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Resumen

Desde hace más de cien años se sabe que hay partículas que llegan a la Tierra desde el
espacio. Estas partículas se conocen como rayos cósmicos y su estudio ha sido muy fruc-
tífero y contribuido a la física fundamental desde la primera mitad del siglo 19. De estos
rayos cósmicos, algunos tienen energías por encima de 1 J y se llaman Rayos Cósmicos
de Ultra-Alta Energía. Hay muchas preguntas sobre ellos que todavía no tienen una res-
puesta, como qué son, de dónde vienen o cómo son acelerados hasta tales energías. En
esta tesis pretendemos contestar a la pregunta de qué son, lo que se conoce como estudiar
su composición en masa.

Estudiamos Rayos Cósmicos de Ultra-Alta Energía con los datos obtenidos por el Ob-
servatorio Pierre Auger. Los detectores del Observatorio miden señales que dejan partícu-
las secundarias producidas en la lluvia o cascada de partículas generada cuando un rayo
cósmico de ultra-alta energía colisiona con una molécula de aire en la atmósfera. El Ob-
servatorio Pierre Auger es el detector más grande de rayos cósmicos que se ha construido
y con sus 3000 km2 de superficie y alrededor de 15 años de toma de datos ha conseguido
reunir el más grande y preciso conjunto de datos para estudiar las propiedades de este
intrigante tipo de radiación.

La tesis está dividida en varios bloques. Aunque el objetivo principal es obtener in-
formación sobre la composición en masa de los rayos cósmicos, las herramientas para su
estudio cambian a medida que la tesis se desarrolla. El primer bloque es una introducción
a los rayos cósmicos (Capítulo 1) y al Observatorio Pierre Auger (Capítulo 2). El siguiente
bloque está formado por dos estudios del risetime t1∕2 de las señales en el suelo medidas
por el Detector de Superficie del Observatorio Pierre Auger (Capítulos 3 y 4). El tercer y
último bloque tiene una introducción a las técnicas de machine learning (Capítulo 5) y la
extracción de la señal que dejan los muones en el detector usando redes neuronales (Capí-
tulos 6 y 7). La tesis termina con un capítulo dedicado a comparar datos y simulaciones y
describir una de las discrepancias que hay entre ambos (Capítulo 8).

En los Capítulos 3 y 4 obtenemos información sobre la composición en masas con dos
análisis usando el risetime t1∕2 de las señales medidas de un modo original: definiendo un
nuevo observable, el promedio del Risetime dividido por la distancia ToD. Este observable
es estudiado en ambos capítulos; en el Capítulo 3 se estudia su dependencia con la secante
del ángulo cenital del suceso y en el Capítulo 4 se estudia el segundo momento de su
distribución.

Durante el trabajo para la tesis, se estableció una colaboración con expertos de ciencia
de computadores. Esta colaboración tenía como objetivo predecir la señal que dejan los
muones en los detectores usando métodos del campo de machine learning, con el obje-
tivo final de mejorar las estimaciones de composición con esta nueva información. En el
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Capítulo 5 se hace una introducción a las técnicas de machine learning. En este capítulo
se dan varios ejemplos de estas técnicas con resultados concretos y ejemplos hechos para
esta tesis. En particular, se explica cómo funciona una red neuronal simple que es im-
plementada desde cero. Esta introducción sirve para entender las técnicas usadas en los
Capítulos 6 y 7. El Capítulo 6 describe el trabajo realizado en colaboración con exper-
tos de ciencias de computadores. En este capítulo la señal muónica se predico para cada
estación individual del Observatorio. El Capítulo 7 describe el siguiente paso del trabajo:
predecir la serie temporal completa de las trazas medidas por el Observatorio.

El Capítulo 7 es el resultado más importante de la tesis. Este capítulo proporciona un
método para predecir la señal temporal que dejan los muones en el Detector de Superficie
del Observatorio Pierre Auger. Esta información puede mejorar enormemente las capaci-
dades del Observatorio y permitir que se puedan hacer inferencias sobre la composición
en masa de los rayos cósmicos suceso a suceso.

El último capítulo, el Capítulo 8, está relacionado con los dos anteriores en los que se
utilizan técnicas de machine learning. Como entrenamos las redes neuronales con simu-
laciones, la calidad del modelo que se obtenie depende de cómo de bien las simulaciones
describen los datos. Como veremos, hay algunas discrepancias entre datos y simulaciones
y es necesario entenderlas para poder aplicar los métodos de machine learning a los datos
correctamente.
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Summary

Since more than a hundred years ago, it has been known that there are particles that arrive
to the Earth from outer space. These particles are called cosmic rays and their study was
very fruitful and has contributed to fundamental physics since the first half of the 19th
century. From those particles, there are some that have energies above 1 J, and they are
called Ultra High Energy Cosmic Rays. There are many questions about them that have not
been answered yet, such as what they are, where they come from or what is the mechanism
that gives them those huge energies. In this thesis we focus on answering what they are,
that is, inferring their mass composition.

We study UHECRs with the data obtained by the Pierre Auger Observatory. The de-
tectors of the Observatory measure signals left by secondary particles produced in the
shower or cascade of particles generated when a UHECR collides with a molecule of air
in the atmosphere. The Pierre Auger Observatory is the largest cosmic ray detector built
so far, and with its 3000 km2 of surface area and about fifteen years of data taking it has
collected the biggest and most precise data sample to study the properties of this intriguing
radiation.

The work in this thesis is divided into several blocks. While the main goal is to obtain
information about mass composition, the tools used to do so change as the thesis devel-
ops. The first block is an introduction to cosmic rays (Chapter 1) and the Pierre Auger
Observatory (Chapter 2). The next block is comprised by a study of the risetime t1∕2 ofthe signals at the ground measured by the Surface Detector of the Pierre Auger Observa-
tory (Chapters 3 and 4). The third and last block has an introduction to machine learning
techniques (Chapter 5) and the extraction of the signal left by muons in the detector using
neural networks (Chapters 6 and 7). The thesis ends with a chapter dedicated to compare
data and simulations and highlight one of the discrepancies between them (Chapter 8).

In Chapters 3 and 4 we infer information about mass composition with two analyses
using the risetime t1∕2 of the signals measured in a novel way: by defining a new observ-
able, called the average Risetime over Distance ToD. This observable is studied in both
chapters; in Chapter 3 we study its dependence with the secant of the zenith angle of the
event and in Chapter 4 the second moment of its distribution.

As the thesis evolved, a collaboration with experts from computer science was es-
tablished. This collaboration had the goal of predicting the signal left by muons in the
detectors using novel methods from the field of machine learning, with the objective of
improving composition estimations using this new information. An extensive introduction
to the techniques of machine learning is done in Chapter 5. Several examples of these tech-
niques are explained with concrete results and examples done for this thesis. In particular,
it is explained how a simple neural network works and it is programmed from scratch. This
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introduction lays the foundations for Chapters 6 and 7. Chapter 6 describes the work done
within the collaboration with experts from computer science. In this chapter, the muon
signal is predicted for each individual station of the Observatory. Chapter 7 describes the
next step of the work: to predict the whole temporal series of the traces measured by the
Observatory.

Chapter 7 is the most important result of the thesis. It provides a method to predict
the signal left by muons in the Surface Detector of the Pierre Auger Observatory. This
information can enhance greatly the capabilities of the Observatory and allow it to make
mass composition inferences on an event by event basis.

The last chapter, Chapter 8, is related to the previous ones that use machine learning
techniques. Since we train our neural networks with simulations, the quality of the model
obtained will depend on the quality with which simulations describe the data. As we
will see, there are some discrepancies that have to be taken into account when applying
methods from machine learning to data.
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Summary of Variables

This is a short summary for some of the variables that appear in the thesis.
One value for each event or shower

■ ESD is the reconstructed energy of the
cosmic ray. It is obtained by a fit of
the total signal S measured at each
station as a function of its distance to
the reconstructed core of the shower
r: S(r). The value at r = 1000m,
S1000, is picked and converted to E.
See SD event reconstruction starting
on page 27.

■ EMC is the Monte Carlo energy, that is,
the energy of the primary cosmic ray
that begins the shower of particles.

■ � is the reconstructed zenith angle of
the arrival direction of the cosmic ray.
It is obtained by fitting a spherical
wave form to the times when stations
measure signal from the shower. See
SD event reconstruction starting on
page 27.

■ Xmax is the depth (measured in g cm−2)
at which the maximum energy de-
posited is reached in a shower of parti-
cles. It is measured by the fluorescence
telescopes.

■
⟨Δs⟩ is the Delta, an observable built
from the risetime that has informa-
tion about its deviation from a defined
benchmark. It is obtained by an av-
erage. See Summary of the Delta
Method on page 43.

One value for each station

■ r is the distance of the station to the re-
constructed position of the core of the
shower in the plane of the shower.

■ S is the total signal measured at
each station, obtained by integrating
or summing the signal measured over
time.

■ t1∕2 is the risetime, the time it takes
for the total signal to rise between 10%
and 50% of the total signal. t�1∕2 has
the same definition using themuon sig-
nal instead of the total signal. See
Introduction of Chapter 3 starting on
page 38.

■ � is the polar angle of the station in
the plane perpendicular to the shower.
See Polar angle correction on page
page 40.

■ S� and SEM are the total muon signal
and total electromagnetic signal, re-
spectively, obtained by integrating the
muon signal or electromagnetic signal
over time.

■ Ŝ� and t̂�1∕2 have the same definition
than before but are obtained from the
predicted muon trace. Ŝ� is also ob-
tained directly from a neural network
in Chapter 6.
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One value for each event or shower

■ ToD is the average risetime divided by
the distance, defined in Equation 3.12
on page 45.

■ �2total is the variance of an observable,
�2det is the contributions to the variancedue to the detector and �2f the contribu-tion due to

■ S�
1000 and SEM

1000 are the values at r =
1000m of a fit of the muon signal and
electromagnetic signal, respectively,
as a function of the distance r.

One value for each station

■ ŜEM is obtained from the predicted
electromagnetic signal, which is ob-
tained by subtracting the predicted
muon signal to the total signal.
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1
Cosmic Rays

Cosmic rays are particles that travel through space and come from outside the Earth. Since
their discovery, they have sparkled a lot of interest. There have been and are many experi-
ments dedicated to the study of cosmic rays both in the Earth and in space. In addition, the
study of cosmic rays has been very successful since its beginning. It played a crucial role
in the discovery of many particles during the 30s and 40s, making important contributions
to fundamental physics [1].

Even though cosmic rays have been studied for more than a century, there are still many
questions unanswered about them. In particular, it is known that some cosmic rays have
energies which can be considered macroscopic as they are above 1018 eV (0.16 J), orders of
magnitude above what can be produced by human-made accelerators. These cosmic rays
are called Ultra-High Energy Cosmic Rays (UHECRs). It is still not clear what is their
origin, what are the mechanisms that accelerate these UHECRs up to those extraordinary
energies or what is their chemical composition.

This chapter begins with a historical overview of the discovery of cosmic rays in Sec-
tion 1. Then, the physical phenomenon that is studied in this thesis, cosmic ray showers,
is described in Section 2. The chapter ends with features and physics results about cos-
mic rays in Section 3 that help to set a context of this work in the field of cosmic rays in
Section 4.
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Chapter 1: Cosmic Rays

1 History of cosmic rays
The history of cosmic rays begins with the discovery of radiation. In 1895 X-rays were
discovered by Röntgen by studying the light emitted by cathode ray tubes under high
voltage [2]. In 1896 Becquerel discovered spontaneous radioactivity [3]. He was interested
in phosphorescence and was studying the radiation of uranium crystals after being exposed
to the sunlight. The discovery of spontaneous radioactivity was a coincidence: Becquerel
did not have time to obtain results for a conference to be held the next week because it
had been cloudy. But he developed the photographic plates anyway where it could be
seen that a crystal had generated radiation without an external source of energy. A few
years later, Marie and Pierre Curie discovered that polonium and radium also generated
radioactivity [4]. It was, then, found that an electroscope discharges when in presence of
a radioactive material. Note that by 1785 Coulomb had already discovered that electro-
scopes can discharge spontaneously in presence of air and with a good insulation [5].

The electroscope is a device that can detect whether a body has charge or not. The de-
vice evolved with the years but its working principle remained the same: detecting charge
by means of the attraction or repulsion generated by the Coulomb force, see Figure 1.1.

After the discovery that an electroscope can be discharged spontaneously, it would be
concluded that there is charged radiation in the air. A new research line opened: to find
where this radiation came from. There were two possibilities: either the radiation came
from the Earth or it came from outside. Wilson made the suggestion that the radiation
could come from outside of the Earth. He studied the rate of ionization underground, in
tunnels below rocks and could not find a decrease that would support his hypothesis [6].

The first one to test the variation of the ionization with height was Father Wulf, a Jesuit
priest. In 1909 he went to the top of the Eiffel Tower in Paris [7]. If the radiation came from
the ground it would be more absorbed at larger heights, so it was expected to measure a
much lower rate of ionization that on the surface. He measured a decrease in the rate of
ionization but this decrease was not enough to agree with what the calculations at the time
had predicted assuming radiation came from the ground. Even so, it was still thought that
the radiation came from the Earth.

Domenico Pacini made several important experiments to measure the rate of ionization
in different environments [8–10]. He compared the rate of ionization when an electroscope
was located at the ground and at sea on a ship. If cosmic rays were coming from the
soil, water should absorb them and the rate of ionization should be lower on the ship.
However, he measured similar rates at ground and on a ship, contradicting the hypothesis
of the terrestrial origin. He also measured the rate of ionization under the sea, and found
a decrease compatible with the expected absorption in water if the radiation was coming
from above.
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Section 1. History of cosmic rays

Figure 1.1: Drawing of a gold-leaf electroscope. When a charged object is close to the disk at the
top of the electroscope, the disk becomes charged with opposite sign charge. There are two parallel
strips that are connected to the disk by a metal bar and become charged. They repel each other and
that is how charge in the object can be measured.

With contradictory results about the origin of the radiation it would be clear soon that
balloon flights were needed. Alfred Gockel was the first one: he ascended up to 4500m
during three successive flights and found that ionization did not decrease with height as
expected from a terrestrial origin [11,12].

In spite of Pacini’s conclusions and of Wulf’s and Gockel’s puzzling results on the
dependence of radioactivity on altitude, physicists were reluctant to give up the hypothesis
of a terrestrial origin. The situation was cleared up thanks to a long series of balloon flights
by the Austrian physicist Victor Hess, who established the extra-terrestrial origin of at least
part of the radiation causing the observed ionization.

In 1912 Victor Hess made a series of 7 balloon flights [13,14]. He carried devices in
the globe that allowed him to measure the rate of ionization as a function of the altitude.
He found that the rate of ionization decreased as the altitude increases for low altitudes,
as it could be expected if the radiation came from Earth. Then, above a certain altitude,
the rate of ionization increased exponentially with height. Hess concluded from this that
the radiation should come from outside of the Earth. The Sun was ruled out as a possible
source because he also measured the rate of ionization during the day and night and there
was not a significant difference. These results were later confirmed by Kolhörster [15,16]
with more balloon flights reaching altitudes up to 9200m, see Figure 1.2. See ref. [14] for a
more detailed history of the discovery of cosmic rays. Hess was awarded the Nobel Prize
in 1936 for the discovery of cosmic rays. The Nobel Prize was shared with Carl Anderson
for the discovery of the positron while studying cosmic rays in cloud chambers.

After a pause due to the First World War, research in cosmic rays continued, helped by
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Chapter 1: Cosmic Rays

Figure 1.2: Left: Victor Hess before one of his balloon flights. Right: Ionization rate measured by
Hess (1913) and Kolhörster (1914) as a function of altitude in balloon flights.

the development of the detectors and, in particular, the introduction of the Geiger-Müller
tube. Soon after, the coincidence technique would be introduced. This technique allows
to measure only when signals from several detectors arrive within a defined window of
time. Photographs of clouds chambers could be taken when a cosmic ray passed through,
making their study easier.

Experiments from the field of cosmic rays made very important contributions to fun-
damental physics. For 30 years, and until particle accelerators were being made, cosmic
rays experiments were being used to discover new particles. Some of the particles dis-
covered in this time were the positron, the muon, the pion and the kaon, along with their
properties such as mass, charge and lifetime. Another finding was the important discovery
that cosmic rays can produce showers or cascades of particles.

2 Cosmic ray showers
The discovery of cosmic ray showers begins with the work done by Rossi. In 1933 Rossi
found triple coincidences in an arrangement of Geiger counters when lead was placed
above them [17]. He concluded that secondary particles where being produced when a
cosmic ray collided with lead. However, the work done by Rossi was not noticed by other
scientists, possibly because it was written in italian. The discovery of extensive air showers
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Section 2. Cosmic ray showers

Figure 1.3: Image of a shower or cascade or particles inside a cloud chamber. There are several
horizontal lead plates inside the chamber. A cosmic ray enters the cloud chamber from the top and
the first interaction appears to have taken place in one the plates.

is usually attributed to Auger. Auger, Maze and Robley measured coincidences in the
Swiss Alps separating the detectors by 300m [18]. Based on the number of particles and
assuming that each particle carried the critical energy (defined in the next section), they
estimated for the first time that the energy of the cosmic rays was 1015 eV.

A shower occurs when a cosmic ray interacts with an atom or molecule (of air in the
atmosphere, for example) and new particles are produced. These particles can collide
again or decay producing more particles for the third generation of this iterative process.
The number of particles present in the shower at some time can reach 1010 or even 1011 for
ultra-high energy cosmic rays. The footprint at the ground can extend over large areas of
several km2, giving these showers the name of Extensive Air Showers (EAS). Figure 1.3
is an example of a cascade or shower of particles produced by a cosmic ray in a cloud
chamber. Up to scale, the shower presents the same features as those produced in the
atmosphere.

To study a shower it is usual to divide it in several components depending on the
process in which particles were produced, see Figure 1.4. In the following sections it is
explained, in a simplified way, these components and how they develop. For a historical
review on extensive air showers see ref. [19].
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Figure 1.4: Development of a shower produced by a cosmic ray into its three main components
with the most frequent particles for each component. Branching ratios for pions and kaons are
shown in the boxes [20].

2.1 Electromagnetic showers
An approximate description of electromagnetic showers can be given using the toy model
developed by Heitler [21]. In this model the shower develops by bremsstrahlung and pair
production. Bremsstrahlung is the process by which a charged particle, such an electron or
positron, loses energy by emitting photons. Pair production is the conversion of a photon to
a pair electron-positron. At each step of the model the number of particles is doubled such
that after n steps the number of particles isN = 2n, see the left panel of Figure 1.5. These
processes continue until a critical energy Ec (around 87MeV in air [22]) is reached. This
happens when the energy loses by ionization are equal to the loses due to bremsstrahlung
and pair production. At this point the shower reaches its maximum number of particles.
Afterwards, particles do not have enough energy for bremsstrahlung or pair production
and keep travelling until they interact or reach the ground.

For a given slant depthX1 of the atmosphere (usually measured in g/cm2), the number
1The slant depth X for a path dr along a medium with density � is defined as X = ∫�dr. X takes into
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Section 2. Cosmic ray showers

Figure 1.5: Left: Development of a electromagnetic cascade: A photon produces a pair of an
electron and positron, these emit photons by bremsstrahlung and the process continues. Right:
Development of a hadronic cascade.

of branchings that have taken place is:
n = X

� ln 2
(1.1)

for a radiation length � for both the processes of bremsstrahlung and pair production. Since
there are 2n particles at each step and assuming that energy is shared equally amongst
particles, at each step each particle carries an energy:

E(n) =
E0
2n

(1.2)
where E0 is the energy of the particle that initiated the shower. When the energy of each
particle is equal to the critical energy, E(n) = Ec, then X = Xmax and they are related by
Equation 1.1 and Equation 1.2:

E0
2
Xmax
� ln 2

= Ec ⇐⇒ Xmax = � ln
(

E0
Ec

)

(1.3)

Xmax is the position of the shower maximum, where the number of particles is maximum
and the deposited energy (proportional to the number of particles) is also maximum.

From Equation 1.3 we have obtained that Xmax ∝ ln(E0). The rate of change of Xmaxwith log10 is called the elongation rate and can be computed from Equation 1.3:
dXmax

d log10(E)
= � ln 10 (1.4)

account the density of the medium in which the cosmic ray is travelling. The probabibity of interacting
depends not only on the distance travelled but also on the density along that distance.
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which is about 85 g/cm2 and it is confirmed by the current models in simulations without
great deviations. On the other side, the maximum number of particles in the shower is
given by the ratio E0∕Ec , which scales linearly with the energy of the primary particle.

The electromagnetic component of the showers is the one that carries most of the
energy of the shower. Furthermore, the hadronic shower feeds the electromagnetic shower
with the production of �0 that decay to photons, as it is explained in the next section.

2.2 Hadronic showers
Hadronic showers can be described by extending the toymodel of Heitler. This description
was done by J. Matthews [23]. The model is similar to the one for electromagnetic show-
ers: after an interaction length, a hadron produces pions, twice the number of charged
compared to the number of neutral ones. Neutral pions decay immediately to photons
and contribute to the electromagnetic shower while charged pions continue the hadronic
shower. Pions collide and keep producing more pions until their energy is equal to the
critical energy. Then, they decay to muons that can reach the ground.

After n interactions, there are a total ofN� = (Nch)n pions, whereNch is the number of
charged pions produced in each interaction. Then, assuming that the energy of the initial
particle has been shared equally amongst the pions, the energy of each pion is equal to:

E� =
(2
3

)n E0
(

Nch
)n (1.5)

and the factor 2∕3 comes from the fact that in each interaction charged pions only carry
2∕3 of the current energy. Assuming that all the pions produced have the same energy,
neutral pions decay into photons carrying 1∕3 of the energy of the parent pion. After the
charged pions reach the critical energy E�

c , they will decay to muons, giving one muon
each. The number of muons can then be obtained as the total number of charged pions:
N� =

(

Nch
)nmax . nmax is the number of iterations needed to reach the critical energy. From

Equation 1.5 nmax can be obtained by making E� = E�
c :

nmax =
ln(E0∕E�

c )

ln
(

3
2
Nch

) (1.6)

And then the muons as:

N� =
(

Nch
)nmax ⇐⇒ lnN� = nmax lnNch =

ln(E0∕E�)

ln
(

3
2
Nch

) lnNch (1.7)
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which means that the number of muons does not increase linearly with the energy but as
E�
0 for � = lnNch∕ ln

(

3
2
Nch

)

.
Note that the descriptions given for electromagnetic and hadronic showers are only

approximate descriptions of extensive air showers. A complete description of the shower
requires simulations where particles are followed. However, the amount of particles gen-
erated is very large to be treated even with modern computers. In practice, a technique
called thinning and first developed by Hillas is used [24]. The idea is only to follow only
a subsample of all the particles. One method to do so is to follow every particle above
a certain energy and only a fraction of the particles below this energy. These particles
with lower energies are given weights so that energy is conserved. Using the technique of
thinning, computing time and memory needed for simulations can be greatly reduced.

2.3 Superposition principle
For showers initiated by nuclei with A nucleons the superposition principle is an approxi-
mation that tells us that a nucleus with energy E0 and mass number A can be modelled as
A nucleons having energy E0∕A [23]. The shower can then be treated as a sum of proton
showers initiated at the same point. From Equation 1.3 the position of the shower maxi-
mum XA

max for a nucleus of mass number A would be the same as in a shower initiated by
a proton, Xp

max, with energy E0∕A:
XA

max(E0) = X
p
max(E0∕A) = Xmax − � lnA (1.8)

The number of muons is larger for heavier primaries than it is for lighter primaries. It is
A times the number of muons when the energy is E0∕A and from Equation 1.7:

N� ∝ E
�
0A

1−� (1.9)
The elongation rate is the same independently of the mass of the primary. From Equa-
tion 1.8 and using Equation 1.4:

dXA
max

d log10(E)
= � ln 10 (1.10)

3 Properties of cosmic rays and recent results
In this section some of the most important properties and current knowledge of cosmic
rays are explained.
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Chapter 1: Cosmic Rays

3.1 Spectrum
The flux of cosmic rays has been measured by several experiments over many years [25–33].
It extends from 109 eV, a GeV, to over 1020 eV, more than 100 EeV. The spectrum has a
characteristic dependence with energy: it decreases with a power law E−�, where E is
the energy of the cosmic ray and � is called the spectral index and is approximately equal
to 3. In Figure 1.6 the spectrum measured by some experiments has been plotted as a
function of the energy. Because of this fast decrease in the flux, ultra-high energy cosmic
rays arrive with a very low frequency: cosmic rays having energies around 1020 eV arrive
with a flux of one per km2 and century. Thus it is impossible to study cosmic rays of very
high energy with experiments in space as huge detectors are needed.

Energy (eV)

9
10

10
10 1110 1210

13
10 1410

15
10

16
10 1710

18
10

19
10

20
10

-1
 s

r 
G

e
V

 s
e

c
)

2
F

lu
x

 (
m

-28
10

-2510

-2210

-19
10

-1610

-1310

-10
10

-710

-410

-110

210

410

-sec)
2

(1 particle/m

Knee

-year)
2

(1 particle/m

Ankle

-year)
2

(1 particle/km

-century)
2

(1 particle/km

F
N

A
L
 T

evatro
n
 (2 T

eV
)

C
E
R

N
 L

H
C

 (14 T
eV

)

LEAP - satellite

Proton - satellite

Yakustk - ground array

Haverah Park - ground array

Akeno - ground array

AGASA - ground array

Fly’s Eye - air fluorescence

HiRes1 mono - air fluorescence

HiRes2 mono - air fluorescence

HiRes Stereo - air fluorescence

Auger - hybrid

Cosmic Ray Spectra of Various Experiments

Figure 1.6: Cosmic ray spectra measured by sev-
eral experiments.

The spectral index � is not constant
with the energy. Because of this, the shape
of the spectrum curve changes and where
those changes occur have been given the
names of knee and ankle. At the knee, at
around 1015 eV, the spectral index changes
from 2.7 to 3 while at the ankle, at around
1018 eV, the spectrum becomes less steep
and � becomes 2.7 again, see Figure 1.6. It
is generally thought that most of the cos-
mic rays with energies below and around
the ankle come from our galaxy, the Milky
Way. From energies above the ankle, cos-
mic rays are thought to have extragalactic
origin. In this scenario, the knee could be
an effect due to propagation of the cosmic
rays [34].

For the highest energies, there is a
strong suppression of the flux. This sup-
pression has been measured by the Pierre
Auger Observatory to start at
E = (4.21± 0.17± 0.76)⋅1019 eV
(statistical and systematic uncertainties,
respectively) [35]. One reason for this could
be the interaction of particles with the cos-
mic microwave background (CMB). Above a certain threshold, cosmic rays have enough
energy to produce a Δ+ when interacting with the CMB that decays to pions, losing en-
ergy in the process. This threshold is known as the Greisen-Zatsepin-Kuzmin (GZK)
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Conclusions

I Xmax measured in ⇠ 3 decades
of energy (preliminary!):
extend the lower energy range
down to 1017 eV

I hln Ai as a function of log(E/eV)
shows a non-constant
composition in this energy range:
the lightest at ⇠ 1018.4 eV,
heavier at lower and at higher
energies

Data Set Analysis method Systematic Uncertainties Results Conclusions Backups
A. Porcelli for Pierre Auger | Xmax above 1017 eV with the FD of the Pierre Auger Observatory (CR-EX 1176 – PoS 420) 31.07.2015 11/11

Figure 1.7: Average value of the position of the shower maximum measured by several experi-
ments. Plot taken from ref. [39].

.

limit [36,37], predicted in 1966. For protons, the following process takes place when these
protons have energies above this limit:

p + 
 → Δ+ → p + �0 or n + �+ (1.11)
where 
 is a photon from the CMB. Protons lose energy in this process and it would not
be possible to observe protons with energies above the GZK limit coming from distant
sources. However, that this process is happening can not be inferred from the flux sup-
pression, since sources may not be able to accelerate cosmic rays above certain energies.

3.2 Composition
For energies below the knee, most cosmic rays are protons. About 10% are helium nuclei
and about 1% are nuclei of heavier elements. That comprises about 99% of the total cosmic
rays while electrons, positrons and photons make the rest 1% [34]. Because at these energies
the flux is large, there are several experiments that can study these cosmic rays in space,
such as AMS or PAMELA. For a review on the composition of cosmic rays see ref. [38].

At higher energies the composition is mostly nuclei. See Figure 1.7 for the evolu-
tion of the position of the shower maximum Xmax with the energy measured by several
experiments from 1015 eV to 1020 eV.

For ultra-high energy cosmic rays, mass composition can be studied with the Fluores-
cence Detector of The Pierre Auger Observatory. Fluorescence light is emitted by atmo-
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Figure 1: Measurements of 〈Xmax〉 (left) and σ(Xmax) (right) at the Pierre Auger Observatory compared to
the predictions for proton and iron nuclei of the hadronic models EPOS-LHC, Sibyll 2.3c and QGSJetII-04.
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Figure 2: Moments of lnA distributions from the conversion of the moments of Xmax distributions with
EPOS-LHC, QGSJetII-04, Sibyll 2.3c.

sitions are close to ∼ 60 gcm−2/decade independently of the interaction model used. Thus the
mean mass of the UHECRs as a function of energy decreases until E0 and increases afterwards.
The narrowing of the Xmax distributions for energies above E0 (right panel in Fig. 1) is as well in
agreement with the MC predictions for σ(Xmax) of heavier nuclei.

Using the method described in [10] the moments of the Xmax distributions can be converted to
the moments of lnA distributions. From Fig. 2 one can see that 〈lnA〉 reaches the minimum around
E0. Depending on the interaction model, the values at the minimum vary from ∼ 0 for QGSJetII-
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Figure 1.8: Left: Mean position of the shower maximum as a function of the energy for data
(black points) and simulations. Right: Second moment of the distribution of Xmax for data and
simulations.

spheric nitrogen when it is ionized by particles coming from a cosmic ray shower. With
this information Xmax can be measured.

The latest results onXmax by the Pierre Auger Observatory are shown in Figure 1.8 [40].
For data, the elongation rate (defined in Equation 1.4) of ⟨Xmax⟩ is 77± 2 (stat) g cm−2

per decade of energy below E0 = 1018.32± 0.03 and is 26± 2 (stat) g cm−2 per decade for
energies above E0. The elongation rate for simulations is 60 g cm−2 independently of the
hadronic model used. This means that the composition changes from heavier to lighter
below E0 and then to heavier again above E0. The results on the second moment of Xmaxagree with this measurement. Previous published measurements of Xmax can be found in
refs. [41,42].

There are other results on mass composition using the Surface Detector of The Pierre
Auger Observatory instead of the Fluorescence Detector. The Surface Detector has the
advantage of being operative almost 100% of the time and having increased statistics.

The Delta Method [43,44] uses the information from the risetime of the signals measured
by the Surface Detector to infer the mass composition of UHECRs. It is explained later,
on page 43, since it is related to the work done in of the chapters of this thesis.

In another work the correlation of the position of the shower maximum Xmax and the
signal measured at the ground is used to obtain information about the spread of the masses
in a sample of events [40,45]. Showers initiated by heavier nuclei have a smaller Xmax and alarger number of muons at the ground than showers initiated by lighter nuclei. This corre-
lation has been studied by computing a correlation coefficient called rG [46]. In Figure 1.9
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Mass composition from hybrid data of Auger Alexey Yushkov
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Figure 4: Dependence of the correlation coefficients rG on σ(lnA) for EPOS-LHC (left) and Sibyll 2.3c
(right). Each simulated point corresponds to a mixture with different fractions of (p, He, O, Fe) nuclei, the
relative fractions change in 0.1 steps (four points for pure compositions are grouped at σ(lnA) = 0). Colors
of the points indicate 〈lnA〉 of the corresponding simulated mixture. The shaded area shows the observed
value for the data. Vertical dotted lines indicate the range of σ(lnA) in simulations compatible with the
observed correlation in the data.

relative fractions of (p, He, O, Fe) nuclei changing with a step of 0.1. The correlation rG(X∗max, S∗38)

gets more negative for the larger spreads of the masses in the mixes. For all models (for QGSJetII-
04, not shown in the figure, the results are similar to Sibyll 2.3c) the spread of masses corresponding
to the correlation found in data lies in the range compatible to [5]: 0.85 . σ(lnA). 1.6.

The comparison of the energy dependence of rG in data to the predictions for proton, iron and
extreme mix p/Fe = 1/1 for EPOS-LHC and Sibyll 2.3c interaction models (for QGSJetII-04, not
shown here, rG (proton) is > 0.1 for all energies) is shown in Fig. 5. Compared to [5] an additional
energy bin lg(E/eV) = 19.0−19.5 has been added.

Combining data in the range lg(E/eV)= 18.5−18.7 the observed correlation is rG =−0.141±
0.022, which significantly (6.4σ ) differs from zero. For higher energies, the correlation in data be-
comes consistent with the compositions with smaller mixings. Comparing new data in Fig. 5 to the
results of [5] one can see that the change of the correlation in the whole energy range lg(E/eV) =

88
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Figure 1.9: Dependence of the correlation coefficient rG on �(lnA) for the hadronic models EPOS-
LHC [47] (left) and Sibyll 2.3c [48] (right). Each simulated point corresponds to a mixture with
different fractions of (p, He, O, Fe). Colours of the points indicate the value of ⟨lnA⟩ of the
corresponding simulated mixture. The shaded area shows the observed value for data. Vertical
dotted lines indicate the range of �(lnA) in simulations compatible with the observed correlation
in data.

rG has been plotted for data and for different samples of simulations. The negative corre-
lation found in data can not be reproduced with a pure composition (when �(lnA) is zero).
Correlation for samples with only proton and helium is non-negative, so the values found
for data can only be explained when nuclei with A > 4 are included in the sample.

3.3 Origin
The origin of cosmic rays is better known for the lowest energies. Cosmic rays with ener-
gies around oneGeV come from the Sun. For higher energies they can not come from there
since at the Sun there are not any processes involving such energies. Up to the knee, cos-
mic rays are thought to come from Supernova Remnants (SNRs) from our own galaxy [34].
When studying the arrival direction of cosmic rays with energies up to the knee, the flux
is found to be very isotropic, consistent with the smearing that the galactic magnetic field
would produce.

Cosmic rays with very high energies, around the ankle and above, are thought to be ex-
tragalactic. One reason for that is that magnetic fields in our galaxy are not strong enough
to confine them. There are also few astrophysical objects that can accelerate cosmic rays up
to those energies. There are two main characteristics that influence the maximum energy
attainable by cosmic rays at these sources: their size and their magnetic field. In the left
panel of Figure 1.10, a comparison of the magnetic field and size of different astrophysical
objects has been made. The maximum energy is proportional to the product of the mag-
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Figure 1.10: Possible cosmic ray accelerators plotted as a function of their magnetic field and size.
The dashed and continuous line give the relationship between the magnetic field and size needed to
accelerate a proton of 1020 eV, at � = 1∕300 and � = 1 respectively. � is the velocity of the shock
that would accelerate the cosmic rays in units of the speed of light c. This plot is usually known as
“Hillas Plot” [49]. Right: Sky map in equatorial coordinates, using a Hammer projection, showing
the cosmic-ray flux above 8 EeV. The Galactic center is marked with an asterisk and the Galactic
plane is shown by a dashed line.

netic field and the size of the object, so only a few objects have the necessary properties to
accelerate ultra-high energy cosmic rays. A recent measurement by The Pierre Auger Col-
laboration finds a large-scale anisotropy in the direction of arrival of UHECRs [50]. This
anisotropy indicates an extragalactic origin of these cosmic rays, see the right panel of
Figure 1.10.

There are two possible scenarios for cosmic rays to reach those energies: a top-down
and a bottom-up scenario. In the top-down scenario, a particle of high mass (for example,
a dark matter particle) decays and the products of this process are cosmic rays. In the
bottom-up scenario, particles are accelerated by strong turbulent magnetic fields that arise
in shock fronts, such as those in a supernova. Current experimental data does not support
the existence of top-down processes.

3.4 Hadronic interactions
Hadronic interactions are very present in the study of cosmic rays and their knowledge is
linked to the study of how cosmic ray showers develop. We focus on hadronic interactions
at high energies, since hadronic interactions at low energies are better understood. We
describe a few recent results that show that the current hadronic models can not explain
correctly the experimental data. Even though the hadronic models used for high-energy
interactions of particles in simulations can be tuned for data measured at the LHC at en-
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Figure 1: Top panel: A longitudinal profile measured for
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as in the top panel and that of the two simulated events.
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and arrival direction of the showers matches the measured
event, and the LPs of the selected showers have the lowest
χ2 compared to the measured LP. The measured LP and
two selected LPs of an example event are shown in the top
panel of Fig. 1.
The detector response for the selected showers was simu-
lated using the Auger Offline software package [8, 9]. The
lateral distribution function of an observed event and that
of two simulated events are shown in the middle panel of
Fig. 1. For each of the 227 events, the ground signal at
1000m from the shower axis, S (1000), is smaller for the
simulated events than that measured. The ratio of the mea-
sured S (1000) to that predicted in simulations of showers
with proton primaries, S(1000)DataS(1000)Sim

, is 1.5 for vertical showers
and grows to around 2 for inclined events; see the bottom
panel of Fig. 1. The ground signal of more-inclined events

is muon-dominated. Therefore, the increase of the discrep-
ancy with zenith angle suggests that there is a deficit of
muons in the simulated showers compared to the data. The
discrepancy exists for simulations of showers with iron pri-
maries as well, which means that the ground signal cannot
be explained only through composition.

3 Estimate of the Muonic Signal in Data
3.1 A multivariate muon counter
In this section, the number of muons at 1000 m from the
shower axis is reconstructed. This was accomplished by
first estimating the number of muons in the surface detec-
tors using the characteristic signals created by muons in the
PMT FADC traces and then reconstructing the muonic lat-
eral distribution function (LDF) of SD events.
In the first stage, the number of muons in individual surface
detectors is estimated. As in the jump method [4], the total
signal from discrete jumps

J =
∑

FADC bin i

(x
i+1 − x

i

)
︸ ︷︷ ︸

jump

I {x
i+1 − x

i

> 0.1} (1)

was extracted from each FADC signal, where x
i

is the sig-
nal measured in the ith bin in Vertical Equivalent Muon
(VEM) units, and the indicator function I {y} is 1 if its
argument y is true and 0 otherwise. The estimator J is
correlated with the number of muons in the detector, but it
has an RMS of approximately 40%. To improve the pre-
cision, a multivariate model was used to predict the ratio
η = (N

µ

+ 1)/(J + 1). 172 observables that are plausibly
correlated to muon content, such as the number of jumps
and the rise-time, were extracted from each FADC signal.
Principal Component Analysis was then applied to deter-
mine 19 linear combinations of the observables which best
capture the variance of the original FADC signals. Using
these 19 linear combinations, an artificial neural network
(ANN) [10] was trained to predict η and its uncertainty.
The output of the ANN was compiled into a probability ta-
ble PANN = P (N

µ

= N | FADC signal). The RMS of this
estimator is about 25%, and biases are also reduced com-
pared to the estimator J .
In the second stage of the reconstruction, a LDF

N(r, ν,β, γ) =

exp

(

ν + β log
r

1000m
+ γ log

( r

1000m

)2
) (2)

is fit to the estimated number of muons in the detectors for
each event, where r is the distance of the detector from the
shower axis and ν, β, and γ are fit parameters. The num-
ber of muons in each surface detector varies from the LDF
according to the estimate PANN and Poisson fluctuations.
The fit parameters, ν, β, and γ, have means which depend
on the primary energy and zenith angle as well as vari-
ances arising from shower-to-shower fluctuations. Gaus-
sian prior distributions with energy- and zenith-dependent
means were defined for the three fit parameters. All the
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Figure 1.11: Left: Energy deposited as a function of depth for one event in data, a proton and an
iron simulation. Right: Best-fit values of RE and Rhad for the hadronic models QGSJetII-04 [51]
and EPOS-LHC, for pure proton (solid symbols) and mixed composition (open symbols). The
ellipses and gray boxes show the 1-� statistical and systematic uncertainties.

ergies of 14 TeV in the centre of mass, these energies are still below the energies that
ultra-high energy cosmic rays carry. Hadronic models have to rely on extrapolations and
parameters that are not well known at the energies of ultra-high energy cosmic rays.

In ref. [52] simulations of events measured by The Pierre Auger Observatory are done
until the longitudinal profiles measured by the Fluorescence Detector are found to be sim-
ilar to those in experimental data, see the left panel of Figure 1.11. Then, the signal
measured at the ground is compared between data and simulations. With a maximum
likelihood method, they find the best parameters Rhad and RE that rescale respectively the
hadronic and electromagnetic components of the signal at the ground. With this method,
simulations with the same longitudinal profile as data are forced to have the same signal
at the ground that the data have. For a given shower i and a primary mass j the rescaled
signal at the ground in simulations is written as:

Sresc(RE , Rhad)i,j = RESEM,i,j + RhadR�
EShad,i,j (1.12)

where RE and Rhad are the free parameters of the rescaling, SEM,i,j and Shad,i,j are the
electromagnetic and hadronic signals at the ground andR�

E is a parameter whose value can
be found in simulations. It is found that, independently of the composition, the rescaling
on the energy scale is compatible with one (no rescaling needed) while the rescaling of
the hadronic component is always above one, see the right panel of Figure 1.11.

This is not the only result on discrepancies between data and simulations. In ref. [53],
the number of muons is shown to be larger in data than in simulations for inclined events.
In inclined events it is easier to measure the muon number because the effective length of
the atmosphere increases, the electromagnetic component of the shower is absorbed and
the muon component can be determined directly. In Figure 1.12 the muon content has
been compared between data and simulations. There is a large discrepancy even when
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Figure 1.12: Average logarithmic muon content as a function of the average depth of the shower
maximum at 1019 eV. Model predictions are obtained from showers simulated at � = 67◦. The
predictions for proton and iron showers are directly taken from simulations. Values for intermediate
masses are computed with the Heitler model.

uncertainties are taken into account. This discrepancy is even larger when assuming the
mass composition given by the measured Xmax in Figure 1.8.The Pierre Auger Observatory is not the only experiment that has measured a deficit
of muons, see ref. [54] for a recent article from The Telescope Array Collaboration.

4 This thesis in the context of studying UHECRs
UHECR were discovered more than 50 years ago [55]. However, we still lack a plausible
theory that explains the chemical composition of this radiation, where it is produced and
what mechanisms are capable of conferring to these nuclei such extraordinary energies.
While the Fluorescence Detector of the Pierre Auger Observatory measures accurately the
depth of shower maximum Xmax, that can be used as a proxy for mass composition, it is
limited to operate on nights with good weather conditions. The statistics obtained with
this detector are thus not enough at the highest energies, with only a hundred of events
with energies above 1019.5 eV. The Surface Detector (SD) operates all the time but it is
limited to sampling the footprint of the shower at the ground level.

In this thesis we focus on the measurements done with the SD to do mass composition
studies with the largest amount of statistics available. We study the time series of signals
measured by the SD with an observable that we define and with neural networks to predict
the muon component of these signals. Knowing the signal left by muons would enhance
the information that can be obtained about mass composition of cosmic rays.
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2
The Pierre Auger Observatory

1 Introduction
The Pierre Auger Observatory, located in western Argentina, is the largest cosmic ray
observatory in the world. It studies cosmic rays above 1017 eV, the most energetic parti-
cles observed in nature. The design of the Observatory features an array of 1660 water
Cherenkov particle detector stations spread over 3000 km2 overlooked by 24 air fluores-
cence telescopes. In addition, three high elevation fluorescence telescopes overlook a
23.5 km2, 61-detector infilled array with 750m spacing. The Observatory has been in suc-
cessful operation since completion in 2008. A key feature of the Pierre Auger Observatory
is its hybrid design, in which ultra-high energy cosmic rays are detected simultaneously
by a surface array and by fluorescence telescopes. The two techniques are used to observe
air showers in complementary ways, providing important cross-checks and measurement
redundancy [56,57]. For a thorough review of the Observatory see ref. [58].

The surface detector array (SD when referring to the whole array) views a slice of
an air shower at ground level, with water Cherenkov stations which respond to both the
electromagnetic and muonic components of the shower. The SD operates 24 hours per
day and has the important property that the quality of the measurements improves with
the shower energy.

The fluorescence detector (FDwhen referring to all the telescopes) is used to image the
longitudinal development of the shower cascade in the atmosphere. The fluorescence light
is produced predominantly by the electromagnetic component of the shower. Observation
periods are limited to dark nights of good weather, representing a duty cycle up to 15%.
The technique provides a near-calorimetric method for determining the primary cosmic
ray energy and the depth at which a shower reaches maximum size, Xmax. Xmax is the
most direct of all accessible mass composition indicators.
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Figure 2.1: Left: The Pierre Auger Observatory. Each dot corresponds to one of the 1660 surface
detector stations. The four fluorescence detector enclosures are shown, each with the 30 ◦ field
of view of its six telescopes. Right: A schematic view of a surface detector station in the field,
showing its main components.

This chapter is structured as follows. In Section 2 a description of the SD is given and
in Section 3 the FD is described. The next important information about the Observatory
is how the reconstruction is done for events measured only by the SD in Section 4. The
chapter ends with an overview of an improvement of the detector to measure the muon
component in Section 5.

2 Surface Detector
The Surface Detector consists on stations or tanks that record Cherenkov light produced by
the passage of relativistic charged particles through the water. These stations have 12000
litres of ultra-pure water and three photomultipliers (PMTs) that look into the water. In
the left panel of Figure 2.1, the layout of the surface array and the FD buildings at its
periphery are shown. The components of a surface detector station are shown in the right
panel of Figure 2.1 and described in detail in the next sections.

2.1 SD station
The tanks are made of polyethylene and are low cost, tough and have robustness against the
environmental elements. The selected compounded polyethylene resins contained addi-
tives to enhance ultraviolet protection. The tanks have an average wall thickness of 1.3 cm
and a nominal weight of 530 kg. The tanks do not exceed 1.6m in height so that they can
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Figure 2.2: Mechanical housing for the SD PMT. Top to bottom: outer plastic housing (fez), insu-
lating lug, PMT, flange, UV-transparent window.

be shipped over the roads within transportation regulations.
Three hatches, located above the PMTs, provide access to the interior of the tank for

water filling. They also provide access for installation and servicing of the interior parts.
The hatches are covered with light- and water-tight polyethylene hatchcovers. One hatch-
cover is larger than the other two and accommodates the electronics on its top surface. The
tanks also possess molded-in lugs, for lifting and to support the solar panel and antenna
mast assembly.

Electrical power is provided by two 55Wp (watt-peak) solar panels which feed two
lead-acid batteries wired in series to produce a 24V system. The electronics assembly
at each SD station possesses a Tank Power Control Board (TPCB) which monitors the
power system operation [59]. The TPCB allows the remote operator to set into hibernation
any of the SD stations if the charge of the batteries falls below a critical level. The solar
panels are mounted on aluminium brackets, which also support a mast. Antennas for radio
communication and GPS reception are mounted at the top of this mast.

The tank liners are circular cylinders made of plastic conforming to the inside surface
of the tanks up to a height of 1.2m. They enclose the water volume, provide a light-tight
environment and diffusively reflect the Cherenkov light produced in the water volume.
The liner has three windows through which the PMTs look into the water volume from
above. These windows are made of UV-transparent polyethylene. Each PMT is optically
coupled to a window with optical GE silicone and shielded above by a light-tight plastic
cover, designated as the “fez”. In Figure 2.2 the PMT enclosure is shown. The fez has
four ports, including a light-tight air vent for pressure relief. The other ports are for cable
feedthroughs.

Once deployed in their correct positions in the field, the tanks are filled with ultra-
pure water. Water quality (resistivity) exceeds 15MΩ cm at the output of the water plant,
and the water is transported in clean specialized transport tanks. The water is expected to
maintain its clarity without significant degradation for the lifetime of the Observatory.
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2.2 SD electronics
To collect the Cherenkov light produced in the water volume of the detectors by the air
showers, three PMTs view the water volume from above. The PMTs have a 9 inch diameter
photocathode and eight dynodes, are operated at a nominal gain of 2⋅105, are specified for
operation at gains up to 106 and are required to be linear within 5% up to 50mA anode
current. Each PMT has two outputs. An AC coupled anode signal is provided. In addition,
the signal at the last dynode is amplified and inverted by the PMT base electronics to
provide a signal with 32 times the charge gain of the anode. The filtered analog signals
are fed to 10 bit 40MHz semi-flash ADCs, which means that the signal is sampled in bins
of 25 ns.

Each SD station contains a GPS receiver for event timing and communications syn-
chronization. This receiver outputs a timed one-pulse-per-second (1 PPS). Event timing
is determined using a custom ASIC which references the timing of shower triggers to the
GPS 1 PPS clock. The ASIC implements a 27 bit clock operating at 100MHz. This clock
is latched on the GPS 1 PPS signal at the time of each shower trigger. A counter operating
at the 40MHz ADC clock is also latched on the GPS 1 PPS clock. These data are used to
calibrate the frequencies of the 40MHz and 100MHz clocks and to synchronize the ADC
data to GPS time within 10 ns RMS.

The digital data from the ADCs are clocked into a programmable logic device (PLD).
The PLD implements firmware that monitors the ADC outputs for interesting trigger pat-
terns, stores the data in a buffer memory, and informs the station microcontroller when
a trigger occurs. There are two local trigger levels (T1 and T2) and a global third level
trigger, T3. Details of the local triggers are described on page 23.

The front end is interfaced to a unified board which implements the station controller,
event timing, and slow control functions, together with a serial interface to the commu-
nications system. The slow control system consists of DACs and ADCs used to measure
temperatures, voltages, and currents relevant to assessment of the operation of the station.

The data acquisition system implemented on the station controller transmits the time
stamps of the ∼ 20 T2 events collected each second to CDAS (Central Data Acquisition
System). The station controller then selects the T1 and T2 data corresponding to the T3
requests and builds it into an event for transmission to CDAS. Calibration data are included
in each transmitted event.

2.3 SD signal saturation
As it has been explained before, signals measured by PMTs are obtained from two chan-
nels. The signal from the anode is usually denoted as the signal coming from the high-gain
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Figure 2.3: Left: Saturated signal from the high-gain channel for one PMT. The signal is capped
at around 1000 ADC counts. Right: Corresponding signal from the low-gain channel.

channel while the last-dynode signal that is amplified is denoted as the signal coming from
the low-gain channel. Sometimes, signals are large and the PMT can not measure their
shape. This is known as saturation. The saturation is caused by the overflow of the FADC
read-out electronics with finite dynamic range and a modification of the signal due to the
transition of the PMTs from a linear to a non-linear behavior. In the majority of cases the
missing part of the signals are recovered using the procedure described in ref. [60].

In the left panel of Figure 2.3, there is an example of a signal from the high-gain
channel that is saturated. In this case the signal from the low-gain channel, shown in the
right panel of Figure 2.3, can be used instead. However, un-saturated signals from the
high-gain and low-gain channels have different shapes. This fact complicates the use of
these signals from the low-gain channel, that have to be studied separately from the signals
from the high-gain channel.

Signals measured at stations that are very close to the core of the shower can be satu-
rated both in the high-gain and low-gain channels. In this case and with the current design
of the SD, nothing can be done to recover the true shape of the signal.

2.4 SD calibration
The Cherenkov light recorded by a surface detector is measured in units of the signal
produced by a muon traversing the tank on a vertical trajectory, see Figure 2.4. This unit is
termed the Vertical Equivalent Muon (VEM). The goal of the surface detector calibration
is to measure the value of 1VEM in hardware units (integrated FADC channels). The
conversion to units of VEM is done both to provide a common reference level between
tanks and to calibrate against the detector simulations.

We defineQpeak
VEM (denoted simply byQVEM hereafter) as the bin containing the peak in
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Figure 2.4: Charge spectrum obtained when a surface detector is triggered by a threefold coinci-
dence among its photomultipliers (open histogram). The hatched histogram shows the spectrum
when triggered on central vertically aligned plastic scintillators. The bin containing the peak of
the scintillator triggered spectrum is defined as a vertical equivalent muon. The leftmost peak in
the open histogram is due to low energy and corner-clipping muons convolved with the threefold
low threshold coincidence.

the charge histogram of an individual PMT response, and IpeakVEM (denoted by IVEM hereafter)
as the bin containing the peak in the pulse height histogram. These quantities are used in
the three main steps in the calibration procedure:

1. Set up the end-to-end gains of each of the three PMTs to have IVEM at 50 channels.
The choice of 50 ch/IVEM results in a mean gain close to 3.4⋅105 for a mean npe/VEMof around 94 photo-electrons.

2. To compensate for drifts, adjust the electronics level trigger by continually perform-
ing a local calibration to determine IVEM in channels.

3. Determine the value ofQVEM to high accuracy using charge histograms, and use the
known conversion fromQVEM to 1.0VEM to obtain a conversion from the integrated
signal of the PMT to VEM units.

The high voltages, and thus the gains of each of the three PMTs, are tuned to match a
reference event rate. This tuning implies that the PMTs in the SD stations will not have
equivalent gains, even for PMTs in the same tank.

In addition to the primary conversion from integrated channels to VEM units, the cal-
ibration must also be able to convert the raw FADC traces into integrated channels. The
primary parameters needed for this are the baselines of all six FADC inputs, and the gain
ratio between the dynode and anode. The dynode/anode ratio, or D∕A, is determined by
averaging large pulses and performing a linear time-shifted fit to obtain bothD∕A and the
phase delay between the dynode and anode. This method determines D∕A to 2%.
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The calibration parameters are determined every 60 s. The most recently determined
parameters are returned to CDAS with each event and stored along with the event data.
Each event therefore contains information about the state of each SD station in the minute
preceding the trigger, allowing for an accurate calibration of the data [61].

2.5 SD local triggers
Several independent local trigger functions are implemented in the front-end electronics:
the scaler trigger, the calibration trigger, and the main shower trigger.

The scaler trigger records pulses with a very low threshold for auxiliary physics pur-
poses such as space weather. The calibration trigger collects low threshold pulses using
a small number of bins (20), which is one bin above 0.1 IVEM, thus providing high rate
cosmic ray data. Data from the three high-gain channels are stored from three samples
before the trigger to 20 samples after the trigger. These data are used to build calibration
histograms such as the one shown in Figure 2.4, and are also used to convert offline the
six FADC traces into VEM units.

The main trigger is the shower trigger that results in the recording of 768 samples
(19.2 µs) of the six FADCs. It has two levels of selection. The first level, called T1,
has 2 independent modes. The first one is a simple threshold trigger (TH) requiring the
coincidence of all three PMTs being above 1.75 IVEM. This trigger is used to select large
signals that are not necessarily spread in time. It is particularly effective for the detection
of very inclined showers that have penetrated through a large atmospheric depth and are
consequently dominantly muonic. The threshold has been adjusted to reduce the rate of
atmospheric muon triggers from about 3 kHz to 100Hz. The second T1 mode is a time-
over-threshold trigger (ToT) requiring that at least 13 bins within a 3 µs window (120
samples) exceed a threshold of 0.2 IVEM in coincidence for two out of the three PMTs. The
ToT trigger selects sequences of small signals spread in time, and is thus efficient for the
detection of vertical events, and more specifically for stations near the core of low-energy
showers, or stations far from the core of high-energy showers. The rate of the ToT trigger
depends on the shape of the muon pulse in the tank and averages 1.2Hz with a rather large
spread (about 1Hz rms). The second trigger level, called T2, is applied to decrease the
global rate of the T1 trigger down to about 23Hz. While all T1-ToT triggers are promoted
T2-ToT, only T1-TH triggers passing a single threshold of 3.2 IVEM in coincidence for the
three PMTs will pass this second level and become T2-TH. All T2s send their timestamp
to CDAS for the global trigger (T3) determination [62].

Since June 2013, there are twomore T1 triggers. The time-over-threshold-deconvolved
(ToTd) trigger deconvolves the exponential tail of the diffusely reflected Cherenkov light
pulses before applying the ToT condition. This has the effect of reducing the influence
of muons in the trigger, since the typical signal from a muon, with fast rise time and

23



Chapter 2: The Pierre Auger Observatory

Figure 2.5: FD building at Los Leones during the day. Shutters are open because of maintenance.
Behind the building there is a communication tower.

around 60 ns decay constant, is compressed into one or two time bins. The multiplicity-
of-positive-steps trigger (MoPS), on the other hand, counts the number of positive-going
signal steps in two of three PMTs within a 3 µs sliding window. The steps are required
to be above a small FADC value (≈ 5× RMS noise) and below a moderate value (≈ 1

2vertical muon step). This reduces the influence of muons in the trigger. Both the ToTd
and MoPS triggers also require the integrated signal to be above ≈ 0.5 VEM. Because
these triggers minimize the influence of single muons, they reduce the energy threshold
of the array, while keeping random triggers at an acceptable level. Thus they improve the
energy reach of the SD, as well as improve the trigger efficiency for photon and neutrino
showers.

3 Fluorescence Detector

The 24 telescopes of the Fluorescence Detector (FD) overlook the SD array from four sites:
Los Leones, Los Morados, Loma Amarilla and Coihueco [63]. Six independent telescopes
are located at each FD site in a clean climate controlled building [64], an example of which
is seen in Figure 2.5. A single telescope has a field of view of 30 ◦ × 30 ◦ in azimuth
and elevation, with a minimum elevation of 1.5 ◦ above the horizon. The telescopes face
towards the interior of the array so that the combination of the six telescopes provides
180 ◦ coverage in azimuth.
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Figure 2.6: Left: Schematic view of a fluorescence telescope with a description of its main com-
ponents. Right: Photo of a fluorescence telescope at Coihueco.

3.1 FD telescopes
The details of the fluorescence detector telescope and an actual view of an installed tele-
scope are shown in Figure 2.6. The telescope design is based on Schmidt optics because it
reduces the coma aberration of large optical systems. Nitrogen fluorescence light, emitted
isotropically by an air shower, enters through a circular diaphragm of 1.1m radius cov-
ered with a filter glass window. The filter transmission is above 50% (80%) between 310
and 390 nm (330 and 380 nm) in the UV range. The filter reduces the background light
flux and thus improves the signal-to-noise ratio of the measured air shower signal. It also
serves as a window over the aperture which keeps the space containing the telescopes and
electronics clean and climate controlled. The shutters seen in Figure 2.6 are closed during
daylight and also close automatically at night when the wind becomes too high or rain
is detected. In addition, a fail-safe curtain is mounted behind the diaphragm to prevent
daylight from illuminating a camera in case of a malfunction of the shutter or a failure of
the Slow Control System, in charge of allowing remote operations of the FD system.

The light is focused by a spherical mirror of around 3400mm radius of curvature onto
a spherical focal surface with radius of curvature close to 1700mm. Due to its large area
(13m2), the primary mirror is segmented to reduce the cost and weight of the optical
system. Two alternative segmentation configurations are used: one is a tessellation of 36
rectangular anodized aluminium mirrors of three different sizes; the other is a structure
of 60 hexagonal glass mirrors (of four shapes and sizes) with vacuum deposited reflective
coatings [64]. The average reflectivity of cleaned mirror segments at a wavelength � =
370 nm is more than 90%.

The camera body is machined from a single aluminium block of 60mm thickness,
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with an outer radius of curvature of 1701mm and an inner curvature radius of 1641mm.
The hexagonal photomultiplier tubes are positioned inside 40mm diameter holes drilled
through the camera block at the locations of the pixel centres. The pixels are arranged in
a matrix of 22 rows by 20 columns.

The PMTboundaries are approximate hexagonswith a side to side distance of 45.6mm.
The PMTs are separated by simplified Winston cones secured to the camera body which
collect the light to the active cathode of the photomultiplier tube. The light collectors serve
to prevent photons from landing in the dead spaces between the PMT cathodes. The upper
edge of the light collectors lie on the focal surface of 1743mm radius. The pixel field of
view defined by the upper edges corresponds to an angular size of 1.5 ◦.

The contribution of reflection and scattering inside the optical system of the telescope
has been measured in situ and with an airborne remotely controlled platform carrying an
isotropic and stabilized UV light source [65]. The measured point spread function of the
light distribution in pixels has been implemented in the software used in the air shower
reconstruction.

Cleaning and maintenance work has been required during years of detector operation.
The cleaning of the UV filter from outside has been performed several times because of de-
posited dust layers. The equipment inside the building is cleaned less frequently, because
it is not exposed to the outside environment. The reflectivity of a few selected mirror
segments is measured once or twice each year and it changes less than 1% per year.

From the end-to-end calibration, the appropriate constants are found to be approxi-
mately 4.5 photons/ADC count for each pixel. To derive a flux of photons for observed
physics events, the integrated ADC number is multiplied by this constant and divided by
the area of the aperture. The flux in photons per m2 perpendicular to the arrival direction
is thus obtained.

The relative spectral efficiencies, or multi-wavelength calibrations, of FD telescopes
were measured using a monochromator-based drum light source with a xenon flasher. The
measurement was done in steps of 5 nm from 270 nm to 430 nm. As described on page 25,
there are two types of mirrors and two different glass materials used for the corrector rings
in the FD telescopes. In total eight telescopes were measured to have a complete coverage
of the different components and a redundant measure of each combination. The uncer-
tainty of these measurements is close to 3%. An example of measured relative efficiency
of an FD telescope is shown in Figure 2.7.

3.2 FD operation
All FD telescopes are operated remotely from the central campus and other places around
the world by shift personnel. Their responsibilities include preparation of the FD for a run,
making relative calibrations, starting and stopping runs and online checking of the quality
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Figure 2.7: Relative efficiency between 280 nm and 430 nm measured for the telescope 3 at
Coihueco. The curve is taken relative to the efficiency of the telescope at 375 nm.

of measured data [66]. The observation of air showers via fluorescence light is possible
only at night. Moreover, night sky brightness should be low and thus nights without a
significant amount of direct or scattered moonlight are required. The mean length of the
dark observation period is then 17 nights each month with an on-time of the FD telescopes
of∼15%. The telescopes are not operated when the weather conditions become dangerous
(high wind speed, rain, snow, etc.).

4 SD event reconstruction
The reconstruction of the energy and the arrival direction of the cosmic rays producing air
showers that have triggered the surface detector array is based on the sizes and times of
signals registered from individual SD stations.

4.1 Event selection
To ensure good data quality for physics analysis there are two additional off-line triggers.
The physics trigger, T4, is needed to select real showers from the set of stored T3 data
that also contain background signals from low energy air showers. This trigger is mainly
based on a coincidence between adjacent detector stations within the propagation time of
the shower front. In selected events, random stations are identified by their time incom-
patibility with the estimated shower front. The time cuts were determined such that 99%
of the stations containing a physical signal from the shower are kept. An algorithm for
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Figure 2.8: Schematic view of the area (shaded region) where the core of a vertical shower must
be located inside an elementary hexagonal cell of the SD array to pass the quality trigger for a
complete hexagon with 6 active neighbors.
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Figure 2.9: Left: schematic representation of the evolution of the shower front. Right: dependence
of signal start times (relative to the timing of a plane shower front) on perpendicular distance to
the shower axis. The shaded line is the resulting fit of the evolution model and its uncertainty.

the signal search in the time traces is used to reject signals produced by random muons by
searching for time-compatible peaks.

To guarantee the selection of well-contained events, a fiducial cut (called the 6T5 trig-
ger) is applied so that only events in which the station with the highest signal is surrounded
by all 6 operating neighbors (i.e., a working hexagon) are accepted, see Figure 2.8. This
condition assures an accurate reconstruction of the impact point on the ground, and at the
same time allowing for a simple geometrical calculation of the aperture and exposure [62].

4.2 Shower geometry
A rough approximation for the arrival direction of the shower is obtained by fitting the start
times of the signals, ti, in individual SD stations to a plane front. For events with enough

28



Section 4. SD event reconstruction

triggered stations, these times are described by amore detailed concentric-sphericalmodel,
see the left panel of Figure 2.9. This model approximates the evolution of the shower front
with a speed-of-light inflating sphere,

c(ti − t0) = |x⃗sh − x⃗i| (2.1)

where x⃗i are the positions of the stations on the ground and x⃗sh and t0 are a virtual originand a start-time of the shower development, see the right panel of Figure 2.9. From this
4-parameter fit the radius of curvature of the inflating sphere is determined from the time
at which the core of the shower is inferred to hit the ground.

4.3 Lateral distribution function

The impact points of the air showers on the ground, x⃗gr, are obtained from fits of the signals
in SD stations. This fit of the lateral distribution function (LDF) is based on a maximum
likelihood method which also takes into account the probabilities for the stations that did
not trigger and the stations close to the shower axis with saturated signal traces.

An example of the footprint on the array of an event produced by a cosmic ray and
the lateral distribution of the signals are depicted in Figure 2.10. The function employed
to describe the lateral distribution of the signals on the ground is a modified Nishimura-
Kamata-Greisen function [67,68],

S(r) = S(ropt)
(

r
ropt

)� ( r + r1
ropt + r1

)�+


(2.2)

where ropt is the optimum distance, r1 = 700m and S(ropt) is a free parameter and also an
estimator of the shower size used in an energy assignment. For the SD array with station
spacing of 1.5 km the optimum distance [69] is ropt = 1000m and the shower size is thus
S(1000), also written as S1000. The free parameter � depends on the zenith angle and
shower size. Events up to zenith angle 60 ◦ are observed at an earlier shower age than
more inclined ones, thus having a steeper LDF due to the different contributions from the
muonic and the electromagnetic components at the ground. For events with only 3 stations,
the reconstruction of the air showers can be obtained only by fixing the two parameters �
and 
 to a parametrization obtained using events with a number of stations larger than 4.
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Figure 2.10: Left: Example of signal sizes an extensive air shower induces in the stations of the
surface detector array. Colours represent the arrival time of the shower front from early (yellow)
to late (red) and the size of the markers is proportional to the logarithm of the signal. The line
represents the shower arrival direction. Right: Dependence of the signal size on distance from the
shower core.

4.4 Shower arrival direction
The shower axis â is obtained from the virtual shower origin (of the geometrical recon-
struction) and the shower impact point on the ground (from the LDF reconstruction),

â =
x⃗sh − x⃗gr
|x⃗sh − x⃗gr|

. (2.3)

To estimate an angular resolution of the whole reconstruction procedure a single sta-
tion time variance is modeled [70] to take into account the size of the total signal and the
time evolution of the signal trace. As shown in the left panel of Figure 2.11, the angular
resolution achieved for events with more than three stations is better than 1.6 ◦, and better
than 0.9 ◦ for events with more than six stations [71].

4.5 Energy calibration
For a given energy, the value of S(1000) decreases with the zenith angle � due to the
attenuation of the shower particles and geometrical effects. We extract the shape of the
attenuation curve (see the right panel of Figure 2.11) from the data using the Constant
Intensity Cut (CIC) method [72]. The attenuation curve fCIC(�) has been fitted with a thirddegree polynomial in x = cos2 � − cos2 �̄, i.e., fCIC(�) = 1 + a x + b x2 + c x3, where
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Figure 2.11: Left: Angular resolution as a function of the zenith angle � for events with an energy
above 3 EeV, and for various station multiplicities [71]. Right: Attenuation curve described by a
third degree polynomial in x = cos2 � − cos2 �̄ where �̄ = 38◦ (denoted by the dashed vertical
line). In this example the polynomial coefficients are deduced from S(1000) dependence at S38 ≈
50VEM which corresponds to an energy of about 10.5 EeV.

a = 0.980± 0.004, b = −1.68± 0.01, and c = −1.30± 0.45 [73]. The median angle,
�̄ = 38◦, is taken as a reference point to convert S(1000) to S38 ≡ S(1000)∕fCIC(�). S38may be regarded as the signal a particular shower with size S(1000) would have produced
had it arrived at � = 38◦.

To estimate the energy of the primary particle producing the air-showers recorded
with the SD, the advantage comes from the hybrid detection: the air-showers that have
triggered independently the FD and SD are used for the cross-calibration. High-quality
hybrid events, as defined below, with reconstructed zenith angles less than 60◦ are used
to relate the shower size from SD to the almost-calorimetric measurement of the shower
energy from FD, EFD. These hybrid events must be such that the reconstruction of an
energy estimator can be derived independently from both the SD and FD parts of the
event [74,75].

Only a subsample of events that passes strict quality and field of view cuts is used.
For the FD part of the event, we require an accurate fit of the longitudinal profile to the
Gaisser-Hillas function. Furthermore, the depth of the shower maximum, Xmax, must be
contained within the telescope field-of-view and measured with an accuracy better than
40 g/cm2. The uncertainty on the reconstructedEFD is required to be less than 18% and the
atmosphere conditions have to be good. To avoid any potential bias of the event selection
on the mass of the primary particle, a fiducial cut on the slant depth range observed by the
telescopes is also added [74].

The final step in the calibration analysis leads to a relation between S38 and EFD.The 1475 high quality hybrid events recorded between Jan 2004 and Dec 2012 which
have an energy above the SD full efficiency trigger threshold [62] are used in the calibra-
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Figure 2.12: Correlation between S38 and EFD [73,74].

tion. The correlation between the two variables is obtained from a maximum likelihood
method [74,76]. The relation between S38 and EFD is well described by a single power-law
function,

EFD = A (S38∕VEM)B (2.4)
where the resulting parameters from the data fit are A = (1.90± 0.05) × 1017 eV and
B = 1.025± 0.007 [73,77], see Figure 2.12.

The final SD energy estimator is:
ESD = A(S(1000)∕fCIC(�)∕VEM)B (2.5)

and its resolution can be inferred from the distribution of the ratio ESD∕EFD. Using the
FD energy resolution of 7.6%, the resulting SD energy resolution with its statistical un-
certainty is �ESD∕ESD = (16± 1)% at the lower energy edge in Figure 2.12 and (12± 1)%
at the highest energies. Due to the large number of events accumulated until December
2012, the systematic uncertainty on the SD energy due to the calibration is better than 2%
over the whole energy range. The systematic uncertainties in the energy scale, shown in
Table 2.1, are dominated by the absolute FD calibration [77].

The dataset recorded extends up to larger angles of 90 ◦. For the inclined events, with
zenith angles larger than 60 ◦, we employ a different reconstruction method [76,78,79].

5 Auger Muon Infilled Ground Array (AMIGA)
The AMIGA enhancement, a dedicated detector to directly measure the muon content of
air showers [80–82], is a joint system of water Cherenkov and buried scintillator detectors
that spans an area of 23.5 km2 in a denser array with 750m spacing nested within the
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Absolute fluorescence yield 3.4%
Fluorescence spectrum and quenching parameters 1.1%
Subtotal, Fluorescence yield 3.6%
Aerosol optical depth 3–6%
Aerosol phase function 1%
Wavelength dependence of aerosol scattering 0.5%
Atmospheric density profile 1%
Subtotal, Atmosphere 3.4–6.2%
Absolute FD calibration 9%
Nightly relative calibration 2%
Optical efficiency 3.5%
Subtotal, FD calibration 9.9%
Folding with point spread function 5%
Multiple scattering model 1%
Simulation bias 2%
Constraints in the Gaisser-Hillas fit 3.5–1%
Subtotal, FD profile reconstruction 6.5–5.6%
Invisible energy 3–1.5%
Statistical error of SD calibration fit 0.7–1.8%
Stability of the energy scale 5%
Total 14%

Table 2.1: Systematic uncertainties in the energy scale.

1500m array, see Figure 2.13. The 750m array is fully efficient from 3⋅1017 eV onwards
for air showers with zenith angle ≤ 55 ◦ [83], allowing the study of the region between the
second knee [84] and the ankle of the cosmic ray spectrum.

The first prototype hexagon of buried scintillators, the Unitary Cell, consists of seven
water Cherenkov detectors paired with 30m2 scintillators segmented in two modules of
10m2 plus two of 5m2 in each position. In addition, two positions of the hexagon were
equipped with twin detectors (extra 30m2 scintillators) to allow the accuracy of the muon
counting technique to be experimentally assessed [85] and one position has 20m2 of extra
scintillators buried at a shallower depth to analyze the shielding features. The proven
tools and methods used for the analysis of the 1500m SD array data have been extended
to reconstruct the lower energy events [86].

The buried scintillators are the core of the detection system for the muonic component
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Figure 2.13: AMIGA layout: an infill of surface stations with an inter-detector spacing of 750m
plus plastic scintillators of 30m2 buried under ≈ 540 g∕cm2 of vertical mass to measure the muon
component of the showers.

Figure 2.14: Left: AMIGA station: SD+MD paired detectors. The buried front end electronics
is serviceable by means of an access pipe which is filled with local soil bags. Right: AMIGA
scintillator detector, illustrating the assembly of a 10m2 module. Strips are grouped in two sets of
32 strips on each side of the electronics dome located at the centre of the detector. The multi-anode
PMT and front end electronics board are hosted in the central dome.

of air showers (the muon detector, MD). To effectively shield the electromagnetic compo-
nent, the MD is placed under a depth of 2.3m in the local soil while the shallower extra
scintillators are at 1.3m. The layout of SD+MD paired stations is shown in Figure 2.14.
The scintillator surface of each MD station is highly segmented. It consists of modules
made of 64 strips each. The manifold of fibers of each module ends in an optical connector
matched to a 64 multi-anode PMT. Scintillator strips are grouped in two sets of 32 strips
on each side of the PMT and front end electronics board.

The bandwidth of the front end electronics is set to 180MHz to determine the pulse
width. Signal sampling is performed by a Field Programmable Gate Array (FPGA) at
320MHz. MD scintillator modules receive the trigger signal from their associated SD
station. Incoming analog signals from each pixel of the PMT are digitized with a discrim-
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inator that provides the input to the FPGA. Samples can be either a logical “1” or “0”
depending on whether the incoming signal was above or below a given (programmable)
discrimination threshold. This method of one-bit resolution is very robust for counting
muons in a highly segmented detector [87]. The MD station power is supplied by an addi-
tional solar panel and battery box and a dedicated WiFi communication system, see the
left panel of Figure 2.14.

Recently the muon component of extensive air showers has been measured between
1017.5 and 1018 eV [88]. This work reports discrepancies between data and simulations on
the muon density at the ground. The density of muons for data is larger, around 40%
or 50% depending on the hadronic model. These measurements are in agreement with
previous measurements of the muon component in inclined air showers [53].
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3
The Risetime over Distance

In this chapter we study a novel way to use the data of the Surface Detector (SD) to infer
the mass composition of ultra-high energy cosmic rays. We introduce a new observable
related to the risetime t1∕2, which we abbreviate by ToD (Average Time over Distance).
This observable characterizes each event with a single value: the average value of the
risetime divided by the distance to the core r. With the aid of Monte Carlo simulations,
a relationship between the mass of the primary cosmic ray and this new observable is
established.
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Figure 3.1: Example of the calculation of a risetime. Left: An example of the signals registered by
the PMTs of the water-Cherenkov detectors. Right: For each of the first 10 bins of 25 ns, the sum of
the signal up to and including that bin, normalized by the sum for all the bins, is represented. The
first bin reaching above 10% of the total signal happens at time t10 = 6175 ns, while the first bin
reaching above 50% of the total signal happens at t50 = 6275 ns, giving a risetime t1∕2 = 100 ns.

1 Introduction
The risetime t1∕2 is defined as the time it takes for the measured signal of a triggered station
to rise from 10% to 50% of the total signal. In Figure 3.1 an example of the computation
of a risetime is shown. Each station has 3 PMTs which can measure one trace each. We
compute the risetime for each of the traces measured by the operative PMTs. Then, we
take the average to obtain a single value of the risetime for each triggered station.

The risetime is ameasurement of the spread in the arrival time of the particles produced
in a shower. Muons arrive earlier to the stations than particles from the electromagnetic
component, so the risetime can give us information about these components. It is well
known that it carries information about the composition of the primary cosmic ray [44,89,90].
Furthermore, this physical observable is also interesting because since the duty cycle of
the SD is close to 100%, we can obtain a sizeable amount of statistics even at the highest
energies.

This chapter is structured as follows. In Section 2 we study the risetime and its depen-
dence with the distance to the core r to motivate the definition of the ToD. We also give a
short summary of the ⟨Δ⟩Method, which is a previous work on the same topic: extract in-
formation about mass composition using the information from the risetime. We define the
ToD in Section 3. After defining it, in Section 4 we study its dependence with the zenith
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Figure 3.2: Geometry of an event. The angle � is the angle between the shower axis and the zenith,
the distance r is the distance between the shower axis and the projection of the station in the shower
plane and the polar angle � is the angle between the projection of the station in the shower plane
and the projection of the direction of the cosmic ray.

angle � and compute the evolution of this observable with the reconstructed energy ESDof the primary cosmic ray. We translate the results to ⟨lnA⟩, the average logarithm of the
mass number A, to show how the composition inferred from our observable behaves for
the two different hadronic models employed for the simulations. We compare our results
to those obtained with the ⟨Δ⟩Method. We give a short summary and the conclusions of
this study in Section 5.

2 The risetime
The risetime depends on the distance to the core r from the shower axis to the projection of
the station in the shower plane, see Figure 3.2. Stations located further away will measure
a wider spread in the times of particle arrival and larger t1∕2, while stations located close
to the core will measure smaller values for t1∕2.

From Figure 3.3 we can see that the risetime increases with r. This increase is approxi-
mately linear up to a distance of about 2000m for non-saturated stations and about 1200m
for saturated stations1. At high distances there are fluctuations for saturated stations, due
to low statistics. The amount of signal measured at each station decreases with distance

1We do not use stations with the low-gain channel saturated since the risetime can not be reliably com-
puted with those stations. When we refer to saturated stations we refer to stations with the high-gain channel
saturated. See page 20 for a description of saturation.
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Figure 3.3: Left: Risetime as a function of the distance r for non-saturated stations, reconstructed
energy in the range 1018.9 eV ≤ ESD ≤ 1019.0 eV and a value of the secant of the zenith angle in
the range 1 ≤ sec � ≤ 1.1. Right: Mean value of the risetime as a function of the distance r for all
the data (all energies from 1018.5 eV and all zenith angles up to 50 ◦), separated in saturated and
non-saturated stations. The error bars represent the error of the mean and the numbers inside the
parenthesis are the total number of stations of each kind.

and saturation is unlikely for smaller signals so that there are few saturated stations in bins
of high values of r.

The risetime also depends on the zenith angle �. This dependence arises from the fact
that the muon and electromagnetic components are attenuated differently as the shower de-
velops through the atmosphere: the electromagnetic component is attenuated faster, while
muons are very penetrating particles and are less attenuated. The thickness of atmosphere
that the shower travels through is proportional to the factor sec � = 1∕ cos �. Then, as �
increases, so does sec � and the contribution from the electromagnetic component, respon-
sible for the spread in time of the signals, decreases for signals measured at the ground.
This explains the decrease of the risetime as a function of sec � that can be seen in Fig-
ure 3.4.

2.1 Polar angle correction
To be able to compare risetimes from different stations measuring the same shower or
event one correction has to be made. The polar angle is the angle � around the shower
axis as it can be seen in Figure 3.2. A station having � = 0 is a station located on top of
the projection of the shower axis on the shower plane while a station having � = ±� is a
station located in the opposite direction.

In Figure 3.5, the mean value of the risetime as a function of the polar angle has been
plotted. The value of the risetime depends strongly on the polar angle. This happens for
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Figure 3.4: Risetimes as a function of the secant of the zenith angle using stations from events with
energy in the range 1018.9 eV ≤ ESD ≤ 1019.0 eV, non-saturated stations and two different bins for
the distance r in meters. The black line is the average of the risetimes. Left: 800m ≤ r ≤ 1000m.
Right: 1000m ≤ r ≤ 1200m.

the same geometrical reason that causes the risetime to decrease with sec �: the attenuation
of the electromagnetic component of the shower is stronger and particles reaching stations
with large values of � have had to travel a longer path than those stations with smaller
values of � . There is also another effect related to the geometry, because stations with
large � measure more muons emitted closer to the shower axis [90].

The risetime as a function of the polar angle can be well described using a cosine
function. In what follows, we use the parameterization described in ref. [91]. By picking
a certain arbitrary reference angle, which is chosen to be � = 90◦, we can correct the
risetimes using the following expression:

tcorrected1∕2 = tmeasured
1∕2 − g(r, �) cos � (3.1)

where
g(r, �) = m(�)r2 (3.2)
m = (a sec � + b sec3 � + c)

√

sec � − 1 (3.3)
and the parameters a, b and c have the following values:

a = (−3.9± 2.3) ⋅ 10−5 ns m−2 (3.4)
b = (−1.9± 0.4) ⋅ 10−5 ns m−2 (3.5)
c = (2.0± 0.2) ⋅ 10−4 ns m−2 (3.6)

After the correction has been applied, the risetime does not depend anymore on � , see
Figure 3.5.
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Figure 3.5: Risetime as a function of the polar angle � before (top) and after the correction (bottom)
using Equation 3.1 for two different bins with 1000m < r < 1200m. Left: Bin of secant of the
zenith angle 1.05 ≤ sec � ≤ 1.10. Right: Bin of secant of the zenith angle 1.10 ≤ sec � ≤ 1.15.

We note that the energy does not appear anywhere in this parameterization. However,
after a careful study of the polar angle dependence and its relationship with the energy
of the cosmic ray we conclude that it is not necessary to include it. There is not a sig-
nificant gain on how much flatter the distribution of risetimes becomes when the energy
dependence is included. Another objection is that the parameters a, b and c do not show a
behaviour with the energy but rather they seem to change randomly with it. Based on these
two reasons, energy is not taken into account when correcting the polar dependence. All
the following results in this chapter and the next one will have the risetime corrected
using Equation 3.1.

2.2 Risetime uncertainty

There is an uncertainty associated to the measurement of the risetime. This uncertainty
has already been studied and parameterized and we will not discuss it in detail. We use
the parameterization described in ref. [44]. For each value of the risetime, its uncertainty
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where S is the integral of the trace measured at a station and J (r, �) is a linear fit on the
distance that depends on two parameters:

J (r, �) = p0(�) + p1(�)r (3.8)
and these parameters p0(�) and p1(�) are given by:

p0(�) =

{

(−340± 30) + (186± 20) sec � if r ≤ 650m
(−447± 30) + (224± 20) sec � if r > 650m

p1(�) =

{

(0.94± 0.03) + (−0.44± 0.01) sec � if r ≤ 650m
(1.12± 0.03) + (−0.51± 0.02) sec � if r > 650m

(3.9)

2.3 Summary of the ⟨Δ⟩Method
The ⟨Δ⟩Method [43,44] is an analysis developed to infer information about the mass compo-
sition of cosmic rays from the risetime. The first step of the analysis consists in defining
a benchmark. The benchmark is a function that describes the average behaviour of the
risetime as a function of the distance to the core and zenith angle for a chosen energy bin.
Then, Δi is defined for each station:

Δi =
t1∕2 − tbencℎ1∕2 (r, �)

�1∕2
(3.10)

where t1∕2 is the risetime measured at that station, tbencℎ1∕2 is the value of the benchmark
function and �1∕2 is the associated uncertainty to the measured risetime, see Figure 3.6.
⟨Δs⟩ 2 is obtained from the average of all the stations that belong to the same event:

⟨Δs⟩ =
1
N

N
∑

i=1
Δi =

1
N

N
∑

i=1

t1∕2 − tbencℎ1∕2 (r, �)

�1∕2
(3.11)

With ⟨Δs⟩ every event can be characterized with a single number. The evolution of
⟨Δs⟩ with the energy is plotted in the left panel of Figure 3.7. This evolution has been

2It is defined as ⟨Δs⟩ in ref. [43] and as ⟨Δ⟩ in ref. [44].
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Figure 3.6: Diagram with the computation of Δi for a single risetime.
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Figure 3.7: Left: Values of the ⟨Δs⟩ as a function of the energy for data (black squares) and simu-
lations (lines). Middle and right: Evolution of ⟨lnA⟩ obtained from ⟨Δs⟩ with the energy.

transformed to ⟨lnA⟩, the average logarithm of the mass number A. The results for ⟨lnA⟩
are compared to those obtained using the measurements of the depth of shower maximum,
Xmax, done with the FD. Both sets of points follow the same trend: mass composition
becomes lighter up to 1018.1 eV and then it becomes heavier for higher energies. There is a
difference between the values obtained fromXmax and ⟨Δs⟩ that can be attributed to the factthat the FD only sees the electromagnetic component of the shower for the measurement of
Xmax while ⟨Δs⟩ has contributions from both the electromagnetic and muonic components
of the shower. There are several results by The Pierre Auger Observatory that hint at an
incorrect modelling of the muonic component of the shower by the hadronic interaction
models [52,53,88]. In these results there is a deficit of muons in simulations. This causes that
when comparing data recorded with the SD and FD detectors, data of the surface detectors
seems to favour heavier compositions (as can be seen in Figure 3.7).
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The ⟨Δ⟩ Method has played an important role to motivate the risetime over distance.
For the analysis with the ⟨Δs⟩, it is necessary to define and study a benchmark. This
process is very involved: the dependence of the risetime on r and sec � has to be studied
thoroughly and the behaviours are different for saturated and non-saturated stations, so two
different benchmarks are needed. It is, however, a very powerful way of obtaining physical
information since there is one value for each event. With ⟨Δs⟩, event-by-event studies canbe done instead of average studies, where a physical quantity is obtained by an average in
a sample in which many events are included. For example, ⟨Δs⟩ can be calibrated using
the values of Xmax for hybrid events and then a value of Xmax can be given to each event
measured by the SD. The risetime over distance arises naturally from the next question:
can we have a simpler physical observable that uses the information from the risetime and
characterizes each event with a single value?

3 The risetime over distance
In this section the new observable that we have built is introduced and studied: The average
risetime over distance that we will abbreviate by ToD (Time over Distance), where a bar
has been put to indicate that it is an average value. The ToD is defined as the average of
the values of the risetime t1∕2 measured at each individual station divided by the distance
r from each station to the shower axis of the event:

ToD =
⟨ t1∕2

r

⟩

= 1
n

n
∑

i=1

t1∕2i
ri

(3.12)

where the sum runs over all the n selected stations of an event. It is motivated by the
approximate linear dependence of t1∕2 with r.

The uncertainty of t1∕2∕r is obtained through standard error propagation:

Δ
( t1∕2

r

)

=

√

√

√

√

√

√

⎛

⎜

⎜

⎝

) t1∕2
r

)t1∕2

⎞

⎟

⎟

⎠

2
(

Δt1∕2
)2 +

⎛

⎜

⎜

⎝

) t1∕2
r

)r

⎞

⎟

⎟

⎠

2

(Δr)2

=

√

(1
r

)2
(

Δt1∕2
)2 +

(

−
t1∕2
r2

)2

(Δr)2

(3.13)

The main contribution comes from the first term in the square root, since the uncertainty
of the distance to the core Δr is usually very small (lower than 3%) compared to r itself.
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Figure 3.8: Risetime over distance as a function of the distance r computed for each station and
grouped in bins of distance r. All the data (all energies from 1018.5 eV and all zenith angles up to
50 ◦) has been included and the numbers inside the parenthesis are the total number of stations of
each kind.

Since the ToD is a mean, the uncertainty on the ToD is obtained from the standard
formula for the uncertainty of the mean, modified to take into account the uncertainty of
each term:

ΔToD = 1
n

√

√

√

√

n
∑

i=1

[

Δ
( t1∕2i

r

)]2

(3.14)

In Figure 3.8, the risetime divided by the distance has been plotted as a function of the
distance3.

3.1 Data selection
In this analysis we have used data from March 2004 to June 2017, and zenith angles up to
50 ◦. Above this angle, the behaviour of the ToD as a function of sec � is no longer linear.

We use the following cuts:
■ Wedo not use saturated stations in our analysis. For those stations that have the high-
gain channel saturated in any of the three photomultipliers the traces are computed
using the low gain channel and have worse resolution, see SD signal saturation on
page 20. The behaviour of the risetimes obtained from saturated and non-saturated
stations is different, as it can be seen in Figure 3.3 and Figure 3.8.

3Note that this is not the ToD (one value for each event) but is the risetime measured at each station
divided by the distance to the core of each station.
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■ We use those stations that measure a value of the risetime t1∕2 > 40 ns. The po-
lar correction causes a few values of the risetime to be below zero, which does not
make sense and it is artificially caused by the correction. This usually happens for
large values of r where the signals measured are very low and these stations would
not pass the cut on the signal. The cut on 40 ns is due to 40 ns being the minimum
risetime that can be measured with the electronics of a station. This risetime is ob-
tained when a vertical muon passes through a station. There are also a few risetimes
above 3000 ns that have been checked and they are discarded since those are cases
with anomalous traces and, in some cases, the photomultipliers have been flagged
as defective [43].

■ Weuse events with a reconstructed energyESD equal or greater than 1018.5 eV.Abovethis energy the 1500m array is fully efficient, that is, the probability that a shower
triggers the 1500m array of the SD is 100%.

■ We use only stations that measure a total signal S > 5VEM because the behaviour
of the risetime divided by the distance is different for very low signals than for higher
signals. We elaborate more on this below.

■ After applying the previous cuts, events will be required to have, at least, 2 stations
that survive the cuts discussed before. In this way, we are using at least 2 values to
compute the ToD. With this cut we avoid computing the ToD, which is an average,
with a single value of the risetime divided by the distance.

In the following subsections, the cut on the signal and the selection efficiency are dis-
cussed.

The signal cut

When studying the risetime over distance as a function of the signal S, we observed a
peculiar behaviour for low values of S. As it is shown in Figure 3.9, the average value of
t1∕2∕r for the lowest signals is smaller than for larger signals. This happens because the
risetime stops increasing linearly with distance at high distances, which is equivalent to
low signals. For this reason, it was decided not to include in the analysis those stations
for which the value of the total signal measured is below a threshold S0. Now, we explainhow we obtained the threshold S0 = 5VEM for the cut S > S0.To find S0 the average of t1∕2∕rwas characterized by fitting a constant function f (r) =
a to the values of the average t1∕2∕rwith S > 10VEM, in the region where its behaviour is
almost constant with the signal, see Figure 3.9. Then, the value of the signal S where the
average t1∕2∕r began being very close (with a difference of less than 0.02VEM, although
any small value gives the same result) to the value obtained with the fit was considered as
the analysis threshold. It was also studied whether the cut should depend on the energy.
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Figure 3.9: Risetime over distance as a function of the signal S for two energy bins. The black line
is the average of the risetime over distance and the blue horizontal line is a fit of the average value
of t1∕2∕r for S > 10VEM. The red vertical line is the value for which the average is close to the
fit for S > 10VEM.

Wemade bins of energy of 0.1width in log10E. Then, for each energy bin we repeated theprocess described to obtain the threshold. We found S0 = 5VEM as the valid threshold
for all the energy bins.

Selection efficiency

As it can be seen in Table 3.1, the selection efficiencies are very close for data and simula-
tions and also for different primaries at the lowest energies, while at the highest energies
they are 100%. This is important to ensure that the cuts do not have any preference to-
wards a certain composition. Full efficiency at large energies happens because for those
events the footprint is larger and therefore events trigger many stations. For these events
our cuts do not remove enough stations and most of the events do not have a number of
stations n lower than 2.

In Table 3.2 the selection efficiency is broken down for the cuts done. Without the
saturated stations and with energy E above 1018.5 eV, there are a total of 454220 stations
distributed in 91991 events. Data measured during bad periods (inoperative detectors,
storms, lightning, etc.) have been excluded. Only 6T5 events have been selected.

4 Results
We have studied the dependence of the ToD with the zenith angle �. As it can be seen
in Figure 3.10, it follows a linear relationship. The values of the ToD decrease with sec �
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% of events selected
log10(E∕eV)

Exp.
data

Proton
(QGSJetII-04)

Iron
(QGSJetII-04)

Proton
(EPOS-LHC)

Iron
(EPOS-LHC)

18.5 - 18.6 98.4 97.6 97.8 98.2 98.2
18.8 - 18.9 99.7 99.7 99.6 99.7 99.7
19.0 - 19.1 99.8 99.9 99.9 99.8 99.9
19.4 - 19.5 100 100 100 100 100
Table 3.1: Percentage of the initial events remaining after the cuts used for different energies.

stations events with n ≥ 2
Initial sample 454220 (100%) 91991 (100%)

40 ns < t1∕2 < 3000 ns 447131 (98.4%) 91976(99.9%)
S > 5VEM 353671 (78%) 91914 (99.9%)
n ≥ 2 352953 (78%) 91196 (99%)

Table 3.2: Selection efficiency for data on the number of stations n and on the number of events
with the cuts used for the data measured by the SD.

because the risetimes also decrease as it was shown in Figure 3.4. In view of the rela-
tionship between the two previous parameters, we have done a linear fit in each energy
bin to characterize the evolution of the mean value of the ToD as a function of sec �, see
Figure 3.10. The evolution with the energy of the free parameters of the fits, such as the
slope or the intercept, has been studied and it has been found that the most stable one is to
pick a value of the fit for a certain reference angle.

The linear fits can be expressed as f (sec �) = a+ b sec � with free parameters a and b;
then, the reference value will be � = f (sec �0) = a+b sec �0. We will use �0 = 30◦ since itis a very close value to the median of all the values of � of the data selected. Our results do
not depend heavily on the value of this reference angle. The evolution with the energy of �
is shown in Figure 3.11. Simulations have been fitted with a straight line and only this line
is shown. The computation of systematic uncertainties is discussed with detail in the next
sections. In Figure 3.11 there is a trend of the data to move towards heavier composition
as the energy increases. Then, around 1019.6 eV, the data seems to start moving towards a
lighter composition.

The evolution with the energy shown in Figure 3.11 has been studied. If a straight
line is fitted to the data points the goodness of the fit obtained is �2∕dof = 1.95. Using
the maximum likelihood ratio test, we found that it is not significant to fit the elongation
rate with a second degree polynomial when compared to a fit with a straight line. With a
second degre polynomial one extra parameter is introduced and �2∕dof = 2.1. Another
possibility is using two straight lines that intersect at a certain energy E0. In that case, thegoodness of the fit obtained is �2∕dof = 1.94 and again the maximum likelihood ratio test
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Figure 3.10: Values of ToD as a function of sec � for two energy bins. The average values have
been plotted for several bins of sec �. In Figure 1 on page 143 more energy bins are shown.

shows that this is not significant with a p-value of p = 0.135 and E0 = 1019.78 eV. When
one standard deviation is subtracted to the value of the elongation rate of the last bin of
energy, the p-value obtained is p = 0.6, and E0 = 1019.79 eV; most of the significance for
a fit with two straight lines is coming from the last point.

4.1 Systematic uncertainties
The next step is to obtain the systematic uncertainties, that have been classified as follows:

■ Ageing of the detectors. In the left panel of Figure 3.12, the ToD has been plotted
as a function of the year. The Observatory was completely installed in 2008 which
could explain the increase from 2004 to 2008. From 2008 onwards, there is a steady
decrease. A linear fit has been done, which shows that the variation in 10 years
(2008 to 2018) is approximately −0.01 nsm−1. The contribution to the systematic
uncertainty has been obtained by taking half of the total change for both the positive
and negative shift: 0.005 nsm−1.
A study of the dependence of the risetime with the year was carried out to establish
where the differences come from. It was found that many variables depend on the
year and that there is an effect of ageing for these variables too. For example, the
length of the trace used to compute the risetime, the risetime and the falltime (time
for the signal to rise from a 50% to a 90% of the total signal) decrease with the
years. The behaviour found on these variables was a linear decrease with time.
It was also found that the behaviour of the risetime seems to be strongly correlated
to that of the Area over Peak (AoP) defined as the total charge divided by the largest
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Figure 3.11: Evolution with the energy of �. The shadowed area corresponds to the systematic
uncertainty while the error bars are the statistical uncertainties, that is, the uncertainty of the values
obtained from the linear fits of � as a function of sec �. All events with ESD > 1019.8 eV have been
used to compute the point with the highest energy.

value in the signal of the PMTs. When studying the AoP as a function of time, the
AoP can be seen to have a trend which is similar to the one found for the risetime [92].

■ The seasonal effect. A dependence with the seasons of the year was studied. It was
found that there is a periodicity on the value of the ToD. A fit of a sine was done
and the amplitude found to be 0.002 nsm−1 so the systematic contribution is taken
to be 0.001 nsm−1 for both the positive and negative shifts, see Figure 3.13.

■ Dependence on the atmospheric pressure, temperature and humidity. The ToD
depends on the atmospheric conditions. In particular we found that there is a depen-
dence with pressure and temperature. These variables, however, are very correlated
between themselves and also with the season, see Figure 3.13. Because a system-
atic contribution from the effect of the seasons has been included already, it is not
necessary to include an additional contribution from these variables.

■ Energy uncertainty. The reconstruction of the absolute energy of the cosmic ray
has an uncertainty which is not worse than a 14%, and improves as the energy in-
creases. In the right panel of Figure 3.12, the evolution with the energy has been
obtained when the energy of the experimental data is shifted by ±14%. The dif-
ference between the shifted values and the unshifted is, at most, 0.005 nsm−1. For
the bin from 1019.6 eV to 1019.7 eV and shifting the energy upwards this difference
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Figure 3.12: Left: Plot of the average values of ToD as a function of the year. The error bars are the
error of the mean of each point. The black line is a fit for data measured from 2008 onwards. Right:
Evolution with the energy of � computed by shifting the energy E of all the events by ±14%.

Ageing of the detectors ±0.005 ns⋅m−1

Seasonal effect ±0.001 ns⋅m−1

Energy uncertainty ±0.005 ns⋅m−1

Total systematic uncertainty ±0.007 ns⋅m−1

Table 3.3: Summary of the systematic uncertainties and final computation for the value of Δ�syst,
obtained as the sum in quadrature of the systematic uncertainties.

is larger than 0.005 nsm but the energy resolution improves with the energy so the
real shift with the correct energy resolution is lower.

The most relevant sources of systematic uncertainties, listed in Table 3.3, are added in
quadrature giving a final value of ±0.007 ns⋅m−1. This value amounts to approximately
23% and 26% of the separation between p and Fe for QGSJetII-04 and EPOS-LHC, re-
spectively.

4.2 Average logarithm of the mass
Figure 3.11 can be translated to a plot where the change of the composition with energy
obtained with this analysis can be seen more clearly. The superposition principle allows us
to assume a logarithmic dependence as it happens with other observables such asXmax [93].
The average logarithm of the mass will be:

⟨lnA⟩ = ln 56 ⋅ � = ln 56 ⋅ P −D
P − I

(3.15)
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Figure 3.13: Top left: ToD as a function of the season for all the data. The points have been
repeated so that periodicity can be noticed better. Top right: pressure as a function of the season.
Bottom left: ToD as a function of the temperature. Bottom right: pressure as a function of the
temperature.

where 56 corresponds to the number of nucleons in an iron nucleus, P to the values ob-
tained from proton simulations, I to the values obtained from iron simulations and D to
those obtained from measured data. This is the equivalent to assign a continuous change
in composition from the line for proton to the line for iron and choosing a certain composi-
tion based on where the point for data lies between these lines. Because we have different
values for simulations depending on the hadronic model employed, we have different in-
terpretations for the composition. The uncertainty of Equation 3.15 is computed through
standard quadratic propagation of the uncertainties of the values for the proton, iron and
data points.

In Figure 3.14 the evolution of the compositionwith energy is shown using the two had-
ronic models that were employed in the simulations. We can see that the average masses
are different depending on the model used to infer them and the trend of increasing mass
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Figure 3.14: Values of ⟨lnA⟩ computed using Equation 3.15 and the results obtained in Figure 3.11.
The statistical and systematic uncertainties have been added in quadrature and propagated. Left:
Proton and iron values are taken from the results for the hadronic model QGSJetII-04. Right:
Proton and iron values are taken from the results for the hadronic model EPOS-LHC.

until 1019.6 eV.

4.3 Comparison to the ⟨Δ⟩Method
Our results have been compared to those obtained using the ⟨Δ⟩Method [44]. In Figure 3.15
both results are plotted as ⟨lnA⟩. All the bins have a very similar value and both our results
are perfectly compatible within the one � level. The differences can be explained by a
combination of different factors: the ToD is a variable that shares some information with
⟨Δs⟩ but it still is a different one, the data that we use includes more recent years (where
ageing contributes more, shifting the risetimes to lower values or heavier composition) and
the simulations used are generated and reconstructed with newer versions of the software
used.

5 Summary and conclusions
In this chapter we have introduced a new observable: the average risetime over distance
abbreviated by ToD from Time over Distance. After applying the quality cuts for data
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Figure 3.15: Comparison of the results obtained in this work (squares) with the results obtained
in [44] (circles). The circles have been shifted half of the bin in energy to the right so that they
can be compared to the results obtained in this work. Uncertainties are the obtained by adding in
quadrature the systematic and statistical contributions.

and simulations, we have studied the dependence of the ToD with the zenith angle �. We
have found a linear relationship, fitted the ToD as a linear function of sec � and picked a
reference angle to obtain one value for each bin of energy. We have called this value �.

As our final plot, which is Figure 3.11, we have obtained the evolution with energy of
� with both its systematic and statistical uncertainties. This plot tells us that regardless of
the hadronic model used, the mass of the primary cosmic ray grows with the energy up to
a certain energy of ∼ 1019.6 eV. We have seen that a fit with two lines has a high p-value.
This p-value is very dependent on the value of the last bin of energy, as we have seen by
subtracting one standard deviation and recomputing the p-value.

With this analysis we can explore the ultra-high energy region with good statistics.
The last energy bin includes 74 events above 1019.8 eV (63 EeV). We have 24 events above
1019.9 eV (∼ 80 EeV).

Regarding the systematic uncertainties, we have seen how the time evolution of both
the detectors and the atmosphere plays a role in determining the systematic uncertainties.
The absolute energy uncertainty is also one of the most important contributions to the
systematic uncertainty.

This work was published as an internal note of the Pierre Auger Collaboration [94].
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4
Extensive Air Shower Fluctuations

The study of shower-to-shower fluctuations is useful in efforts to determine the mass com-
position. Using an observable that has already been studied, the ToD, we provide two
methods to measure the fluctuations, obtaining results that are in very good agreement.
We observed that the detector resolution is much larger than the effects due to the fluctua-
tions associated with the physics and the composition of the primary flux but nonetheless
we are able to demonstrate that the shower-to-shower fluctuations show a dependency with
the energy. Large uncertainties caused by a lack of statistics due to strong cuts and due to
the small area of the water-Cherenkov detectors prevent us from making strong claims.
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1 Introduction
The fluctuations that a physical observable exhibits are a convolution of two effects. One
of them is caused by the sampling and conditions of the detector. The other has physical
information and we call it shower-to-shower fluctuations1. These intrinsic fluctuations
are therefore the differences found in an observable due to physics only. Both effects are
entangled following the next equation:

�2total = �
2
det + �

2
f (4.1)

where we denote by �2total the total variance of an observable, �2det is the contribution due
to the detector and �2f are the fluctuations due to physics and a possible spread in mass of
the events in a sample.

The determination of �2f is a valuable tool when doing composition analysis, for the
fluctuations induced by light or heavy nuclei are different, see the right panel of Fig-
ure 4.1 [40]. In particular, the distributions of Xmax are predicted to be wider in showers
initiated by protons than in showers initiated by iron nuclei. There have been several stud-
ies of the shower-to-shower fluctuations [95] and some of them also use the information
from the Surface Detector of different experiments [96,97].

This study provides two methods for measuring the fluctuations �2f using the ToD.
One method is based on comparing values of the same observable when it is computed
in different subdivisions of the same event. The other one is based on the Analysis of
Variance (ANOVA).

We follow the analysis done in Chapter 3 where we study the risetime over distance
or ToD, defined as the average of all the risetimes divided by the distance to the core over
each station of an event:

ToD =
⟨ t1∕2

r

⟩

= 1
n

n
∑

i=1

t1∕2i
ri

(3.12 revisited)

where, as reminder, n is the number of stations in a certain event, t1∕2i is the risetime
measured in the i-th station and ri is the distance to the core of that station. With this
observable we estimate �2det and fromEquation 4.1 we compute the fluctuations subtracting
from the total variance of our observable:

�2f = �
2
total − �

2
det (4.2)

1Based on the results of the previous chapter, since the composition is not pure �2f also contains contri-
butions due to a spread in primary masses.
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Figure 1: Measurements of 〈Xmax〉 (left) and σ(Xmax) (right) at the Pierre Auger Observatory compared to
the predictions for proton and iron nuclei of the hadronic models EPOS-LHC, Sibyll 2.3c and QGSJetII-04.
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Figure 2: Moments of lnA distributions from the conversion of the moments of Xmax distributions with
EPOS-LHC, QGSJetII-04, Sibyll 2.3c.

sitions are close to ∼ 60 gcm−2/decade independently of the interaction model used. Thus the
mean mass of the UHECRs as a function of energy decreases until E0 and increases afterwards.
The narrowing of the Xmax distributions for energies above E0 (right panel in Fig. 1) is as well in
agreement with the MC predictions for σ(Xmax) of heavier nuclei.

Using the method described in [10] the moments of the Xmax distributions can be converted to
the moments of lnA distributions. From Fig. 2 one can see that 〈lnA〉 reaches the minimum around
E0. Depending on the interaction model, the values at the minimum vary from ∼ 0 for QGSJetII-
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Figure 4.1: Left: Average value of the distribution of measured Xmax for data and simulations.
Right: Standard deviation of the distribution of the measured Xmax.

This chapter is structured as follows. In Section 2 we present the methods employed
and the selection cuts and efficiency for data and simulations. In Section 3 the results
obtained with the two methods are shown, and later combined and compared. The chapter
ends with a short summary and the conclusions of this study in Section 4.

2 Methodology
In this section, the two methods employed are explained in detail. Afterwards, the quality
cuts applied and the selection efficiency in data and simulations are broken down. The
results obtained with these methods are explained in the next section.

2.1 The method of splitting

The main idea is to split each event in two subdivisions and compute the ToD in each of
the groups separately. The difference between the two values obtained, that we denote by
ToD1 and ToD2, can only be due to the resolution of the detector. ToD1 and ToD2 aremeasurements of the same physical observable within the same shower, so their values
should be the same up to the smearing caused by the resolution of the detector.
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Chapter 4: Extensive Air Shower Fluctuations

More precisely, an event with n stations after the cuts have been applied is divided
in some way, that we will explain in detail later, in two groups with n1 and n2 stationsrespectively such that n = n1+n2. We keep the same definition for the Time over Distance
for each subdivision:

ToD1 =
1
n1

n1
∑

i=1

t1∕2i
ri

and ToD2 =
1
n2

n2
∑

j=1

t1∕2j
rj

(4.3)

Then, we compute the resolution of the detector from these two values using the following
formula:

�2det = �
2

(

ToD1 − ToD2

2

)

(4.4)

where �2(x) is the variance of the distribution of x and the factor 2 in the denominator is
a statistical factor that normalizes �2det . This is necessary because the number of stations
with which the measurement of the ToD is done is different from the number of stations
used to measure ToD1 and ToD2. Without this factor we would see differences that are not
only caused by physics but also by the difference in the number of stations.

We explain now the scheme chosen to divide the stations of each event in two groups
to compute ToD1 and ToD2. The method that we have chosen is to divide based on the
total signal measured at each station. The stations are sorted from largest total signal to
smallest total signal. Then, the odd stations in this list are in the first group and the even
ones are in the second. That is, the first station, the one with the highest signal in the
event, would be in the first group, the second station would be in the second group, the
third would be again in the first group and so on.

Another possible choice is to pick as the first group the stations that have a positive
polar angle � > 0 and for the other group those having a negative polar angle � < 0. This
choice has been explored before [96] but we have used it only to test that our results do not
depend on the scheme chosen to define the stations set.

Regarding the uncertainties, the statistical uncertainties are taken from a fit of a Gaus-
sian function to the distribution of the differences of ToD1 and ToD2 (with the factor 2 inthe denominator). It will be seen later that these distributions have a gaussian shape, cen-
tred close to zero. The uncertainty of �2det is taken from the uncertainty of the parameters
of the fit:

f (x, a, �, �2) = a e
− (x−�)2

2�2 (4.5)
where a, � and �2 are free parameters. �2 is used as a parameter instead of � so that the
uncertainty of �2 can be obtained directly from the uncertainty of the parameters of the
fit.
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In principle, the uncertainty of �2det could also be obtained by a simple quadratic prop-
agation of the uncertainties from the risetime since we are working with analytic expres-
sions. However, uncertainties obtained this way are overestimated because the assump-
tions of independence of the terms that are involved when propagating are not valid: ToD1
and ToD2 are not independent since they are computed from risetimes of the same event. It
would be necessary to do an involved study of how the uncertainties are correlated while
the procedure that we follow only requires doing a fit. The computation of systematic
uncertainties is explained later, on page 69.

2.2 Analysis of variance (ANOVA)
The analysis of variance (ANOVA) is a technique for the study of deviations of a popula-
tion from a mean value based on a division on groups of this population. This method can
be applied to any dataset that can be divided in groups, although we give a version of this
method adapted to the problem that we are dealing with. ANOVA has been applied to the
study of fluctuations using risetimes before [97].

In this work our population is the values of the risetime divided by the distance t1∕2∕rand the groups are the events. First, we define some notation to explain the ANOVA
method. x is a vector of numbers and in our case it is a vector with all the values of the
risetime divided by the distance to the core. ⟨x⟩ is the average value of x. We denote each
event with the index g. ⟨xg⟩ is the mean for the group or event g and that is the definition
of the ToD, because we are using x = t1∕2∕r. Each event or group has ng stations. And the
j-th value of t1∕2

r
in an event is denoted by xgj . ANOVA starts from the following general

equality, valid for any definition of groups:
∑

i

(

xi − ⟨x⟩
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
total

=
∑

g
ng
(

⟨xg⟩ − ⟨x⟩
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
between groups

+
∑

g

∑

j∈g

(

xgj − ⟨xg⟩
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
within groups

(4.6)

In ANOVA, the null hypothesis is that all the groups are sampled randomly from the
population. Statistical significance for the hypothesis that groups are not sampled ran-
domly is obtained via a F-test of the following quantity:

F =
�21
�22

with �21 =

∑

g
ng
(

⟨xg⟩ − ⟨x⟩
)2

Ng − 1
and �22 =

∑

g

∑

j∈g

(

xgj − ⟨xg⟩
)2

N −Ng
(4.7)

with degrees of freedom �1 = Ng−1, whereNg is the number of groups, and �2 = N−Ng,whereN is the total number of samples. After the statistical significance is computed, the
null hypothesis can be accepted or rejected.
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Chapter 4: Extensive Air Shower Fluctuations

We do not follow the standard ANOVA but we identify �22 with �2det . This is motivated
by the fact that Equation 4.6 is very similar to Equation 4.1, where we have that the total
variance is equal to the sum of two components. In Equation 4.6, one term takes into
account the variations between different groups or events while the other takes into account
the variations within the same group. This is similar to what was done in [97] although here
the fluctuations are computed in a different way, using Equation 4.2. We obtain �2det from:

�2det =
1
4

∑

g

∑

j∈g

(

xgj − ⟨xg⟩
)2

N −Ng
(4.8)

where the factor 1∕4 is a normalization factor that takes into account that the number of
stations that we use in each event is 4 (explained later in Data selection).

Regarding the uncertainties, we do the same as we did for the method of splitting.
Since Equation 4.8 is very similar to the expression of a variance, we do a Gaussian fit of
the distributions of xgj − ⟨xg⟩ with Equation 4.5. However, Equation 4.8 is not exactly the
expression of a variance because of the factor in the denominator. We rescale the distribu-
tion of xgj−⟨xg⟩with the factor 4(N−Ng)∕(N−1), so that there is an equivalence between
�2det and �2 in the gaussian fit, and the uncertainty can be taken from the uncertainty of the
parameters of the fit.

2.3 The total variance: �2total
The other term that is needed to obtain �2f besides �2det is �2total. �2total is the total variance of
the distribution of the ToD. However, it is not as easy as computing directly the variance
from the distribution of the ToD, sincewe saw in the previous chapter that the ToD depends
linearly on sec �. That means that the variance of the distribution of ToD has a contribution
due to the real variance of the ToD and another contribution due to the dependence on
sec �. Because this dependence is linear, it is easy to correct for it to obtain the real variance
of the ToD distribution. For each energy bin we make a linear fit of ToD as a function of
sec �. Then, we pick a reference angle, for example sec � = 1 2, and then use the following
equation to refer all the values to sec � = 1:

ToD ∶= ToD + (f (1) − f (sec �)) (4.9)
where f (x) = a+bx is the functionwe use for the fit with a and b being the free parameters.
That means that every value of the ToD will be its previous value plus a correction which

2The choice of this value has no effect since choosing another value would shift the whole ToD distri-
bution by a constant value that leaves the variance unchanged.
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Figure 4.2: ToD as a function of sec � before (left) and after (right) applying the correction in
Equation 4.9.

is the difference between the value of the fit at sec � = 1 and the value of the fit at the
corresponding sec � of each event. Once the correction in Equation 4.9 is applied, then
�2total is obtained by taking the variance of the corrected values of ToD for each energy bin.
See Figure 4.2 for an example of the application of this correction: in the right panel the
dependence with sec � has been removed.

2.4 Data selection
This work is based on the ToD, thus some of the cuts are very similar to those explained in
the previous chapter on page 46. The data used come from the same sample from March
2004 to June 2017. The cuts applied in this analysis are the following:

■ No saturation in any of the low-gain or high-gain channels.
■ 40 ns < t1∕2 < 2000 ns. The upper bound removes most of the extremely large
risetimes that sometimes contribute greatly to the variances. This is a slightly stricter
cut than in the previous chapter with 392 values with 2000 ns < t1∕2 < 3000 ns andhalf of those values having r > 2000m and S > 5VEM.

■ We only include events that have a reconstructed energyESD above 1018.5 eV, so that
the 1500m array is fully efficient.

■ Total signal S > 5VEM. The dependence of the risetime divided by the distance
with the signal is only important at very low signals. 5VEM is the value of the
signal where the dependence of the risetime divided by the distance with S flattens
and becomes constant.
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■ We use events that have a zenith angle � < 50◦, because the ToD does not behave
linearly with sec � above this angle.

■ Weonly use events with a number of stations n >= 4. For events that havemore than
four stations we pick only the four stations with the largest total signal measured and
we do not use the other stations in the analysis. The quality of the measurements
depends on the number of stations used. In particular, the ToD, which is defined as
an average, has a resolution that improves with 1∕√n. Four stations is a trade-off
between a number of stations large enough and enough statistics because the number
of events with more stations decreases very rapidly as n increases. Furthermore, we
pick only the four stations with the largest signal because with four stations it is
possible to divide the event in two halves with two stations each. The following
number that allows to divide an event in two parts with the same number of stations
is six and that is a much stronger cut: less than 1% of the events would be selected
betwen 1018.5 eV and 1018.6 eV.

2.5 Selection efficiency
The selection efficiency is shown for each energy bin in Table 4.1 and Table 4.2. The most
demanding cut is to use only events that have four or more stations. This is specially true
at the lowest energies where most events have two or three stations and that is the reason
why the selection efficiencies are so low at these energies. There is a slight difference in
the selection efficiency between simulations with the same model and different primary.
For both QGSJetII-04 and EPOS-LHC the difference is between a 7% and a 10%.

3 Results
The results obtained are presented in the following subsections. First, the evolution of �2totalwith the energy, then, the resolution of the detector �2det and last, the fluctuations obtainedwith Equation 4.1 for the two methods studied.

3.1 The total variance: �2total
After applying the correction in Equation 4.9, the variance of the distribution of the ToD
for each energy bin has been computed in Figure 4.3. The total variance decreases with
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% of events selected
log10(ESD∕eV)

Exp.
data

Proton
QGSJetII-04

Iron
QGSJetII-04

Proton
EPOS-LHC

Iron
EPOS-LHC

18.5 - 18.6 31 24 29 24 32
18.8 - 18.9 72 60 69 62 71
19.0 - 19.1 90 81 86 83 87
19.4 - 19.5 99.7 99.0 99.5 99.2 99.7

Table 4.1: Percentage of the initial events remaining after the cuts used for different energies.
stations events with n ≥ 2

Initial sample 454220 (100%) 91991 (100%)
40 ns < t1∕2 < 2000 ns 446735 (98.4%) 91976 (99.9%)

S > 5 VEM 353463 (78%) 91914 (99.9%)
n = 4 195520 (43%) 48880 (53%)

Table 4.2: Selection efficiency on the number of stations n and on the number of events with the
cuts used for the data measured by the SD.

the energy and above 1019.5 eV the distributions of the ToD become narrower than those
in simulations done with iron as the primary cosmic ray.

3.2 The method of splitting
We present the results obtained from the difference between the ToD1 (computed with the
stations that are in an odd position when they are sorted by the measured total signal) and
ToD2 (computed with the stations that are in an even position).

The distributions of the ToD in each group are very similar to the one using all the
available stations, see the left panel of Figure 4.4. The distributions of ToD1 and ToD2 foreach energy bin are shown in Figure 2 on page 144. We can also see that the difference
ΔToD = ToD1 − ToD2 has a distribution that is similar to a gaussian with wider tails
and centred around zero in the right panel of Figure 4.4. It could be expected that the
distributions of ToD1 and ToD2 are slightly different, since the stations in the first group
have more signal than those in the second group. The distributions of signals in each group
for all the energy bins is shown in Figure 3 on page 145. This has a very small effect on
the distributions of ToD1 − ToD2 that are very well centred around zero (see Figure 4 on
page 146).

The resolution of the detector �2det is obtained from the width of the distributions of
ToD1 − ToD2 (see Equation 4.4) and its statistical uncertainty is obtained from a fit of a
gaussian function. Figure 4.5 is a plot of �2det as a function of the reconstructed energy for
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Figure 4.3: Evolution of the total variance of the distribution of the ToD with the energy.

both simulations and data. The resolution is better as the energy increases because stations
measure a larger signal, this is also true for many physical observables. This decrease is
faster for data than it is for simulations, which could be a signal of a change in composition
towards heavier nuclei. Since the resolution improves with higher signal and because the
signal size for heavier nuclei of the same energy is larger, the resolution for iron is lower
than it is for protons.

When �2det is subtracted from �2total for each bin of energy, the results shown in Fig-
ure 4.6 are obtained. Comparing the scale of �2det in Figure 4.5 with the fluctuations in
Figure 4.6 we can see that the resolution of the detector is up to an order of magnitude
larger than the fluctuations. It comes as no surprise, then, that the uncertainties are large
when measuring the fluctuations. Even though the uncertainties are large, fluctuations are
found to be significantly above zero for most energy bins and show a dependence with the
energy.

To test whether the fluctuations depend on the energy or not we made fits of a constant
and a straight line to the results obtained with the method of splitting. The constant in the
first fit is 0.00045± 0.00004 ns2m−2 and for the straight line the intercept is 0.005± 0.003
ns2m−2 and the slope is −0.0003± 0.0001 ns2m−2. A negative slope means that the aver-
age composition moves to heavier nuclei as the slopes of the simulations are of the order
of −10−5, so that fluctuations of data are steeper than the fluctuations of simulations. A
maximum likelihood ratio test comparing the fit of the constant and the straight line yields
a p-value p = 6.7 ⋅ 10−3 (2.7�) for rejecting the constant in favour of the straight line. A
constant value of the fluctuations with the energy can not be rejected but, with almost 3�,
the results point to a decrease of the fluctuations with the energy.

The results obtained in Figure 4.6 can be transformed to the average logarithm of the
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Figure 4.4: Left: Distribution of the values of the ToD when the events are separated in two groups
and the distribution when no separation is done. Right: Distribution of the differences in the values
of the ToD between the two groups. The distributions are obtained with all the available events
(all energies and all zenith angles) for data.

mass with the following expression (the same way as it was done in Equation 3.15 in
Chapter 3):

⟨lnA⟩ = ln 56
�2f (proton) − �2f (data)
�2f (proton) − �2f (iron)

(4.10)

The evolution of ⟨lnA⟩ with the energy has been plotted in Figure 4.7. The last points,
comprising all events with energy ESD > 1019.8 eV are above and below the value for
proton and iron, respectively. When uncertainties are taken into account, however, it is
not a significant deviation.

3.3 Analysis of variance
The results obtained with the analysis of variance are presented in this section. The values
of �2det found are in accordance with those obtained when splitting the event. Because
of this, and since �2total is the same for both methods, the fluctuations obtained with this
method agree with the ones shown in the previous section. This comparison will be made
clear later, when comparing both results in Figure 4.12.

In Figure 4.8 the evolution with energy of �2det is shown and in Figure 4.9 the evolutionwith energywhen �2det is subtracted from �2total is shown. Repeatingwhat happenedwith themethod of splitting we can see that the detector resolution is greater than the fluctuations
and that fluctuations are found to be significantly above zero for most energy bins. The
fits of a constant and a straight line have also been repeated and the p-value obtained is
8.6 ⋅ 10−7 (4.9�) in favour of the straight line.
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Figure 4.5: Evolution with energy of �2det obtained with the method of splitting. The values for the
simulations have been fitted with a straight line.

Using Equation 4.10, the results obtained by transforming to ⟨lnA⟩ are shown in Fig-
ure 4.10. We see the same behaviour than with the method of splitting: the average mass
increases with the energy and the last point is below the line for proton although compat-
ible within the uncertainties.

Comparison with the uncertainty of the risetime

Using the method from the analysis of variance, we have made a comparison with the
uncertainty of the risetime, obtained from [43] and �2det . This is a good cross check to showthat what we call �2det is indeed a measurement of the resolution of the detector. We have
made bins of energy, of sec � and of distance to the core. We only pick events that have at
least two stations that are in the same bin. We use Equation 4.8 to compute �2det as we didbefore, with the different groups being the events.

In Figure 4.11 a comparison between the values of �2det and the uncertainty of the rise-time is made. The values of the uncertainty with ANOVA (black squares) agree qualita-
tively well with the uncertainty of the risetime and follow the same trend with the distance
in a wide range of distances.

3.4 Comparison of both results
We have compared the results obtained with the two methods that have been explained.
In Figure 4.12 both results are plotted in the same graph. We can see that not only they
are compatible within the statistical uncertainties but also the trends are very similar. The
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Figure 4.6: Evolution with energy of �2total − �2det obtained with the method of splitting. The error
bars correspond to the statistical uncertainty propagated quadratically from �2det and �2total. The
shaded area corresponds to the systematic uncertainty and the numbers are the number of events
in each energy bin for the data. The systematic uncertainties are explained later, on page 69.

fact that the two methods agree very well should not come as surprise since �2det is verysimilar for both of them as it can be seen in Figures 4.5 and 4.8.

3.5 Systematic uncertainties
Both the method of splitting and the method from the analysis of variance have a very good
property regarding the systematic uncertainties. Since they are obtained from differences
coming from risetimes within the same event, many systematic uncertainties cancel out.
This is true for anything that has the same effect on all the risetimes of the same event. We
can see that in the equations from which �2det is obtained: Equation 4.4 for the method of
splitting and Equation 4.8 for the analysis of variance. Thus �2det has no contributions to
its systematic uncertainty from ageing of the detectors, dependence on the season of the
year or on the time of the day, for example.

The most important contribution is the uncertainty on the absolute scale of the energy.
We have shifted the energy of the data by ±14%. The difference between the values
with the energy shifted and those that do not have the energy shifted is taken as systematic
uncertainty. The differences found with the two methods are very similar so the systematic
uncertainty is taken to be the same in both cases and equal to 0.0001 ns2m−2.

Another contribution comes from a bias in the selection. As we have seen in Table 4.1,
there is a small difference between the percentage of events selected for proton and iron
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Figure 4.7: Evolution with energy of ⟨lnA⟩ for QGSJetII-04 and EPOS-LHC, obtained with the
method of splitting. The error bars have been obtained propagating the statistical uncertainty shown
in Figure 4.6.

simulations. To study whether this can have an effect on the results, the worst case has
been studied: a composition of 50% proton and 50% iron has been assumed. The value
of �2total − �2det has been computed with this composition and the composition obtained
using the percentages of Table 4.1. The difference between the two values of �2total − �2detis the corresponding systematic uncertainty. It is quite model independent since the bias
is similar for both hadronic models. We found that it decreases with energy as expected
since the bias in the selection is reduced with increasing energy. Only for the lowest ener-
gies the difference is above 10−5 ns2m−2, which is an order of magnitude below the other
contributions to the systematic uncertainty. The final uncertainty that we take is a linear
function that goes from 5 ⋅10−5 ns2m−2 at 1018.5 eV to 10−6 at 1019 eV and is 0 for energies
above 1019 eV.

There are other sources of systematic uncertainty. Ageing was studied by computing
�2total before and after correcting by the linear change on the ToD as a function of the year
in the bins with the lowest energies and the highest statistics. The change in the variance
is less than one tenth of the contribution from the energy systematic uncertainty. The
dependence on the seasons has also been studied but since every bin of energy has to
be divided in four parts corresponding to each season and the statistical uncertainties are
large, it is hard to establish a conclusion. �2total is different for each season but it has not
been found that the maximum and minimum value occur at the same season for every bin
of energy, as a seasonal change would suggest. No contribution is taking from the seasonal
dependence.
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Figure 4.8: Evolution with energy of �2det obtained with ANOVA. The values for the simulations
have been fitted with a straight line.

The final systematic uncertainty is:
√

0.00012 + f (E)2 ns2m−2 (4.11)
where f (E) is a linear function that goes from 5 ⋅ 10−5 ns2m−2 at 1018.5 eV to 10−6 at
1019 eV and is 0 for energies above 1019 eV.

4 Summary and conclusions
In this chapter we have developed two methods for measuring the extensive air shower
fluctuations with the risetime divided by the distance to the core. We have found that
there are fluctuations due to physics and a possible spread in mass and that fluctuations
decrease with the energy. A change in composition towards heavier nuclei can explain
this decrease and this is compatible with what the FD measures in the same energy range.
Although the resolution of the detector dominates by comparison with the fluctuations, we
demonstrate that it is possible to measure the fluctuations using information from the SD
only.

We found that uncertainties are large3. This is due to the demanding cuts that were
needed and also to the size of the detector. The resolution improves with the signal size

3The fact that the uncertainties are large should not be surprising. From a purely statistical point of view,
to do a precise estimation of the variance of a sample, many samples (> 500) are needed. Above 1019.5 eV
all the energy bins for the data have less than 450 events.
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Figure 4.9: Evolution with energy of �2total − �2det obtained with ANOVA. The error bars corre-
spond to the statistical uncertainty propagated quadratically from �2det and �2total. The shaded area
corresponds to the systematic uncertainty and the numbers are the number of events in each energy
bin for the data.

so a detector with an area greater than the current 10m2 would help to obtain a better
estimation of the fluctuations. However, the most limiting factor is the number of events
that can be used in this study.

Both methods give results that are in very good agreement as it can be seen in Fig-
ure 4.12. It is also encouraging that the method from ANOVA can reproduce the uncer-
tainty of the risetime, see Figure 4.11. That means that �2det is a reliable measurement
of the resolution of the detector, because the parameterization of the uncertainty of the
risetime comes from the different values measured by twins and pairs of detectors [43].

This approach would need more statistics to be able to make stronger claims. We can
see in the results obtained in Figure 4.7 and in Figure 4.10 that above 1019.3 eV the statis-
tical uncertainties become larger than the systematic uncertainties. It would be necessary
to have of the order of a thousand events in each bin to be able to distinguish between a
heavy or light composition.

A denser array would be beneficial to increase the event selection efficiency at the low-
est energies. However, since the selection efficiencies are already high (more than 80%)
above 1019 eV, the number of events would remain similar. The quality of the measure-
ment of �2det and the resolution of ToD, on the other side, would improve as 1∕√n, with n
being the number of stations in each event. We reach the same conclusion as before; statis-
tics should be much larger since the resolution increases slowly with both the number of
events and the number of stations in each event.

This work was published as an internal note of the Pierre Auger Collaboration [98].
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Figure 4.10: Evolution with energy of ⟨lnA⟩ for QGSJetII-04 and EPOS-LHC, obtained with
ANOVA.
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Figure 4.12: ⟨lnA⟩ for the methods used in this analysis.
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5
Introduction to Machine Learning

Machine learning is a field that studies algorithms or models that rely on pattern inference
from data. These algorithms focus on statistical techniques using computers for the esti-
mation of complicated functions. Over the last few years, machine learning methods have
proven to be better than many other state-of-the-art techniques at their respective fields.
Together with advances in computing power and increasing amounts of data available, the
interest in machine learning has been growing.

Machine learning has also had an impact in physics. For a recent review of the appli-
cations of machine learning in different fields of physics see ref. [99]. In particular, experi-
ments in high-energy physics are very well suited for the application of these algorithms.
In these experiments a lot of data is collected and made readily available in digital form.
Also, there are frequently simulations modelling the data and the experiments that can be
used to train the machine learning algorithms.

This chapter is an introduction to machine learning with the objective of providing
some background knowledge to understand the core results of this thesis. It begins with
a short introduction of basic machine learning concepts and some of its applications in
Section 1. Afterwards, one of the main topics of this thesis is used to make a simple
dataset in Section 2. Three kinds of machine learning algorithms are studied and applied
to this dataset as examples: linear regression in Section 3, tree methods in Section 4 and
neural networks in Section 5.

75



Chapter 5: Introduction to Machine Learning

1 Machine learning
In machine learning, algorithms perform tasks using some data. The following is a list
of some of the tasks that machine learning algorithms can do, although there are many
more [100]:

■ Classification. The machine learning algorithm outputs to which class an input ob-
ject belongs to from several classes. Usually, the output of the algorithm is a vector
of probabilities of the object to belong to each class.

■ Regression. A numerical value is predicted as a function of the input.
■ Transcription. Given some input, transform it into text. One classical example is
optical character recognition.

■ Synthesis and sampling. The machine learning algorithm generates new samples
that are similar to those in the training data.

■ Feature extraction. Given some input, output features of the data that are useful for
a defined task. One example is the Principal Component Analysis (PCA).

There are many algorithms to accomplish these tasks and they are chosen based on the ob-
jective and the properties of the algorithm. Algorithms in machine learning are generally
divided in two classes: supervised and unsupervised algorithms. In supervised algorithms
the data has some features and some label or target associated. The main task is usually to
make a map between the features and the label. One example of this is when an algorithm
is trained to make a prediction based on what it has seen for the training data, where there
is a label for each input sample. The difference with unsupervised algorithms is that in
the latter there is no label in the training data and the algorithms have to learn structures
or patterns in data by themselves. One example of unsupervised algorithms is clustering:
similar examples are grouped based on a well defined measure.

Associated with the algorithms and the tasks, a performance measure has to be chosen.
This measure can assess how well the algorithm is doing. For example, in a classification
task the measure could be the accuracy, the number of correctly classified samples. In a
regression task, the measure could be the mean squared error between the target and the
prediction of the model.

The objective of machine learning algorithms is to perform well on unseen data. This
is usually known as generalization. There are two key points regarding the performance
of algorithms when generalizing: how well an algorithm does for the training data and the
difference between its performance when generalizing to unseen data with respect to the
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Figure 5.1: Comparison of polynomial models of degree n fitting data generated using a quadratic
polynomial with random gaussian noise added. Left: n = 1. Middle: n = 2. Right: n = 9.

training data. When the model is not able to fit the data we say there is underfitting (bad
performance on the training data). Underfitting can happen when the model employed is
simple and can not capture the patterns in the data. When the model performs much better
for the training set than for unseen data there is overfitting. Overfitting can happen when
the amount of training data is low and the model does not learn patterns in data but focuses
on specific examples. Note that there can be underfitting and overfitting at the same time.

Examples of underfitting and overfitting are shown in Figure 5.1. A comparison of
polynomial fits to data generated using a second degree polynomial has been made. In
the left panel the model chosen is too simple to capture the quadratic dependence of y on
x and there is underfitting. In the right panel the model fits perfectly all the points in the
training data but it is unlikely to generalize well for points that follow the same distribution
as the training data; there is overfitting. The model used for the middle panel is the one
used to generate the data. There is no underfitting or overfitting as the performance for the
training data is good and it is likely to be a good fit if other points were generated in the
same way.

To control under and overfitting and assess the performance of the algorithm both
on training data and on unseen data, available data is usually split on several parts: a
training set, used to fit the algorithm; a validation or development set, used to measure the
performance of the method while training; and a test set, used to show the performance
on unseen data after the algorithm or model has been fixed. The additional split to obtain
the test set (instead of only having one set for training and another one for validation or
testing) is done to avoid overfitting to the development set, which could happen as the best
model or hyperparameters are chosen based on their performance on this set.
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2 Data for predicting the muon signal
One of the main topics of this thesis is the problem of predicting the amount of muon
signal that would be measured at each station. We are going to use this problem to explain
several algorithms in machine learning. Our objective will be to train a model with some
variables to predict another one.

The dataset that we are using is a set of simulations of cosmic rays events measured
by the SD of the Pierre Auger Observatory where the muon signal S� is known. We will
use the following variables that can be measured in data to predict S�:

■ The reconstructed energy ESD
■ The reconstructed zenith angle �
■ The total signal measured by each station S
■ The distance to the reconstructed core of each station r

Training, development and test sets

Regarding the data, we follow the standard procedure in machine learning of dividing the
dataset in several parts. One part is the training dataset: this is the data that will be given
to the algorithm that we use to make the model. Another part is called the validation
or development set and is reserved to evaluate the performance of the method while the
training is going on. There is a third part called the test set that is used to evaluate the
performance of the method on unseen data once the method has been trained and fixed.

The training set has a total of 20000 stations and the distribution of the variables that
will be used as input and the target are shown in Figure 5.2.

Data scaling

It is also a standard procedure to scale the data before feeding it to our methods. This is
done to avoid numerical problems, such as adding a very small quantity to a very large
quantity. There are different ways of doing data scaling: each variable can be shifted to
the range [0, 1) by subtracting the minimum value and dividing by the new largest value.
Similarly, it can be scaled to the range [−1, 1]. We have scaled all the input variables to
have zero mean and variance equal to one by subtracting the mean and dividing by the
standard deviation of its distribution. The same scaling is applied to the development and
test sets using the mean and standard deviation obtained for the training set.
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Figure 5.2: Distributions of the available features for the training data used for the examples. For
the four plots of the left, corresponding to the input features, from left to right and top to bottom:
Logarithm of the reconstructed energy of the event, secant of the reconstructed zenith angle, total
signal measured by the station and distance to the core of the station. Right: Distribution of muon
signal, the target of the predictions.

3 Example I: Linear regression
Linear regression is one of simplest methods in machine learning. It is fast to execute,
easy to implement and can give good results despite its simplicity. It can also be used as
an initial baseline benchmark when using other more sophisticated methods. See ref. [101]
for a lecture on linear regression and the methods used to solve it.

Linear regression is defined as a linear model of its parameters:
ŷ = w̃X̃ + b (5.1)

where ŷ is the output of the linear model, w̃ is a vector of free parameters, X̃ is the input
matrix and b is real number called intercept. Both ŷ and w̃ are row vectors while X̃ is a
matrix:

ŷ =
(

ŷ1 ŷ2 ⋯ ŷm
)

w̃ =
(

w1 w2 ⋯ wn
) X̃ =

⎛

⎜

⎜

⎜

⎝

x⃗1
x⃗2
⋮
x⃗m

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋱ ⋮
xm1 xm2 ⋯ xmn

⎞

⎟

⎟

⎟

⎠

(5.2)
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where m is the number of samples and n is the number of features. That means that each
row of the matrix X̃ is one sample or observation and each column has the values of the
same feature for all the samples. There are as many predictions as samples and as many
free parameters as features the data has. To make the notation easier b can be absorbed
into w̃ if a column of ones is added to X̃ and we denote the result asw andX respectively:

w =
(

w1 w2 ⋯ wn b
)

X =

⎛

⎜

⎜

⎜

⎝

x11 x12 ⋯ x1n 1
x21 x22 ⋯ x2n 1
⋮ ⋮ ⋱ ⋮ ⋮
xm1 xm2 ⋯ xmn 1

⎞

⎟

⎟

⎟

⎠

(5.3)

This simplifies the computations of the derivatives and the implementation since it is not
necessary to have derivatives with respect to both w and b. Equation 5.1 transforms to:

ŷ = wX (5.4)
To obtain the optimal values of w a function is going to be minimized. This function

is usually called cost function and has to take into account the differences between the
predicted and true values, such that lower values of the function mean that the model is
making better predictions. There are several possible choices and the model obtained with
each choice will make different predictions and have different properties. For this example,
the difference squared between the predictions and the true values is being minimized and
the optimal values of w, wopt , are obtained as follows:

C = ||ŷ − y||2 = ||wX − y||2 (5.5)
wopt = minw C (5.6)

We are going to minimize C and to do so we need the derivative of C with respect to
each of the components ofw. We define )∕)w as a row vector whose components are the
derivatives with respect to each of the components of w. )∕)w is applied on scalars such
as C . With this notation and arbitrary row vectors a and a symmetric square matrix A:

)waT

)w
= aT , )awT

)w
= a, )wAwT

)w
= wA +wAT = 2wA (5.7)

where T is the transpose operation. To obtain the derivatives of C , first we expand C:
C = ||wX − y||2 = (wX − y)(XTwT − yT ) = wXXTw−wXyT − yXTwT + yyT (5.8)

and now we compute the derivatives using Equation 5.7:
)C
)w

= 2wXXT −XyT − yXT (5.9)
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3.1 Analytical solution
Linear regression is a convex problem and has a single global minimum [102]. From Equa-
tion 5.9, a linear system of equations can be made:

)C
)w

= 0 ⇐⇒ 2wXXT = XyT + yXT (5.10)

This is a system of m+1 equations and m+1 unknowns, the number of features plus one.
For the example applied to predict the muon signal S�, wopt is found to be:

wopt =
(

2.00 1.87 8.26 −2.00 11.65
) (5.11)

which means that the predicted muon signal Ŝ� will be obtained as

Ŝ� = 2.00ESD + 1.87 sec � + 8.26S − 2.00 r + 11.65 (5.12)
where the var on top of the variables means that the variables have been normalized as
explained before.

In general, there is not an analytic solution for other methods in machine learning.
Although it exists for linear regression, it does not scale well with the problem size as the
matrix XXT is a matrix with dimensions (m + 1, m + 1) which is approximately m2 for
large problems. Inverting the matrix to solve the system would require of the order of m3
operations, while the number of multiplications in the matrix productXXT scales as m2n.
Gradient based methods scale better and are better suited for large problems.

3.2 Gradient descent
We can find wopt by gradient descent, which is an iterative process. First, w is given an
initial value. In each iteration, )C∕)w is computed using Equation 5.9 and w is updated
as follows:

w ∶= w − � )C
)w

(5.13)
where � is called the learning rate and is a parameter1 that can be tuned. The choice of
� is important; it should not be very large because then w is modified by a large amount
at each iteration and can overshoot the minimum and if � is too small it can take many
iterations to reach the minimum.

1Instead of � being a single number it is also possible to have a different �i for each component of )C∕)w.
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Figure 5.3: Plot of the cost function as a function of two of the parameters in w, the ones that
multiply r and S in Equation 5.4, when the rest are set to the values given by its solution in Equa-
tion 5.11. The red points correspond to some of the different values of w obtained with gradient
descent. The arrows represent the direction of the negative gradient for each value of w chosen.
The number of the current iteration is also shown for some points.

The process can be repeated until C stops changing under a certain tolerance or a
number of iterations has been reached, for example. Using this method with � = 0.03 and
2000 iterations it was found:

wopt =
(

2.00 1.87 8.26 −2.00 11.65
) (5.14)

When compared to what was found with the analytical solution in Equation 5.11, differ-
ences in the values of the parameters start to appear in the fifth or sixth decimal place. In
Figure 5.3 the parameters at positions three and four in w have been left free while the
others have been fixed to its solution value to illustrate howw changes during the iterative
process.

3.3 Adding features
The linear model that we have used is simple but it can be improved with a small modifi-
cation. Polynomial combinations of the features can be added to the input. For example,
if polynomial features up to second degree are added, the new input matrix would be:

X =

⎛

⎜

⎜

⎜

⎝

x211 x212 ⋯ x21n x11x12 ⋯ x1n−1x1n x11 x12 ⋯ x1n 1
x221 x222 ⋯ x22n x21x22 ⋯ x2n−1x2n x21 x22 ⋯ x2n 1
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
x2m1 x2m2 ⋯ x2mn xm1xm2 ⋯ xmn−1xmn xm1 xm2 ⋯ xmn 1

⎞

⎟

⎟

⎟

⎠

(5.15)
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Figure 5.4: Distribution of the differences between the true value and the predicted value of the
muon signal for the validation set. The model with 5 parameters is the standard linear regression
model while for the model with 15 parameters polynomial features up to second order have been
added.

After the polynomial features have been added the solution can be found using the analyt-
ical technique or gradient descent.

For this example polynomial features up to second order have been included. The
model changes from 5 free parameters to 15. In Figure 5.4 the distribution of the dif-
ference between the predicted and true value of the muon signal is plotted. There is an
improvement over the model without polynomial features; this new model has more pa-
rameters and is able to model better the data.

4 Example II: Tree methods
Tree methods are another set of algorithms widely used in machine learning. The main
building block of these models are decision trees. Since decision trees are very simple
models that usually do not give the desired accuracy, it is necessary to use ensembling or
other grouping techniques to obtain good performance. See ref. [102] for more information
about decision trees.

4.1 Decision tree
Decision trees are a very simple but powerful method. The basic idea is to perform a split
on each feature X of the data, defining two regions x ≤ X and x > X. Then, a simple
model is fitted to each split or region R. In its most basic form, the model is a constant for
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each region. The phase space can be thought as being divided in rectangles and a different
constant will be predicted for each rectangle. If we name each feature of our data with
X1, X2,… , Xn, and the data is partitioned into r regions R1, R2,… , Rr the output of thedecision tree will be:

f̂ (X) =
r
∑

i=1
ciI

{(

X1, X2,… , Xn
)

∈ Ri
} (5.16)

where I is an indicator function: 1 if the input with features (X1, X2,… , Xn) is in the
region Ri and 0 if it is not; Ri are the regions defined by the splits and ci is the constantobtained for each region.

How is a decision tree built? It turns out that finding the optimal tree is a problem
that does not scale well so a greedy approach is followed. In an iterative process, the best
split is found and chosen given the previous splits. To build the tree, first the metric or the
function that will be minimized has to be chosen. For this example we chose the Mean
Squared Error or MSE. It is easy to see that the constant that minimizes the MSE for each
region is the mean:

ci = mean(yj|xj ∈ R) (5.17)
The split s for the feature j that will define the regions Xj ≤ s and Xj > s is found
requiring that the sum of the MSE in each region is minimized:

min
j,s

[

min
c1

1
n1

∑

xi∈R(j,s)
(yi − c1)2 + minc2

1
n2

∑

xi∈R(j,s)
(yi − c2)2

]

(5.18)

The process to build a decision tree is summarized as follows: for each feature Xj thedata is sorted along that feature and the best split is found. One way of doing so is by
trying all the possible splits. For each region, the constant is found using Equation 5.17.
The value of the split s and the total MSE is saved for each feature and the process repeated
for all the features. Then, the feature that gives the lower MSE is chosen for the split. The
process can be repeated for the data in each split until some stopping condition is met,
such as the maximum depth of the tree allowed. See the left panel of Figure 5.5 for an
example of a decision tree of depth two for predicting the muon signal.

In the right panel of Figure 5.5, it can be seen how theMSE evolves for different depths
of the decision tree for the training and development sets. For depths greater than four the
decision tree starts to overfit since the performance for the development becomes worse
than for the training set.

Another problem of the decision trees can be seen in the left panel of Figure 5.5. What
this tree does is assign lower values of themuon signal for lower values of the total signalS
and vice versa. It is trying to model a linear relationship but decision trees are notoriously
bad at this task since they predict a constant value for each region.
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Figure 5.5: Left: Decision tree obtained when the maximum depth is set to two. For each leaf of
the tree there is information about the MSE before doing the splits, the number of samples and the
value of the constant for that leaf. Going to the left means that the condition in the current leaf
is true and going to the right means it is false. Right: Mean Squared Error as a function of the
maximum depth of the tree for the train and development datasets.

However, decision trees have some good properties. Since finding the splits only re-
quires ranking the values, they are invariant under data rescaling. This means that usually
little preprocessing is needed when using decision trees. Another good property is that the
model is not a black box; it can be inspected as we have done with Figure 5.5. In prac-
tice, more complicated models based on decision trees are used, such as random forests or
boosted decision trees.

4.2 Random forest

Random forest is an example of the more general technique of bagging. Many decision
trees are trained on a subset of the training data and their predictions are averaged. The
subset of the data can be obtained by picking only a subset of all the features or a subset of
the samples belonging to the training data or a combination of both for each decision tree.
With this technique sensitivity to the training dataset is reduced, overfitting decreases and
it is possible to obtain better predictions than with a single decision tree.

In the left panel of Figure 5.6, random forests with different number of trees have been
fitted to the training data and evaluated on both the training and validation data. There is
a slight overfitting even though only a random 50% of the data has been used to fit each
decision tree. However, this overfitting is not as severe as with a single decision tree. The
MSE improves as the number of trees used increases.
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4.3 Boosted decision tree

Boosting consists on having several weak (simple and not accurate) learners whose pre-
dictions are combined to have a better prediction. One example of a weak learner that
we have studied is a decision tree. Algorithms for boosting vary; the classic AdaBoost is
an iterative algorithm in which weights are given to the points in the training set so that
each learner can focus on the samples for which the performance was worse with previous
learners [102].

We denote the output of a single decision tree for a single sample x by T (x; Θm), where
Θm =

{

Rm, 
m
}, that is,Θm corresponds to the free parameters of the tree: the set of regions

that it defines, Rm, and the constants that predicts for each region, 
m. The boosted tree
model is a sum of decision trees:

fM (x) =
M
∑

i=1
T (x; Θi) (5.19)

and the parameters Θm are found by minimizing the loss or cost function which is usually
introduced in a stage wise form:

Θ = argmin
m
∑

i=1
L(yi, fi−1 + T (xi; Θi)) (5.20)

Finding the optimal solution of Equation 5.20 is not computationally feasible. What is
usually done is a greedy iterative process: first f0 is initialized and fixed to some value 
 ,
then f1 is obtained and fixed, then f2 and so on. Even then, Equation 5.20 is only easy
to solve for a few loss functions L. One way of solving it in the greedy approach is using
gradient boosting, giving the name of gradient boosted decision trees. The trees are fitted
to the negative gradient values of the cost function. When L is the MSE, fitting to the
negative gradient is equivalent to fitting each tree to the residuals between the true value
and the previous prediction since (y− (fm−1 + T ))2 = ((y− fm−1) − T )2. Each successivetree focus on the examples for which the previous trees gave a worse prediction.

In the right panel of Figure 5.6, a gradient boosted decision tree has been trained to
predict the muon signal and its performance is shown as the training develops. The perfor-
mance obtained for the validation set is better than using a single decision tree or a random
forest.
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Figure 5.6: Left: MSE as a function of the number of trees using random forests. Starting from
10 trees and with steps of 20 trees until 500 trees, a new random forest has been trained for each
step with maximum depth equal to four and using a random 50% of the training data for each tree.
Right: MSE as a function of the step while training a single gradient boosted decision tree.

5 Example III: Neural Networks
Neural Networks is one of the techniques within machine learning that has received the
most attention lately. They have proven to perform very well for many different tasks such
as object recognition in images or natural language processing. Even though they were
invented in the 60s [100], recent advances both in software but particularly in hardware,
have allowed for their resurgence.

We have studied linear regression and tree methods already. A neural network is also
a model that has free parameters that have to be tuned. These parameters are usually orga-
nized in layers, the building blocks of neural networks. Each layer performs some opera-
tion on its input and gives and output. Layers can be connected to other layers in different
ways and do not necessarily have to have free parameters but often do. See ref. [103] for an
overview and implementation of a simple neural network and refs. [104,105] for reviews on
deep learning, the field that studies deep neural networks.

5.1 Fully connected layer
For this example we are going to build a neural network from scratch using the simplest
architecture: a sequential model of fully connected layers. After defining it and describing
the training process, we apply the neural network that we build to the problem of predicting
the muon signal. Even though for this example of a neural network a particular choice of
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architecture has been made, it is quite general as most neural networks work in a similar
way.

A fully connected layer is one that applies a linear transformation on its input and a
function called activation function afterwards. For a single observation x:

y = g(Wx + b) (5.21)
where x is the input (a vector with as many entries as the number of features present
in the input), y is the output, W and b contain the free parameters of this layer, usually
called weights, and g is an activation function that has to be chosen. W is a matrix of
free parameters, Wx is the regular matrix product, b is a vector and the addition is an
addition of two vectorrs since Wx produces a vector. The function g is applied element
wise, returning also a vector. Fully connected layers are defined by their number of units
or their output dimension. If x has n features, then W has dimensions (d, n) so that Wx
has dimensions (d, 1).

Equation 5.21 is valid for a single observation. In practice, instead of using a single
observation many are stacked together as this allows to obtain the output for all of them at
the same time. The modifications done to Equation 5.21 are to change x to a matrix, b to
a matrix which is a repetition of the original vector b and the output y becomes a vector
with the labels corresponding to each observation in the input.

5.2 Neural Network
The neural network that we are using has L fully connected layers, l = 1,… , L, and the
index 0 is reserved for the input. The output of each layer is obtained as follows:

al = g(W lal−1 + bl), l = 1,… , L (5.22)
and aL is the output of the neural network. Each layer l has a number of units dl and d0is the number of features of our data. We use the same activation function g for all the
layers. It is common in the literature to introduce zl to make the calculations clearer and
rewrite Equation 5.22:

zl = W lal−1 + bl ⇐⇒ al = g(zl) (5.23)
The input X is a matrix with dimensions (m, n) (m samples and n features), see Equa-

tion 5.15. We can set a0 = XT so that the following rule for dimensions holds for each l:

al
(dl ,n)

= g( W l
(dl ,dl−1)

al−1
(dl−1,n)

+ bl
(dl ,n)

) (5.24)

88



Section 5. Example III: Neural Networks

Note that dL is the dimension of the output of the neural network. Since in this case we
will want a single value, the muon signal, we will set dL = 1.We use as activation function the Rectified Linear Unit (ReLU) that has the following
definition and derivative:

g(x) = max(0, x); g′(x) = �(x) (5.25)
where �(x) is the Heaviside step function [106]. The cost function (the function that we
want to minimize) C that we use for this example the Mean Squared Error (MSE):

C = 1
n
||aL − y||2 (5.26)

The neural network is trained as follows. There is a forward pass that given some inputs
will give us some outputs, see Equation 5.22. Then, the cost function C is computed using
Equation 5.26. After this, there is a step called backpropagation: derivatives of C with
respect to each of the free parameters are computed and the weights are modified in the
direction of the negative gradient to minimize C .

5.3 Backpropagation derivation
For backpropagation the analytical derivatives ofC are needed, see ref. [107] for an overview
and derivation of the backpropagation algorithm. Large neural networks can have millions
or evenmore parameters so finding the gradients numerically is not feasible, even for small
neural networks. First, some direct derivatives are computed:

)C
)aLi

= 2
n
(aLi − yi) (5.27)

)alk
)zli

= �ikg′(zli) (5.28)
)zlk
)W l

ij

= �ikal−1j ,
)zlk
)bli

= �ki,
)zlk
)al−1i

= W l
ki (5.29)

where �ij is the Kronecker delta [108].
Let’s derive the equations for the backward pass. We apply the chain rule and use the

convention that repeated indexes are summed:
)C
)W l

ij

= )C
)aLk

)aLk
)zLm

)zLm
)W l

ij

(5.30)

)C
)bli

= )C
)aLk

)aLk
)zLm

)zLm
)bli

(5.31)
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When l = L we can use the results obtained in Equation 5.29 to have:
)C
)W L

ij

= 2
n
(aLi − yi)g

′(zLi )a
L−1
j (5.32)

)C
)bLi

= 2
n
(aLi − yi)g

′(zLi ) (5.33)

If l ≠ L then we have to keep using the chain rule. Let’s suppose that l = L − 1, we
need the following result:

)zLm
)W L

ij

=
)zLm
)aL−1n

)aL−1n

)zL−1p

)zL−1p

)W L−1
ij

= W L
mig

′(zL−1i )aL−2j (5.34)

so that the complete formulas for the case l = L − 1 are:
)C

)W L−1
ij

= 2
n
(aLm − ym)g

′(zLm)W
L
mig

′(zL−1i )aL−2j (5.35)
)C
)bL−1i

= 2
n
(aLm − ym)g

′(zLm)W
L
mig

′(zL−1i ) (5.36)

Comparing Equation 5.33 and Equation 5.36 a pattern can be extracted. For each layer
starting from the last a term W lg′(zl−1) is added. We have all the tools to describe in
detail the training algorithm.

5.4 Training algorithm
First, we define a baseline term for the gradients that will appear in each of the derivatives:

B = 2
m
(aL − y)g′(zL) (5.37)

The algorithm is the following. First, the forward pass is done using Equation 5.22.
Then, computeB using Equation 5.37. The derivatives ofC with respect toW and b,∇W l

and ∇bl, are obtained for each layer and the weights are modified withW ∶= W − �∇W
and b ∶= b− �∇b, where � is the learning rate. The complete algorithm in pseudocode is
given in Algorithm 1.

Last, the update rule for B (line 12), is obtained noting that in Equation 5.35 there is
a summation over the index m that can be obtained with the dot product (W l)T ⋅ B. The
product with g′(zl−1) is done element-wise.
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Algorithm 1 One step of the training of a feedforward neural network
1: a0 ← XT

2: Choose a learning rate �
3: for all l in 1,… , L do:
4: Forward propagation using al = g(W lal−1 + bl) ⊳ Remember to save al and zl
5: B ← 2

m
(aL − y)g′(zL)

6: for all l in L,L − 1,… , 1 do:
7: ∇W l = B ⋅ (al−1)T
8: ∇bl = sum of B ⊳ This sum is computed over the samples
9: W l ← W l − �∇W l

10: bl ← bl − �∇bl
11: if l ≠ 1 then
12: B ← (W l)T ⋅ Bg′(zl−1)

5.5 Results
A neural network has been implemented to predict the muon signal with 4, 8, 12, 1 units
in each layer, see the left panel of Figure 5.7. The learning rate used is � = 0.01 and the
number of iterations or epochs is 500. The first layer has four units which is the number
of features in the data. The last layer has one unit because a single quantity is being
predicted. The results can be seen in the right panel of Figure 5.7 and the distribution
of the differences between the true and predicted value in Figure 5.8 As it can be seen
the performance for the training and development sets is very similar, likely because the
neural network is a small one with not many free parameters and the amount of data used
in the training set is large compared to the size of the network.

5.6 Real-world neural networks
There are a number of free and open source frameworks [109–111] that free the user from
having to do most of the work done here. Depending on the usage, the user can only de-
fine the architecture, set the hyperparameters and let the frameworks do the rest of the
work. These frameworks also allow the user to customize practically everything and have
also implemented automatic differentiation, which allows to differentiate any function.
Another benefit of using these frameworks is that they can be GPU-accelerated or par-
allelized on multiple machines, yielding speed ups of many orders of magnitude over a
hand-made approach.
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Figure 5.7: Left: Architecture of the neural network used for the example. Right: Cost computed
for both the training and development sets while training is going on. Each epoch corresponds to
a forward pass and a backward pass.

6 Machine learning in this thesis
The next chapters deal with the problem of predicting the muon signal using a neural
network. The main ideas studied in this chapter are useful to understand how the neural
network works, although the focus is on the physics problem. The process followed in the
next chapters is very similar to the one followed in this chapter: data from simulations
is split in training, development or validation and test sets; a function to be minimized
is chosen for the fit and the training algorithm is performed on the training data and its
performance evaluated on the development and test set. No equations of backpropagation
are obtained since we use one of the open source frameworks mentioned above.

This chapter has another purpose. Sometimes neural networks are treated or thought
as a black box that given some input will output something. While the exact reason why
a complicated method from machine learning makes a prediction over another is hard to
know, we have seen that the methods follow well defined mathematical rules. We imple-
mented a simple neural network from scratch in this chapter to predict the muon signal. In
practice, when using one of the open source frameworks, it is not necessary to define the
operations as there are predefined layers, favouring the black box approach.
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Figure 5.8: Difference between the predicted and true values of the muon signal using a neural
network.
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6
Extracting the muon component

with neural networks:

Total muon signal

The collision of a UHECR with a molecule of air at the top of the atmosphere produces
a shower of secondary particles. When the shower reaches the ground, that shower is
mainly composed of photons, electrons, positrons and muons. The SD of the Pierre Auger
Observatory measures the time of arrival and signal left by those particles. However, it
can not distinguish which part of the signal comes from the electromagnetic cascade and
which part from the muon cascade.

Determining the signal left by muons is a very powerful tool to study the mass com-
position of UHECR. Using both the muon signal together with the position of the shower
maximum Xmax it could be possible to infer the mass composition on an event-by-event
basis [112]. We have developed a method to separate the integral of the muon component
of the signal registered by the SD using Neural Networks.

This chapter begins with an introduction to the problem of extracting the muon signal
from the physics point of view in Section 1. Afterwards, the method is described in Sec-
tion 2 and the data used in Section 3. The performance of the neural network trained on
simulations is shown in Section 4. We conclude with a short summary and the conclusions
of this study in Section 5.
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Figure 6.1: Signal in time measured by the one of the stations of the SD for a simulated event.
The total signal corresponds to the signal measured by the SD and is the sum of the electromag-
netic and muon components. The muon (left) and electromagnetic (right) components are shown
independently; this information is available in simulations. The total trace is the sum of the muon
component and the electromagnetic component. Our goal in this chapter is to obtain the integral
of the muon component.

1 Introduction
When charged particles traverse the stations of the SD, they leave a signal which is a
mixture of electromagnetic particles (photons, electrons and positrons) and muons, see
Figure 6.1. The determination of the muon component in the cascade is crucial to infer,
on an event by event basis, the mass composition of the recorded data. This is the main
motivation behind the upgrade of the Pierre Auger Observatory, dubbed AugerPrime [112].

As it can be seen in Figure 6.1, the electromagnetic and muon signals are different.
Muons usually arrive earlier and leave spikier signals than the electromagnetic particles.
The signal that they produce also extends less in time than the electromagnetic signal.
However, this is not enough to have an accurate prediction of the muon signal. Only when
studying inclined events, where electromagnetic particles are absorbed and the signal is
almost purely muonic, the muon signal can be accurately measured with the current design
of the SD [53].

In this chapter we use the information available in simulations to build and fit a model
that can predict the integral of the muon signal. The model that we use is a neural network
with fully connected layers, such as the one studied in the previous chapter on page 87.
The large amount of simulations available allows to efficiently train this method and extract
how the muon signal behaves as a function of the different variables. The goal of this study
is to estimate, for every single triggered detector used in the reconstruction of an event,
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the amount of signal that corresponds to the energy deposited by muons.

2 Neural Network: technical details
We explain the technical aspects related to the Deep Neural Network (DNN) that we have
built, comprised of fully connected layers. There are several possible choices when build-
ing a DNN: the number of neurons in each layer, the number of layers, the activation
function, etc. We employ a genetic algorithm to chose these hyperparameters and, in
the end, we give an overview of the final architecture of the DNN that we used. The
code has been implemented using Numpy and Matplotlib from the SciPy ecosystem [113],
Scikit-learn [114] and Keras [115] using Tensorflow [110]. The programming language used is
Python [116] (version 3.6).

2.1 Data preprocessing
Each feature of the data used as input and the output, the muon signal S�, have been nor-
malized each one independently so that their distributions have mean � = 0 and standard
deviation � = 1. Normalizing data is a usual practice in machine learning and it helps
to avoid computational problems associated dealing with large and small numbers at the
same time. Before normalizing, some variables have been transformed to help the DNN
learn. The details are explained in Section 3.

2.2 Activation function and weight initialization
As it has been explained in the previous chapter, in a fully connected layer each neuron
computes a function of the linear combination of its inputs. There is a wide variety of
functions that can be chosen, although following the recommendations in refs. [117,118], the
Rectifier Linear Unit (ReLU, see Equation 5.25) is a good choice and one of the most used
activation functions. Nonetheless, instead of choosing it ourselves we have let the genetic
algorithm chose the one that gave the best performance among the ones we tested. The list
of functions that we have included is the following: linear or f (x) = x, tanh, softmax [119],
ReLU and SELU [120].

Regarding the initialization of the weights of the neural network, we have obtained the
bests results using a randomweight initialization that draws the values of the weights from
a normal distribution with mean � = 0 and standard deviation � = 0.05.
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2.3 Loss function and optimization algorithm
We use the Mean Squared Error (MSE) to determine if the model has a good performance:

MSE = 1
n

n
∑

i=1

(

Ŝ�
i − S

�
i

)2 (6.1)

where n is the number of samples, S�
i is the true value that we want to predict for the i-th

example and Ŝ�
i is the prediction done by the neural network for the same example. This

is the function that will be minimized during the training process.
The optimization algorithm used is Adam [121], which is a stochastic gradient-based

method. It is the recommended algorithm in many deep learning applications. We fol-
lowed the common usage of running the algorithm using the default parameters recom-
mended in ref. [121]. The gradients are computed and then corrected using a first and second
raw moment estimate, leading to the new value of the parameters to be optimized.

2.4 Genetic algorithm
Genetic algorithms (GAs) are global optimization algorithms that have been widely used
in many areas as an improvement over a random search [122]. The idea beneath these algo-
rithms is to imitate the behaviour of nature by evolving populations of individuals through
time, in a way that only the characteristics, also called genes, of the fittest individuals
are propagated into the next generation of the population, see Figure 6.2. We have let the
number of neurons in each layer, depth or number of hidden layers and choice of activation
function free for the genetic algorithm to pick the best combination.

The first step in a GA is to decide what to choose as the individual that will be evolved
over time. We have defined our individual as a DNN, and represented it as a vector of a
certain length, where each element corresponds to the number of neurons in each layer
in the allowed interval [0, 100]. This vector also has an integer that maps the activation
function (see the list in subsection 2.2), and therefore, the algorithm can check different
combinations of them. The number of hidden layers was limited to a maximum of ten.

We generated randomly 50 individuals with a random number of neurons in each layer,
a random number of layers and random activation functions from the possible choices. We
have repeated the following process for 100 generations. To compute the fitness of each
individual, networks are trained over ten epochs to have an estimation of their potential
performance. The validation is done over a sample independent of the one used for train-
ing. Once they are evaluated, a binary tournament selection is carried out to obtain the
best individuals, based on their performance on the validation sample. Then, there is a
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selection

crossovermutation

evaluation

Figure 6.2: Diagram of the genetic algorithm used in this work. DNNs are built with random
numbers of hidden layers and neurons per layer and trained. The DNNs with better performance
are selected in binary tournaments. Only for the selected DNN, we cross the number of neurons
in some layers between individuals and we introduce mutations (random changes of the number of
neurons in certain layers). This process provides a new generation of DNN ready to be trained.

two-point crossover, that is, the number of neurons in each layer from a certain start layer
l0 up to an end layer l1 are exchanged between two individuals with probability 0.8. The
last step is to mutate or change randomly, with probability 0.1, the number of neurons in
each layer of an individual. When the new population is available, we have used an elitism
mechanism where the best individual in the current population is included into the next
one. All these values were set up according to the literature, following the same design
principles discussed in refs. [123–126] and after checking, by doing experiments, that other
values did not produce a significant improvement.

When any layer was found to have less than five neurons, it was discarded. In this way,
we make sure that the layer is really needed and there is no need to add dropout or apply
regularization afterwards. The last layer only has one neuron and is used to obtain the
output.

2.5 Final DNN structure
The final DNN obtained is represented in Figure 6.3. It is the outcome of running over a
mix of equal fractions of proton, helium, nitrogen and iron nuclei generatedwith QGSJetII-
04. The network is made up of six layers: five fully connected layers using ReLU as acti-
vation function and a final layer that combines the outputs from the fifth layer linearly. In
this neural network, complexity starts increasing from low to high (from 9 to 56 neurons)
and then it decreases to the point where it started. The first runs of the GA, using a maxi-
mum of ten layers, always decreased the number of them to six or seven, so we fixed the
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Fully
connected
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connected

Fully
connected
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Figure 6.3: Final structure of the DNN coming from the GA optimization. It has five fully con-
nected layers using ReLU as activation function, except for the last layer, for which a linear activa-
tion function (f (x) = x) is used. The numbers of neurons in each layer are indicated.

number of layers to six to simplify the structure of the DNN without losing performance.
We executed the GA again (with a maximum number of layers set to six) obtaining the
current configuration. In this way, once we explored complex solutions regarding the net-
work depth, we exploited the reduced solution space to determine more precisely how
many neurons per layer should be included.

3 Input variables and data
We feed the neural network with the set of variables described below. Notice that some
of them pertain to the global features of the event (items 1 and 2 in the list below), while
others refer specifically to the information at the station level. The total trace used in our
analysis is computed as the average of the traces recorded by each of the active PMTs
of a station. In our analysis we do not use detectors with signs of saturated traces. We
disregard as well stations whose measured total signal is below 10VEM (above this value
the probability of single detector triggering is close to 100%). We do not work with events
whose energy lies below 3⋅1018 eV since this is the minimum energy at which the Auger
trigger efficiency reaches 100% for the events recorded by the 1500m array. The event
selection efficiency is above 95% for the energy interval of interest (≥ 3 ⋅ 1018 eV). The
chosen list of variables reads as follows:

1. Monte Carlo energy: EMC. This is the only Monte Carlo variable used. Since this
study deals only with simulated events, we did not use reconstructed energies to
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avoid all the discussion associated to the energy calibration of SD events. We use
as input variable the decimal logarithm of energy, with the energy expressed in eV.

2. Zenith angle: �. It is measured in degrees. For this study and due to the lack of
simulated horizontal events, we limit ourselves to angles below 45 degrees.

3. Distance of the station to the reconstructed core of the air-shower r. We measure it
in meters.

4. Total signal registered by the station S. We measure it in VEMs.
5. Trace length. Number of 25 ns bins between the Start and End bins of the trace [127].
6. Polar angle of the detector with respect to the direction of the shower axis projected

on to the ground � . It is measured in radians.
7. Risetime, t1∕2 (see Chapter 3).
8. Falltime. Similarly to the risetime, it is the time for the integrated signal to go from

50% to 90% of its total value and it is measured in ns.
9. Area over peak. It is defined as the ratio of the integral of the trace to its peak value.
The set of mixed global and local (station level) variables listed above performs well.

Enlarging it with new variables to obtain a better estimation of the muon signal just repre-
sents an increase of the training time but does not improve our results. In particular, one
can think that feeding the net with the whole temporal series of bins that form the trace
would substantially improve the precision with which the muon signal is extracted. We
observed that in that case the gain is almost negligible, while the computational cost in
terms of time increases by a sizeable factor. We understood that to fully exploit the time
information contained in the recorded traces we have to consider new classes of artificial
neural networks. In the next chapter we study the use of recurrent neural networks to try
and extract not only the total muon signal but also its time structure.

We decided to train the network with events generated using QGSJetII-04. The events
have been simulated with a distribution that is uniform in energy. Once the network is
trained and its performance has been evaluated with QGSJetII-04 events, we use EPOS-
LHC to show how our results depend on the different assumptions made to model hadronic
interactions at ultra-high energies. Another important decision is related to the nature of
the nucleus or set of nuclei used to train the neural network. We observed that training
the network with a single species is a far from optimal decision. We show the values of
the MSE, our evaluation metric, and the mean values of the distributions obtained as the
difference between the predicted and the true muonic signals in Table 6.1. For example,
when iron nuclei are used to build the network, the number of predicted muons in events
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Training sample MSE Mean (p, VEM) Mean (Fe, VEM)
Pure p 6.8 0.16 −0.26
Pure Fe 7.5 0.33 −0.18

Mix 25% (p, He, N, Fe) 6.4 0.08 −0.16

Table 6.1: Performance of the neural network when different compositions are used for the training
sample. We use QGSJetII-04 as the model to simulate hadronic interactions. The third and fourth
columns show the mean of the distributions of predicted minus true muon signals, measured in
VEM, for proton and iron nuclei, respectively.

QGSJetII-04
Training Validation Test

Primary Number of events Number of traces
Proton 19362 16088 4022 57522
Helium 12341 15960 3989 34314
Nitrogen 12201 16071 4017 33739
Iron 19478 16076 4018 65231

EPOS-LHC
Training Validation Test

Primary Number of events Number of traces
Proton 18456 − − 78063
Iron 18779 − − 86862

Table 6.2: Summary of the number of simulated events and traces used in this work. Notice that
the batches of stations used for training, validation and test correspond to different sets of detectors.

generated by protons is overestimated. Similar conclusions are drawn when a pure sample
of protons is used to train the network. In this case we underestimate the muonic signals
produced by Fe. The situation improves when the network is trained with a mix of iron
nuclei and protons in equal amounts. However, we observed that our estimations of the
muonic signal improve even more when a mix of equal fractions of proton, helium, nitro-
gen and iron nuclei is used in the final training sample. As shown in Table 6.1, this is the
combination that offers the best performance.

The numbers of events generated and the stations used are shown in Table 6.2 for two
models of hadronic interactions. QGSJetII-04 events are used to train, validate and test
the neural network. EPOS-LHC events are used for testing purposes only. The validation
sample is used to choose the model that works best and also to study whether the learn-
ing process shows signs of overfitting, something that does not occur in the case under
study. The events have been simulated using the CORSIKA package [128] version 74004
and reconstructed using an official version of Offline [127] .
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4 Results
Once the model described in the previous sections was optimized to extract an estimation
of the muon signal recorded by the stations, we show to it samples of simulated events
generated with QGSJetII-04 and EPOS-LHC. Before discussing the outcome of this pro-
cedure, we note that this method can be readily applied to experimental data. The event
selection efficiency is, as for the case of simulated events, close to one andwe observed that
the performance of the method is similar when the reconstructed energy is used. The only
problem comes when interpreting the results, given the known inconsistencies between
data and simulations (see subsection 3.4 on page 14).

4.1 QGSJetII-04 simulations

The distribution of muonic signals for a set of events generated with QGSJetII-04 is shown
in Figure 6.4. They have energies higher than 1018.5 eV and zenith angles up to 45 degrees.
The figures in this section show results at the single station level. For each species, we
find that the distributions of predicted signals reproduce reasonable well the true signal
distributions. This is illustrated in Figure 6.5 where the difference between predicted and
true signals is plotted for every nuclei. We obtain Gaussian distributions with means very
close to zero and standard deviations around to 2.5 VEM. The accuracy in the prediction
of the muonic signal is shown, this time as a scatter plot, in Figure 6.6. The Pearson
correlation coefficient is 0.98 for p, He, N and Fe.

We have checked whether potential biases arise in the estimation of the muonic signal
as a function of the following variables: distance of the station to the position of the core
at the ground (Figure 6.7), simulated energy of the event (Figure 6.8), sec � (Figure 6.9)
and the total signal recorded by every water-Cherenkov detector (Figure 6.10). For this
set of variables, the mean of the differences (in absolute value) between true and predicted
signals are most of the time below 2 VEM. Relative errors are typically below 10%. Our
predictive power does not depend on the energy or the zenith angle of the air shower since
the differences between predicted and measured signals are flat as a function of those two
variables. At distances close to the core the spread in differences is wider. In addition to
the fact that the number of events is smaller at short and very large distances to the shower
core, we attribute part of this behaviour to the presence of a stronger contribution of the
electromagnetic component.
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Figure 6.4: True and predictedmuon signals for four different species of primary nuclei. Each entry
corresponds to the muonic trace recorded by each individual detector. The events have been gener-
ated in an energy interval that spans from log10(E/eV)=18.5 up to log10(E/eV)=20. Simulations
use QGSJetII-04 to model hadronic interactions.

4.2 EPOS-LHC simulations

A crucial test our approach must overcome is to prove that the neural network is capable of
accurately estimating the muon signal in a detector independently of the hadronic model
used. With this goal in mind, we generated a sample of events that used EPOS-LHC as
the model for hadronic interactions, see Table 6.2. The results of this exercise are shown
in Figure 6.11−Figure 6.16. These plots illustrate the robustness of the final DNN to a
change in the hadronic models used for testing its performance. The relative error stays
below 10%, and the absolute difference between predicted and true signal does not exceed
2 VEM units. In addition, no sensible bias occurs as a function of the set of variables
previously checked. We interpret this as a sign that the correlations between the variables
used in the models under consideration are similar and therefore show a high degree of
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Figure 6.5: Difference between predicted and true muon signals for four different kinds of pri-
maries. Every entry corresponds to the information provided by a single detector. Events have
been generated using QGSJetII-04 to model hadronic interactions.

universality.

5 Summary and Conclusions
We have demonstrated that deep learning methods are a powerful tool to estimate the
muon signal fraction in the traces registered by the water-Cherenkov detectors of the Auger
Surface Detector Array. Based on Monte Carlo studies, we have proven that, for each
individual station, we obtain accuracies that are typically better than 10%. Our method
can be applied to a wide spectrum of primary nuclei, energies, zenith angles and distance
ranges. It has also been proven that it is independent of the model for hadronic interactions
used in simulations.

This work was published in ref. [129].
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Figure 6.6: Correlation between the predicted and the true muon signals. Events have been gener-
ated using QGSJetII-04 to model hadronic interactions.
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Figure 6.7: Mean of the distribution of differences between predicted and true muon signals as a
function of the distance to the core (left) and its associated relative error (right). Events have been
generated using QGSJetII-04 to model hadronic interactions.
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Figure 6.8: Mean of the distribution of differences between predicted and true muon signals as a
function of the event Monte Carlo energy (left) and its associated relative error (right). Events have
been generated using QGSJetII-04 to model hadronic interactions.
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Figure 6.9: Mean of the distribution of differences between predicted and true muon signals as a
function of sec � (left) and its associated relative error (right). Events have been generated using
QGSJetII-04 to model hadronic interactions.
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Figure 6.10: Mean of the distribution of differences between predicted and true muon signals as
a function of the total signal registered in individual stations (left) and its associated relative error
(right). Events have been generated using QGSJetII-04 to model hadronic interactions.
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Figure 6.11: Difference between predicted and truemuonic signals at detector level for two different
kinds of primaries. Events have been generated using EPOS-LHC to model hadronic interactions.
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Figure 6.12: Correlation between the predicted muon signal and the true muon signal. Events have
been generated using EPOS-LHC to model hadronic interactions.
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Figure 6.13: Mean of the distribution of differences between predicted and true muon signals as a
function of the distance to the core (left) and its associated relative error (right). Events have been
generated using EPOS-LHC to model hadronic interactions.
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Figure 6.14: Mean of the distribution of differences between predicted and true muon signals as
a function of the Monte Carlo event energy (left) and its associated relative error (right). Events
have been generated using EPOS-LHC to model hadronic interactions.
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Figure 6.15: Mean of the distribution of differences between true and predicted muon signals as a
function of sec � (left) and its associated relative error (right). Events have been generated using
EPOS-LHC to model hadronic interactions.
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Figure 6.16: Mean of the distribution of differences between true and predicted muon signals as
a function of the total signal registered in individual stations (left) and its associated relative error
(right). Events have been generated using EPOS-LHC to model hadronic interactions.
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7
Extracting the muon component

with neural networks:

Temporal muon signal

In the previous chapter we presented a method to extract the total muon signal recorded
by individual stations of the SD. We now present a method to obtain the full muon time
signal using modern techniques from the field of machine learning: neural networks. This
method is much more powerful since both the temporal distribution and the total signal
can be obtained from its predictions, by integrating the predicted temporal series.

This chapter is organized as follows. In Section 1 we explain the method. Results
on simulations are given in Section 2 and some preliminary results on data are given in
Section 3. Then, the predictions for data are fitted in Section 4 using functions obtained
from measurements done in different UHECR experiments. The chapter ends with a short
summary and conclusions in Section 5.
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1 Method
Our approach is based on a kind of Neural Network known as Recurrent Neural Network
(RNN). RNNs are specially well suited for time series because they have a memory mech-
anism. As the computing process develops, for each step of the temporal series the RNN
stores information from a preceding time slot that can be used at a later stage. Nowa-
days, RNNs are used successfully in different fields such as natural language processing
or machine translation, see ref. [130]. There are several kinds of RNNs and one of the most
common is called Long Short-TermMemory (LSTM). Our neural network is based on this
kind of RNN.

1.1 Long Short-Term Memory layer
Long Short-Term Memory (LSTM) layers were proposed in 1997 [131]. At those times it
was hard to make use of these in neural networks, as they require a lot of computing power.
The basic idea is that they operate on sequences, such as temporal sequences and also other
sequences like language fragments. They keep information from previous steps in the se-
quences. Even though RNNs also do this, LSTM are well suited to keep information from
many previous steps, allowing for the treatment of long sequences. A detailed description
of the operations and the parameters of a LSTM layer is given.

LSTM layers have four matrices and four vectors of free parameters, denoted as Wf ,
Wi, WC and Wo and bf , bi, bC and bo respectively. These layers work on sequences of
data, see ref. [132]. For a detailed description of the operations see Figure 7.1. The layers
keep some information in a cell state Ct and a hidden state ℎt, where t is the index that
represents the steps in the sequence. The index f is associated to a forget gate. This gate
decides what to keep or forget from the previous cell state Ct−1. The index i is associatedto an input gate. This gate decides what to keep from a candidate cell state C̃t. The index
o is associated to an output gate that selects what to output from the cell state Ct. The finalresult of this gate is two vectors: the vector of cell states Ct and another vector having thehidden states ℎt.

1.2 Input
For the input of our neural network we use the traces recorded by the SD. Each station is
equipped with 3 PMTs and the traces used in this study are obtained after averaging the
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ft = �(Wf ⋅ [ℎt−1, xt] + bf )

it = �(Wi ⋅ [ℎt−1, xt] + bi)

C̃t = tanh(WC ⋅ [ℎt−1, xt] + bC )

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = �(Wo ⋅ [ℎt−1, xt] + bo)

ℎt = ot ∗ tanh(Ct)

■ The forget vector ft is built

■ The input vector it is built
■ The candidate cell state C̃t is built

■ The forget gate selects from the
previous cell state Ct−1

■ The input gate selects from the
candidate cell C̃t

■ Output obtained from previous
hidden state ℎt−1

■ Hidden state obtained from the
current cell state Ct

Figure 7.1: Description of the operations performed in a LSTM layer, with xt being the input of
the layer (a temporal sequence) and ot being the output of the layer (another temporal sequence).
[] means concatenation, ∗ means elementwise product and ⋅ is the regular matrix product. The
functions � and tanh are applied elementwise and � is the sigmoid function.

trace of each active PMT. A study conducted using the traces provided by each individual
PMT did not produced better results than those presented in the next sections.

We use only the first 200 bins of each trace. Traces that are shorter than those 200
bins are padded with zeros at the end. Most of the relevant information is encapsulated in
the first bins of each trace and this is specially true for muons, which arrive earlier than
the electromagnetic component. From simulations we know that for E < 1019 eV, around
90% of the stations have the complete muon signal in the first 200 bins and the rest have
more than 99% of the muon signal in those 200 bins. For E > 1019 eV around 70% of the
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stations have the complete muon signal in the first 200 bins and the rest have around 99%
of the muon signal in those 200 bins. The fraction of muon signal outside the first 200
bins is then negligible and can be ignored.

Besides the traces, we also use as input the secant of the zenith angle of the event sec �
and the distance to the core of each station r. We saw that only the trace information was
not enough to determine the muon component without bias. These two variables are re-
lated to the amount of atmosphere that the particles go through, which plays an important
role, since the electromagnetic and muonic component are attenuated differently in the at-
mosphere. Particles from the electromagnetic cascade are attenuated much more quickly
than muons. In fact, muons are very penetrating particles that traverse the atmosphere
practically unaffected. This is why they also arrive earlier than eletromagnetic particles.
Muons are typically minimum ionizing particles, consequently, as the attenuation of elec-
trons, positrons and photons increases, the traces richer in muons become spikier and
shorter in time.

Both variables take into account the amount of atmosphere crossed by the particles. As
sec � increases, the shower becomesmore inclined and the amount of traversed atmosphere
is larger because the thickness of the atmosphere is proportional to sec �. As r increases,
the station is further away from the shower core and, therefore, the larger the distance
travelled by particles.

1.3 Neural Network (NN) architecture
The neural network architecture is as follows. The input is a vector of 202 components: r,
sec � and the 200 values of each trace S1, S2,… , S200, where Si is the value of the signalmeasured at the time bin ti. This input is split at the start into two sets. One of them is
the set of the time-independent variables, i.e. r and sec �. These variables are fed into two
identical sets of dense or fully connected layers (explained on page 87) that will compute
the initial values of the parameters for the first layer of LSTMs. The outputs of the dense
layers together with the 200 time values of each trace form the input to the LSTMs. The
LSTMs produce 70, 32 and 32 sequences of 200 numbers and the last of these sequences
is fed to a final dense layer. This architecture is depicted in Figure 7.2. The model has a
total of 87 212 trainable or free parameters.

The set of dense layers computes the vector of initial parameters that encodes informa-
tion about the amount of atmosphere crossed by the particles, which in turn changes the
shape of the traces. Without this block, the neural network does not have enough informa-
tion to distinguish between traces with high or low fractions of muons and will be biased:
it will underestimate the muon component for showers with a large value of sec � and over-
estimate it for small values of sec �. The block of LSTMs is responsible for computing the
traces and using the temporal information of the input.
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Figure 7.2: Schematic drawing of the input, architecture and output of the neural network and
output. See the text for details.

1.4 Data selection and training
The neural network is trained with simulated showers. The energy range covered by sim-
ulations spans from 1018.5 eV to 1020.2 eV for zenith angles up to 60◦. All events selected
are 6T5. The method is applied to traces whose signals do not show any sign of saturation
and whose integral is more than 5 VEM.

The training was done with simulations using EPOS-LHC. Simulations were done
with the CORSIKA version 7.3700 and reconstructed using the official software of the
Pierre Auger Collaboration: Offline version v3r3p4-icrc2017-preprod-v3. The simulated
showers are initiated by proton, helium, oxygen and iron and the library of simulations that
we use has the same number of showers inintiated by each nuclei. A total of 450 434 events
were used. The events were sampled randomly and assigned to the training, validation or
test datasets, using a uniform distribution in energy and sec � for the validation and test
sets and the rest of the events for the training set. The training dataset does not require
special care regarding the energy and zenith angle distributions since the dependence on
the energy is mild and the zenith angle is given as input. The whole event sample was split
as follows: 393 994 in the training set, 22440 in the development set and 34000 in the test
set.

Before training, both r and sec � values are scaled to be between 0 and 1 and all the
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traces are scaled individually to be between 0 and 1. For each station, the true muon trace
is scaled by a unique factor. The output of the neural network is also between 0 and 1 so
the same factor is used to rescale back the predicted trace. The function that is minimized
in the process of training is the mean square error, defined for a single trace as

L = 1
200

200
∑

t=1

(

Ŝ�
t − S

�
t

)2
, (7.1)

that is, the average of the squares of the differences between the predicted muon trace Ŝ�
tand the true muon trace S�

t , for each time bin of 25 ns1. The neural network is trained in
batches and for each batch the value of L is computed for each trace and averaged over all
the samples in the batch.

The training was done with the optimizer ADAMwith a fixed learning rate of 10−4 and
the default values for the rest of the parameters, see [121]. Using a batch size of 512 and 150
epochs on a Nvidia Titan V, the training takes around 8 hours. The loss as a function of
the epoch is shown in Figure 7.3 for both the training and validation sets. We can see that
it decreases as the epoch increases. The curve for validation is below the one for training
because, as explained before, a uniform distribution has been used for the validation dataset
and there are more events for which the performance is worse (lower zenith angles) in the
training set. As an additional measure of goodness, the difference between the integral
of the predicted and true muon trace is computed after each epoch. In the right panel
of Figure 7.3, we show the mean and the standard deviation of the distribution of the
difference. We use this measure because it has a straightforward physics interpretation.
Themean controls the bias: i.e., if themean is above zero the neural network is consistently
overestimating and vice versa. The standard deviation tells us how well we are predicting
the muon signal, although this depends on several factors such as the zenith angle �, as we
will see in Section 2. All the pipeline was implemented in Python 3.8 using numpy, scipy,
pandas and Pytorch 1.5.0.

2 Results
We show some examples of the NN predictions in Figure 7.4 with more examples on
page 148. We observe that, qualitatively, the prediction follows the shape and peaks of
the total signal. The network has learnt to reproduce the main features of the muon trace:

1We use a hat ̂ for all the quantities that are predicted or computed from a prediction from the neural
network. For example, the integral of the true muon signal in simulations is S�, while the integral of the
predicted muon signal is Ŝ�.
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Figure 7.3: Left: Loss as a function of the epoch, see Equation 7.1. Right: Mean value and standard
deviation of the difference between the integral of the true muon signal and the predicted muon
signal for the validation set.
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Figure 7.4: Examples of predicted muon traces for two simulated events done with EPOS-LHC
from a proton primary for the plot on the left and an iron nucleus primary for the plot on the right.
The prediction (black line) agrees well with the shape of the true muon trace (orange line) for a
majority of the time bins. The blue thicker line corresponds to the total trace, the one measured by
the stations of the SD.

its spiky shape and the fact that most muons arrive earlier. A thorough discussion of the
results and their dependence on several variables are given in the next sections.
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Figure 7.5: Left: Distribution of the difference between the integral of the predicted muon signal
Ŝ� and the integral of the true muon signal S�. Right: Distribution of the predicted and true muon
signals for all the stations used.

2.1 Integrals of the trace

Oneway to assess the performance of themethod is to compute the intregal of the predicted
muon trace, Ŝ� =

200
∑

t=1
Ŝ�
t and compare it to the integral of the truemuon traceS� =

200
∑

t=1
S�
t .

The integral of the muon trace is an interesting physical observable, since it relates to the
total number of muons that reach the ground. In the left panel of Figure 7.5, we show a
distribution with the difference between Ŝ� andS� for a particular bin of energy and zenith
angle. The difference is compatible with zero and does not show a strong dependence with
the value of the true muon signal. In the right panel of Figure 7.5, we show the distribution
of the Ŝ� and S� for all the stations in the test set for showers initiated by a proton nucleus.
The distributions are very similar with only small differences at lower values of S�.

In Figure 7.6 we plot the mean and standard deviation of the distribution of Ŝ� − S�

as a function of S�. We have a mean bias that is close to zero, even for large values of
S�. The bias exceeds 2 VEM only in the rare cases of large zenith angle and low muon
signal. For vertical events, we show that the standard deviation increases as S� increases.
These results depend heavily on the zenith angle. We can see how the performance for
larger zenith angles improves comparing the left and the right panels of Figure 7.6. This
happens because for large zenith angles, the total signal is dominated by the muon signal,
therefore it is easier to predict it. More performance plots can be found on pages 149 and
150.
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Figure 7.6: Mean and standard deviation of the difference between the integral of the predicted
muon signal Ŝ� and the integral of the true muon signal S� for all the stations from events with
the energies and zenith angles specified in the boxes.

2.2 Time distribution
Another physical observable worth to analyze is the risetime of the signals. The risetime
gives us information about the shape of the trace: traces where the signal is concentrated
in a few bins will have a shorter risetime, while traces where the signal is spread over
time will have larger risetimes. In particular, the muon component has a smaller risetime
than the electromagnetic component, since muons arrive earlier and in a shorter window
of time.

In Figure 7.7 we compare the risetime of the predictedmuon trace t̂�1∕2 with the risetime
of the true muon trace t�1∕2. We can see that the standard deviation is less than 100 ns for
most values of the risetime. This is a very small time compared to the considered trace
length (200 bins corresponding to 5 �s). Note that the pulse generated by a single muon
has a risetime of around 15 ns and a decay constant of around 60 ns [43]. The mean value
is close to zero and the performance improves with the zenith angle. This means that we
can successfully predict not only the integral of the muon trace but also the shape of the
muon trace.

2.3 Hadronic model
As we have explained before, our neural network has been trained on simulations done
with EPOS-LHC. We test our method now using simulations done with QGSJetII-04 and
Sibyll 2.3. That is, we predict for simulations that are not only unknown to the NN but
also have been generated using a different hadronic model.

121



Chapter 7: Extracting the muon component with neural networks: Temporal muon signal

100 200 300 400
t1/2 [ns]

100

0

100

200

300

[n
s]

19.0 < log10(EMC/eV) < 19.1
1.0 < sec < 1.2

EPOS-LHC

(t1/2 t1/2)

t1/2 t1/2

100 200 300
t1/2 [ns]

100

0

100

200

[n
s]

19.0 < log10(EMC/eV) < 19.1
1.8 < sec < 2.0

EPOS-LHC

Figure 7.7: Mean and standard deviation of the difference between the risetime of the predicted
muon signal t̂�1∕2 and the risetime of the true muon signal t�1∕2 for all the stations from events with
the energies and zenith angles specified in the boxes.

QGSJetII-04

When studying the differences between the predicted and true muon signals, results are
similar to those shown in Figures 7.6 and 7.7 for simulations done with QGSJetII-04. In
Figure 7.8 an example of a trace obtained with simulations produced using QGSJetII-04
is shown. The prediction follows the shape of the peaks, predicting quite accurately the
muon signal. The difference between true and predicted muon signals does not show a
strong deviance from zero.
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Figure 7.8: Left: Example of a predicted trace for a simulation of a proton generated air-shower
done with QGSJetII-04. Right: Distribution of Ŝ� − S� for all the stations in the bin specified for
simulations using proton and iron nuclei.
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Figure 7.9: Left: Example of a predicted trace for a simulation done with Sibyll 2.3 with a proton
as primary cosmic ray. Right: Distribution of Ŝ� − S� for all the stations in the bin specified for
simulations using proton and iron nuclei.

Sibyll 2.3

The result of predicting the muon traces for simulations done with Sibyll 2.3 is shown
in Figure 7.9. By comparing the values of the bias and resolution, we can see that the
performance is similar to the case where the predictions were based on simulations done
with QGSJetII-04.

With these results we have proven that the NN predictions are independent of the had-
ronic model used to simulate extensive air-showers. For completeness, we have also car-
ried out the opposite exercise: train the neural network with QGSJetII-04 and Sibyll 2.3
and predict for the other hadronic models. The outcome is in good agreement with what
has been discussed for the case where the NN learns from events simulated with EPOS-
LHC.

3 Comparison with data
In this section we have a preliminary look at how the neural network performs when ap-
plied to experimental data. In Figure 7.10 we show examples of the muon trace predicted
for two typical traces recorded by the SD. We can see similar features to those shown by
the simulated traces of Figure 7.4: the predicted muon fraction is larger at earlier times
since muons arrive earlier; in addition, the predicted muon trace is spikier.

After looking at some of the most relevant physics observables, the conclusion is that
we reproduce the behaviour observed in other analyses, based on the use of conventional
tools. In particular, we find a muon deficit like the one discussed in refs. [52,53,88]. In the
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Figure 7.10: Examples of the predicted muon traces for two stations that belong to two different
events recorded by the SD.
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Figure 7.11: Left: Average value of the integral of the predicted muon trace as a function of the
averange value of Xmax. Right: Average value of the risetime for the predicted muon trace as a
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left panel of Figure 7.11, we compare distributions of muon signals at 1000 m from the
shower core for simulations and hybrid data, that is, data that are measured simultaneously
by the SD and the FD. We clearly see a difference in the amount of the recorded muon
signal. With this plot we reproduce the results shown in Figure 5 of ref. [53] for the first
time for vertical events, since in ref. [53] only inclined events were used.

Turning our attention to time signals, we can compare data and simulations using ob-
servables related with the time distribution of the muons rather than with the integral of
the trace. In the right panel of Figure 7.11, we show the distributions for the predicted
risetime, both for hybrid data and simulations. The differences observed between hybrid
data and simulations are striking. This is the first time that the risetime from the muon sig-
nal is obtained for data and compared to the one in simulations. With the plots presented,
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we have shown that not only there is a problem with the size of the signals but also there
is a problem with the temporal distribution of the muons.

4 Comparison to other experiments
Thanks to the predictions of the neural networks, we can extract the lateral distributions
of the muon and electromagnetic signals. We compare our findings for the data collected
with the Surface Detector to parameterizations obtained decades ago by the Akeno and
Volcano Ranch experiments. This is an elegant way of proving that the predictions of the
neural network for data are sensible. Currently, the design of the SD does not allow to
measure the muon signal in an independent way but other experiments have focused on
measuring the muon signal with other types of detectors.

At both Akeno and Volcano Ranch, plastic scintillators of 1 m2 and 3.3 m2 respectively
were used to record air-showers. The scintillators respond to both electrons and muons
and photons to a lesser extent. A measurement of the electromagnetic component with
the Auger detectors is expected to have a similar lateral distribution (with regard to shape)
as that observed at Volcano Ranch and Akeno. The photon/electron ratio is known from
direct measurements to change only rather slowly with distance [133].

The atmospheric depths of theVolcanoRanch andAkeno arrays are 834 and 920 g cm−2

respectively, conveniently straddling that at the Pierre Auger Observatory (875 g cm−2). It
is not anticipated that changes of LDFs, particularly in the case of the muons, will depend
so strongly on depth as to invalidate our qualitative conclusions.

4.1 Akeno measurement I: J. Phys. G. Nucl. Part. Phys 21 1101
(1995)
This paper [134] studies the properties of muons with energies ≥ 1 GeV. They fit the lateral
distribution of muons (LDM) with the Greisen formula [135]:

��(r) = N�(C�∕R20)R
−�(1 + R)−� (7.2)

where:
■ �� is the muon density
■ N� is the total number of muons
■ R = r∕R0
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Figure 7.12: Average lateral distribution of muons fit to the Akeno parameterization. Stations with
signal above 5 VEM are considered.

■ logR0 = (0.58± 0.04)(sec � − 1) + (2.39± 0.05)m
■
⟨sec �⟩ = 1.09, since the fit is restricted to what they define as vertical events
(sec � < 1.2).

■ C� =
Γ(�)

2�Γ(2 − �)Γ(� + � − 2)

■ � = 0.75

■ � = 2.52± 0.04

We use Equation 7.2 to fit our data. We consider only vertical events with sec � < 1.2.
In our fit we have a single free parameter,N�, since we are using different units that affectthe scaling. The rest of the parameters are fixed to the values given above. The results
for the energy bins 18.5 < log10(ESD∕eV) < 18.6 and 19.5 < log10(ESD∕eV) < 19.6
can be seen in Figure 7.12 . The Akeno parameterization and our data show a reasonable
agreement. Our LDMflattens out at large distances. This unnatural behaviour is due to the
cut on the total signal at 5VEM that we have used to train the neural network that removes
very low muon signals. It was studied and found that this flattening occurs when signals
start being close to 5VEM and the percentage of stations that pass the cuts is decreasing
rapidly with distance.

For the energy bin 19.5 < log10(ESD∕eV) < 19.6, our data starts at distances around
1000m. For distances as large as those, the Akeno paper suggests a slight modification of
Equation 7.2 above. We now fit our data with the following formula:

��(r) = N�(C�∕R20)R
−�(1 + R)−�[1 + (r∕800m)3]−� (7.3)
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The parameter � was fixed to a value of 0.6 in the Akeno paper to reproduce the fall at large
distances to the core. We leave freeN� and � as well in order to have a better descriptionof the tail of the LDM. The result of the fit is shown in the right panel of Figure 7.12. For
a value of � = 0.35± 0.04, we obtain a good level of agreement.

4.2 Akeno measurement II: J. Phys. G. Nucl. Part. Phys 18 423
(1992)
In this paper [84] the methods used to measure the Akeno energy spectrum above 1017 eV
are described. The parameterization of the density of electromagnetic signal as a function
of the core distance is expressed as follows:

�e = NeCeR
−�(1 + R)−�+�

(

1 + r
2000

)−0.5 (7.4)

where
■ Ne is the number of electrons
■ Ce is a normalization factor
■ R = r∕RM

■ RM = 91.6m is the Moliére length
■ � = 1.2

■ � = (3.80± 0.05) + (0.10± 0.05) log10(Ne∕109)

We fit the predicted average electromagnetic signal with Equation 7.4. The predicted
electromagnetic signal for a station is obtained as the difference between the total signal
measured and the muon signal predicted by the neural network ŜEM = S − Ŝ�. For data
from the Pierre Auger Observatory, we take RM equal to 80m. The fit result does not
vary sensibly if we modify this value by ±10m. Since they do not offer a numerical
value for Ce in the paper, we take the product NeCe as a single free parameter in our fit.
Notice that the expression for � depends on the number of electrons, and therefore on the
energy. For the typical values ofNe considered in the Akeno paper, � values vary around4. We let � as a free parameter as well. For the two energy bins we have considered, the
fit values of � are 3.5 and 4.2. � values increase with energy and they are similar to the
figures reported by the Akeno collaboration. There is a remarkable agreement between the
Akeno parameterization and the lateral distribution of the electromagnetic signal (LDE)
corresponding to data, see Figure 7.13.
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Figure 7.13: Average lateral distribution of electromagnetic signal fit to the Akeno parameteriza-
tion.

4.3 Volcano Ranch measurement: Phys. Rev. Lett. 10 146 (1963)
This paper [55] reports the first evidence for a cosmic ray particle with energy 1020 eV,
recorded by the Volcano Ranch experiment. The zenith angle of the event is 10± 5◦. In
Figure 2 of that paper, John Linsley shows the particle density of the event as a function of
distance from the shower axis. The data of the triggered detectors are fit with the following
expression:

VR(�, �) = N
R20
C(�, �)

(

R
R0

)−� (

1 + R
R0

)−�+�

(7.5)

where the best fit parameters are:
■ N = 5 ⋅1010

■ R0 is the Moliére length
■ C� =

Γ(� − �)
2�Γ(2 − �)Γ(� − 2)

■ � = 2 − s

■ � = 6.5 − 2s

■ s = 1

To compare with this parameterization, we now take the predicted electromagnetic
signal for vertical events (sec � < 1.2) of our highest energy bin log10(ESD∕eV) > 19.8.
We fit these data with Equation 7.5. We consider N and s as free parameters. The best
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Figure 7.14: Average lateral distribution of electromagnetic signal fit to the Volcano Ranch param-
eterization.

fit gives a value of s = 0.98± 0.05. In Figure 7.14 the parameterization done by Linsley
and our data are shown. The observed fluctuations can be explained by the low amount of
statistics in the highest energy bin. The level of agreement between the parameterization
and data is remarkable.

5 Summary and conclusions
Using Recurrent Neural Networks we are able to predict accurately the muon signal con-
tained in the simulated time traces of the Surface Detector of the Pierre Auger Observatory.
The predictions for the signal size and temporal distribution of the muon signal are precise
and the predictions do not depend on the model used to simulate hadronic interactions.

We have shown that the lateral distributions of muons and electromagnetic particles,
extracted from the SD data, are well reproduced by published parameterizations, which
are based on the data collected by the Akeno and Volcano Ranch experiments. We con-
clude that neural networks are a powerful tool to extract reliable estimations of the muonic
component of extensive air-showers.

However, simulations are not able to reproduce all the features of the recorded SD data
(see the next chapter). It is then hard to quantify the precision with which the muon com-
ponent is extracted from the data. Even if the predicted muon component was the real one,
simulations are needed to make a comparison and extract mass composition information,
thus making it hard to make inferences about mass composition. The data collected with
AugerPrime will be paramount to improve the models that simulate hadronic interactions
at extreme energies. Thanks to this improvement it will be hopefully possible to obtain a
very reliable estimate of the muon signal for the large amount of data collected by the SD
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since 2004. This will represent a major step forward in the capability of the Pierre Auger
Observatory to make mass estimates on an event by event basis.
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8
A study on the differences

between data and simulations

The results obtained with methods from machine learning depend on the data used for
training the models. We have used simulations to train the models. If these simulations
can not reproduce correctly the data, the model and its predictions may not be accurate.

We have already given hints in refs. [52,53,88] of the problems that simulations have when
modelling the data. It is as important as training the model to study these discrepancies.
In this chapter we compare simulations and data with the same FD energy and prove that
the signals at the ground are different. We study what rescaling is needed on the electro-
magnetic and muon components of the simulated signals at the ground such that data and
simulations agree.

This chapter is structured as follows. Section 1 is a short introduction motivating this
study and introduces the problem with the signal at the ground. In Section 2 the two
methods used to compare data and simulations are explained, and the results obtained
with these methods are shown in Section 3 and Section 4. The chapter ends with the
conclusions of this study in Section 5.
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1 Introduction
This chapter is a short and original study on some of the discrepancies between data and
simulations. In ref. [52] it has been shown that there are discrepancies between the signals
at the ground, but for this analysis simulations have the same longitudinal profile as data,
which is somehow similar to fixing the same electromagnetic signal. In ref. [53] there are
discrepancies between data and simulations but these are measurements of only the muon
signal in inclined events. There are other works that take into account both the electro-
magnetic and muon signal independently using the FD [136] but this is the first one using
the SD with its larger data sample.

We study the distributions of signals at the ground and compare them between data
and simulations. Since the electromagnetic and muon signals are known in simulations,
we find the best rescaling of these components that makes the distribution of simulated
signals match those in data. Wewill study the distributions of two samples: one is obtained
selecting stations with distances to the core around 1000m. The other sample will be
obtained using S1000, explained in Lateral distribution function on page 29, that is used asthe energy estimator.

For the comparison between data and simulations, we are going to pick events with
the same FD energy. To avoid any discussion associated with the cuts done for the mea-
surements of the FD, we use the Monte Carlo energy (EMC) as a proxy of the FD energy
(EFD) for simulated events. In the left panel of Figure 8.1, it is shown how the Monte
Carlo energy and the FD energy are practically the same, hence this justifies the previous
choice. This is not true, however, when comparing the energy measured from the FD and
the energy measured from the SD in simulations, see the right panel of Figure 8.1. For
data the energies from the SD and FD are similar because the FD energy is used to cali-
brate the SD energy. This is related to the problems we have seen in simulations: given
the same energy from the FD, the signals at the ground are different.

2 Methods
The two methods that we use are very similar. In both cases a signal is compared be-
tween data and simulations. This signal S̃ can be written as a function of the muon and
electromagnetic contributions

S̃ = �S̃� + �S̃EM (8.1)
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Figure 8.1: Comparison between the distribution of energies for proton and iron simulations. Left:
Energy from the FD,EFD, compared to the Monte Carlo energy, EMC. Right: Energy from the SD,
ESD, compared to the Monte Carlo energy, EMC.

where � and � are the parameters that rescale the muon and electromagnetic component,
respectively. The values of � and � are found by requiring that the signal S̃ in data and
simulations are as close as possible. We quantify this distance using the Kolmogorov-
Smirnov test. For two normalized cumulative distributions F1 and F2, this test is definedas follows:

KS = max
x

|

|

F1(x) − F2(x)|| (8.2)
Intuitively, if the distributions are similar then the cumulative distributions are also sim-
ilar and KS will be small. Note that since the cumulative distributions only take values
between zero and one, the minimum and maximum values of KS are zero for the same
distribution and one, respectively.

To make the comparison between data and simulations as fair as possible the distribu-
tion of energies and zenith angles of simulations is matched to the one in data by random
sampling. The sampling is repeated 100 times for each energy bin of 0.1 in log10E and
0.2 in sec �. The matching is, however, not very important as the comparison is done for
narrow bins of energy and zenith angle but it is useful to estimate the statistical uncertainty
of the values of � and � obtained. The minimization is done in a brute force way. � and �
are given values independently between 0 and 2.5 in steps of 0.01 and the values for which
Equation 8.2 is minimized are found and saved. Then, from the list of 100 trials, the mean
values of � and � are taken as the final value of � and � for each bin of energy and zenith
angle.

For the first method we pick stations with a distance to the core r close to 1000m, in
particular stations with 900m < r < 1100m, and compute KS for these samples. For the
second method we use S̃ = S1000. In this case Equation 8.1 is rewritten as

S1000 = �S
�
1000 + �S

EM
1000 (8.3)
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However, S�
1000 and SEM

1000 is not something known a priori. As a reminder, S1000 comes
from a fit of the individual signals measured at each station. It is natural then to obtain
S�
1000 and SEM

1000 by doing a fit of the muon and electromagnetic signals as a function of the
distance and then picking the value at 1000m. The function chosen for this fit is the same
as the one used for the fits of S1000: a NKG, see Equation 2.2 on page 29.

2.1 Data selection

Data selection is simpler than in the other analyses discussed in this thesis. As usual we
only include 6T5 events with energies above 1018.5 eV and sec � < 2. The study is done
only for energies below 1019.4 eV since above this energy there are few events measured
(less than 1000 events in each bin, with the number of events decreasing with energy) and
a reliable comparison of the distributions between data and simulations can not be made.

For the first method stations with r ≃ 1000m have large signals (more than the 5VEM
used for the other analyses) so it is not necessary to worry about the problems associated
with stations with low signals. Only about 0.25% of the stations in the range of distances
studied had signals below 5 VEM and almost all of them come from events with a recon-
structed energy between 1018.5 eV and 1018.6 eV. The final cut on the stations isS > 5VEM
and not to use stations that have any of the high-gain or low-gain channels saturated. A
total of 46497 stations from 40628 events were included in the sample.

For the second method all the events have S1000. However, for simulations a fit of the
lateral distribution of the muon and electromagnetic signals is performed and sometimes
those fits can not be done or are of poor quality. This occurs mostly when the number of
stations available in an event is low. Events with only two or one stations are not included.
This only happens at the lowest energies, from 1018.5 eV to 1018.65 eV. The other set of
events that are not included are those for which it is not possible to reconstruct correctly
S�
1000 and SEM

1000, that is, when:

|

|

|

(S�
1000 + S

EM
1000) − S1000

|

|

|

S1000
> 1 (8.4)

This ensures that the fits are good, as we will see later. The number of events removed
with the previous two cuts is quite small: more than 99% of the previously selected events
(6T5, E > 1018.5 eV and sec � < 2) pass the two new cuts introducted when using S1000.

134



Section 3. Method I: Using the signal of stations at 1000m

10 20 30 40
S [VEM]

0.00

0.02

0.04

0.06

0.08

0.10
En

tri
es

 (n
or

m
ali

ze
d)

18.5 < log10(E/eV) < 18.6
1.0 < sec < 1.2
900m < r < 1100m

= 1.04, = 1.41

Proton QGSJetII-04 Data

Simulations
Unscaled
Rescaled

Simulations
Unscaled
Rescaled
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3 Method I: Using the signal of stations at 1000m

In Figure 8.2 the distribution of signals at the ground for stations around 1000m for data
and simulations is shown. The distribution of signals for simulations (in this case protons)
has been corrected using � = 1.04 and � = 1.41. It can be seen the corrected distribution
is muchmore similar even though it is still wider than the one in data. This can be expected
since the composition at those energies is unlikely to be purely proton.
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Figure 8.5: Evolution of � and � with the energy for simulations done with QGSJetII-04. The
values of the fits in Figure 8.4 have been plotted at sec � = 1.4. The error bars correspond to the
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In Figure 8.3 the dependence of � and � with sec � is plotted. We can see how the
ellipse of low values of the KS test becomes more and more vertical. That means that the
value of � becomes less important. The explanation is simple: as sec � increases, the muon
fraction of the signal increases while the fraction of electromagnetic signal decreases.
At sec � ≃ 2 (60◦) almost all of the signal is muon signal and then the value of � is
undetermined when minimizing Equation 8.2, since SEM ≈ 0.

The values of � and � that minimize KS as a function of the energy and zenith angle
have been plotted in Figure 8.4 for QGSJetII-04. The same plot for EPOS-LHC can be
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found in Figure 12 on page 152. A linear fit of the values of � and � obtained for each
bin has been performed to ease the visualization. While there are fluctuations a trend can
be extracted from the plots: a scaling greater than 1 is almost always needed. The scaling
increases with the energy for the muon component but it decreases for the electromagnetic
component.

In Figure 8.5 the evolution of � and � has been plotted as a function of the energy. An
arbitrary choice has been made: the values of the fits at sec � = 1.4 have been plotted.
This value has been chosen because it is close to the median of sec � for the data used.
It can be seen that a bigger rescaling is needed for proton than for iron simulations. This
can be expected since, independently of the composition assumed for data, the signals
at the ground are lower for proton simulations than for iron simulations. However, since
the composition for data is expected to be between proton and iron, the rescaling for iron
should be lower than 1 if simulations were modelling the data correctly, in contradiction
with our results.

4 Method II: Using S1000
Now S1000 is used to compare data and simulations instead of the signal of individual
stations close to 1000m. In the left panel of Figure 8.6, an example of the fitted LDF is
shown for the electromagnetic and muon components of one simulated event. In the right
panel of Figure 8.6, S1000 is compared to the value of SEM

1000 + S
�
1000 with both SEM

1000 and
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Figure 8.8: Evolution of � and � when using QGSJetII-04 with the energy when picking the values
of the fits in Figure 8.4 at sec � = 1.4. The error bars correspond to the uncertainty of the fits.

S�
1000 obtained from our fits. We can see that the mean value or bias is less than a 5% and

the resolution is less than 15%. Most of the points are very close to zero.
With the values of SEM

1000 and S�
1000, we proceeded in the same way as before and com-

pute � and � for each energy and zenith angle bin. The results are shown in Figure 8.7
for QGSJetII-04 and Figure 12 on page 152 for EPOS-LHC. As it has been done in the
previous section, we have picked the value of the fits at sec � = 1.4 and plotted them in
Figure 8.8 for QGSJetII-04 and Figure 15 on page 153. Again, we see similar trends with
the rescaling needed for the muon component increasing with the energy and the rescal-
ing needed for the electromagnetic component decreasing with energy. However, the total
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rescaling is still above 1. At high energies the muon signal is rescaled by 1.5 = 3∕2 and
the electromagnetic signal by 0.75 = 3∕4. Assuming equal contributions of the muon and
electromagnetic signals, the rescaling is above 1 since

3
2+

3
4

2
> 1.

5 Summary and conclusions
After using neural networks to predict the muon trace for the measured data in the pre-
vious chapter, we focus on differences between data and simulations. We have studied
differences in the signals and shown that both the electromagnetic and muon component
would need to be rescaled to match the distributions measured in data.

The rescaling needed is larger for proton than for iron, as could be expected since
signals for showers initiated by a proton nucleus have lower signals at the ground. The
rescaling is consistently above 1 even for iron simulations when the expected composition
for data is lighter than pure iron. The scaling is similar for the two hadronic models used:
QGSJetII-04 and EPOS-LHC although it is slightly larger for QGSJetII-04, in agreement
with what has been found in previous studies [52,53,88].

The results shown here are restricted to using a few stations around 1000m or S1000and capture only the differences due to the scale of the signals. A complementary study
would consist on studying also the differences due to the time distribution of the signals.
Systematic uncertainties have not been computed for this study, since its main purpose
is to illustrate that simulations are different from data. A thorough evaluation of all the
sources of systematic uncertainties falls beyond the scope of this simple and preliminary
analysis.
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Conclusions and results

We conclude summarizing the most important results of this thesis:
■ Two studies that use the risetime of the signals measured by the Surface Detector
with the goal of inferring the mass composition of UHECRs in Chapter 3 and Chap-
ter 4. A new observable is introduced and its performance assessed: the average
risetime divided by the distance, ToD. We find a trend towards heavier masses as
energy increases in Figure 3.11 on page 51 and Figure 4.9 on page 72, in agreement
with other methods that use the information from the risetime. While the exact inter-
pretation of the mass depends on the hadronic model employed for the simulations,
the evolution with the energy does not depend on the hadronic model.

■ A method for predicting the integral of the muon signal measured by the Surface
Detector in Chapter 6. This method is based on neural networks and is our first
attempt at predicting the muon signal. This is the first work achieving precisions at
the level of 1-2 VEM. With very few restrictions, it can be applied to the full data
sample collected by the Surface Detector of the Pierre Auger Observatory. It led to
a publication in Astroparticle Physics [129].

■ A method of predicting the muon component of the signal measured by the Surface
Detector in Chapter 7. This method is based on neural networks and is the main
result of this thesis. It is a very powerful result that allows to extract the temporal
component of the muon signal, having both information about the temporal distri-
bution of the muon arrival time and the signal they deposit.
Obtaining the muon component can enhance the capabilities of the Observatory to
do studies about the mass composition of UHECRs, study hadronic interactions or
find showers produced by photons that have very few muons, to name a few.
The method is applied to data, where differences are found with respect to simula-
tions when comparing the amount of muon signal. This finding agrees with previous
results. For the first time, it is also shown that the distribution in the particle arrival
time is different, using the risetime of the predicted muon traces t̂�1∕2.
This work has been approved for publication as a full-author list article by the Pierre
Auger Collaboration.

■ A comparison between data and simulations in Chapter 8. With this comparison we
show that there are some differences between data and simulations that need to be
studied and understood as they may affect the results obtained when applying the
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method developed in Chapter 7 to data. With most of the previous results pointing
towards a rescaling of the muon component, we find that a rescaling of the electro-
magnetic component is also necessary.
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Appendix for Chapter 3
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Figure 1: Fits obtained for the ToD as a function of sec � for some bins of energy.
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Method of splitting - Additional plots
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Figure 2: Distributions of the ToD (black, whole event), ToD1 and ToD2, obtained dividing each
event for data. Entries is the number of events for each energy bin.
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Figure 3: Distributions of the total signal in each of the two groups obtained for the method of
splitting. Entries is the number of stations for each of the histograms.
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Figure 4: Distributions of the differences between ToD1 and ToD2 for data in each energy bin.
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ANOVA - Additional plots
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Figure 5: Distributions of the t1∕2∕r−ToD. These values are used to compute �2det in Equation 4.8.
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Appendix for Chapter 7

Examples of traces
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Figure 6: Examples of predicted muon traces for simulated events done with EPOS-LHC with
different primaries. The prediction (black line) takes the shape of the true muon trace (orange line)
accurately at most times. The blue thicker line corresponds to the total trace, the one that can be
measured by the stations of the SD.
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Figure 7: Mean of the difference between the predicted and true value of the muon signal as a
function of the energy and zenith angle.
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Figure 8: Standard deviation of the difference between the predicted and true value of the muon
signal as a function of the energy and zenith angle.
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integral of the predicted muon trace and the true muon trace. They are shown as a function of the
energy.
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Figure 10: Mean value (first row) and standard deviation (second row) of the difference between
the integral of the predicted muon trace and the true muon trace. They are shown as a function of
the secant of the zenith angle.
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Figure 11: Integral of the predicted muon trace as a function of the integral of the true muon trace.
The black line corresponds to a perfect prediction and � is the Pearson correlation coefficient.
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Plots using EPOS-LHC
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Figure 12: Evolution of � and � with the energy and zenith angle for simulations done with EPOS-
LHC. For each energy bin, the zenith angle increases linearly in sec � from left to right from 1 to
2. Linear fits (black lines) are shown instead of the points for each energy bin. The shadowed area
corresponds to the uncertainty of the fit.
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Figure 13: Evolution of � and � when using EPOS-LHC with the energy when picking the values
of the fits in Figure 8.4 at sec � = 1.4. The error bars correspond to the uncertainty of the fits.
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Figure 14: Evolution of � and � with the energy and zenith angle for simulations done with EPOS-
LHC. For each energy bin, the zenith angle increases linearly in sec � from left to right from 1 to
2. Linear fits (black lines) are shown instead of the points for each energy bin. The shadowed area
corresponds to the uncertainty of the fit.
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Figure 15: Evolution of � and � when using EPOS-LHC with the energy and zenith angle. For
each energy bin, the zenith angle increases linearly in sec � from left to right from 1 to 2. Linear fits
(black lines) are shown instead of the points for each energy bin. The shadowed area corresponds
to the uncertainty of the fit.
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muon signal Ŝ� and the integral of the true muon signal S�. Right: Dis-
tribution of the predicted and true muon signals for all the stations used. . 120

7.6 Mean and standard deviation of the difference between the integral of the
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