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Abstract

The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic 
and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate 
peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets 
for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant 
pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of per-
oxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation 
processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic 
and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed 
that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in 
the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-
binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition 
of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deac-
tivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence 
of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress 
induced by salinity (150 mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, 
probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show 
the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-
PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence 
against nitro-oxidative stress situations in plants.
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Introduction

The ascorbate–glutathione cycle is composed of monode-
hydroascorbate reductase (MDAR), glutathione reductase 
(GR), ascorbate peroxidase (APX), and dehydroascorbate 
reductase (DHAR), as well as the antioxidant metabo-
lites ascorbate and glutathione and the reductive coenzyme 
NADPH. This metabolic pathway is essential for the detoxi-
fication and regulation of the cellular level of hydrogen per-
oxide (H2O2) in plant cells (Hossain and Asada, 1985; Asada, 
1992; Noctor and Foyer, 1998; Shigeoka et al., 2002). Thus, 
H2O2 is reduced to water by APX using ascorbate as the elec-
tron donor. The oxidized ascorbate (monodehydroascorbate 
or dehydroascorbate) is then regenerated by MDAR and 
DHAR using reduced glutathione (GSH) with the concomi-
tant generation of oxidized glutathione (GSSG). Finally, 
GSSG is reduced by GR with the aid of NADPH as the elec-
tron donor. At the subcellular level, these enzymes have been 
demonstrated to be located in different cellular compart-
ments including the cytosol, chloroplasts, peroxisomes, and 
mitochondria (Foyer and Halliwell, 1976; Groden and Beck, 
1979; Jiménez et al., 1998; Asada, 2006; Palma et al., 2006; 
Reumann and Corpas, 2010).

Nitric oxide (NO) belongs to a family of related molecules 
known as reactive nitrogen species (RNS). Although the spe-
cific source of NO in plants is still under debate (see Corpas 
et al., 2009), there is no doubt that plants have an endogenous 
NO source(s). S-Nitrosoglutathione (GSNO) is formed by 
the S-nitrosylation reaction of NO with GSH, and it has a 
significant physiological relevance because GSNO is consid-
ered to function as a mobile reservoir of NO bioactivity. On 
the other hand, the reaction of NO with superoxide radicals 
(O2·

–) generates a powerful oxidant, designated peroxyni-
trite (ONOO–). Furthermore, these NO-derived molecules 
can mediate several post-translational modifications (PTMs) 
such as nitration and S-nitrosylation. Protein tyrosine nitra-
tion involves the addition of a nitro group (-NO2) to one of 
the two equivalent ortho-carbons of the tyrosine residue aro-
matic ring. Protein nitration is affected by various features 
such as the protein quaternary structure, the environment in 
which the protein is located, and the nitration mechanism. 
Consequently, these covalent changes may result in effects 
such as loss or gain of protein function or no change in func-
tion (Souza et  al., 2008; Radi, 2013). On the other hand, 
S-nitrosylation involves the binding of an NO group to a 
protein cysteine residue and is also able to change the func-
tion of many proteins (Astier et al., 2012). Proteomic studies 
have identified potential plant protein candidates for nitra-
tion and S-nitrosylation which belong to diverse functional 
categories such as redox-related, stress-related, metabolic, 
and signalling/regulating proteins (Lindermayr et  al., 2006; 
Corpas et  al., 2015). These analyses have identified some 
enzymatic components of the ascorbate–glutathione cycle as 
potential PTM targets mediated by NO-derived molecules. 
However, little is known about the specific impact of these 
NO-related PTMs on the activity and structure of particular 
proteins involved in antioxidative systems (Holtgrefe et  al., 
2008; Chaki et al., 2011; Astier et al., 2012; Begara-Morales 

et  al., 2013a, 2014). In previous studies, in order to under-
stand the fine-tuned regulation of this key antioxidant sys-
tem by NO, the effect of NO-related PTMs on the activity 
of cytosolic APX was analysed. Thus, APX was identified 
as a target of S-nitrosylation in Arabidopsis plants (Fares 
et al., 2011; Keyster et al., 2011), and pea cytosolic APX has 
very recently been demonstrated to have a dual mechanism 
of regulation mediated by NO-derived molecules; while the 
nitration of Tyr235 provoked a deactivation of APX activ-
ity, S-nitrosylation at Cys32 activated this activity (Begara-
Morales et al., 2014). On the other hand, a nitroproteomic 
study of sunflower hypocotyls identified GR as a target for 
tyrosine nitration (Chaki et al., 2009) and for S-nitrosylation 
in rice (Lin et al., 2012). Additionally, MDAR has also been 
identified as a potential candidate for both S-nitrosylation 
and nitration in citrus plants (Tanou et  al., 2012) and for 
S-nitrosylation in rice (Lin et al., 2012) and Arabidopsis (Hu 
et al., 2015). However, to the authors’ knowledge, no infor-
mation is available on the effect of any PTMs mediated by 
NO-derived molecules on the molecular function of MDAR 
or GR.

Thus, the aim of the present study is to gain a more in-
depth understanding of the regulation of the antioxidative 
ascorbate–glutathione cycle by NO-PTMs. Pea (Pisum sati-
vum) was selected as the model plant for several reasons: 
(i) previous studies have allowed significant information on 
NO metabolism to be obtained (Barroso et al., 2006; Corpas 
et al., 2008, 2013b); (ii) the isolation and characterization of a 
full-length genomic clone encoding the pea MDAR has been 
reported; and (iii) a previous study on pea APX showed dual 
regulation by S-nitrosylation and nitration (Begara-Morales 
et al., 2014). On the other hand, both chloroplastic and cyto-
solic isoforms of GR (Edwards et  al., 1990; Stevens et  al., 
1997; Gill et al., 2013; Wu et al., 2013) were used to obtain the 
most complete information about this enzyme. Consequently, 
using in vitro approaches, the potential effect of NO-derived 
molecules such as ONOO– and GSNO, which trigger nitra-
tion and S-nitrosylation, respectively, on the molecular func-
tion of two enzymes (peroxisomal MDAR and cytosolic and 
chloroplastic GR) in this cycle was analysed.

As a result, peroxisomal MDAR was deactivated by both 
nitration and S-nitrosylation, which compromise the cycle’s 
antioxidant capacity. However, cytosolic and chloroplastic 
GR were unaffected by any of these NO-PTMs in an attempt 
to maintain the levels of GSH and the cellular redox state.

Materials and methods

Plant material and growth conditions
Pea (Pisum sativum L., cv. Lincoln) seeds were obtained from Royal 
Sluis (Enkhuizen, The Netherlands). Seeds were surface sterilized 
with 3% (v/v) commercial bleach solution for 3 min, and then were 
washed with distilled water, and germinated in vermiculite for 3–4 
d under the following growth chamber conditions: 24  ºC/18  °C 
(day/night), 80% relative humidity, a 16 h photoperiod, and a light 
intensity of 190  μE m–2 s–1. Healthy and vigorous seedlings were 
selected and grown in nutrient solutions (Corpas et al., 1993). After 
14 d, plants were transplanted to similar media supplemented with 
150 mM NaCl and were grown for 4 d (Begara-Morales et al., 2014).
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Expression and purification of pea MDAR and GR
The cDNAs encoding mature pea peroxisomal MDAR (AY662655.1) 
and cytosolic (X98274.1) and chloroplastic (X60373.1) GR were 
amplified by PCR from total pea leaf  RNA using the Fast Start 
High Fidelity polymerase (Roche) and the specific primer sets: 
5′- GGATCCGATGGTGCATTCGTTCAAGTATATC-3′ (for-
ward) and 5′-GCTCGAGTATTAAATTTTACTTGCAAA 
AGAAAGG-3′ (reverse) for MDAR; 5′-AGGATCCAATGAA 
CCAAGCAATGGCTACTC-3′ (forward) and 5′-CTCGAGTCTTA 
AGATCCAGCCACAGCTTTTG-3′ (reverse) for chloroplastic 
GR; and 5′-GGATCCGATGGCTAGAAAGATGCTTAACG-3′ 
(forward) and 5′-CTCGAGTTTTACAATTTGTCTT TGGCT 
TCAC-3′ (reverse) for cytosolic GR. The PCR products (1316 bp 
for MDAR, 1671 bp for chloroplastic GR, and 1510 bp for cytosolic 
GR) were cloned into the pGEM-T Easy Vector (Promega). The 
positive clones were confirmed by sequencing and then subcloned 
following prior digestion with BamHI and XhoI into the pALEXb 
vector.

Recombinant proteins carrying an N-terminal choline-binding 
domain were produced using Escherichia coli strain BIVU0811, 
which were routinely cultured overnight at 37 ºC in LB with kana-
mycin (25 mg l–1) and ampicillin (100 mg l–1). Gene expression was 
induced by the addition of 1 mM salicylate and 10 mM 3-methyl 
benzoate in a 250 ml culture grown at 20 ºC overnight in order to 
produce a higher proportion of soluble protein. Cells were harvested 
by centrifugation and re-suspended in 20 ml of phosphate-buffered 
saline (PBS; pH 7.0) containing 25 U ml–1 DNAse I, 10 mM MgCl2, 
and commercial protease inhibitor (Complete, Roche). Cells were 
lysed with a Niro Soavi NS1001L Panda High-Pressure homog-
enizer at a pressure of 800–900 bar. The cell lysate was then centri-
fuged at 10 000 g at 4 °C for 15 min, and the supernatant was used 
for the purification of recombinant proteins with the aid of a 1 ml 
LYTRAP column (Biomedal). The column was washed with 20 ml 
of 20 mM K phosphate buffer (pH 7.0) containing 300 mM NaCl 
and 5 mM choline. The protein was eluted in 1 ml fractions using 
a discontinuous gradient of choline prepared in the same buffer 
with 100 mM NaCl and 20 mM choline (fraction E1), 50 mM cho-
line (E2), 75 mM choline (E3), 100 mM choline (E4), 150 mM cho-
line (E5), 200 mM choline (E6), 250 mM choline (E7), and 500 mM 
choline (E8). The samples were analysed by 10% SDS–PAGE and 
stained with Coomassie blue dye. Supplementaryy Fig. S1 available 
at JXB online shows the SDS–PAGE analysis of the purification of 
recombinant peroxisomal MDAR (Supplementary Fig. S1A) and 
chloroplastic and cytosolic GR (Supplementary Fig. S1B, C).

MDAR and GR activity assays: treatment with a peroxynitrite 
donor (SIN-1) and a nitric oxide donor (GSNO)
MDAR (EC 1.6.5.4) activity was determined spectrophotometri-
cally by measuring the reduction of absorbance at 340 nm according 
to the technique described by Hossain et al. (1984) with some modi-
fications. The 1.0 ml assay mixtures contained 50 mM TRIS-HCl 
(pH 7.8), 0.2 mM NADH, 1 mM ascorbate, and sample. The reac-
tion was initiated by adding 0.2 U of ascorbate oxidase (EC 1.10.3.3 
from Cucurbita; Sigma-Aldrich, St. Louis, MO. USA), and the 
decrease in A340 due to NADH oxidation was monitored. One mil-
liunit of activity was defined as the amount of enzyme required to 
oxidize 1 nmol NADH min–1 at 25 ºC. GR (EC 1.6.4.2) activity was 
assayed by monitoring NADPH oxidation coupled with the reduc-
tion in GSH (Edwards et al., 1990). The reaction rate was corrected 
for the slight non-enzymatic oxidation of NADPH by glutathione 
disulphide (GSSG).

The molecule SIN-1 (3-morpholinosydnonimine) has been shown 
to generate peroxynitrite (ONOO–), a protein-nitrating compound 
(Daiber et  al., 2004). Recombinant proteins were therefore incu-
bated at 37 °C for 1 h with increasing concentrations (0–5 mM) of 
SIN-1 (Calbiochem) freshly made up before use (Begara-Morales 
et al., 2014). For treatments with GSNO (NO donor), recombinant 
proteins were incubated at room temperature for 30 min with 0.5 mM 

and 2 mM GSNO (Begara-Morales et al., 2014). As a control, pro-
teins were also incubated with 0.5 mM and 2 mM GSH. The protein 
concentration was determined with the aid of the Bio-Rad protein 
assay using bovine serum albumin (BSA) as standard.

Identification of nitrated tyrosine residues in recombinant pea 
MDAR using mass spectrometric techniques
Purified recombinant pea MDAR was processed according to a pro-
tocol involving reduction with dithiothreitol (DTT), derivatization 
with iodoacetamide (IAA), and enzymatic digestion with trypsin 
(37  ºC, 8 h). The sample was purified using solid-phase extraction 
cartridges to eliminate choline interference. The resulting peptide 
mixture was analysed using a MALDI-TOF/TOF (matrix-assisted 
laser desorption ionization-time of flight/time of flight) mass spec-
trometer (4800, AB Sciex) to evaluate the quality of the sample. 
MALDI-TOF spectra were interpreted using a peptide mass fin-
gerprinting (PMF) database search (Protein Prospector program). 
The database used for identification was UniProt (release 2011_02). 
The sample was then analysed by liquid chromatography–tandem 
mass spectometry (LC-MS/MS) using a Velos-LTQ mass spectrom-
eter equipped with a micro-ESI ion source (ThermoFisher, San Jose, 
CA, USA). The sample was evaporated to dryness and diluted up 
to 40 μl with water containing 5% methanol and 1% formic acid. 
The sample was then loaded in a chromatographic system consisting 
of a C18 pre-concentration cartridge (Agilent Technologies, Santa 
Clara, CA, USA) connected to a 10 cm long, 150 μm id Vydac C18 
column (Vydac, IL, USA). Separation was carried out at 1 μl min–1 
with a 3–40% acetonitrile gradient for 30 min (solvent A, 0.1% for-
mic acid; solvent B, acetonitrile with 0.1% formic acid). The high-
performance liquid chromatography (HPLC) system contained an 
Agilent 1200 capillary pump, a binary pump, a thermostated micro-
injector, and a micro switch valve.

The Velos-LTQ instrument was operated in positive ion mode 
with a spray voltage of 2 kV. The scan range of each full MS scan 
was m/z 400–2000. After each MS scan, a collection of targeted MS/
MS spectra was obtained in order to identify both the unmodified 
and nitrated form of the predicted tyrosine-containing peptides. 
The parent mass list of the targeted scan was selected to ensure 
maximum coverage of the tyrosine-containing tryptic peptides for 
MDAR. The list of targeted m/z values was obtained after in silico 
digestion of the proteins using nitrated tyrosine as a dynamic modi-
fication. The resulting list of predicted peptides (in both nitrated and 
unmodified form) was filtered to exclude all peptides not containing 
tyrosine residues.

The MS/MS spectra were searched using Proteome Discoverer 
software (ThermoFisher) on the basis of the following parameters: 
peptide mass tolerance 2 Da, fragment tolerance 0.8 Da, enzyme set 
as trypsin, and no missed cleavages. The dynamic modifications were 
cysteine carbamidomethylation (+57 Da), methionine oxidation 
(+16 Da), and tyrosine nitration (+45). The searches were carried 
out using a database containing all the peptides listed in Table 1. 
Identifications were filtered with XCorr >3, P(pep) <15%. The MS/
MS spectra of the nitrated tyrosines were manually validated by 
comparing the spectra obtained for the unmodified peptide and the 
nitrated peptide.

Site-directed mutagenesis
Conversion of the tyrosine codon (TAT) to phenylalanine 
(TTT) in the pea cDNA of peroxisomal MDAR (accession 
no, AY662655) was accomplished by oligonucleotide-directed 
mutagenesis. The template for PCR mutagenesis was also the 
pALEXb expression vector carrying the entire P. sativum pMDAR 
I  gene obtained as described above. The site-directed mutant of 
MDAR Tyr345Phe was obtained by using the following primers: 
5′-CTTTGATCTTTTCCAATCCAC-3′ (MDAR Tyr345Phe for-
ward) and 5′-GTGGATTGGAAAAGATCAAAG-3′ (MDAR 
Tyr1345Phe reverse) where the mutated nucleotides are underlined. 
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The mutation was introduced using the QuikChange kit following 
the manufacturer’s protocol. The mutant plasmid encoding nucle-
otide sequence was confirmed by DNA sequencing. The plasmids 
containing the mutation were transformed into XL1-Blue super-
competent cells and stored at –80 °C in 85% glycerol. The expression 
and purification of the recombinant mutant MDAR protein were 
obtained as previously described for the wild-type MDAR protein.

In silico analysis of MDAR
The three-dimensional structure of pea peroxisomal MDAR was 
modelled at the Geno3D server (Combet et al., 2002) using as tem-
plate the structures of the putidaredoxin reductase from Pseudomonas 
putida (PDB code access 1q1w and 1q1r) (Sevrioukova et al., 2004) 
and the ferredoxin reductase from Rhodopseudomonas palustris 
(PDB code access 3fg2) (Xu et al., 2009) with an identity of 26.8% 
and 30.1%, respectively. The analysis of the quality of the models 
was carried out at the Structural Analysis and Verification Server 
(SAVES) in terms of atomic non-local environment assessment 
(ANOLEA) (Melo and Feytmans, 1998), three-dimensional profiles 
(Verify3D) (Eisenberg et al., 1997), and Procheck (Laskowski et al., 
1993). The co-ordinates of FAD and NAD were calculated by super-
position of the model on those of the X-ray structure 2YVG, which 
shares 30% identity with the primary structure of the pea MDAR 
and 1.55 Å rms (backbone atoms) with the pea MDAR model.

Docking of the model of pea MDAR with GSH was carried out 
at the SwissDock sever (Grosdidier et al., 2011) in accurate mode 
and without defining the region of interest (blind docking) but 
allowing flexibility for the side chains within 5 Å of any atom of the 
ligand in its reference binding mode. Analysis of the results was car-
ried out with the help of Swiss PdbViewer (Guex and Peitsch, 1997) 
and UCSF Chimera (Pettersen et al., 2004)

Molecular evolution studies were carried out at the Evolutionary 
Trace server (Mihalek et al., 2004) using the model of the tertiary 
structure as input. The phylogenetic significance and evolution-
ary conservation were explored by BLASTP searches (Altschul 
et al., 1997) on the subsection Viridiplantae of UniProtKB release 
2013_05 (UniProt Consortium, 2011). The phosphorylation score 
was computed at the NetPhos 2.0 Server (Blom et al., 1999), and 
the solvent-accessible area by DSSP (Kabsch and Sande, 1983). 

The estimation of the pKa and the analysis of the interactions was 
carried out with Propka 3.1 (Olsson et  al., 2011). The algorithm 
was originally described by Li et al. (2005) as a very fast empirical 
method for structure-based pKa prediction that relies on the estima-
tion of desolvation effects and intraprotein interactions to account 
for the variation in the standard pKa of ionizable groups.

Biotin switch method
For in vitro S-nitrosylation, peroxisomal MDAR and chloroplastic 
and cytosolic GR were incubated with GSNO as the NO donor for 
30 min at room temperature. S-Nitrosylated recombinant proteins 
were subjected to the biotin switch method as described by Begara-
Morales et al. (2014). The non-nitrosylated free cysteine residue was 
blocked by incubation with 30 mM methyl methane thionsulphonate 
and 2.5% SDS at 50 °C for 20 min with frequent vortexing. Residual 
methyl methane thionsulphonate was removed by precipitation with 
2 vols of –20 °C acetone, and the proteins were resuspended in 0.1 ml 
of HENS buffer (25 mM HEPES pH 7.7 buffer containing 1 mM 
EDTA, 0.1 mM neocuproine, and 1% SDS) per milligram of pro-
tein. Biotinylation was obtained by adding 1 mM N-[6-(biotinamido) 
hexyl]-3′-(2′-pyridyldithio) propionamide (biotin-HPDP) and 
0.1 mM ascorbate, and incubating at room temperature for 1 h. The 
proteins were then precipitated with 2 vols of –20 ºC acetone. Biotin-
labelled proteins were separated by non-reducing 10% SDS–PAGE 
and then transferred onto polyvinylidene difluoride (PVDF) mem-
branes (Immobilon P, Millipore, Bedford, MA, USA) using a semi-
dry transfer system (Bio-Rad Laboratories). PVDF membranes were 
blocked using TRIS-buffered saline (TBS)+1% BSA. The blots were 
incubated with anti-biotin antibody at a dilution of 1:20 000 for 1 h, 
and the immunoreactive bands were detected using a photographic 
film (Hyperfilm, Amersham Pharmacia Biotech) with an enhanced 
chemiluminescence kit (ECL-PLUS, Amersham Pharmacia Biotech).

Purification of biotinylated proteins and immunodetection 
of MDAR
Purification of biotinylated proteins from control and NaCl-treated 
pea plant leaves was carried out as described by Begara-Morales 
et al. (2014). Briefly, biotinylated proteins and 30 μl of  neutravidin 

Table 1.  List of pea MDAR peptides scanned and identified by LC-MS/MS

Peptides identifieda Peptides scanned Length (no. of 
amino acids)

Mr (Da) No. of tyrosine 
residues

Not nitrated Nitrated

AKPAVEDVNQLAEEGLSFASK 21 2203 0
AVVVGGGYIGLELSAVLK AVVVGGGYIGLELSAVLK 18 1745 1
AYLFPESPAR AYLFPESPAR 10 1150 1
EAVAPYERPALSK EAVAPYERPALSK 13 1431 1

FGTYWIK 7 914 1
GIQLYLSTEIVSADLAAK GIQLYLSTEIVSADLAAK 18 1892 1
LFTSEIAAFYEGYYANK LFTSEIAAFYEGYYANK 17 1987 2032 3

LLPEWYSEK 9 1164 1
LNDLDVTMVYPEPWCMPR 18 2180 1

LPGFHTCVGSGGER 14 1417 0
NIFYLR 6 825 1

SANGEHFDYQTLVIATGSAVIR SANGEHFDYQTLVIATGSAVIR 22 2350 1
SFDLSWQFYGDNVGETVLFGDNDPASSKPK SFDLSWQFYGDNVGETVLFGDNDPASSKPK 30 3322 1
SVEEYDYLPYFYSR SVEEYDYLPYFYSR 14 1831 1876 4
TSVPDVYAVGDVATFPLK TSVPDVYAVGDVATFPLK 18 1879 1924 1
YILIGGGVSAGYAAR YILIGGGVSAGYAAR 15 1468 2

Some peptides detected do not contain tyrosines. These peptides were not included in the targeted MS/MS detection. They were detected and 
identified as their molecular weight coincides with that of predicted peptides.
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agarose 50% (w/v) slurry (high capacity neutravidin agarose resin, 
Thermo Scientific) per milligram of protein were equilibrated with 
a neutralization buffer [20 mM HEPES pH 7.7 containing 100 mM 
NaCl, 1 mM EDTA, and 0.5% (v/v) Triton X-100]. Proteins were 
added to the neutravidin agarose matrix and were incubated 1 h at 
room temperature with gentle shaking. The matrix with bound pro-
teins was washed several times with washing buffer [20 mM HEPES 
pH 7.7 containing 600 mM NaCl, 1 mM EDTA, and 0.5% (v/v) 
Triton X-100] and was transferred to an empty column. Finally, 
biotinylated proteins were eluted after incubation for 30 min with 
elution buffer (20 mM HEPES pH 7.7 containing 0.1 M NaCl, 1 mM 
EDTA, and 100 mM β-mercaptoethanol) at room temperature. 
Purified biotinylated proteins were separated by 12% SDS–PAGE 
and transferred to PVDF membranes as described above.

For MDAR immunodetection, the membrane was incubated with 
a rabbit polyclonal antibody against cucumber MDAR (Sano and 
Asada, 1994) diluted 1:3000. Immunoreactive bands were detected 
using a photographic film (Hyperfilm, Amersham Pharmacia 
Biotech) with an enhanced chemiluminescence kit (ECL-PLUS, 
Amersham Pharmacia Biotech).

Real-time quantitative RT–PCR
Real-time quantitative reverse transcription–PCR (RT–PCR) was per-
formed in 20 μl of reaction mixture, composed of 1 μl of cDNA, master 
mix IQ™ SYBR Green Supermix (Bio-Rad Laboratories, Hercules, 
CA, USA), and 10 pmol gene-specific forward and reverse oligonu
cleotides (5′-AGAAGAATGCGAAAGCTGTGGTTGTTGGAG-3′ 
and 5′-TGCTTCCAGGACCCTACCATCCTTTAGTTT-3′, respec 
tively) for pea MDAR using a iCycler iQ system (Bio-Rad). 
Amplifications were performed under the following conditions: ini-
tial polymerase activation, 95  ºC for 5 min; then 35 cycles of 30 s 
at 95ºC, 30 s at 62.2 ºC, and 1 min at 72ºC; with a final extension at 
72ºC for 7 min. An internal control of 18S rRNA was used for the 
normalization with the following forward and reverse oligonucleo-
tides: 5′-GTGCAACAAACCCCGACTTTTGAAGGATG-3′ and 
5′-GTGGTAGCCGTTTCTCAGGCTCCCTCTC-3′.

Results

Expression and purification of recombinant pea MDAR 
and GR proteins: effect of peroxynitrite

In order to increase the knowledge of the regulatory mech-
anism of the ascorbate–glutathione cycle involved in the 
decomposition of H2O2, the recombinant proteins of two of 
its components, the MDAR and GR isoforms, were obtained 
by sequencing the pea clones and overexpression in E. coli (see 
the Materials and methods). Supplementary Fig. S1 at JXB 
online shows the electrophoretic analysis of the different frac-
tions obtained after LYTRAP affinity column chromatogra-
phy of recombinant MDAR and GR proteins. Recombinant 
MDAR (Supplementary Fig. 1A) showed a molecular mass 
of 68.6 kDa, which is within the range of the theoretical value 
predicted for the peroxisomal MDAR protein (47.3 kDa) with 
the Ly-tag (21.3 kDa). The fractions E3–E5 with an MDAR 
activity of 1200  nmol NADH min–1 mg–1 protein showed 
an adequate grade of purity for this protein which was used 
for subsequent experiments. On the other hand, the recom-
binants chloroplastic and cytosolic GR (Supplementary 
Fig. 1B, C) showed a molecular mass of ~81 kDa and 75 kDa, 
respectively, which is within the range of the theoretical value 
predicted for both GR proteins (59.7 kDa with the Ly-tag 
21.3 kDa for the chloroplastic isoform, and 53.7 kDa with 

the Ly-tag 21.3 kDa for the cytosolic isoform). The fractions 
E2–E4 with GR activities of 18 μmol NADPH min–1 mg–1 
protein were used for subsequent experiments.

In order to evaluate the potential action of different 
NO-derived molecules, an in vitro assay was carried out in the 
presence of ONOO– using SIN-1 as the peroxynitrite donor 
(Chaki et  al., 2009; Begara-Morales et  al., 2014). Figure  1A 
depicts the inhibitory effect of ONOO– on MDAR activity in 
a dose-dependent manner that ranges from 30% with 0.1 mM 
SIN-1 to 67% with 1 mM and 5 mM SIN-1, respectively. On the 
other hand, Fig. 1B shows that chloroplastic GR activity was 
not affected by any assayed concentration of ONOO–. Similar 
behaviour was observed for cytosolic GR (results not shown).

The consistency of nitration by SIN-1 was confirmed by 
immunoblot analysis of the recombinant proteins using an 
antibody against 3-nitrotyrosine. Figure 1C and D show that 
the degree of nitration of both MDAR and GR isoforms 
increases as a function of the SIN-1 concentration.

Effect of S-nitrosylation of recombinant pea MDAR and 
chloroplastic and cytosolic GR

In order to gain additional insight into the regulation of pea 
MDAR and GR proteins, the effect of increasing concentra-
tions of GSNO, a well-known NO donor (Begara-Morales 
et  al., 2014), on the enzymatic activities was evaluated. As 
shown in Fig. 1E, 0.5 mM and 2.0 mM GSNO considerably 
inhibited MDAR activity by between 58% and 65%, respec-
tively. In contrast, chloroplastic GR activity is not signifi-
cantly affected (Fig. 1F). When both activities were assayed in 
the presence of 0.5 mM and 2 mM GSH to determine whether 
this effect was due to the release and binding of NO to the 
protein, GSH was found not to affect either MDAR or GR 
activities (Fig. 1G and H, respectively). Similar behaviour was 
observed for cytosolic GR (results not shown). This indicates 
that none of these enzymes is affected by S-glutathionylation. 
Furthermore, to show that GSNO treatment of recombinant 
MDAR and GR isoforms causes S-nitrosylation, the biotin 
switch assay method (Begara-Morales et al., 2014) was spe-
cifically used to detect S-nitrosylated proteins. Figure 1I and 
J shows that MDAR and chloroplastic and cytosolic GR are 
S-nitrosylated after treatment with 2 mM GSNO (lane 3), 
whereas treatment with GSH does not produce any signal in 
the biotin switch assay (lane 2). As expected, S-nitrosylation 
of these proteins is reversible and can be down-regulated by 
adding a reducing agent such as DTT to the S-nitrosylated 
proteins (lane 4) or in the absence of ascorbate (lane 5) which 
is used as an SNO-specific reducing agent, further demon-
strating S-nitrosylation.

Mapping tyrosine nitration sites and spectral 
characterization of nitrated pea peroxisomal MDAR

Given that GR is not affected by any of the PTMs mediated 
for NO-derived molecules, further study was conducted on 
MDAR. With the aim of identifying which of the 22 tyrosines 
present in the pea MDAR is(are) target(s) of this PTM, perox-
ynitrite-treated recombinant MDAR was subjected to trypsin 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/66/19/5983/697589 by U

niversidad de G
ranada - Biblioteca user on 15 June 2020

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv306/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv306/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv306/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv306/-/DC1


5988  |  Begara-Morales et al.

digestion followed by MALDI-TOF/TOF mass spectrometry 
examination. Table 1 shows the list of peptides scanned and 
those identified by LC-MS/MS. Among the peptides identified, 

only three contained a nitrated tyrosine. Figure  2 shows the 
comparison of the nitrated (top) and unmodified (bottom) 
MS/MS spectra of these identified peptides from the pea 

Fig. 1.  Effect of nitration and S-nitrosylation on recombinant monodehydroascorbate reductase (MDAR) and glutathione reductase (GR). Effect of SIN-1 
(peroxynitrite donor) on recombinant MDAR (A) and GR (B) activities. Representative immunoblot showing the grade of tyrosine nitration of MDAR (C) 
and chloroplastic and cytosolic GR (D), treated with different concentrations of SIN-1 and detected with an antibody against 3-nitrotyrosine (dilution 
1:2500). A 5 μg aliquot of protein was used per line. Effect of S-nitrosoglutathione (GSNO) on recombinant MDAR (E) and chloroplastic GR (F). Effect 
of glutathione (GSH) on recombinant MDAR (G) and chloroplastic GR (H). Purified MDAR and GR proteins were incubated at different concentrations of 
SIN-1 at 37 ºC for 60 min, GSNO at 25 ºC for 30 min, or GSH at 25 ºC for 30 min. The specific activity of the recombinant MDAR was 1200 nmol NADH 
min–1 mg–1 and for GR proteins it was 18 μmol NADPH min–1 mg–1. S-Nitrosylation of recombinant MDAR (I) and chloroplastic and cytosolic GR (J). 
A 5 μg aliquot of purified recombinants proteins was treated with 2 mM GSH and 2 mM GSNO and was subjected to the biotin switch method. Control 
treatments were carried out with water (lane 1) and 2 mM GSH (lane 2). Additionally, recombinants proteins were S-nitrosylated with 2 mM GSNO (lane 
3) and reduced again with 50 mM DTT (lane 4). Furthermore, GSNO-treated recombinant proteins underwent the biotin switch method without ascorbate 
(lane 5). Proteins were separated under non-reducing conditions by SDS–PAGE and blotted onto a PVDF membrane. Biotinylated proteins were detected 
using an anti-biotin antibody. Data are means ±SEM of at least three replicates. *Differences from control values were significant at P<0.05.
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MDAR. The nitrated peptide LFTSEIAAFYEGY*YANK 
(Z=2) has a total of 17 amino acids and a mass of 2032 Da 
(1987 Da plus 45 Da) which is compatible with the acquisi-
tion of a nitro group in Tyr213 (Fig. 2A). The nitrated peptide 
TSVPDVY*AVGDVATFPLK (Z=2) has a total of 18 amino 
acids and a mass of 1924 Da (1879 Da plus 45 Da) which is 
also compatible with the acquisition of a nitro group in Tyr292 
(Fig. 2B). The nitrated peptide SVEEYDYLPY*FYSR (Z=2) 
has a total of 14 amino acids and a mass of 1876 Da (1831 Da 
plus 45 Da) which is also compatible with the acquisition of a 
nitro group in Tyr345 (Fig. 2C).

Modelling of pea MDAR and identification of potential 
residues affected by peroxynitrite and GSNO

The low identity of pea MDAR with the structures available 
from the PDB made homology modelling a difficult task. 

Fig. 2.  Comparison of the nitrated (top) and unmodified (bottom) 
MS/MS spectra of the peptides identified from the pea peroxisomal 
MDAR in the corresponding panels: (A) LFTSEIAAFYEGY*YANK, (B) 
TSVPDVY*AVGDV ATFPLK, and (C) SVEEYDY*LPYFYSR. Peptide 
fragment ions are indicated by ‘b’ if the charge is retained on the 
N-terminus and by ‘y’ if the charge is maintained on the C-terminus. The 
subscript indicates the number of amino acid residues in the fragment 
studied from either the N-terminus or the C-terminus. The superscript 
indicates the charge (1+ or 2+) of the backbone fragmentation. (This 
figure is available in colour at JXB online.)

Fig. 3  (A) Location of the tyrosine residues and cysteine residues 
susceptible to being responsible for the modulation of the enzymatic 
activity of pea MDAR by peroxynitrite and GSNO. (B) GSH binding site 
close to Cys68 located by blind docking. (This figure is available in colour 
at JXB online.)
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The best co-ordinates were obtained from Geno3D server 
(Combet et al., 2002) using as template the PDB entries 1q1w, 
1q1r (26.8% identity), and 3fg2 (30.1% identity) (Sevrioukova 
et  al., 2004; Xu et  al., 2009). The model was refined to  
–18 225.1 kcal mol–1 and comprises from residue 6 to resi-
due 433 (98.8% coverage). The analysis of the quality of the 
model yields an Errat overall quality factor of 88.496, 81.82% 
of the residues with averaged 3D-1D score larger than 0.2, 
and 64.6% at the most favoured regions in the Ramachandran 
plot, 1.9% (i.e. seven residues) being at disallowed regions.

The location on the model of the pea MDAR of the 
three tyrosine residues identified as nitrated by LC-MS/MS 
and the two cysteine residues that are potential targets for 
GSNO did not provide any conclusive information regarding 
the modulation of the enzyme by tyrosine nitration and/or 
for S-nitrosylation (Fig.  3A). However, since MDAR plays 
an important role in homeostasis, it is reasonable to assume 
that its regulation has been preserved through evolution. On 
the other hand, the fact that the modulation takes place via 
the modification of only a few residues points to a particu-
lar reactivity of those residues. Bearing in mind both ideas, 
residues identified as potential targets of the PTM were fur-
ther analysed. The results are summarized in Supplementary 
Table S1 at JXB online and reveal that Tyr292 is absolutely 
preserved and shows the lowest estimated pKa, Tyr213 is 
prone to phosphorylation, and Tyr345 is the most accessible. 
Cys197 is buried and less preserved that Cys68. Molecular 
docking with GSNO failed due to problems with the param-
eterization of the S–O bond, but when the calculations were 
carried out with GSH an area close to Cys68 was spotted 
where GSH fits with an estimated Kd of 6.5 μM (Fig. 3B).

Effect of SIN-1 on recombinant mutant pea MDAR 
(Tyr345Phe) obtained by site-directed mutagenesis 
analysis

Of the nitrated tyrosines, in silico analysis outputs Tyr345 as the 
most likely candidate responsible for the observed inhibition by 
ONOO– since this residue is located at the active site and closely 
interacts with the cofactor. To corroborate this hypothesis, the 
Tyr345 residue in MDAR was replaced with phenylalanine by 
site-directed mutagenesis to obtain mutant MDAR Tyr345Phe. 
The overexpression and purification of the mutant were obtained 
as the recombinant wild type which yielded a functional enzyme 
resistant to inhibition by 0.5 mM and 5.0 mM ONOO– (Fig. 4A). 
Additionally, the nitration by SIN-1 of the mutant MDAR 
Tyr345Phe was confirmed by immunoblot analysis using an 
antibody against 3-nitrotyrosine (Fig. 4B) which shows that the 
degree of nitration increases as a function of the SIN-1 concen-
tration. This allows the confirmation that the nitration of Tyr345 
is the residue responsible for the inhibition of MDAR activity.

Analysis of protein and gene expression of MDAR 
under salt-induced oxidative stress

In order to gain additional insight into the physiological rele-
vance of MDAR under an oxidative stress situation, it was ana-
lysed in leaves of pea plants grown in the presence of 150 mM 

NaCl as was previously reported (Begara-Morales et al., 2014). 
Figure 5A shows by immunoblot analysis the MDAR protein 
expression which was found to increase clearly under salinity 
conditions. MDAR gene expression was also analysed and a 
similar behaviour to the protein expression was observed, with 
an increase of 3.5-fold under salt stress (Fig. 5B).

Purification of total S-nitrosylated proteins under 
salinity stress and detection of S-nitrosylated MDAR

To evaluate if MDAR under salinity stress conditions under-
goes a process of S-nitrosylation, total S-nitrosylated proteins 
were purified from leaves of pea plants grown under control 
and salinity stress conditions and then the presence of MDAR 
protein among these S-nitrosylated protein was evaluated by 
immunoblotting. Figure 5D depicts the electrophoretic analy-
sis of total S-nitrosylated proteins. Thus, under salinity stress, 
the pattern of S-nitrosylated proteins showed an increase in the 
number and in the intensity of some specific bands. Figure 5D 
shows the immunoblot analysis of the total S-nitrosylated pro-
teins probed with an antibody against cucumber MDAR where 
an increase under salinity stress was also observed. Taken 
together, the results indicate that MDAR is S-nitrosylated in 
vivo and this process is increased under salinity conditions, 
which supports the data observed in in vitro conditions (Fig. 1I).

Discussion

PTMs such as nitration and S-nitrosylation mediated by 
NO-derived molecules are now considered to be crucial ele-
ments in the fine-tuned regulation of the function of their 

Fig. 4.  Effect of SIN-1 (peroxynitrite donor) on the recombinant mutant 
pea MDAR I (Tyr345Phe). (A) Effect of SIN-1 on recombinant MDAR 
activity. (B) Representative immunoblot showing the grade of tyrosine 
nitration of recombinant mutant pea MDAR and detected with an antibody 
against 3-nitrotyrosine (dilution 1:2500). Recombinant mutant pea MDAR 
I (Y345F) protein was incubated at different concentrations of SIN-1 at 
37 ºC for 1 h. Data are means ±SEM of at least three replicates.
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protein targets. In higher plants, proteomic analyses of 
nitration/S-nitrosylation have shown that a certain number 
of proteins are targets of PTMs mediated by NO-derived 
molecules (Lindermayr et  al., 2005; Chaki et  al., 2009; 
Álvarez et al. 2011; Lozano-Juste et al., 2011; Tanou et al., 
2012; Begara-Morales et  al., 2013a, b, 2014; Corpas et  al., 
2007, 2015). However, information on the specific impact 
of NO-PTMs on key proteins involved in antioxidative sys-
tems and the consequences for their functionality and protein 
structure is scarce (Yu et al., 2014).

Very recently, in vitro assays of several recombinant 
Arabidopsis superoxide dismutases (MnSOD1, FeSOD3, 
and CuZnSOD3) have shown that these SOD activities were 
not altered upon GSNO treatment but were inhibited to dif-
ferent degrees by ONOO– (Holzmeister et al., 2015). In this 
context, the ascorbate–glutathione pathway is one of the key 
antioxidant systems involved in the regulation of H2O2 lev-
els in plant development and under abiotic stress conditions. 
In this respect, it has very recently been demonstrated that 
pea cytosolic APX, a key enzyme system in the antioxidant 
ascorbate–glutathione cycle, presents dual regulation by both 
tyrosine nitration and S-nitrosylation (Begara-Morales et al., 
2014). Furthermore, several proteomic studies have identified 
GR and MDAR, other important components in the ascor-
bate–glutathione cycle, as targets of tyrosine nitration/S-
nitrosylation processes (Chaki et al., 2009; Lin et al., 2012; 
Tanou et  al., 2012). To elucidate the molecular mechanism 

and physiological relevance of these NO-PTMs to GR 
and MDAR functionality and their effect on the potential 
operation of the cycle, the present study analyses the regu-
lation of MDAR and GR activities at the molecular level 
by using NO-derived molecules such as peroxynitrite and 
S-nitrosoglutathione that have the capacity to mediate tyros-
ine nitration and S-nitrosylation, respectively.

GR is an important enzyme in the antioxidative defense 
system that converts oxidized glutathione (GSSG) to reduced 
glutathione (GSH) using NADPH as cofactor. This reaction 
enables the GSH/GSSG ratio to be maintained at a high level, 
which is very important given that GSH is considered to be 
the most abundant soluble antioxidant in plants. This enzyme 
system has different isoenzymes located in a diverse range of 
cell compartments (Edwards et  al., 1990; Romero-Puertas 
et al., 2006; Wu et al., 2013) and plays an important physio-
logical role in maintaining and regenerating GSH in response 
to biotic and abiotic stresses in plants (Creissen et al., 1992; 
Foyer and Noctor, 2011; Leterrier et al., 2012; Gill et al., 2013; 
Signorelli et al., 2013). Under the present experimental condi-
tions, the activities of either isoform tested was unaffected by 
any NO-PTM assayed and mediated by ONOO– and GSNO, 
suggesting that this could be a mechanism for maintaining 
GSH regeneration in order to sustain antioxidant capacity of 
the ascorbate–glutathione cycle against nitro-oxidative cell 
conditions. Moreover, it must be pointed out that, in the case 
of tyrosine nitration mediated by peroxynitrite, this behav-
iour is unusual as, to the authors’ knowledge, the pea GR is 
the first case of a nitrated protein found to be unaffected by 
this NO-PTM in higher plants as, up to now, most analyses 
have shown that nitration causes loss of function in all pro-
teins identified in higher plants (Astier and Lindermayr, 2012; 
Corpas et al., 2013b).

Given that pea GR was unaffected by NO-PTMs either 
for peroxynitrite or for GSNO, this study was focused on 
MDAR which is the enzyme in the ascorbate–glutathione 
cycle involved in the regeneration of reduced ascorbate. The 
pea (P.  sativum) plant has only one gene encoding MDAR 
(Murthy and Zilinskas, 1994) whose corresponding protein 
has been immunolocalized in the different subcellular com-
partments including chloroplasts, peroxisomes, mitochon-
dria, and the cytosol (Leterrier et al., 2005). As part of the 
ascorbate–glutathione cycle, MDAR also plays an important 
role under environmental stresses in which nitro-oxidative 
stress could be a significant component. In pea, although 
MDAR activity increased under high light intensity and cad-
mium, it was reduced by the herbicide 2,4-D (Leterrier et al., 
2005). However, during the natural senescence of pea leaves, a 
simultaneous decrease in MDAR and APX activities has been 
reported (Jiménez et al., 1998). In tomato, MDAR activity is 
also increased by salinity (Mittova et al., 2003) and high light 
intensity (Gechev et  al., 2003), in rice by low temperature 
(Oidaira et al., 2000), and in Arabidopsis by UV-B radiation 
(Kubo et al., 1999). However, in Arabidopsis, stresses such as 
high temperature (30  ºC), enhanced light intensity (200 μE 
m–2 s–1), water deficiency (water deprivation for 2 d), and 
low temperature (5 ºC) did not affect MDAR activity (Kubo 
et al., 1999).

Fig. 5.  Protein and gene expression of MDAR and analysis of 
S-nitrosylated MDAR in leaves of pea plants under salinity (150 mM NaCl) 
stress conditions. (A) Immunoblotting analysis of MDAR protein expression 
using an antibody against cucumber MDAR (dilution 1:3000). A 10 μg 
aliquot of protein was used per lane. (B) Real-time quantitative RT–PCR 
transcript analysis (arbitrary units) of the MDAR gene. Data are means 
±SEM of at least four independent RNA samples. *Differences from control 
values were significant at P>0.05. (C) Detection of total S-nitrosylated 
proteins separated under non-reducing conditions by 12% SDS–PAGE 
and blotted onto a PVDF membrane. Biotinylated proteins were detected 
using anti-biotin antibodies as described in the Materials and methods. 
(D) Immunoblot of total S-nitrosylated proteins probed with an antibody 
against cucumber MDAR (dilution 1:3000). A 5 μg aliquot of protein was 
used per lane.
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As mentioned above, several proteomic studies have identi-
fied MDAR as a potential target for both S-nitrosylation and 
nitration (Lin et al., 2012; Tanou et al., 2012). However, the 
specific effects of these NO-PTMs on MDAR functions are 
not known. Thus, the present data show that both processes 
cause loss of MDAR function. Three putative candidates 
have been identified for tyrosine nitration and two cysteine 
residues are present in pea MDAR, but the fact that none 
of them is located in a relevant position from a functional 
point of view makes it difficult to understand the mechanism 
of inhibition and whether all of them are equally relevant. 
However since MDAR plays an important role in homeo-
stasis and only a few residues are modified, it is reasonable 
to assume that those residues have been preserved through 
evolution and that they show a particular reactivity (Sano 
et al., 2004). For the particular case of tyrosine nitration, it is 
accepted that it proceeds though a radical mechanism where 
tyrosine cannot react directly with peroxynitrite but rather 
with carbon dioxide or a metal centre to yield a secondary 
oxidizing species that reacts with tyrosine to form the tyrosyl 
radical (Alvarez and Radi, 2003). Thus, from both evolu-
tionary and chemical points of view, Tyr292 should be the 

strongest candidate for nitration, Tyr345 the weakest, and 
Tyr213 may be discarded and considered as a good candi-
date to undergo phophorylation. However, an analysis of the 
interaction network of the protein with its cofactors shows 
that only Tyr345 is involved (Table 2). Thus, the second inter-
action sphere of Tyr345 includes residues that directly inter-
act with the atoms N3 (His313) and N10 (Glu45 and Asp296) 
from FAD (Table 2). Interestingly the prediction of the pKa 
values output by PropKa 3.1 for the ionizable groups pre-
sent in FAD and NAD included in the model of pea MDAR 
reveals that atoms N3 and N10 from FAD show extreme 
anomalous values, the former being –1.72 (expected 5) and 
the latter 4.35 (expected 10). This analysis led to the hypoth-
esis that nitration of Tyr345 should influence the functional-
ity of MDAR. This hypothesis was confirmed by site-directed 
mutagenesis and, as expected, the functionality of the mutant 
MDAR Tyr345Phe was not affected by 5.0 mM ONOO–.

The enzymatic activity of MDAR is also regulated by 
GSNO, and a link between MDAR and NO metabolism 
throughout iron metabolism has been reported. Specifically, 
plant oxyhaemoglobin (Hb) can act as an NO scavenger with 
the concomitant production of nitrate and Fe3+-Hb which is 

Table 2.  Analysis of the first and second interaction spheres (in italics) of the three tyrosine residues identified as nitrated

The contribution of hydrogen bonding (involving side chains and backbone), coulombic interactions, and desolvation effects (regular, which is 
calculated according to Coulomb’s law, and RE, which includes all interactions between the ionizable residue and the remaining protein, apart 
from the Coulomb energy, that affects the deprotonation energy of the residue). Residues of the second interaction sphere that interact with any 
of the cofactors are shown in bold.

Residue pKa Buried (%) Desolvation effects Hydrogen bond Coulombic 
interaction

Atoms 
cofactor

Regular RE Side chain Backbone

Tyr345 G 11.99 56 % 0.90 438 0.00 0 0.21 Asp315 G –0.02 Arg318
0.90 Asp315

  Asp315 2.63 97 3.82 554 1.17 0 –1.60 His313 G
–0.85 Lys319 G

–0.20 Tyr342 G

–0.21 Tyr345 G

–0.08 Tyr345 G –0.10 Arg318

–0.32 His316

–1.13 His313
–1.66 Lys319

=>N3 FAD

  Arg318 11.00 92 –1.93 540 0.00 0 0.21 Glu45
0.04 Asp296
0.10 Asp315

0.02 Tyr345

=>N10 FAD
=>N10 FAD

Tyr292 9.95 38 1.12 387 0.00 0 –0.77 Lys285 G 0.00 Xxx0 X 0.08 Asp281 G
0.10 Asp290

–0.01 Lys102
–0.58 Lys285

  Asp281 3.91 32 1.47 370 0.13 0 –0.18 Asp281 G

–0.19 Lys285 G

-0.08 Lys279

0.02 Glu 339

  Asp290 3.07 3 0.53 290 0.02 0 –0.85 Lys102 G –0.02 Asp290 G –0.03 Lys 285

–0.38 Lys102

  Lys102 11.07 0 –0.67 268 0.00 0 0.85 Asp290 G 0.01 Tyr292 G

0.38 Asp 290

  Lys285 10.17 45 –2.04 406 0.00 0 0.77 Tyr 292 G 0.34 Asp281 GX

0.03 Asp290 G

0.58 Tyr292

Tyr213 11.13 23 0.86 347 0.00 0 0.27 Asp352
Asp352 3.50 5 0.42 295 0.01 0 -0.52 Asp352 G

–0.09 Leu353 G

–0.02 Lys217

–0.10 Arg349
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reduced to Fe2+-Hb in the presence of ascorbate and NADH, 
and MDAR activity is a key element in this process because 
it facilitates the regeneration of ascorbate (Igamberdiev et al., 
2006; Wang and Hargrove, 2013). The sequence of MDAR 
comprises two cysteine residues and, according to Sano et al. 
(1995), one cysteine is more reactive towards DNTBA and it 
seems to participate in the reduction of the enzyme by NADH. 
As depicted in Supplementary Table S1 at JXB online, Cys68 
seems to be the best candidate for S-nitrosylation because it 
is better preserved and more accessible. The identification was 
approached taking into account that S-nitrosylation by GSNO 
is a transnitrosylation reaction, an affinity between GSNO and 
the target proteins is expected, and hypothesizing that it may 
be detected in docking experiments. In fact it has been demon-
strated that such an affinity is strong enough to be exploited to 
isolate targets proteins (Begara-Morales et al., 2013a). Blind 
docking experiments with GSH found a region close to Cys68 
where GSH fits with an estimated Kd of 6.5 μM (Fig. 3B). This 
result is significant because amino acid sequence alignment 
reveals that Cys68 is equivalent to Cys117 of chloroplastic 
MDAR that has been reported to be involved in the activity 
and structural stability of chloroplastic MDAR (Li et al., 2010)

Additionally, both ONOO– and GSNO showed concentra-
tion-dependent inhibitory effects on MDAR activity, which 
suggests that these NO-derived molecules can have a fine-
tuned regulatory effect depending on their cellular produc-
tion and physiological and stress conditions. It is well known 
that peroxisomes have a remarkable oxidative metabolism. 
However, it must also be pointed out that peroxisomes are 
subcellular compartments where the presence of  l-arginine-
dependent nitric oxide synthase activity (Barroso et al., 1999), 
NO generation, and other NO-related species including 
ONOO– and GSNO has been demonstrated (Barroso et al., 
2013a; Corpas and Barroso, 2013). Therefore, peroxisomal 
MDAR could be modulated through loss of  function when 
these molecules are overproduced under adverse conditions 

and could consequently contribute to a nitro-oxidative stress. 
In order to assess the in vivo relevance of  the present study, 
salt stress (150 mM NaCl) was applied to plants as an inducer 
of  nitro-oxidative stress (Begara-Morales et al., 2014). It was 
found that MDAR expression (mRNA, protein, and activ-
ity) increased, which may reflect a mechanism to compen-
sate the inhibitory effect of  S-nitrosylation and nitration 
upon the enzyme in salt-stressed pea leaves. To date, other 
peroxisomal enzymes such as catalase (Clark et  al., 2000) 
and NADH-dependent hydroxypyruvate reductase (Corpas 
et al., 2013a) have been demonstrated to be targets of  NO, 
which confirms the importance of  NO in the peroxisomal 
metabolism.

In summary, the present results provide new insights into 
the molecular mechanism involved in regulating MDAR and 
GR through PTMs mediated by NO-derived molecules and 
confirm the close involvement of  NO and ROS metabolism 
in the antioxidant defence against nitro-oxidative stress sit-
uations in plants. These data, together with previous find-
ings on the dual regulation of  APX by S-nitrosylation/
nitration (Begara-Morales et  al., 2014), are summarized 
in Fig.  6. It shows the modulation of  the antioxidative 
response of  key enzymes in the ascorbate–glutathione cycle 
by NO-PTMs, where MDAR was deactivated by nitration 
and S-nitrosylation, which could compromise the cycle’s 
antioxidant capacity. However, GR was not affected by any 
of  these NO-PTMs in an attempt to maintain the levels of 
GSH and the cellular redox state, suggesting that this could 
be a crucial mechanism to sustain the antioxidant capacity 
of  the ascorbate–glutathione cycle against nitro-oxidative 
cell conditions.

Supplementary data

Supplementary data are available at JXB online.

Fig. 6.  Regulation of the ascorbate–glutathione cycle by nitric oxide (NO). NO modulates the ascorbate–glutathione cycle throughout post-translational 
modifications (PTMs) as tyrosine nitration and S-nitrosylation of APX and MDAR proteins. MDAR activity is reduced after both modifications, with APX 
activity also being reduced by tyrosine nitration. Under nitro-oxidative stress conditions, these modifications could compromise the antioxidant capacity 
of the cycle. However, APX activity is enhanced by S-nitrosylation while GR activity is not significantly affected by these NO-related PTMs. This behaviour 
suggests that APX and GR try to detoxify hydrogen peroxide and maintain regeneration of GSH, respectively, and consequently the cellular redox state to 
maintain the antioxidant resistance of the ascorbate–glutathione cycle against nitro-oxidative cell conditions. (This figure is available in colour at JXB online.)
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Figure S1. SDS–PAGE analysis of the purification of the 
recombinant proteins.

Figure S2. Multiple alignment of the deduced amino acid 
sequences of MDAR in different plant species.

Table S1. Characterization in terms of evolutionary conser-
vation, likelihood of tyrosine phosphorylation, solvent-acces-
sible surface area, and estimated pKa of the three tyrosine 
and two cysteine residues susceptible to being responsible for 
the modulation of the enzymatic activity of pea MDAR by 
peroxynitrite and GSNO.
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