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Abstract: The study of cosmic rays remains as one of the most challenging research fields in Physics.
From the many questions still open in this area, knowledge of the type of primary for each event
remains as one of the most important issues. All of the cosmic rays observatories have been trying
to solve this question for at least six decades, but have not yet succeeded. The main obstacle is the
impossibility of directly detecting high energy primary events, being necessary to use Monte Carlo
models and simulations to characterize generated particles cascades. This work presents the results
attained using a simulated dataset that was provided by the Monte Carlo code CORSIKA, which is
a simulator of high energy particles interactions with the atmosphere, resulting in a cascade of
secondary particles extending for a few kilometers (in diameter) at ground level. Using this simulated
data, a set of machine learning classifiers have been designed and trained, and their computational
cost and effectiveness compared, when classifying the type of primary under ideal measuring
conditions. Additionally, a feature selection algorithm has allowed for identifying the relevance of the
considered features. The results confirm the importance of the electromagnetic-muonic component
separation from signal data measured for the problem. The obtained results are quite encouraging
and open new work lines for future more restrictive simulations.
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1. Introduction

Particles with cosmic origin that reach the Earth are known as Cosmic Rays (CR). There are
many unknowns in their study, although there are two important major aspects that, once resolved,
could provide useful information for astrophysicists. The first one is their origin, when considering
aspects, such as how they were produced, accelerated, and their propagation through the galactic
and extra-galactic medium. The second aspect that make their study so important is that the energy
density of cosmic radiation is of the same order of magnitude as the one found in magnetic fields and
stars, so they could give a hint on the total energy balance of our universe. There is a third aspect,
which is known as the Greisen—Zatsepin—Kuzmin (GZK) limit [1], which is an abrupt drop in cosmic
ray flux to energies above 1019.5 eV, and, from this, it seems that the universe is “opaque” for events
with energies above this limit.

For energies above the solar modulation spectrum (10 GeV/nucleon) [2], the cosmic rays are
called “high energy” ones and, for energies above 1016 eV, they are called “ultra high energy” (UHE)
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cosmic rays. Three quantities can be used to describe a cosmic ray caused by an incident particle
(called primary) in the earth’s atmosphere: the energy, the angle of arrival (θ), and the type (mass and
charge). All of the observatories of cosmic radiation can measure the energy and θ for each event,
but, up to now, there is no way to measure the mass directly. Using extrapolated data from particle
accelerators, the particle astrophysics community developed models and simulators that only allowed
for us to propose probabilities of mass compositions, in distributions well-defined for bins in energy
and θ [3]. The classification of the particle composition is a crucial question that should be answered in
order to better understand the three aspects described above.

Beyond that, knowing the composition information of each event will make it possible to search for
flux of protons at the highest energies [4]. Therefore, it could improve previous particle-physics studies
at 10 EeV and extend them to energies as high as 200 TeV (center of mass). Extending composition
sensitivity to all possible energy ranges and a larger range of zenith angles will provide almost an
order of magnitude increase in statistics to resolve the question of the origin of the flux suppression
(GZK limit).

The observation of ultra high energy cosmic rays (UHECR) is based on the detection of secondary
particles cascades that are produced in the atmosphere, resulting from the initial collision of the
primary with some molecule of the air (usually N2) at the top of the atmosphere (around 35 km
altitude). Around 1010, secondary particles arrive at ground level distributed within a radius of
up to 3.000 meters. This phenomenon is known as extensive air shower (EAS), and it was first
measured by Pierre Auger in 1939 [5]. The detectors are not able to discriminate the secondary
particles; they measure a signal that relates the cascade’s energy deposit and its evolution over time.
Analysis of this signal is the source of the cascade and the primary particle information.

This paper tackles the problem of using Machine Learning (ML) to identify the type of particle
that generates the cascade due to the importance of this information, which can be extracted from
a EAS. A recent work has performed a first approach to the composition identification problem by
estimating the muonic number in simulated traces [6]. Monte Carlo models predict that heavier
primaries (such as Nitrogen or Iron) have more muons than lighter primaries (such as protons or
Helium). However, even knowing this element accurately, the mapping of this feature to a particle
type still remained unsolved.

A preliminary work [7], first dealt with this question by trying to tackle the problem using
two simple deep learning models, approaching the problem both as a classical classification and
as a continuous regression-like output. However due to the limitations of the dataset, limits in the
classification accuracy attainable by ML models were not verified and a wider and more thorough
study was needed. Thus, the aim of this work is to go in depth into the limits in the possibility of
identifying the type of particle that generated an EAS, from a set of ideal measurements at ground
level. Moreover, the importance of the different factors that are involved in a EAS for the primary
identification will be assessed by an effective feature selection specific technique.

For that, this work uses simulated ground truth for several features (like the muon and
electromagnetic numbers) using a data set generated with CORSIKA (COsmic Ray SImulations
for KAscade) simulator [8,9]. Five different types of particles have been considered: Photons, Protons,
Helium, Nitrogen, and Iron. Four different machine learning classifiers have been trained and analyzed
under Python implementation, including XGBoost, K-NN, Deep Neural Networks and Support Vector
Machines. This comparison allows comparing these alternatives, both from the performance and
the computational cost point of view, allowing for us to assess the best alternative for the given
problem. Moreover, a modification of the Markov Blanket Mutual Information Feature Selection
(MBFS) algorithm [10–12] adapted for classification has been applied in order to identify the relevance
of the features involved. The importance of this type of ML techniques application comparative analysis
is corroborated in the extent recent literature for other problems from a wide range of fields [13–16].

The rest of the paper is organized, as follows: Section 2 presents the data used in the experiments.
Section 3 introduces the classifiers and feature selection algorithm proposed for this work. Section 4



Entropy 2020, 22, 998 3 of 12

presents the experiments and show the results that were obtained for the problem. Section 5 discusses
the results. Finally, conclusions are drawn in Section 6.

2. Data Description

The data used in this research were generated by the CORSIKA Monte Carlo code, which is a
particle interaction simulator designed to extrapolate hadronic interactions (hadrons are particles with
internal structure, such as protons, helium, carbon, etc.) with center of mass energies above 100 TeV.
To get an idea of the importance of this simulator, the LHC-CERN collider has a maximum energy
of 6.5 TeV per beam (by the end of 2018) [17] and this is the limit (until now) of the experiments in
particle physics. There is no actual data describing interactions above 100 TeV, which is the typical
collision energy of cosmic particles with our atmosphere. This is where the need for a simulator with
extrapolations of hadronic interaction models comes from.

The simulations are done by tracking the particles through the atmosphere until they undergo
reactions with the air nuclei and produce a cascade of the secondary particles. These cascades
can be described in a simplified way as the composition of three components: a hadronic cascade
(heavier particles, such as pions, neutrons, and protons), a muonic cascade (muons are produced by the
pions decay, and their mass is about 200 times greater than the electron mass), and an electromagnetic
cascade (photons, electrons, and positrons). The output of the program is a dataset with the information
of all particles of the cascade. Each particle is assigned with seven information: position (x, y, z),
energy (px, py, pz), and type.

The Monte Carlo code divide the development of the cascade in three types of interaction
models to describe the cascade particles: high energy (above 100TeV), low energy (below 100 TeV),
and electromagnetic interactions. The code chooses one of these three models based on the energy and
type of the particle over the course of development.

The code also provides several options for types of interaction models. For high energy, the models
are based on the calculation of the cross section of the secondary particle scattering, the hadron
mini-jets. Each model considers a different treatment for the partons (fundamental particles that
constitute a hadron) and a distinct phase space. All of the models use the quantum field theory of
Gribov–Regge, which is a model used to describe the interaction between hadrons. The models
QGSJetII-04 (Quark Gluon String model with Jets) [18], SIBYLL [19], and EPOS(LHC) (Energy
conserving quantum mechanical multi-scattering approach, based on Partons, Off-shell remnants
and Splitting parton ladders) [20] are options that can be used to describe high energy collisions.
At lower energies, interactions can be used the models GHEISHA (Gamma Hadron Electron Interaction
SHower) [21], the FLUKA [22], or the microscopic URQMD (Ultra-Relativistic Quantum Molecular
Dynamics) [23]. For electromagnetic (EM) interactions, a version of the code EGS4 (Electron Gamma
Shower) [24] or the analytical NKG (Nishimura-Kamata-Greisen) [2] formulas may be used. For this
work. we are using, at higher energy, the model QGSJetII-04, combined with FLUKA2011.2c for lower
energies, and EGS4 for EM interactions.

We simulate a set of events (1.2× 104) for each primary particle mass (photon (no mass), proton,
helium, nitrogen, and iron—total: 6× 104 events) and within this set we randomize, for each event,
the values of energy (1018.5 up to 1019.0 eV), angle of entry into the atmosphere (θ: 0 until 60 degrees),
and the mean free path for first collision (X0). The errors are related with the systematic of this
randomization, which was performed using a Monte Carlo procedure.

Some of the factors that can be extracted from the output dataset for each simulation like Xmax

(the atmospheric depth (g/cm2) where the cascade have the maximum number of particles) and
ZFirstm (altitude where the particle starts to interact with the atmosphere [m]) are difficult to be
measured. There are few real data measurements for Xmax and, to date, it is not possible to measure it
at ground level, especially for events at high energies. Therefore, Xmax and ZFirstm were discarded in
order to provide a more realistic, still optimistic, definition of the type of data that can be measured at
ground level. Subsequently, the features considered for the work were:
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• NALLParticlesTotal: total number of particles generated by the event at the ground level.
• MUTotal: total number of muons, at the ground level.
• ELTotal: total number of electromagnetic particles, at the ground level.
• Zenith: zenith angle of the primary particle [degrees].
• Energy: primary particle energy [GeV].

Being precise on the information provided by the CORSIKA simulator, there is no chance to know,
with accuracy, the total number of particles reaching the Earth surface. However, an estimation of it
can be provided that could be accurate enough to use those values for the classification [7]. The same
can be said for the Energy, and muonic and electromagnetic signals. Dataset and code used for the
work presented in this paper can be downloaded from (https://github.com/aguillenATC/Entropy-
CompositionClassificationUHECR).

3. Methods

This section details the workflow followed in order to tackle the problem. All of the compared
classification methodologies are briefly discussed; similarly, the feature selection phase, in which the
importance of the features studied is analyzed, is also described. The methodology follows the same
steps than the ones proposed in [25] for hurricane intensity estimation.

3.1. Classification Methods

Four different classifiers have been trained and tested in order to verify the possible
effectiveness of an intelligent method applied to the prediction of the type primary reaching the
atmosphere from a set of ideal measurements. These four methods are: Artificial Neural Network,
Gradient Boosting—XGBoost, Support Vector Machines, and K-nearest neighbors. These techniques
and the training process for each of them, are briefly described next. Finally, the computational
framework carried out for a fair comparison the four methodologies is presented.

3.1.1. Artificial Neural Network

Deep Neural Network (DNN) with a Feedforward architecture was utilized. This type of model is
nowadays the state of the art in many complex problems, specially in those with stochastic nature [26].
The capability of these type of models to deal with large data sets has been improved, thanks to
stochastic optimization algorithms.

Regarding the architecture and topology of the network, a number of possibilities for number of
layers and of unit per layer were assessed, in a random manner, in order to finally select the optimal
network configuration. The selected learning and network architecture parameters were:

1. Number of layers: configurations containing from 2 up to 7 hidden layers were considered.
ReLu units were taken for the these [27]. For the output layer, softmax units (one per class)
were used.

2. Number of neurons: configurations containing from five up to 50 neurons per layer were
considered for the hidden layers.

3. Constant weight initialization to 0.025 (for the sake of reproducibility).
4. Optimisation algorithm: Adam [28] with default parameters (after analysing the behaviour of

higher and lower learning rate and beta values) and a maximum of 500 epochs. Batch size was
set fixed to 256.

5. Loss function: crossentropy for classification [29].

3.1.2. XGBoost

XGBoost (eXtreme Gradient Boosting) [30] is an efficient algorithm implementing a regularized
version of Gradient Boosting algorithm. In summary, this type of learning algorithm, iteratively

https://github.com/aguillenATC/Entropy-CompositionClassificationUHECR
https://github.com/aguillenATC/Entropy-CompositionClassificationUHECR
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optimize a set of tree models, each learning the residual from the previously optimized set of models,
in a gradient descent manner. XGBoost is a widely used implementation of gradient boosting,
which has reached great rankings in many machine learning competitions, for instance, those proposed
at Kaggle (Kaggle- Data Science Projects. https://www.kaggle.com/competitions).

Python implementation of XGBoost (v.0.72) (XGBoost- Python library. https://xgboost.
readthedocs.io/en/latest/python/index.html.) was used for the simulations. Hyperparameters
optimized included were max depth (varying from two to five) and eta (varying from 0.05 to 1 in steps
of 0.05); a fixed number of rounds for the training process was set to 150.

3.1.3. Support Vector Machines

SVMs have, for many years, been the the most frequently used classification paradigm in machine
learning until the emergence of Deep Learning few years ago [31]. Binary SVM classification deals
with the identification of the optimal largest margin classification hyper-plane in a dual space in order
to separate the two classes involved. Multiclass classification in SVM is normally performed through
the construction of k(k−1)/2 classifiers, being k the number of classes, each one training a separating
hyper-plane for two different classes. Subsequently, a voting scheme is used to identify the class to
which each pattern belongs. Among the kernel functions alternatives, Gaussian Radial Basis Function
kernel has been chosen, as it has proven to offer a good asymptotic behavior [32]. The estimation of
the hyper-parameters (σ and γ) of the SVM was done using grid search and cross-validation.

3.1.4. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple and fast classification algorithm, nevertheless attaining
comparable results to other more complex machine learning techniques in many real problems.
It is based on the search of the (k) most similar samples of a new sample, and assigning the most
frequent class among the neighbors to it. There is a number of distance or similarity measures for the
identification of the neighborhood of a sample, although the Euclidean distance is the most used one
to deal with continuous features. Grid-search was used over the training dataset in order to find an
optimal value for k ∈ [0, 50].

3.1.5. Classifiers Comparison

The four methodologies were compared both in terms of accuracy and training computational
complexity. Different configurations of the hyperparameters for each algorithm were assessed over a
training dataset made up by 80% of the data, using a five-fold cross-validation scheme over the training
dataset for optimization. Subsequently, given an optimal hyperparameter selection, a later five-fold
cross-validation assessment process over the whole dataset was used for performance comparison
of the different classification alternatives. i.e. training using optimal hyperparameters selected on
four folds, and testing over the remaining one, in a cross-validation way, finally providing mean and
std accuracies.

A similar number of evaluations of the respective hyperparameters alternatives was observed
in order to provide a fair comparison over the different hyperparameters optimization for each
classification paradigm. Thus, for SVM, nine different values (using logarithm scaling) for each σ and
γ were assessed (81 configurations); for XGBoost, four different values for max depth and 20 possible
values for eta were assessed (80 configurations); for DNN, 80 random network architectures (in terms
of number of layers and number of hidden units per layer) under the specified parametrization were
assessed; finally, for KNN classification, 50 different values of k were tested (we considered that
assessing larger values of k was pointless). The computational cost of the training procedure and
training and test accuracy were compared for the four alternatives.

https://www.kaggle.com/competitions
https://xgboost.readthedocs.io/en/latest/python/index.html
https://xgboost.readthedocs.io/en/latest/python/index.html
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3.2. Markov Blanket Feature Selection (MBFS) Algorithm

Feature selection is a key preprocessing step in any classification problem [33]. Although, in this
problem, a reduced number of features is present, it is still very important to identify their relevance
order and consequent performance. Among the wide literature on feature selection, we have chosen
the mutual information (MI) criterion from Information Theory [34], due to its capability of identifying
nonlinear relationships between the features involved.

The estimation of MI among features is a key element for the performance of feature selection
algorithms based on this criterion. This work uses the k-nearest neighbor estimator that was proposed
by Kraskov et al. in [35], as the method proved to behave robustly, independently of the type and
values’ distribution of the feature involved.

Among the possibilities of feature selection algorithms, an modification of the well-known Markov
Blanket feature selection (MBFS) [10] algorithm adapted for continuous features [11,12] was used.

The MBFS method is an iterative methodology that returns a relevance ranking of the input
features with respect to the classification result, taking to account, not only their importance, but also
the redundancy among themselves. The main difference of this algorithm with respect to other
well-known MI based algorithms, such as mRMR [36] or NMIFS [37], is that it performs a backward
feature selection. MBFS eliminates the least important feature in each iteration of the algorithm,
instead of adding the most relevant feature in each step. This has the advantage of not eliminating
features that themselves might not provide information, but together with other features do, leading to
an improvement in truth relevance identification.

4. Results

This section presents the results that were obtained for the classification of the type of primary
from the available dataset.

All of the features were normalized to have zero mean and unit standard deviation. As it was
aforementioned dataset was first randomly shuffled and subdivided in 80% of the data for training
and validation purposes for hyperparameter optimiztion (under a five cross-validation scheme),
and the remaining 20% for test. The the whole dataset was repeatedly validated in a different five
cross-validation scheme for performance assessment (see Section 3.1.5), providing mean and std over
training and test performances.

All of the methods were implemented under Python, using Keras, XGBoost, and Sklearn libraries,
and executed under a Intel corei7 32GBRAM PC with NVIDIA GeForce GTX 10800 GPU.

4.1. Classification

Two main feature settings were evaluated according to the demands of the Theoretic Physics
experts. Later, results using the NMIFS ranking were assessed in order to provide this information to
the experts. The two sets were:

1. 5 features: NALLParticles, MUTotal, ELTotal, Zenith, Energy
2. 3 features: MUTotal, Zenith, Energy

The results obtained by the four classifiers are shown in Table 1. Both sets with five and three
features were assessed. The training times for each of the classification methods included the training
of the hyper-parameters of the model. Hyperparameters for each of the classification models using a
first training-test subdivision of the dataset are shown in Table 2. The confusion matrix obtained by
XGBoost for both settings for that initial subdivision (highest accuracy, as seen in Table 1) are shown in
Figures 1 and 2.



Entropy 2020, 22, 998 7 of 12

Table 1. Classification report obtained by the classification approach with five and three features over
test dataset.

5 Features 3 Features

trn. Time (s.) Accuracy f1-Score trn. Time (s.) Accuracy f1-Score

ANN 48,715 0.91 (0.015) 0.92 (0.012) 23,957 0.76 (0.14) 0.77 (0.017)
XGBoost 909 0.97 (0.002) 0.97 (0.002) 843 0.87 (0.002) 0.87 (0.002)

SVMs 9536 0.94 (0.003) 0.94 (0.003) 10,677 0.83 (0.004) 0.83 (0.004)
KNN 3.59 0.78 (0.003) 0.79 (0.003) 2.75 0.62 (0.006) 0.63(0.005)

Table 2. Hyperparameters obtained for each classification approach with five and three features.

Classifier 5 Features 3 Features

ANN 2 layers, n.u. = [39, 31] 2 layers, n.u. = [17, 18]
XGBoost max depth = 5, eta = 0.85 max depth = 5, eta = 0.55

SVMs σ = 512, γ = 0.5 σ = 512, γ = 0.5
KNN k = 1 k = 1

Figure 1. Confusion matrix for the first test set returned by XGBoost classification with five features.

Figure 2. Confusion matrix for the first test set returned by XGBoost classification with three features.

4.2. Feature Ranking

The MBFS algorithm using Kraskov Mutual Information estimation algorithm was executed
on the training set, returning the following feature ranking (from most relevant to lowest relevant
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feature): ELTotal, MUTotal, Energy, NALLParticles, and Zenith. Figure 3 shows the evolution of the
test performance as from one to five features are considered, using XGBoost algorithm. As it can
be seen, with only two features, the ELTotal + MUTotal results surpass the 0.9 of test performance.
Nevertheless, with only one feature, accuracy is surprisingly low (0.24). It is important to also highlight
that the MI of the ELTotal feature with respect to the classification feature showed to be very similar to
the MI between the MUTotal feature and the classification feature. Moreover, tests performed using
MUTotal as single feature for classification showed comparable results (0.24) to those using ELTotal
as a single feature to perform the classification. Moreover, Figure 3 shows that, with the first three
features, performance is similar than using all of them. This implies that information of Zenith angle
and NAllParticles becomes irrelevant after considering ELTotal, MUTotal, and Energy.

It is important to highlight that algorithms mRMR and NMIFS failed to recognize the optimal
ranking retourned by MBFS algorithm. NMIFS attained the identification of the two most relevant
features (ELTotal + MUTotal), failing to identify the third one (Energy, identified in fifth position and,
thus, only attaining the 97% of accuracy using five features). mRMR, on the other hand, missidentified
the essential relationship between ELTotal and MUTotal, identifying as second most relevant feature
the Zenith angle, leading to 0.9 of accuracy only after using three features.

Figure 3. Evolution of the test performance on the problem according to the ranking returned
by the Markov Blanket Mutual Information Feature Selection (MBFS) algorithm using XGBoost.
Hyperparameters of XGBoost were optimized for each feature subset size combination.

5. Discussion

After showing the results that were obtained in the comparison, this Section discusses it.
This comparison is made when considering both the classification accuracy and the computing cost.

Regardless of the type of particle, XGBoost presents an outstanding performance, being very
precise in classifying all of them (as Figures 1 and 2 show). This methodology seems superior to the
other alternatives not only because it obtains the best results but because the model is trained in shorter
time (just behind KNN). The next suggested methodology is SVM, being very close to XGBoost in
classification metrics, but with executions 20 times slower. DNNs are next in the classification accuracy,
but it is the slowest technique by far (100 times slower than XGBoost). Finally, the KNN algorithm
presents disappointing classification scores, but it is clearly the fastest methodology (100 times faster
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than XGBoost). The performance ranking obtained by the four methodologies for five features is
similar to that obtained for three features. For the latter, XGBoost and SVM achieved a comparatively
better result than the other two methodologies, undergoing a lower performance decrease when taking
away two of the input features.

Comparing these results with the preliminary work in [7], in which DNNs were applied, then the
best accuracy for five variables reached 0.94, and 0.82 for three variables, while using an optimzed
DNN model after several tests, and a single training-test subdivision. Thus, the results were similar,
taking into account mean and standard deviation seen in Table 1. The optimal model then attained
the best results while using four layers, while the CV scheme in this work leads to a reduction in the
complexity of the network by selecting a two-layered network. In any case, as seen, SVM and XGBoost
attained a faster training and better performance than DNNs for the problem tackled.

For the sake of fairness, the comparative was designed, so that, for all the models, the number of
combinations of hyperparameters was similar, as explained in Section 3. Table 2 shows the optimal
hyperparamenter configurations for the four techniques, for the two feature subsets considered.
SVMs and KNN obtained the same values for the hyperparameters for both feature subsets. XGBoost
maintained the maximum depth, but the eta parameter presented a larger value for five features.
This seems expected, as the weights of the features can shrink more when their number is smaller.
Analogously, DNN preserves the two layered configuration (we should keep in mind that, even with
one layer, they could be universal approximators), but with a lower number of units per layer for three
input features. For the second case, the architecture of the network becomes much simpler.

The reason why the DNNs consumed much more time than XGBoost is because the training
was carried out when considering up to 80 different architectures with a maximum of 500 epochs.
This might be one of the main flaws of these models in comparison with the other approaches, the cost
of finding the right set of hyperparameters might be too expensive. When considering that SVMs
are restricted by the number of samples, from the computational cost perspective, the best choice
is XGBoost.

In relation to KNN, it is important to highlight that this work utilized its simplest version in
the optimization. KNN may sometimes suffer from the presence of noisy features or by differences
in the relevance of the features involved. However, despite that features were equally normalized,
its performance was lower than the other methods. Although KNN model optimization was simpler
than for the other methods (only k was optimized for a single distance metric), and could include
feature weights optimization, for instance, in this work a specific feature selection process was
performed as a separated next step, whose results are shown in Section 4.2.

Once the best technique has been observed, it is possible to take a closer look to the results of
XGBoost. Figures 1 and 2 show the confusion matrices that were obtained by the algorithm when
using 5 and 3 features respectively. When using all the features: NALLParticles, MUTotal, ELTotal,
Zenith, Energy, the capability of separating Photons from the rest of particles is perfect. The accuracy
remains outstanding, even in the subgroup of Hadrons. Although, as the matrix shows, very light and
very heavy particles, such as Proton and Iron, respectively, are classified perfectly, but the particles in
between (Helium and Nitrogen in this work) some misclassifications are shown. This last observation
becomes even more dramatic when the number of features is reduced to: MUTotal, Zenith, and Energy.
Photons, Protons, and Irons are quite well classified, but there is an important source of errors coming
from Helium and Nitrogen classification, which fall to a 76% of correct labelling.

The results obtained by the MBFS ranking are surprising, because, by using only two features,
the results obtained are better than by using the three features suggested by the experts. This is
interesting, because it motivates the research considering the electromagnetic part of the signal instead
of considering uniquely the muonic component. Additionally, by using the three most relevant features
MUTotal, ELTotal, and Energy, the results attained are similar than using the five of them, implying the
irrelevancy of NALLParticles and Zenith after considering the first three. Analyzing the data coming
from the simulator, it is observed that almost all of the information about the cascade development is
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contained in the electromagnetic (ELTotal) and muonic (MUTotal) components of the shower. With the
additional information on the primary energy (Energy), it is possible to obtain the three most relevant
information of the event: energy, mass composition, and direction of arrival. Therefore, the results
obtained by MBFS corroborate the results that were obtained by the simulator of cascade.

6. Conclusions

There are many unknowns in Astrophysics and, to be able to determine the composition of the
UHECR, might help to understand some mechanisms that rule the Universe. This paper has presented
a comparative analysis of several machine learning techniques in order to see how precise it possible
to carry out the classification of the particle composition of a cosmic ray. To the sight of the results,
XGBoost has shown an outstanding performance, also being efficient from the computational load
point of view. The results obtained by performing a data driven approach suggest that considering the
information of both the muonic and electromagnetic component instead of just one of them improves
the solution to the problem under study. This consideration might be even more important when the
trace of the event is available.

Author Contributions: Conceptualization, L.J.H., C.J.T.P. and A.G.; methodology, L.J.H. and A.G.; software, L.J.H.
and A.G.; validation, C.J.T.P. and J.M.C.; formal analysis, J.M.C.; investigation, F.C. and O.B.; resources, C.J.T.P.;
data curation, C.J.T.P. and J.M.C.; writing–original draft preparation, L.J.H. and A.G.; writing–review and editing,
C.J.T.P.; visualization, F.C. and O.B.; supervision, L.J.H., C.J.T.P. and A.G.; project administration, L.J.H.; funding
acquisition, L.J.H. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been possible thanks to the support of projects: FPA2017-85197-P and
RTI2018-101674-B-I00 (Spanish Ministry of Science, Innovation and Universities and the European Regional
Development Fund. –ERDF), CENAPAD-SP (Centro Nacional de Processamento de Alto Desempenho em
São Paulo), project UNICAMP/FINEP - MCT process nr. proj606, Fundacção de Amparo à Pesquisa do Estado de
São Paulo (FAPESP) process nr. 2016/19764-9) and CNPq (Conselho Nacional de Desenvolvimento Científico e
Tecnológico) process nr. 404993/2016-8.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Reference

1. The Pierre Auger Collaboration. Measurement of the cosmic ray spectrum above 4× 1018 eV using inclined
events detected with the Pierre Auger Observatory. J. Cosmol Astropart. P 2015, 2015, 049. [CrossRef]

2. Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990.
3. The Pierre Auger Collaboration. Depth of maximum of air-shower profiles at the Pierre Auger Observatory.

I. Measurements at energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005. [CrossRef]
4. The Pierre Auger Collaboration. Inferences on mass composition and tests of hadronic interactions from

0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017,
96, 122003. [CrossRef]

5. Auger, P.; Maze, R.; Ehrenfest, P.; Freon, A. Les grandes gerbes de rayons cosmiques. J. Phys. Radium 1939,
10, 39–48. [CrossRef]

6. Guillén, A.; Bueno, A.; Carceller, J.; Martínez-Velázquez, J.; Rubio, G.; Peixoto, C.T.; Sanchez-Lucas, P. Deep
learning techniques applied to the physics of extensive air showers. Astropart. Phys. 2019, 111, 12–22.
[CrossRef]

7. Guillén, A.; Todero, C.; Martínez, J.C.; Herrera, L.J. A Preliminary Approach to Composition Classification
of Ultra-High Energy Cosmic Rays. In Proceedings of the 3rd International Conference on: Applied Physics,
System Science and Computers (APSAC 2018), Lectures Notes in Electrical Engineering, Dubrovnik, Croatia,
26–28 September 2018; pp. 196–202.

8. Heck, D.; Knapp, J.; Capdevielle, J.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate
Extensive Air Showers; Technical report; 51.02.03; LK 01; Wissenschaftliche Berichte, FZKA-6019 (Februar 98);
Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1998. [CrossRef]

http://dx.doi.org/10.1088/1475-7516/2015/08/049
http://dx.doi.org/10.1103/PhysRevD.90.122005
http://dx.doi.org/10.1103/PhysRevD.96.122003
http://dx.doi.org/10.1051/jphysrad:0193900100103900
http://dx.doi.org/10.1016/j.astropartphys.2019.03.001
http://dx.doi.org/10.5445/IR/270043064


Entropy 2020, 22, 998 11 of 12

9. Institute for Nuclear Physics (IKP). CORSIKA—An Air Shower Simulation Program. Available online:
https://www.ikp.kit.edu/corsika/index.php (accessed on 3 September 2020).

10. Koller, D.; Sahami, M. Toward optimal feature selection. In Proceedings of the Thirteenth International
Conference on Machine Learning (ICML’96), Bari, Italy, 3–6 July 1996; pp. 284–292.

11. Herrera, L.J.; Pomares, H.; Rojas, I.; Verleysen, M.; Guillén, A. Effective input variable selection for
function approximation. In Proceedings of the 16th International Conference on Artificial Neural Networks,
ICANN’2006–LNCS 4131, Athens, Greece, 10–14 September 2006; pp. 41–50. [CrossRef]

12. Lafuente, V.; Herrera, L.J.; del Mar Pérez, M.; Val, J.; Negueruela, I. Firmness prediction in Prunus persica
‘Calrico’ peaches by visible/short-wave near infrared spectroscopy and acoustic measurements using
optimised linear and non-linear chemometric models. J. Sci. Food Agric. 2014, 111, 2033–2040.

13. Upasana, R.; Chouhan Usha, V.N. Comparative study of machine learning approaches for classification and
prediction of selective caspase-3 antagonist for Zika virus drugs. Neural Comput. Appl. 2020. [CrossRef]

14. Del Falco, I.; De Pietro, G.S. Evaluation of artificial intelligence techniques for the classification of different
activities of daily living and falls. Neural Comput. Appl. 2020. [CrossRef]

15. Qin, P.; Shi, X. Evaluation of Feature Extraction and Classification for Lower Limb Motion Based on sEMG
Signal. Entropy 2020, 22, 852. [CrossRef]

16. Fanjul-Vélez, F.; Pampín-Suárez, S.; Arce-Diego, J.L. Application of Classification Algorithms to Diffuse
Reflectance Spectroscopy Measurements for Ex Vivo Characterization of Biological Tissues. Entropy 2020,
22, 736. [CrossRef]

17. The FCC Collaboration. FCC-hh: The Hadron Collider. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107.
[CrossRef]

18. Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II
model. Phys. Rev. D 2011, 83, 014018. [CrossRef]

19. Fletcher, R.S.; Gaisser, T.K.; Lipari, P.; Stanev, T. SIBYLL: An event generator for simulation of high energy
cosmic ray cascades. Phys. Rev. D 1994, 50, 5710–5731. [CrossRef] [PubMed]

20. Pierog, T.; Karpenko, I.; Katzy, J.M.; Yatsenko, E.; Werner, K. EPOS LHC: Test of collective hadronization
with data measured at the CERN Large Hadron Collider. Phys. Rev. C 2015, 92, 034906. [CrossRef]

21. Fesefeldt, H. The Simulation of Hadronic Showers: Physics and Applications; Cern Libraries: Geneva,
Switzerland, 1985.

22. Ferrari, A.; Sala, P.; Fasso, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code; Stanford Linear Accelerator
Center (SLAC): Menlo Park, CA, USA, 2005. [CrossRef]

23. Bass, S.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Gerland, L.; Hofmann, M.;
Hofmann, S.; Konopka, J.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part.
Nucl. Phys. 1998, 41, 255–369. [CrossRef]

24. Nelson, W.; Hirayama, H.; Rogers, D. EGS4 Code System (No. SLAC-265); Technical report; Stanford Linear
Accelerator Center: Menlo Park, CA, USA, 1985.

25. Asif, A.; Dawood, M.; Jan, B.; Khurshid, J.; DeMaria, M.; Minhas, F.U.A.A. PHURIE: hurricane intensity
estimation from infrared satellite imagery using machine learning. Neural Comput. Appl. 2018. [CrossRef]

26. Jamil, M.; Zeeshan, M. A comparative analysis of ANN and chaotic approach-based wind speed prediction
in India. Neural Comput. Appl. 2018. [CrossRef]

27. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv Preprint 2014, arXiv:1412.6980.
29. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available

online: http://www.deeplearningbook.org (accessed on 3 September 2020).
30. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16, 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

31. Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond; MIT Press: Cambridge, MA, USA, 2001.

32. Keerthi, S.S.; Lin, C.J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel.
Neural Comput. 2003, 15, 1667–1689. [CrossRef]

https://www.ikp.kit.edu/corsika/index.php
http://dx.doi.org/10.1007/11840817_5
http://dx.doi.org/10.1007/s00521-019-04626-7
http://dx.doi.org/10.1007/s00521-018-03973-1
http://dx.doi.org/10.3390/e22080852
http://dx.doi.org/10.3390/e22070736
http://dx.doi.org/10.1140/epjst/e2019-900087-0
http://dx.doi.org/10.1103/PhysRevD.83.014018
http://dx.doi.org/10.1103/PhysRevD.50.5710
http://www.ncbi.nlm.nih.gov/pubmed/10018226
http://dx.doi.org/10.1103/PhysRevC.92.034906
http://dx.doi.org/10.2172/877507
http://dx.doi.org/10.1016/S0146-6410(98)00058-1
http://dx.doi.org/10.1007/s00521-018-3874-6
http://dx.doi.org/10.1007/s00521-018-3513-2
http://www.deeplearningbook.org
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1162/089976603321891855


Entropy 2020, 22, 998 12 of 12

33. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003,
3, 1157–1182.

34. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal
Processing); Wiley-Interscience: New York, NY, USA, 2006.

35. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138.
[CrossRef] [PubMed]

36. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. 2005, 27, 1226–1238. [CrossRef] [PubMed]

37. Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized Mutual Information Feature Selection.
IEEE Trans. Neural Netw. 2009, 20, 189–201. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://dx.doi.org/10.1109/TNN.2008.2005601
http://www.ncbi.nlm.nih.gov/pubmed/19150792
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Description
	Methods
	Classification Methods
	Artificial Neural Network
	XGBoost
	Support Vector Machines
	K-Nearest Neighbors
	Classifiers Comparison

	Markov Blanket Feature Selection (MBFS) Algorithm

	Results
	Classification
	Feature Ranking

	Discussion
	Conclusions
	References

