
Mapping the Sensitivity of Population
Exposure to Changes in Flood
Magnitude: Prospective Application
From Local to Global Scale
Andreas Paul Zischg1* and María Bermúdez2

1Mobiliar Lab for Natural Risks, Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern, Bern,
Switzerland, 2Environmental Fluid Dynamics Group, Andalusian Institute for Earth System Research, University of Granada,
Granada, Spain

The floodplains of rivers are relevant living spaces for population globally and provide
favorable locations for economic development. However, these areas are commonly
exposed to floods, and the increasing population together with the changes in storminess
as a result of global warming mean that the risks from flooding are expected to rise. Most
studies investigating the impact that climatic change has on flood risk are based on a
cascade of global climate model simulations coupled with regional climate models,
hydrologic models, inundation models, and flood impact models. However, this
approach is subject to uncertainties. Model results are found to be sensitive to climate
forcing, the structure of the underlying models, the choice of methods used for
downscaling and bias correction, and the use of extreme value analysis for both
current and future climate conditions. Moreover, uncertainties are expected to
propagate through the model cascade. To overcome these problems, we propose a
method for analyzing and mapping the sensitivity of population exposure in floodplains to
changes in flood magnitude. The method is based on downward counterfactuals, namely
perturbations of a selected flood scenario by increasing its magnitude, interpreted in this
case as the worsening of a today’s design flood event as a result of climatic changes. The
increase in the impact of a current design flood compared to its counterfactual illustrates
the sensitivity to changes in hazard. We calculate the normalized gradients of the flood
exposure curves, that is, the increase in the exposure and magnitude of the perturbed
event relative to the exposure and magnitude of the current scenario. We test the
applicability of the method on local, national, and global scale by using existing data
sets, including flood hazard maps, flood protection standards, floodplain delineation, river
network definition, and spatial population distribution. The gradients were found to vary
remarkably across the globe and are overall smaller in the upper range of floodmagnitudes
that in the lower range. Based on these results, we compare the drivers of the sensitivity in
different parts of the world and identify river reaches with the highest relative gradients.
These river reaches might be the most affected by climate change and thus deserve an in-
depth investigation of the underlying characteristics of the floodplains and the need for
climate change adaptation.
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INTRODUCTION

Floods are a substantial threat to societies around the world,
hampering sustainable development (UNISDR, 2015). Especially
in developing countries, flood events are a key factor that can push
additional people into poverty (Winsemius et al., 2018).Moreover,
floods are expected to become more frequent in several regions as
a result of climatic changes (IPCC, 2012). Hence, flooding and
flood risk have become major topics for investigation in both the
disaster risk and the climate change impact research community.
The scale and spatial resolution are crucial for studying floods and
their impacts (Kundzewicz et al., 2019). Studying floods on a
global scale requires different approaches than studying floods on
a local or regional scale. Modeling floods on a global scale requires
the use of simplified models on a coarse spatial and temporal scale
and is often based on several assumptions that are used to
parametrize the effects of local-scale processes (Ward et al.,
2015). In contrast, modeling floods on a local scale requires
specific data and high spatial resolution (Bermúdez and Zischg,
2018). However, cross-scale issues arise when studying the impact
of climatic change on floods and flood risk (Mateo et al., 2017;
Fleischmann et al., 2019), meaning that techniques for
downscaling or disaggregation are required. Global climate
models (GCMs) provide the basis for flood models, but the
outputs of these models need to be downscaled to continental
or regional scales with regional climate models (RCMs) and then
coupled with regional- and local-scale hydrological and
inundation models to provide flood projections (Gusyev et al.,
2016; Felder et al., 2018). In these approaches, simulations of river
flows are run continuously over a selected period, and the resulting
flood events are analyzed using extreme value statistics. Examples
of this type of modeling approach are given in IPCC (2012),
Pappenberger et al. (2012), Hirabayashi et al. (2013), Ward et al.
(2013), Dottori et al. (2018), Winsemius et al. (2018). These
models provide global information concerning the regions in
which river flow and thus flooding is likely to increase or
decrease. Several recent studies analyzing these changes in
flood risk have included more drivers of change, such as an
increase in population or economic growth. For example,
Jongman et al. (2012), Winsemius et al. (2015), Güneralp et al.
(2015), Kinoshita et al. (2017), and Aerts et al. (2018) consider the
future spatiotemporal patterns of settlements and socio-economic
activities in their model cascades.

However, the use of model cascades that are driven by global
and RCMs is controversial. The precipitation output of a GCM/
RCMmodel cascade often exhibits significant biases (Smith et al.,
2014; Felder et al., 2018), and methods to correct these biases are
therefore required (Prudhomme et al., 2002). Thus, uncertainties
can occur in model cascades as a result of the climate model
structure selected and the choice of technique used for
downscaling and correction (Prudhomme et al., 2010; Cloke
et al., 2013; Steinschneider et al., 2015a). Moreover, the results
of these models have been found to be sensitive to climate forcing

and the structure of the GCM used (Ward et al., 2013), resulting
in uncertainties that also propagate through the coupled
hydrologic and hydraulic models (Steinschneider et al., 2015b;
Trigg et al., 2016; Grimaldi et al., 2019). Significant uncertainties
are also associated with return period estimates under current
and future climatic conditions (Winsemius et al., 2013),
depending on the length of observation and the periods
simulated, and thus on the sample size used for extreme value
statistics (Smith et al., 2014; Trigg et al., 2016). Hence, the
capacity of this approach to identify and analyze extreme
flood events is still under discussion (Felder et al., 2018).

To overcome the uncertainties and problems associated with
model cascades, alternative approaches are currently being
developed (Guo et al., 2017; Knighton et al., 2017; Kim et al.,
2018; Broderick et al., 2019; Keller et al., 2019a; Keller et al.,
2019b). In studies investigating the impacts of climate change on
hydrology, a scenario-neutral approach has been used to analyze
the sensitivity of river flows to changes in temperature and
precipitation, where the observed rainfall and temperature data
are modified by stepwise increases or decreases in the value of
associated parameters. The disturbed data are then fed into a
hydrological model, and the resulting changes in river flow are
analyzed in relation to the changes in the atmospheric
parameters. Another approach to analyze the sensitivity of
flood impacts to changing environmental conditions is based
on downward counterfactual analysis (Aspinall and Woo, 2019;
Woo, 2019). According to Roese (1997), a downward
counterfactual is a thought about the past in which the
outcome is worse than what actually happened. The concept
of counterfactual thinking initially comes from cognitive
psychology (Roese and Olson, 1995) and is used in natural
hazard research to extend the range of possible hazard events.
The exploration of alternative (worse) realizations of past
hazardous events is used to extend knowledge concerning the
impact of rare extreme events. If applied in flood risk analyses, an
extreme meteorological event is perturbed and alternative,
physically plausible scenarios of the same event are modeled.
The impacts of the counterfactual outcomes are analyzed and
compared with the impacts of the observed event; for example,
the consequences of a hypothetical deviation of the observed
track of a storm or an increase in rainfall (Staffler et al., 2008; Guo
et al., 2016).

This allows to answer questions as, for example, “What if the
rainfall event had been 10% more intense?” The artificial
worsening of a historic flood event by computer simulations is
similar to sensitivity analysis in model experiments, but the
selection of the changes to be analyzed differs. Conventional
sensitivity analysis makes “blind” changes in both directions
(increases and decreases in the input parameters) within
specified limits, which can lead to higher or lower impacts. In
downward counterfactual analysis, the range over which the
vulnerability of a system is tested is driven by searching for
different future, plausible scenarios in which flood impacts will
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increase. The scenarios considered in downward counterfactual
analysis are thus a subset of scenarios of a sensitivity analysis.
Given the large uncertainty associated with projections of future
climate change, such analyses typically encompass a wide range of
possible futures.

Despite the growing interest in flood risk analyses under
changing climate conditions, an explicit method for mapping
the sensitivity of flood exposure or risk estimates to climatic
changes is currently lacking. Hence, the main aim of this paper is
to develop and evaluate a generalized method that can be used to
analyze the sensitivity of floodplains to changes in the magnitude
of floods in terms of exposure. In terms of exposure, we focus on
population. Thus, exposure here is defined as the absolute
number of population potentially affected by a specific flood
scenario. Furthermore, we present the possible application of this
method to fluvial floods at various spatial scales. However, the
examples presented below can also be used as a blueprint for
analyzing the exposure of other categories, such as infrastructure
and assets.

MATERIALS AND DATA

The method used for mapping the sensitivity of population
exposure to changes in the magnitude of floods consists of
performing a geographical overlay of flood hazard maps with
population data. We focus on riverine floods and do not consider
coastal floods or the flooding of small mountain rivers. Datasets
are available from which the proposed method can be applied
without the need for purposefully performing flood simulations.
The main requirements are datasets that include both flood maps
and information about the population in the area investigated.
The flood maps and population datasets are then brought to the
same spatial resolution. Flood maps with a coarse resolution
compared to the population maps can be downscaled by a water
volume distribution approach and projected onto a digital
elevation model with a higher spatial resolution following the
procedure by Winsemius et al. (2015). Coarse population data
can be downscaled and disaggregated to the spatial resolution of
the flood hazard maps according to the procedures outlined in
Stevens et al. (2015), Calka et al. (2017), Lloyd et al. (2017), and
Tatem (2017).

Flood Hazard Maps
Flood hazard maps are usually based on regional flood frequency
approaches. Flood flows are estimated from pooled river gauged
data (Trigg et al., 2016) and upstream catchment characteristics
(Sampson et al., 2015), or regional hydrologic simulations
(UNISDR, 2015). These approaches represent the present day
frequency of river flooding. In general, flood hazard maps with
specific return periods (or exceedance probabilities) are modeled,
using periods such as 10, 20, 50, 100, 200, 500, or 1,000 years.

The application of this method on the local scale is based on
hydraulic simulations and synthetic hydrographs describing a
wide range of flood magnitudes. The synthetic hydrographs were
derived from the analysis of typical flood events and typical
shapes of hydrographs and flood peak-volume relationships were

extracted from historic flood events to be used for scaling the
flood magnitude as outlined in Zischg et al. (2018a) and Zischg
et al. (2018c). The synthetic hydrographs with increasing flood
magnitudes were subsequently used to elaborate a set of
inundation maps that can be overlaid with population data.
This allows the analysis of the relationship between flood
magnitude and exposure.

Detailed maps of flood prone areas are available on a national
scale for many countries. In order to test the proposed method at
this scale, data from the National Mapping System for Floodable
Zones (Sistema Nacional de Cartografía de Zonas Inundables,
hereafter SNCZI) was used, which includes information for
return periods of 10, 50, 100, and 500 years (MARM, 2011).
These maps were developed by the SpanishMinistry of Ecological
Transition and are freely available on the SNCZI website. The
maps combine information obtained from historical flood
records, hydrological-hydraulic studies, and geomorphological
analyses.

Flood maps from the Joint Research Centre of the European
Commission JRC (Alfieri et al., 2016; Dottori et al., 2016; Dottori
et al., 2018) were used to test the applicability of the method on a
global scale. Flood scenarios with return periods of 10, 20, 50, 100,
200, and 500 years were used. Alternative datasets include the
flood hazard maps from the European Center for Medium-Range
Weather Forecasts (Pappenberger et al., 2012) and the maps from
the University of Bristol and Fathom Global (Sampson et al.,
2015; Smith et al., 2019). The GFPLAIN250m dataset of Earth’s
floodplains (Nardi et al., 2019) can be used to delimit the
floodplains as spatial reference units for analysis. The
hydrosheds dataset (Lehner et al., 2008; Lehner et al., 2011)
and the MERIT Hydro dataset (Yamazaki et al., 2019) are
important basic datasets from which the river network can be
delineated and river reaches and basins can be distinguished. The
global database FLOPROS (Scussolini et al., 2016) can be used to
consider flood protection standards. For the application of the
method to historical events, the flood maps compiled from
historic floods that are collected by the Dartmouth Flood
Observatory (http://floodobservatory.colorado.edu/) can be used.

Population Data
At the local scale, the most reliable exposure data are geolocated
residential registers, (e.g., Fuchs et al., 2015; Fuchs et al., 2017;
Zischg et al., 2018b) or disaggregated population statistics at a
high spatial resolution (such as 100 m × 100 m, as used in Zischg
et al., 2013). If available, residential register databases cover a
national administrative unit. Hence, either residential registers or
gridded population data can also be used for analysis at the
national scale. In the case of Spain, estimates of the population
affected by each floodmagnitude were obtained from SNCZI. The
spatial information on population density that was used to obtain
these estimates draws on Eurostat data, the National Geographic
Service database, aerial photography, and cadastral databases.
These estimates of the exposed population are available for 10,
100, and 500-years floods. Reference datasets that provide spatial
data of the population at a global scale are the Gridded Population
of the World (GPW) v4 dataset from the Center for International
Earth Science Information Network at Columbia University
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(CIESIN, 2016) and the Global Human Settlement Layer GHSL
dataset from the Joint Research Centre of the European
Commission (ghsl.jrc.ec.europa.eu). Other datasets, such as the
WorldPop dataset (Lloyd et al., 2017; Tatem, 2017) have been
elaborated by means of spatial disaggregation and downscaling
using ancillary data such as nighttime lights from satellite images.
A further high-resolution settlement layer was compiled by
Tiecke et al. (2017). An overview of the available gridded
population datasets and their spatial resolutions is given by
Calka et al. (2017) and Stevens et al. (2015).

At a second level of analysis, it is possible to identify
floodplains in which population growth drives the increase
in the gradient between changes in flood magnitude and
exposure. In order to specify which floodplains exhibit the
highest rates of population increase, data on population
dynamics from the IPCC Shared Socio-economic Pathways
scenarios SSP can be used (Jones and O’Neill, 2016; Kc and
Lutz, 2017; Rozell, 2017).

METHOD

The main goals are to analyze and map the sensitivity of human
exposure to floods and climatic changes by means of a downward
counterfactual approach. The main principle is the geographical
overlay of the spatial extent of a basic flood event and of a
downward counterfactual event with spatial data of the socio-
economic exposure. The latter can include people, infrastructure,
cultural sites, or any other socio-economic asset.

In the general case, a basic flood event of a certain magnitude
is therefore the starting point for the analysis, and its magnitude
is increased by a specified amount to simulate a counterfactual
event. However, there is typically limited information available
on observed flood events for larger areas. Thus, we propose to
extend the counterfactual analysis beyond its original meaning of
perturbing one specific observed event. A flood can be either a
design event or a simulated flood of certain magnitude
characterized by a hydrograph. Indicators of flood magnitude
include peak discharge, flood volume, flood extent, and flood
return period. The analysis of the exposed population or other
resources at risk is then repeated using the perturbed flood event
with a higher flood magnitude. The gradient between the
increase in the flood magnitude and the exposure can be
described as the sensitivity of the exposure footprint of a
floodplain to changes in flood magnitude (Figure 1). The
steeper the slope, the higher the sensitivity of the floodplain
to floods of increasing magnitudes. Downward counterfactual
analysis can either start from a frequent flood event (e.g., a return
period of 10–50 years) or an extreme flood event (e.g., a return
period of 100–500 years). Differences in this gradient indicate
whether a floodplain exhibits a higher sensitivity to changes in
the extremes or to changes in the lower magnitudes. Gradients
that are calculated using normalized values of magnitude and
exposure can be used to compare the sensitivity of one floodplain
with another. Finally, the gradients can be used to map and
compare the sensitivities of multiple floodplains. The gradient is
normalized as follows:

gnorm � (expdc − expbs)/expbs
(RPdc − RPbs)/RPbs

(1)

where gnorm is the normalized gradient, expbs the number of
exposed population of the basic scenario, expdc the exposure of
the downward counterfactual, RPbs the return period of the basic
scenario, and RPdc the return period of the downward
counterfactual.

The proposed method extends classical flood risk analyses
where the damage-exceedance probability function is used for
quantifying flood risk, such as the cost-benefit analysis in flood
risk management. The flood exposure or impact is calculated for
each flood hazard scenario (return period or exceedance
probability, respectively). If plotted on a two-dimensional
graph with the exceedance probability of a flood hazard
scenario on the x-axis and the number of people exposed as a
result of the flood scenario on the y-axis, the exposure footprint of
a floodplain can be derived. The slope of the interpolated curve
between the basepoints of the hazard scenarios shows how an
increase in the probability of a flood relates to an increase in the
exposed population, and the range of flood magnitudes over
which the sensitivity of the floodplain is highest can be identified.
For example, a river reach or floodplain without lateral levees or
flood protection might exhibit a population, that is, exposed to
floods with a return period as low as 50 years, but the rise in
exposure will be relatively linear (Figure 2A) with flood
magnitude. In contrast, a river with a high standard of flood
protection, e.g., with lateral dikes protecting the floodplain from
floods with return periods up to 100 years will not be sensitive to
an increase in the frequency of floods of lower magnitudes. In
contrast, a significant increase in the affected population will
occur when the flood magnitude of the river system exceeds the
standard of protection (Figure 2B). These floodplains are

FIGURE 1 | Generalized scheme of the proposed method for mapping
the sensitivity of floodplains to changes in flood magnitude in terms of
exposure using downward counterfactual analysis.
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sensitive to changes in flooding over the middle range of
magnitudes. The third example shows a restored river with a
large riverbed (Figure 2C). In this, example, an increase in the
flood magnitude will only lead to a slight increase in the area
inundated, and a steep increase in flood exposure will only occur
in the case of an extreme flood. This means that this floodplain is
only sensitive to flood magnitudes in the upper extremes. These
characteristics of the exposure functions can be simplified by
stating whether a curve is convex, concave, or linear. A concave
curve (e.g., Figure 2B) indicates that the sensitivity of the
exposure of a floodplain to changes in flood magnitude is
higher in the lower range, while a convex curve (e.g.,
Figure 2C) indicates a higher sensitivity in the upper range of
magnitudes. A floodplain with a nearly linear form (e.g.,
Figure 2A) of the exposure footprint function shows the same
sensitivity across all flood magnitudes. The curve also allows the
identification of the range of flood magnitudes in which the
gradient is steepest as well as the magnitude at which abrupt
changes in gradient occur.

In the specific case of climate change, design flood events
representative of the current climate can be considered as a
starting point for these approaches. The worsening of a
today’s design flood event as a result of climatic changes, such
as an increase in the frequency or intensity, can be interpreted as a
downward counterfactual. The increase in the impact of a current
design flood compared to its counterfactual illustrates the
sensitivity to changes in hazard. Changes in the frequency or

magnitude of specific frequency events are, in fact, the type of
indicators that are typically used in the assessment of climate-
driven changes in flooding (Arnell and Gosling, 2016). For
example, several studies that rely on climate projections have
shown that the current 100-years flood can be expected to occur
more frequently in many regions over the coming decades,
becoming a 10-years return period event in some areas by
2100 (Hirabayashi et al., 2013). It is necessary to understand
the sensitivity of our floodplains to these changes and translate
this into impacts. Even if climate change predictions are
significantly uncertain, which is currently the case, the analysis
of sensitivity can offer valuable insights on the types of change
that could lead to higher impacts and the adaptation strategies
that are best suited to manage the risk. For example, rivers with
flood defense structures will not be affected by a substantial
increase in the frequency of events below the level of protection
but might be affected significantly by a small increase in the
magnitude of extreme events.

Prospective Applications
We first tested the application of the proposed method on a local
scale using the floodplain of the Emme River between Burgdorf
and Gerlafingen in the Canton of Bern, Switzerland, as an
example. This example aims to demonstrate the approach
based on hydraulic and flood impact simulations only, without
the addition of a full model chain of climate/precipitation
modeling and hydrologic modeling. The hydraulic simulations

FIGURE 2 | Schema of different characteristics of the exposure footprint of the floodplain. (A) A nearly linear increase in the exposed population with increasing
flood magnitude. (B) A concave shape, meaning that exposure increases sharply following levee overtopping. This floodplain is sensitive to changes in floods with return
periods around the standard of protection. (C) A relatively robust behavior to changes in lower floodmagnitudes. This floodplain is mostly sensitive to floodmagnitudes in
the upper extremes.
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were conducted in the 2D BASEMENT modeling environment
(Vetsch et al., 2017). The validation of the hydraulic model is
described in Zischg et al. (2018d). This numerical model solves
the shallow water equations on the basis of an irregular mesh,
which was generated from a digital elevation model with a spatial
resolution of 0.5 m, as described in detail in Zischg et al. (2018c).
In the local case study, flood events were scaled from bankfull
discharge (i.e., the river discharge capacity) to very extreme
events. The scaling was carried out by increasing the flood
magnitude, in a similar manner to that used for sensitivity
analysis. To test the different possible indicators, flood
magnitude was expressed as a) peak discharge (measured in
m3/s), b) extent of the flood (measured in m2), and c) return
period (measured in years). Data from the residential register of
the Swiss Federal Office of Statistics was used to map the spatial
distribution of the residential population, as described in Zischg
et al. (2018c). Exposure analysis was then performed at the scale
of a single building, and the exposed population was aggregated
over the whole floodplain. The floodplain is delimited by the
extent of the most extreme flood. When a high number of
scenarios is available, as in this case, the gradient can be
calculated between pairs of events along the entire range of
magnitudes. This allows us to make a detailed analysis of the
sensitivity of human exposure on this floodplain to changes over a
wide range of flood magnitudes. This example therefore aims to
demonstrate changes in the gradient with magnitude.

In the second step, the application of the proposed method
was tested at the national scale using Spain as an example.
Publicly available flood hazard maps were used together with
the associated affected population data compiled by the water
basin authorities in Spain. These flood maps, which include the
exposed population, represent flood magnitudes with return
periods of 10, 100, and 500 years. Both the return period and
the extent of flooding are considered indicators of flood
magnitude. In the counterfactual analysis for analyzing the
sensitivity of floodplains to changes in flood magnitude, the
gradient in population exposure between the 1-in-10-years
and the 1-in-100-years flood magnitude, and the gradient
between the 1-in-100-years and the 1-in-500-years flood
magnitude are calculated. The gradients describing the river
floodplains and administrative units of the river basin
authorities are then mapped. The floodplains are delimited
by the topologically connected extent of the most extreme
flood. Floodplains that are not connected along the whole of
the river are considered floodplains of individual reaches of the
river. For visualization purposes, we attribute the calculated
gradients to the river lines.

The application of the proposed method was then tested on a
global scale using the global flood hazard maps from the
European Commission JRC (Alfieri et al., 2016; Dottori et al.,
2016; Dottori et al., 2018). The return period was again used as an
indicator of flood magnitude and the FLOPROS dataset
(Scussolini et al., 2016) was used to consider protection
standards. This means that the inundation was set to null for
flood maps with return periods below that of the flood protection
standard. In contrast to the former example, a population density
map from the GPW v4 dataset was used to calculate the number

of exposed populations on the basis of population density and the
area flooded. The gradients were calculated for the spatially
connected floodplains. For visualization purposes, we attribute
the calculated gradients to the lines of the main rivers.

RESULTS

The application of this method on a local scale shows the
relevance of the indicator used to describe flood magnitude. In
this example, 12 synthetic flood events were simulated, ranging
from 200 m3/s (return period 1.3 years) to 750 m3/s (return
period 960 years), with incremental increases of 50 m3/s in the
peak flow (Figures 3 and 4). The 1-in-100 years event has a peak
discharge of 600 m3/s. The high number of simulations can be
used to assess multiple downward counterfactuals, such as
calculating the effect of a downward counterfactual event with
an increase of 50 m3/s in peak discharge from several starting
points. Downward counterfactual analysis can be performed for
flood events of lower as well as for higher magnitudes. In this case,
the downward counterfactual analysis corresponds to sensitivity
analysis in the conventional sense. The gradient between the flood
magnitude and exposed population varies along the axis
describing magnitude. When taking the peak discharge as the
main indicator for the flood event (i.e., when the magnitude of a
flood is perturbed by scaling up the synthetic hydrographs), the
floodplains show very linear behavior in terms of changes to flood
exposure (Figure 4, left). The number of exposed residents is
irrelevant up to a peak discharge of 400 m3/s. This corresponds to
a return period of approximately 7.5 years. Above this threshold,
the number of residents exposed rises with a steep gradient. The
gradient is steeper in the upper range than it is in the lower range
of flood magnitudes. In contrast, when return period is used as
the indicator for flood magnitude (Figure 4, center), the gradient
is steeper in the lower range of magnitudes. This corresponds to
the situation in Figure 2B. A curve in between those calculated
with the other indicators is obtained when the extent of the
flooded area is considered as flood magnitude (Figure 4, right).
Here, the gradient is lowest in the middle range of flood
magnitudes.

In summary, Figure 4 highlights the importance of the
indicator used to describe flood magnitude. Thus, a possible
pitfall in applying the proposed method could be a
misinterpretation of the absolute values of the sensitivity of a
floodplain against changes in flood magnitude. Therefore, the
indicator must be explicitly mentioned and care is required when
comparing the gradients. As a way of illustration, in the left side of
Figure 4, the shape of the curve is mainly determined by the
morphology of the river channel, with peak discharges up to 400
m3/s contained within the banks and overflow only occurring at
higher discharges. In the right side of Figure 4, the shape of the
curve describing exposure is mainly determined by the
morphology of the floodplain, producing small changes in
inundation up to considerably high discharges. However, these
small changes in the area flooded result in significant increases in
the exposure values because of the distribution of the population
within the floodplain. The population is primarily concentrated
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FIGURE 3 | Flood map of the Emme River floodplain downstream of Burgdorf, Canton of Bern, Switzerland. The colors show the peak discharge required to flood
the spatial subunits and the corresponding return periods.

FIGURE 4 | Exposure footprint of the Emme River floodplain downstream of Burgdorf, Canton of Bern, Switzerland. Left: Relationship between flood magnitude
expressed as peak discharge (m3/s) and exposed population. Center: Relationship between flood magnitude expressed as return period (years) and exposed
population. Right: Relationship between flood magnitude expressed as flood extent (km2) and exposed population.
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along the river, which means that they are affected as soon as the
river overflows. The curve in the middle of Figure 4 is determined
by the shape of the flood frequency curve, which is nearly a
straight line on a semi-logarithmic plot.

This effect of the indicator used to describe flood magnitude is
also apparent when the method is applied at a national scale.
Figure 5 illustrates the sensitivity of the floodplains of the main
rivers in Spain to changes in flood magnitude. In this application,
the return period and the flood extent were used as indicators of
the flood magnitude and two different flood magnitudes were
used for the counterfactual analysis. The first starting point is the
event with a return period of 10 years (RP10), and the
“perturbed” event is the 1-in-100 years design event (RP100).
The gradient is calculated based on the difference between these
events (RP10/100). For the higher range of flood magnitudes, the
1-in-100 years design event was selected as the starting point for
counterfactual analysis and the 1-in-500 years (RP500) design
event as the perturbed event. The gradient is expressed in

absolute values, that is, the increase in population exposure
(number of people exposed) vs. an increase in the return
period (years). It is notable that population exposure shows a
high sensitivity to an increasing flood magnitude in some river
reaches, while in others the sensitivity differs with the parameter
used to indicate magnitude and the range of magnitudes. As
shown in the local example, the gradients are, on average, steeper
at lower flood magnitudes than at higher magnitudes when
return period is considered an indicator of flood magnitude.
When flood extent is used as an indicator, the differences
between the gradients of the lower and upper magnitude
ranges are minor. Interesting examples are the middle reach
of the Ebro River in the province of Zaragoza and the rivers at the
East coast near Valencia. Flood exposure in these river reaches is
sensitive to changes at both magnitude ranges, regardless of the
indicator used for the calculation of the gradients. However, only
considering the two gradients results in a reduction in the
information gathered when compared to that obtained using

FIGURE 5 | Sensitivity of population exposure to changes in flood magnitude in the main river floodplains of Spain: (A) Gradient between an increase in exposed
population and an increase in frequency (return period in years) from downward counterfactual analysis of a 1-in-10 years design flood. (B) Gradient derived from
downward counterfactual analysis of a 1-in-100 years design flood. (C) Gradient between the increase in the exposed population and the increase in flood extent (km2)
from downward counterfactual analysis of a 1-in-10 years design flood. (D) Gradient derived from downward counterfactual analysis of a 1-in-100 years
design flood.
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the entire range of magnitudes, as seen in the application at
local scale.

Figure 6 shows the normalized gradients of the exposure
function, as a complement to the analysis of absolute gradients.
The increase in population exposure from the basic scenario to its
counterfactual is expressed relative to the population exposure of
the basic scenario, as outlined in Figure 1. The increase in the
return period is also expressed relative to the return period of the
basic scenario. In this way, a gradient of 1 means that a specific
percentage increase in the flood magnitude causes an identical
percentage increase in the exposure. The spatial pattern of the
normalized gradients is similar to that of the absolute gradients
when the return period is used as an indicator of floodmagnitude.
In contrast, the spatial pattern changes when the extent of
flooding is used as an indicator of flood magnitude. This is a
result of the relatively slight increase in the area flooded caused by
an increase in the return period; in many cases this is determined
by the orographic lateral constraints of a floodplain. A
normalized gradient cannot be calculated if the basic scenario
does not affect the population (no exposure), even if the
downward counterfactual does. A sudden increase from no
exposure to exposure is therefore marked with a different
color in Figure 6.

In the application on a global scale, the return periods were
used as indicators for flood magnitude and five flood magnitudes
were considered for the counterfactual analysis. The first basic
scenario is the design event with a return period of 10 years
(RP10) and the “perturbed” event is the 1-in-20 years (RP20)
event. The gradient was calculated by comparing both events. In
the same way, the following pairs of scenarios were considered:
RP20/50, RP50/100, RP100/200, and RP200/500. We calculated
the normalized gradients, that is, the increase in the exposure and
magnitude of the perturbed event relative to the exposure and
magnitude of the basic scenario. The gradients vary remarkably
across the globe (Figure 7). In the lower range of flood
magnitudes, the highest gradients are found in the rivers in
South America, Africa, Asia, and Eastern Europe. The
Mississippi River system, most European rivers, Indian, and
Australian rivers do not show any increase in exposed
population when the flood magnitude increases within this
range because these rivers have a high flood protection
standard. In contrast, the Indian and European rivers show a
higher sensitivity in the upper extremes of the flood magnitudes.
These flood magnitudes are generally above the standard of
protection according to the FLOPROS database. Exceptions
are river systems in Western and Eastern United States that
have a protection standard for floods of up to a 1-in-200 years
design event. Figure 7 indicates that the gradients are overall
smaller in the upper range of flood magnitudes than in the lower
range. Only 43 river reaches have gradients higher than 1.
Figure 8 synthesizes the analyses by highlighting the flood
magnitude range with the highest sensitivity gradient. Rivers
in South America, Equatorial and Sub Saharan Africa, Eastern
Europe, Middle East, and Southeast Asia exhibit the highest
sensitivity to changes in flood magnitudes in the lower range
(RP10/20, RP20/50). These river reaches have relatively low
protection standards and their flood exposure function is

concave in shape. In contrast, the rivers of India, North
America, Europe, Australia, Asia, and South Africa are more
sensitive to changes in the upper range of flood magnitudes
(RP100/200, RP200/500) and thus have convex exposure
functions. The rivers of Central and East Asia are most
sensitive to changes in the upper range of flood magnitudes
since they have protection standards in the middle of the flood
magnitudes range.

Table 1 shows the average gradients for all river reaches
where the basic event has a flood exposure greater than 0. If
weighted by reach length, the percentage of rivers with no
gradients range from 8.8 to 12.7%. The average gradients are
generally smaller for the upper flood magnitude ranges. Up to a
return period of 100 years, the length-averaged gradients are
greater than 1. The maximum gradients range from a factor of
53.2–5,177.8. The maximum gradient can be found in the basic
scenario of a return period of 20 years with its counterfactual of
50 years (RP20/50). However, only a small share of rivers has
exposure values greater than 0 of floods with return periods up to
20 years.

DISCUSSION

In this study, a method for analyzing and mapping the
sensitivity of population exposure in floodplains to changes
in the magnitude of flooding was presented. The method is
based on downward counterfactuals, namely perturbations of a
selected flood scenario by increasing its magnitude. We applied
the method at three different scales: local, national, and global.
The presented examples demonstrate the significant spatial
differences in the exposure of a population to a selected
event and its counterfactual. This variability is interesting
for further in-depth analysis. The proposed method offers a
high potential for gaining insights into why and where
settlements and infrastructure in floodplains might be
sensitive to climatic changes. This information is mostly
contained in flood risk change studies, but the mapping of
the gradients allows to make it explicit. The used indicators for
flood magnitude are directly correlated. However, the
relationship depends on the morphology of the floodplain.
The area affected by floods in topographically constrained
valleys will not remarkably increase with flood magnitude
once the lateral valley slopes are reached. In contrast, the
flooded area continuously increases with flood magnitude in
flat terrain. The sensitivity indicators can be overlaid with other
indicators describing the geomorphological characteristics of
floodplains (Allen and Pavelsky, 2018), hydrological
characteristics as described in various hydrological datasets,
and indicators describing the characteristics of the settlements
as well as their topological connectivity to the rivers, as outlined
by Zischg et al. (2018a).

The method was proved to be very flexible and applicable on a
range of scales. Nevertheless, the suitability of the information
content of globally available datasets requires further validation.
A thorough comparison between the outcomes of national and
global applications must be one of the next steps in the further
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development of the method. This in turn will enable a robust
comparison of the drivers of the sensitivity in different parts of
the world.

The calculation of the gradients depends on both the indicator
of flood magnitude used and the spatial units in which the
gradients are aggregated. In this study, we aggregated the
results to topologically connected floodplains, that is, the
extent of the maximum flooding of a particular river. If the
sensitivity of the floodplain is expressed as the absolute numbers
of the increase in exposed population vs. the increase in the area
flooded, the numbers will differ between small and large
floodplains. Thus, a comparison between spatial units of
different sizes is difficult to interpret. The modifiable areal
unit problem can be avoided by normalizing gradient values
or by harmonizing the spatial units (Röthlisberger et al., 2017); for
example, by dividing the river network into reaches of the same
length. However, dividing the river networks in this manner also

requires dividing the adjacent floodplains into adequate sections
for conducting the exposure analysis. The floodplains are
preferably delimited on the basis of their geomorphological
conditions, and thus we suggest using normalization and
calculating relative gradients. Expressing the gradients in
relative numbers (i.e., dimensionless) eases interpretation and
thus might be preferred for communicating potential risks. A
gradient of 1 means that a 1% increase in flood exposure
corresponds to a 1% increase in flood magnitude. The
normalization enables the comparison of river reaches across
wider areas and across a wide range of flood exposures. The maps
demonstrating the sensitivity of the floodplains to changes in the
flood magnitude can be used to identify river reaches with the
highest relative gradients. These river reaches might be the most
affected by climate change and thus deserve an in-depth
investigation of the underlying characteristics of the
floodplains and the potential for climate change adaptation.

FIGURE 6 | Sensitivity of population exposure to changes in the floodmagnitude of themain river floodplains of Spain: (A)Normalized gradient between an increase
in the exposed population and an increase in the frequency from downward counterfactual analysis of a 1-in-10 years design flood. (B)Normalized gradient derived from
downward counterfactual analysis of a 1-in-100 years design flood. (C) Normalized gradient between an increase in the exposed population and an increase in flood
extent from the downward counterfactual analysis of a 1-in-10 years design flood. (D)Normalized gradient derived from the downward counterfactual analysis of a
1-in-100 years design flood.
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FIGURE 7 | Sensitivity of population exposure in the world’s main river floodplains to changes in flood magnitude. Normalized gradient between the increase in
exposed population and the increase in frequency from the downward counterfactual analysis of a design flood of (A) 1-in-200 years, (B) 1-in-100 years, (C) 1-in-
50 years, (D) 1-in-20 years, and (E) 1-in-10 years.
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On the other hand, the use of absolute numbers to express
gradients can support priority setting in national adaptation plans.
River reaches with a high increase to exposure in absolute terms
might be prioritized over others when developing plans for
adapting local or regional flood risk management to the effects
of climate change. Analysis at the global scale also showed that the
method is sensitive to the standard of flood protection. On a local
scale, the standard of flood protection is considered using a high-
resolution digital elevation model in the inundation model. The
exact river morphology is hardly represented in global scale flood
models (Wing et al., 2019). Therefore, the FLOPROS database of
flood protection standards was used to consider the effects of
measures in river engineering and flood protection. We assumed
that no flooding occurs when the return period of the flood map is
below the flood protection standard and floods of higher
magnitude are not reduced by engineering measures. These
assumptions are simplifications and must be considered when
interpreting the results. Further analyses must explicitly consider
river morphology and flood protection measures. The case studies
presented rely on existing data, and the results thus depend
significantly on the reliability of the input data.

In the examples shown, we focused only on the exposed
population. The method should also be tested in order to
analyze application in terms of the sensitivity of infrastructure
systems, traffic systems, and other resources that are at risk from
changes in flood magnitude. It would be of interest to analyze

whether the sensitivity of population exposure differs widely from
other types of exposure. However, the application of the
presented method for calculating gradients of flood damages
will introduce the non-linearity of vulnerability functions in
the sensitivity analysis. This effect must be considered when
comparing gradients of exposure with gradients of flood
damages. Future applications must also focus on the meaning
of the gradients and analyze and compare different case studies.
However, the explorative application does not allow the
assessment of which gradients are to be considered as extreme.
The classification of the gradients into legend categories is based
on approximative quintiles only.

The exploratory applications showed that the presented
exposure-centered approach for mapping the sensitivity of
the floodplains to a potential increase in the magnitude of
flooding has a high potential for extracting information from
flood model applications. This method contributes to
understanding the potential drivers of flood risk change; the
topological connection between rivers and settlements. The
method is neutral to climate scenarios and thus could
partially explain the spatial variation in the outcomes of
modeling cascades driven by GCMs. This potentially
supports the elaboration of narratives and storylines
concerning the drivers of future changes in flood risk, and
can ultimately contribute to setting priorities for the
allocation of financial resources for climate adaptation in

TABLE 1 | Mean and maximum values of normalized gradients of river reaches where the basic event has a flood exposure greater than 0.

Magnitude range
(RP)

Length of rivers with no
gradient (%)

Length of river reaches with
gradient >1 (%)

Average gradient (weighted
by river length) (−)

Gradient of 99% quantile
(entire floodplains) (−)

Maximum
gradient (−)

RP10/20 8.8 33.9 130.6 9.9 5177.8
RP20/50 8.9 47.9 56.0 2.5 7590.1
RP50/100 12.5 1.1 1.0 0.5 60.8
RP100/200 13.0 0.3 0.3 0.6 191.2
RP200/500 12.7 0.2 0.04 0.3 53.2

FIGURE 8 | Range of flood magnitudes showing the highest relative gradient for sensitivity to change.
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flood risk management based on local vulnerabilities (Thaler
et al., 2018). Maps of the most sensitive floodplains could
support to identify those areas where flood adaptation is
needed in a framework of vulnerability-centered flood risk
management strategies. However, if cost-benefit analyses and
their future changes are needed, climate change simulations are
required.
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Gusyev, M., Gädeke, A., Cullmann, J., Magome, J., Sugiura, A., Sawano, H., et al. (2016).
Connecting global- and local-scale flood risk assessment: a case study of the Rhine
River basin flood hazard. J. Flood Risk Manage. 9, 343–354. doi:10.1111/jfr3.12243

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., et al. (2013). Global flood risk under climate change. Nat.
Clim. Change 3, 816–821. doi:10.1038/nclimate1911

IPCC (2012). Managing the risks of extreme events and disasters to advance climate
change adaptation: special report of the Intergovernmental Panel on Climate
Change. New York, NY: Cambridge University Press, Vol. x, 582.

Jones, B., and O’Neill, B. C. (2016). Spatially explicit global population scenarios
consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11,
084003. doi:10.1088/1748-9326/11/8/084003

Jongman, B., Ward, P. J., and Aerts, J. C. J. H. (2012). Global exposure to river and
coastal flooding: long term trends and changes. Global Environ. Change 22,
823–835. doi:10.1016/j.gloenvcha.2012.07.004

Kc, S., and Lutz, W. (2017). The human core of the shared socioeconomic pathways:
population scenarios by age, sex and level of education for all countries to 2100.
Global Environ. Change 42, 181–192. doi:10.1016/j.gloenvcha.2014.06.004

Keller, L., Rössler, O., Martius, O., and Weingartner, R. (2019a). Comparison of
scenario-neutral approaches for estimation of climate change impacts on flood
characteristics. Hydrol. Process. 33, 535–550. doi:10.1002/hyp.13341

Keller, L., Zischg, A. P., Mosimann, M., Rössler, O., Weingartner, R., and Martius,
O. (2019b). Large ensemble flood loss modelling and uncertainty assessment for
future climate conditions for a Swiss pre-alpine catchment. Sci. Total Environ.
693, 133400. doi:10.1016/j.scitotenv.2019.07.206

Kim, D., Chun, J. A., and Aikins, C. M. (2018). An hourly-scale scenario-neutral
flood risk assessment in a mesoscale catchment under climate change. Hydrol.
Process. 32, 3416. doi:10.1002/hyp.13273

Kinoshita, Y., Tanoue, M., Watanabe, S., and Hirabayashi, Y. (2018). Quantifying the
effect of autonomous adaptation to global river flood projections: application to future
flood risk assessments. Environ. Res. Lett. 13, 014006. doi:10.1088/1748-9326/aa9401

Frontiers in Earth Science | www.frontiersin.org September 2020 | Volume 8 | Article 39013

Zischg and Bermúdez Sensitivity of Flood Exposure

https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/zi-lamina.aspx
https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/zi-lamina.aspx
https://doi.org/10.1038/s41558-018-0085-1
https://doi.org/10.1002/2016EF000485
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.3389/feart.2019.00222
https://doi.org/10.1007/s11069-018-3270-7
https://doi.org/10.1029/2018WR023623
https://doi.org/10.1029/2018WR023623
https://doi.org/10.1080/19475705.2017.1345792
https://doi.org/10.1002/qj.1998
https://doi.org/10.1016/j.advwatres.2016.05.002
https://doi.org/10.1038/s41558-018-0257-z
https://doi.org/10.1016/j.scitotenv.2018.04.170
https://doi.org/10.1016/j.hydroa.2019.100027
https://doi.org/10.5194/nhess-15-2127-2015
https://doi.org/10.1080/24694452.2016.1235494
https://doi.org/10.1080/24694452.2016.1235494
https://doi.org/10.1029/2018WR024289
https://doi.org/10.1016/j.gloenvcha.2015.01.002
https://doi.org/10.1016/j.jhydrol.2017.09.021
https://doi.org/10.1016/j.jhydrol.2016.03.025
https://doi.org/10.1111/jfr3.12243
https://doi.org/10.1038/nclimate1911
https://doi.org/10.1088/1748-9326/11/8/084003
https://doi.org/10.1016/j.gloenvcha.2012.07.004
https://doi.org/10.1016/j.gloenvcha.2014.06.004
https://doi.org/10.1002/hyp.13341
https://doi.org/10.1016/j.scitotenv.2019.07.206
https://doi.org/10.1002/hyp.13273
https://doi.org/10.1088/1748-9326/aa9401
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Knighton, J., Steinschneider, S., and Walter, M. T. (2017). A vulnerability-based,
bottom-up assessment of future riverine flood risk using a modified peaks-over-
threshold approach and a physically based hydrologic model. Water Resour.
Res. 53, 10043–10064. doi:10.1002/2017WR021036

Kundzewicz, Z. W., Su, B., Wang, Y., Wang, G., Wang, G., and Jiang, T. (2019).
Flood risk in a range of spatial perspectives – from global to local scales. Nat.
Hazards Earth Syst. Sci. 19, 1319–1328. doi:10.5194/nhess-19-1319-2019

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., et al.
(2011). High-resolutionmapping of the world’s reservoirs and dams for sustainable
river-flow management. Front. Ecol. Environ. 9, 494–502. doi:10.1890/100125

Lehner, B., Verdin, K., and Jarvis, A. (2008). New global hydrography derived from
spaceborne elevation data. Eos Trans. AGU 89, 93. doi:10.1029/2008EO100001

Lloyd, C. T., Sorichetta, A., and Tatem, A. J. (2017). High resolution global gridded
data for use in population studies. Sci. Data 4, 170001. doi:10.1038/sdata.2017.1

MARM (2011). Guía metodológica para el desarrollo del sistema. Madrid, Spain:
Nacional de Cartografía de Zonas Inundables.

Mateo, C. M. R., Yamazaki, D., Kim, H., Champathong, A., Vaze, J., and Oki, T.
(2017). Impacts of spatial resolution and representation of flow connectivity on
large-scale simulation of floods. Hydrol. Earth Syst. Sci. 21, 5143–5163. doi:10.
5194/hess-21-5143-2017

Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R., and Grimaldi, S. (2019).
GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Sci.
Data 6, 180309. doi:10.1038/sdata.2018.309

Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H. L. (2012). Deriving global
flood hazard maps of fluvial floods through a physical model cascade. Hydrol.
Earth Syst. Sci. 16, 4143–4156. doi:10.5194/hess-16-4143-2012

Prudhomme, C., Reynard, N., and Crooks, S. (2002). Downscaling of global climate
models for flood frequency analysis: where are we now? Hydrol. Process. 16,
1137–1150. doi:10.1002/hyp.1054

Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S. (2010).
Scenario-neutral approach to climate change impact studies: application to
flood risk. J. Hydrol. 390, 198–209. doi:10.1016/j.jhydrol.2010.06.043

Roese, N. J. (1997). Counterfactual thinking. Psychol. Bull. 121, 133–148. doi:10.
1037/0033-2909.121.1.133

Roese, N. J., and Olson, J. M. (1995).What might have been: the social psychology of
counterfactual thinking. Mahwah, NJ: Lawrence Erlbaum Ass, Vol. XI, 408.

Röthlisberger, V., Zischg, A. P., and Keiler, M. (2017). Identifying spatial clusters of
flood exposure to support decision making in risk management, Sci. Total
Environ. 598, 593–603. doi:10.1016/j.scitotenv.2017.03.216

Rozell, D. (2017). Using population projections in climate change analysis. Clim.
Change 142, 521–529. doi:10.1007/s10584-017-1968-2

Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E.
(2015). A high-resolution global flood hazard model. Water Resour. Res. 51,
7358–7381. doi:10.1002/2015WR016954

Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel,
H., et al. (2016). FLOPROS: an evolving global database of flood protection standards.
Nat. Hazards Earth Syst. Sci. 16, 1049–1061. doi:10.5194/nhess-16-1049-2016

Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., and Neal, J. (2019). New
estimates of flood exposure in developing countries using high-resolution
population data. Nat. Commun. 10, 1814. doi:10.1038/s41467-019-09282-y

Smith, A., Freer, J., Bates, P., and Sampson, C. (2014). Comparing ensemble
projections of flooding against flood estimation by continuous simulation.
J. Hydrol. 511, 205–219. doi:10.1016/j.jhydrol.2014.01.045

Staffler, H., Pollinger, R., Zischg, A., and Mani, P. (2008). Spatial variability and
potential impacts of climate change on flood and debris flow hazard zone
mapping and implications for risk management. Nat. Hazards Earth Syst. Sci. 8,
539–558. doi:10.5194/nhess-8-539-2008

Steinschneider, S., McCrary, R., Mearns, L. O., and Brown, C. (2015a). The effects of climate
model similarity on probabilistic climate projections and the implications for local, risk-
based adaptationplanning.Geophys.Res. Lett.42, 5014–5044. doi:10.1002/2015GL064529

Steinschneider, S., Wi, S., and Brown, C. (2015b). The integrated effects of climate
and hydrologic uncertainty on future flood risk assessments. Hydrol. Process.
29, 2823–2839. doi:10.1002/hyp.10409

Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J. (2015). Disaggregating
census data for population mapping using random forests with remotely-sensed
and ancillary data. PloS One 10, e0107042. doi:10.1371/journal.pone.0107042

Tatem, A. J. (2017). WorldPop, open data for spatial demography. Sci. Data 4,
170004. doi:10.1038/sdata.2017.4

Thaler, T., Zischg, A., Keiler, M., and Fuchs, S. (2018). Allocation of risk and
benefits-distributional justices in mountain hazard management. Reg. Environ.
Change 18, 353–365. doi:10.1007/s10113-017-1229-y

Tiecke, T. G., Liu, X., Zhang, A., Gros, A., Li, N., Yetman, G., et al. (2017). Mapping
the world population one building at a time. World Bank. doi:10.1596/33700

Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson, C. C., et al.
(2016). The credibility challenge for global fluvial flood risk analysis. Environ.
Res. Lett. 11, 094014. doi:10.1088/1748-9326/11/9/094014

UNISDR (2015). Making development sustainable: the future of disaster risk
management, Global assessment report on disaster risk reduction. Geneva,
Switzerland: United Nations, 311.

Vetsch, D., Siviglia, A., Ehrbar, D., Facchini,M., Gerber,M., Kammerer, S., et al. (2017).
BASEMENT—basic simulation environment for Computation of environmental
flow and natural hazard simulation. Zurich, Switzerland: ETH Zürich.

Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., et al.
(2015). Usefulness and limitations of global flood risk models. Nat. Clim.
Change 5, 712–715. doi:10.1038/nclimate2742

Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., van Beek, R., Bierkens, M. F.
P., et al. (2013). Assessing flood risk at the global scale: model setup, results, and
sensitivity. Environ. Res. Lett. 8, 044019. doi:10.1088/1748-9326/8/4/044019

Wing, O. E. J., Bates, P. D., Neal, J. C., Sampson, C. C., Smith, A. M., Quinn, N.,
et al. (2019). A new automated method for improved flood defense
representation in large-scale hydraulic models. Water Resour. Res. 55,
11007–11034. doi:10.1029/2019WR025957

Winsemius, H. C., Aerts, J. C. J. H., van Beek, L. P. H., Bierkens, M. F. P., Bouwman,
A., Jongman, B., et al. (2015). Global drivers of future river flood risk.Nat. Clim.
Change 6, 381. doi:10.1038/nclimate2893

Winsemius, H. C., Jongman, B., Veldkamp, T. I. E., Hallegatte, S., Bangalore, M.,
and Ward, P. J. (2018). Disaster risk, climate change, and poverty: assessing the
global exposure of poor people to floods and droughts. Environ. Dev. Econ. 56,
1–21. doi:10.1017/S1355770X17000444

Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.
(2013). A framework for global river flood risk assessments. Hydrol. Earth Syst.
Sci. 17, 1871–1892. doi:10.5194/hess-17-1871-2013

Woo, G. (2019). Downward counterfactual search for extreme events. Front. Earth
Sci. 7, 7. doi:10.3389/feart.2019.00340

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G., and Pavelsky, T. (2019).
MERIT hydro: a high-resolution global hydrographymap based on latest topography
datasets. Water Resour. Res. 55, 5053–5073. doi:10.1029/2019WR024873

Zischg, A. P., Felder, G., Mosimann, M., Röthlisberger, V., and Weingartner, R.
(2018a). Extending coupled hydrological-hydraulic model chains with a
surrogate model for the estimation of flood losses. Environ. Model. Softw.
108, 174–185. doi:10.1016/j.envsoft.2018.08.009

Zischg, A. P., Felder, G.,Weingartner, R., Quinn, N., Coxon, G., Neal, J., et al. (2018b).
Effects of variability in probable maximum precipitation patterns on flood losses.
Hydrol. Earth Syst. Sci. 22, 2759–2773. doi:10.5194/hess-22-2759-2018

Zischg, A. P., Hofer, P., Mosimann, M., Röthlisberger, V., Ramirez, J. A., Keiler, M.,
et al. (2018c). Flood risk (d)evolution: disentangling key drivers of flood risk
change with a retro-model experiment. Sci. Total Environ. 639, 195–207. doi:10.
1016/j.scitotenv.2018.05.056

Zischg, A. P., Mosimann, M., Bernet, D. B., and Röthlisberger, V. (2018d).
Validation of 2D flood models with insurance claims. J. Hydrol. 557,
350–361. doi:10.1016/j.jhydrol.2017.12.042

Zischg, A., Schober, S., Sereinig, N., Rauter, M., Seymann, C., Goldschmidt, F., et al.
(2013). Monitoring the temporal development of natural hazard risks as a basis
indicator for climate change adaptation. Nat. Hazards 67, 1045–1058. doi:10.
1007/s11069-011-9927-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zischg and Bermúdez. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org September 2020 | Volume 8 | Article 39014

Zischg and Bermúdez Sensitivity of Flood Exposure

https://doi.org/10.1002/2017WR021036
https://doi.org/10.5194/nhess-19-1319-2019
https://doi.org/10.1890/100125
https://doi.org/10.1029/2008EO100001
https://doi.org/10.1038/sdata.2017.1
https://doi.org/10.5194/hess-21-5143-2017
https://doi.org/10.5194/hess-21-5143-2017
https://doi.org/10.1038/sdata.2018.309
https://doi.org/10.5194/hess-16-4143-2012
https://doi.org/10.1002/hyp.1054
https://doi.org/10.1016/j.jhydrol.2010.06.043
https://doi.org/10.1037/0033-2909.121.1.133
https://doi.org/10.1037/0033-2909.121.1.133
https://doi.org/10.1016/j.scitotenv.2017.03.216
https://doi.org/10.1007/s10584-017-1968-2
https://doi.org/10.1002/2015WR016954
https://doi.org/10.5194/nhess-16-1049-2016
https://doi.org/10.1038/s41467-019-09282-y
https://doi.org/10.1016/j.jhydrol.2014.01.045
https://doi.org/10.5194/nhess-8-539-2008
https://doi.org/10.1002/2015GL064529
https://doi.org/10.1002/hyp.10409
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1007/s10113-017-1229-y
https://doi.org/10.1596/33700
https://doi.org/10.1088/1748-9326/11/9/094014
https://doi.org/10.1038/nclimate2742
https://doi.org/10.1088/1748-9326/8/4/044019
https://doi.org/10.1029/2019WR025957
https://doi.org/10.1038/nclimate2893
https://doi.org/10.1017/S1355770X17000444
https://doi.org/10.5194/hess-17-1871-2013
https://doi.org/10.3389/feart.2019.00340
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1016/j.envsoft.2018.08.009
https://doi.org/10.5194/hess-22-2759-2018
https://doi.org/10.1016/j.scitotenv.2018.05.056
https://doi.org/10.1016/j.scitotenv.2018.05.056
https://doi.org/10.1016/j.jhydrol.2017.12.042
https://doi.org/10.1007/s11069-011-9927-0
https://doi.org/10.1007/s11069-011-9927-0
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Mapping the Sensitivity of Population Exposure to Changes in Flood Magnitude: Prospective Application From Local to Global  ...
	Introduction
	Materials and Data
	Flood Hazard Maps
	Population Data

	Method
	Prospective Applications

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


