Arcas Túnez, 2007, 2010). 

We thus leave open a very interesting future line of research. 

With reference to the use of train corpora in nLORE, we wonder whether using larger 

corpora would have translated to a linear improvement in terms of performance, and how to 

uncover, if possible, the mathematical rule that governs such linear growth of performance, or 

whether improvement eventually reaches a plateau. Other issues or potential areas for research 

relate to the use of different novel approaches in DL based on Transformers or language models 

such as BERT. This could pave the way for future research, improving the performance of 

nLORE. 

 

 

8. CONCLUSIONS 
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We have presented LORE, a multilingual, linguistically-aware model based on a rule-based 

approach that exploits rich linguistic knowledge and different NLP techniques, achieving state-

of-the-art performance and outperforming well-known, state-of-the-art NER tools in tweet 

location detection without the high computational cost, time, and resources characteristic of 

probabilistic-based frameworks. Our rule-based approach is novel and innovative, in that we 

entirely rely on linguistic knowledge and lexical resources, achieving great results in the task at 

hand. The integration of lexically-rich datasets with NLP techniques such as tokenization, POS 

tagging, n-grams and regular expressions helped recognize coarse-grained location types (i.e. 

geopolitical entities and natural geographic references) and fine-grained location types (i.e. 

POIs, addresses, and different traffic ways). To the best of our knowledge, our model is the first 

that makes use of EuroWordNet-based datasets of location-indicative nouns for the 

identification of locative references. Moreover, LORE can retrieve complex locative references 

consisting of any location-indicative word and/or locative marker accompanying a given place 

name. This semantic granularity constitutes in itself a great qualitative advantage over other 

location-detection models, as shown by the highest recall achieved in all of the languages 

supported in the evaluation metrics. Although most researchers agree that street and building 

extraction performs worse than geopolitical entity extraction (Middleton et al., 2018), the 

linguistic-processing module has shown that this is no longer the case for its fine-grained 

detection capabilities for those location types. Also, our model has shown a great quantitative 

advantage in that it has outperformed state-of-the-art NER systems not only in precision but 

also, and by a large margin, in recall, due to the diversity and variety of the location types 

extracted. Both these quantitative and qualitative advantages are particularly useful to avoid 

missing locative references that could greatly contribute to raising emergency-situation 

awareness in real-life crisis scenarios, a key component for emergency-based services. 

Our rule-based model is also multi-faceted, scalable, versatile, and reusable in that: 

 

(i) the modular architecture of the model, consisting of two primary modules (i.e. the 

place-name search and the linguistic processing), synergistically work in the location-

detection task, making up for any performance loss that may occur due to the noisy 

nature of tweets and the challenges offered by natural language ambiguity; 

(ii) since it is not particularly suited to any local event or domain, similar performance can 

be expected on any collection of tweets about any emergency-related setting, as shown 

with the English eval corpus II, and 

(iii) the modular architecture of linguistic knowledge facilitates the adaptation of the 

model’s functionalities to languages other than English by means of semi-automatic 

methods that allow the end user to modify or update the language-dependent lexical 

resources and regex-based rules, which makes the model ideal in multilingual contexts. 
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We have also presented nLORE, the DL counterpart of LORE, feeding off the linguistic 

knowledge provided by LORE and trained on a relatively small corpus of English tweets, to 

infer and extract locative references with greater accuracy than LORE. In many respects, 

nLORE overcame some of the limitations presented by LORE, supported by the improved 

evaluation scores. At the same time, it has also shown that linguistic-based feature engineering 

in probabilistic-based approaches may still provide a much-valued added benefit –though 

slight–, which could pave the way for more linguistic-oriented computational work in the field 

of NER. This sentiment goes in line with recent calls in the linguistic and computational 

communities, requesting a greater interaction between linguistics and AI (Linzen, 2019). 

We propose the following lines of future research on the basis of the issues and limitations 

found in our research enterprise to enhance the performance of our models and extend their 

functionalities: 

 

 Since our model heavily relies on the performance of a POS tagger for the detection of 

proper nouns in locative references, a Twitter-trained POS tagger could in this regard 

recognize otherwise missed locative references and avoid retrieving wrong items, all 

due to mislabeled POS tags. 

 Tweaking the rules can be a feasible outcome after the comprehensive error analysis 

stage carried out in the evaluation phase of the models and the rules. This could thus 

improve precision and recall. 

 The system could also enrich location semantics by providing, besides the locative 

reference and its ID, a semantically-rich characterization of the location type (i.e. city, 

POI, road, etc.), if possible. 

 We consider extending nLORE to languages other than English, such as Spanish or 

French, as its rule-based counterpart, by compiling and annotating tweet corpora in 

those languages, and comparing their performance. 

 Also, other state-of-the-art methods and techniques in NLP and AI involving 

Transformers or language models such as BERT may be used to improve the 

capabilities and performance of nLORE. 

 At the same time, and with a view to endowing the system with a heavier linguistic 

focus, the rule-based system could exploit rich semantic and syntactic knowledge in the 

tweets by means of FunGramKB deep-semantic and syntactic parsing for intelligent 

location detection. 

 Implementing a geocoding module could help in the disambiguation phase of the 

extracted locative references. 
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 Deploying the model in a full-blown application for crisis or emergency tracking to 

explore the capacity of LORE or nLORE in real-time location detection. This would 

make our model be even more useful for competent authorities and emergency 

responders interested in using our models for real-life crisis-related scenarios that 

demand instant, accessible and accurate geospatial information. 
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APPENDIX 

 

Flowchart 1. Regex-based rules for n-gram combinations of locative references using a 

geodatabase.

 
 

 

Flowchart 2. Regex-based rules that exploit locative prepositions. 
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Flowchart 3. Regex-based rules that exploit location-indicative nouns for the English language. 

 
 

 

Flowchart 4. Regex-based rules that exploit location-indicative nouns for the Spanish and 

French languages. 
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Flowchart 5. Regex-based rules that exploit highways and road-naming conventions. 

 
 

 

Flowchart 6. Regex-based rules that exploit locative markers.
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Flowchart 7. The pipeline of LORE. 
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