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Abstract: Question Classification (QC) is of primary importance in question answering systems,
since it enables extraction of the correct answer type. State-of-the-art solutions for short text
classification obtained remarkable results by Convolutional Neural Networks (CNNs). However,
implementing such models requires choices, usually based on subjective experience, or on rare
works comparing different settings for general text classification, while peculiar solutions should be
individuated for QC task, depending on language and on dataset size. Therefore, this work aims at
suggesting best practices for QC using CNNs. Different datasets were employed: (i) A multilingual
set of labelled questions to evaluate the dependence of optimal settings on language; (ii) a large,
widely used dataset for validation and comparison. Numerous experiments were executed, to perform
a multivariate analysis, for evaluating statistical significance and influence on QC performance of all
the factors (regarding text representation, architectural characteristics, and learning hyperparameters)
and some of their interactions, and for finding the most appropriate strategies for QC. Results show
the influence of CNN settings on performance. Optimal settings were found depending on language.
Tests on different data validated the optimization performed, and confirmed the transferability of
the best settings. Comparisons to configurations suggested by previous works highlight the best
classification accuracy by those optimized here. These findings can suggest the best choices to
configure a CNN for QC.

Keywords: question classification; multilingual; convolutional neural networks; Natural Language
Processing (NLP); deep learning

1. Introduction

Nowadays, intelligent systems able to interact with users in natural language are being developed.
However, due to the difficulties associated with natural language understanding by computer systems,
this is still a field of research of increasing interest [1–3].

In particular, question answering systems should be able to answer automatically to questions
presented in natural language. In order to accomplish this task, a number of operations are
required, in order to eventually translating from spoken to written text, to process natural language
(tokenization, part-of-speech tagging, dependency parsing), to analyze the question (entity extraction,
question classification, query formulation), and to consult the information corpora (information retrieval
and answer extraction).

Appl. Sci. 2020, 10, 4710; doi:10.3390/app10144710 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6825-6393
https://orcid.org/0000-0002-7196-7994
https://orcid.org/0000-0002-4675-5957
https://orcid.org/0000-0001-5256-210X
http://dx.doi.org/10.3390/app10144710
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4710?type=check_update&version=2


Appl. Sci. 2020, 10, 4710 2 of 27

This work concerns the Question Classification (QC) module, which is of primary importance [4,5],
since it is in charge of distinguishing different types of questions, corresponding to the expected Lexical
Answer Type, enabling the correct extraction of the answer [6].

The function of the QC module is accomplished by a model, trained on a set of already labelled
questions. This model classifies textual fragments according to a pre-defined taxonomy. Different types
of characteristics, i.e., morphological [7,8], syntactic [4,5], and semantic [9,10], should be considered to
interpret text correctly.

However, QC differs from other text classification problems, like sentiment analysis and
document categorization, due to the interrogative form and the length that are peculiar of questions.
As a consequence, the best performing approach for QC should be chosen peculiarly, and eventually
by adopting a different design with respect to methods used for other text classification tasks.

In addition, the ability to classify questions optimally could be accomplished differently,
depending on the language [9]. Indeed, syntax rules are different, e.g., English has a more rigid word
order to mark the difference between subjects and objects, with respect to Italian. This means that
one could have to consider differently sized sets of words together, to catch the same meaning in
different languages. Moreover, from the morphological point of view, some languages, like Italian,
are richer than others, like English, with impoverished inflection in nouns and verbs; e.g., a single verb
in Italian could be inflected in up to 50 different words, while this number is maximum 8 for English.
As a consequence, different approaches could be more useful to represent words, depending on the
morphological richness of languages.

Various approaches were employed in research literature to tackle short-text classification [11–14]
and for QC task in particular [15,16]. However, with respect to classical machine learning approaches,
which need the extraction of a big number of features from the text by Natural Language Processing
(NLP) methods [17], most recently, great improvements are gained by using neural networks, both from
the points of view of the speed of the model and of the classification performance. The text is
typically represented by a relatively small number of features obtained by the Word Embedding (WE)
process [18], performed by means of a technique chosen among different existing ones. The most
common architecture used for text classification by the state-of-the-art solutions was to implement
Convolutional Neural Networks (CNNs), since they allow to obtain outstanding results [19,20].
The details of the convolutional architecture and of the learning procedure have been chosen by
researchers mainly based on subjective choices. However, as written above, a peculiar solution should
be individuated for QC task, probably also depending on the language and on the dataset size.

This work aims at suggesting best practices for using CNNs for QC, with the aim of improving
the results of the best existing approaches. However, instead of proposing a different architecture,
the basic CNN architecture is implemented with freely adjustable settings, to have insights about
their influence and thus choosing the best configuration for the QC problem. Enough numerous
experiments, consisting in training and testing the neural network, are executed, to be able to perform
a multivariate analysis and evaluate the influence of all the factors and some of their interactions.
In particular, words representation, architectural characteristics and hyperparameters, detailed in the
following, are all examined as factors, with regard to their potential influence on the QC performance.
The expected result consists in the possibility of designing the most performing settings for classifying
questions depending on the language.

To the best of our knowledge, with respect to previous similar research [19,21,22], this work is the
first one focused on QC, that analyses all the factors involved in the model construction, and their
influence on classification performance depending on the language.

More in detail, the main contribution of this work consists in the analysis and optimization of
all the factors involved in the CNN design potentially contributing to the improvement of the QC
performance and of their interactions:

1. Regarding the text representation, the following approaches are compared here: The inclusion
or deletion of punctuation, the use of a well-established pre-trained WE model or of random
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vectors for words representation, the use of null vectors or of random vectors for representing
Out-Of-Vocabulary (OOV) words, the embedding dimension, and the possibility of fine-tuning
WE vectors during learning or keeping them constant;

2. regarding the CNN architecture, which uses filters to extrapolate features relative to sets of
consecutive words, the following characteristics are tuned here: Filter region size, number of
filters, and the activation function, while only the pooling strategy is fixed; and

3. regarding the learning hyperparameters, for training network weights and eventually the WE
vectors, the following are analyzed: Batch size, learning method, learning rate, and regularization
terms, while the number of epochs is chosen for each run to ensure convergence.

Moreover, the proposed procedure is performed and settings are tuned for two languages,
English and Italian, in order to evaluate differences of the contribution of each factor between languages
having different morphological richness, and to demonstrate that a system optimized by the proposed
approach can be employed successfully in a multilingual context.

The analysis and the subsequent application of the optimized QC model is performed for two
datasets of labelled questions made available in both English and Italian languages by a task presented at
Text Retrieval Conferences (TREC) 2002 and 2003 (https://trec.nist.gov/, accessed 1 July 2020). In addition,
a widely used dataset of English labelled questions (http://cogcomp.cs.illinois.edu/Data/QA/QC/,
accessed 1 July 2020) is employed to check transferability.

Finally, the optimal CNN configurations found here are compared with those found in the most
relevant previous similar works, [19,21].

The paper is structured as follows. The following part of this section summarizes related works,
while in Section 2 describes the data, formalizes the general QC approach comprising the CNN, and plan
the model optimization. The experimental plan with results and their discussion are presented in
Section 3. Finally, Section 4 draws conclusions of the work.

Related Works

QC, and more generally speaking sentence classification, is a crucial task for NLP [1,2,16].
Natural language sentences, in both affirmative and interrogative forms, have complicated structures,
both sequential and hierarchical, that must be handled to allow their comprehension. Thanks to their
ability to capture local relations of temporal or hierarchical structures, CNNs have emerged as a relatively
simple yet powerful class of models for sentence modelling and classification, since characterized
by remarkably strong performances, with different shallow or deep architectures proposed in the
recent years.

The first CNN for sentence classification with end-to-end training is proposed in [23,24]. In this
seminal work, one convolutional layer is used together with a new global max-pooling operation,
resulting to be very effective for text. Moreover, multiple deep models are co-trained on many tasks
to transfer task-specific information. Starting from the results of this work, a simpler architecture
with slight modifications have been presented in [21], achieving state-of-the-art performances even
on many small datasets. In particular, one convolutional layer with multichannel representation and
variable-size filters are employed, where fine-tuned or pre-trained word embeddings are combined in
multi-channels, convolutions allow determining high-level abstract features, and multiple linear filters
are used to effectively extract different n-gram features. Both the CNN architectures proposed in [23,24]
and in [21] make use of max-pooling to keep the most important information to represent the sentence.
Moreover, the pooling operation helps the network deal with variable sentence lengths. In [25] a
further variant of multi-layer CNN architecture was proposed, with a dynamic k-max-pooling, where k
depends on the length of the sentence and can be dynamically set as a part of the network. This allows
detecting the k most relevant features occurring into a sentence, independent of their specific position
and preserving their relative order. In [26], a multichannel variable-size CNN architecture for sentence
classification was described, further exploring the capabilities of multichannel and variable size feature

https://trec.nist.gov/
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detectors. In particular, it combines diverse versions of pre-trained word embeddings and extracts
features of multi-granular phrases with variable-size convolution filters.

All of CNNs presented in these works are based on word input tokens, encoded as distributed
representations in the form of WE vectors [27]. Moreover, they are rather shallow (two layers in most
of them), if compared to those successfully proposed to face computer vision problems, due to the
reduced length, in terms of number of words, of typical sentences and paragraphs.

Later, a first attempt of CNN jointly using character-level, word-level, and sentence-level
representations to perform sentence classification is described in [28], with a shallow architecture
made of two convolutional layers to extract relevant features from words and sentences of any size.
More recently, a deep CNN architecture, with up to 6 convolutional layers, was proposed in [29],
able to automatically learn the notions of words and sentences on texts operating directly at a character
level, without any pre-processing, not even tokenization. Convolutional kernels of size 3 and 7 were
used, as well as simple max-pooling layers. Another interesting aspect of this work is the usage of
several large-scale data sets for text classification. In [30], a new deep CNN architecture, with up to
29 convolutional layers, was proposed for text classification, operating directly at character level and
using only small convolutions and pooling operations.

More specifically with respect to QC, in [20], a CNN was used to classify Italian questions.
In particular, different solutions regarding the CNN architecture have been tested, and, according to
literature advices, the best settings have been searched in the proper ranges, in order to maximize
the classification power for the particular case of Italian questions dataset. In [31], an extended CNN
architecture is proposed, able to first classify a question into a broader category, and, successively,
based on the prior knowledge, assign to it a more specific category. This solution was tested on an
English questions dataset with pre-trained word embeddings, showing results on par or improved
with respect to other classical methods. In [32], a simple and effective method for QC is presented,
which increases generalization, by replacing entities with placeholders, and diversity of sentence
features, by reading sentence vectors from both forward and reverse directions. This approach has
shown better performance than many other complex CNN models, also proving its effectiveness
applied to question answering systems. Finally, in [33], a QC approach based on word embedding using
subword information and CNN is outlined, in order to improve classification accuracy. In particular,
a comparison between English and Italian languages is reported, by highlighting eventual improvements
obtained by initializing word embeddings with advanced vectors learned in an unsupervised manner
and comprising character-based information.

Summarizing, all the presented approaches based on CNNs for sentence classification,
and specifically for QC, are characterized by models, whose structure is designed by hand by
experts, thus requiring considerable skill and experience to select suitable hyperparameters such
as the learning rate, the size of convolutional filters, the number of layers and so on. Moreover,
these hyperparameters have internal dependencies, which make them particularly expensive for tuning
and can depend on the specific classification task considered. Even though some recent works have
shown that there exists much room to improve current optimization techniques for learning deep CNN
architectures [34], fundamental working principles and behaviors of CNN models when specifically
applied to QC have not been extensively investigated.

The most relevant works addressing these issues are generally tested for text classification.
In [21], different strategies for words representation are compared, by employing in turn, singularly or
combined in a multi-channel way, differently initialized, and eventually fine-tuned WE vectors.
On the basis of [21] model, a sensitivity analysis of CNNs is proposed in [19], summarizing the
influences of various hyperparameters, i.e., WE vectors, filter size, number of filters, activation function,
pooling strategy, and regularization. Both these works, for the QC task considered among the others,
found different best settings with respect to the other tasks.
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However, to the best of our knowledge, related research considered only few settings, and without
reference to possible interactions among them. Moreover, (i) QC was only considered as an instance of
text classification; (ii) the possible relation with the language not taken into account.

Thus, this work constitutes the first attempt of considering hyperparameters in a comprehensive
way, examining different possibilities with respect to morphologically different languages, to study the
problem of configuring the appropriate CNN architecture for QC.

2. Materials and Methods

2.1. Data

QC aims at associating each question to a class comprised in a given set. This is made accordingly
to a number of examples of labelled questions, used to train and test the model.

Different datasets are available, particularly for English language. The main example is the
TREC dataset provided by [35], used in various previous works, comprising [21], which is particularly
big. However, in order to study questions in different languages, multilingual data are rare and
less extensive.

In order to compare English and Italian languages, the chosen data are made of the union of two
datasets presented at TREC conferences 2002 and 2003, each comprising 500 training questions and
labelled according to the same taxonomy. The same 1000 questions are available in English and Italian,
among the other languages. For example, a row of the joint dataset is made of four attributes (coarse class,
fine class, question in English, question in Italian), as follows: “FACTOID—LOCATION—What is
Africa’s largest country?—Qual è il paese più vasto dell’Africa?”.

In Table 1, the two-levels taxonomy is reported.

Table 1. Taxonomy of question classes.

Coarse Classes Fine Classes

Definition Location, Person, Other.
Factoid Acronym, How, Location, Material, Measure, Person, Time, Title, Other.

List Location, Person, Title, Other.

Since the aim of the approach is the single (not hierarchical) classification task, coarse classes were
not considered in this work. On the other hand, all the questions were included, and the union of
fine classes for any of the three coarse classes is considered, which results in the following 9 labels:
“Acronym”, “How”, “Location”, “Material”, “Measure”, “Person”, “Time”, “Title”, “Other”.

Each experiment is performed by 10-fold cross-validation. Therefore, the runs are performed with
a number of examples for training Ntrain = 900, and a number of examples for testing Ntest = 100.

Moreover, the dataset provided by (Li and Roth 2002), available online, is also used, to compare
results with those of other state-of-the-art best convolutional architectures. It is already divided into
5452 questions for training and 500 for testing, and is based on a 2-levels taxonomy, whose coarse
level, used here, is made of the following 6 classes: “ABBREVIATION”, “ENTITY”, “DESCRIPTION”,
“HUMAN”, “LOCATION”, “NUMERIC”.

2.2. Question Classification Model

This section describes the structure of the model employed for classifying questions, and the learning
procedure. This model, firstly developed in [23,24], was implemented with variable settings in the open
source Python framework TensorFlow (https://www.tensorflow.org/, accessed 1 July 2020). The testing
platform consisted of a fold containing data, a main program with subroutines for pre-processing and
model architecture and producing the results, and three configuration json files, where the user can
manually change all the settings before each run. The variable settings were defined within sets chosen
coherently with findings of previous literature and with preliminary experiments. The model general form

https://www.tensorflow.org/
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is schematized in Figure 1. It comprised a pre-processing phase, which allowed translation of the question
into a sparse matrix constituting the input layer, the embedding phase, which allowed representation of
the question by a matrix with smaller dimension constituting the embedding layer, and a CNN made of
convolutional layer, pooling layer, fully connected layer, and output layer, which finally associated each
question to a class.
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The following subsections describe in detail the pre-processing and WE phases (Section 2.2.1),
the CNN architecture (Section 2.2.2), and the procedure for learning network weights (Section 2.2.3).
Finally, since this approach is implemented here with freely adjustable settings, Section 2.2.4 summarizes
the degrees of freedom considered with respective possible values, and explains the optimization approach.

2.2.1. Question Pre-Processing and Word Embedding

Each question had to be pre-processed, to be divided into a sequence of tokens, and represented
as a sparse matrix.

Firstly, special characters, not comprised in the set {A-Za-z0-9(),;.:!?’‘”} were substituted with
spaces. Then, apostrophes and some substrings comprising them were substituted, depending on the
language, as reported in Table 2.

Table 2. Substitution of strings comprising apostrophes.

English

Original Characters Substitution

“ (double typewriter apostrophe) “ (quotation marks)
“ (double backtick) “ (quotation marks)

‘ve (apostrophe+“ve”) have (space+“have”)
n’t (“n”+apostrophe+“t”) not (space+“not”)

‘re (apostrophe+“re”) are (space+“are”)
‘s (apostrophe+“s”) ‘s (space added before)
‘d (apostrophe+“d”) ‘d (space added before)
‘ll (apostrophe+“ll”) ‘ll (space added before)

Italian

Original Characters Substitution

“ (double typewriter apostrophe) “ (quotation marks)
“ (double backtick) “ (quotation marks)
‘a (apostrophe+“a”) ‘ a (space added between)
‘e (apostrophe+“e”) ‘ e (space added between)
‘i (apostrophe+“i”) ‘ i (space added between)

‘o (apostrophe+“o”) ‘ o (space added between)
‘u (apostrophe+“u”) ‘ u (space added between)
a’ (“a”+apostrophe) à (“a” with grave accent)
e’ (“e”+apostrophe) è (“e” with grave accent)
i’ (“i”+apostrophe) ì (“i” with grave accent)

o’ (“o”+apostrophe) ò (“o” with grave accent)
u’ (“u”+apostrophe) ù (“u” with grave accent)
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The possibility of eliminating the other standard punctuation symbols {(),;.:!?‘”} is a degree of freedom:

AvoidPunctuation =

{
True
False

. (1)

Therefore, if they were eliminated (AvoidPunctuation = True), they were substituted with spaces,
otherwise (AvoidPunctuation = False) a space was added before and after each of them. Finally, sets of
consecutive spaces were substituted with only one space. At this point, the text was already divided in
tokens by spaces.

Each question was made of L tokens, and the maximum length Lmax was calculated over the
whole dataset. Moreover, a vocabulary was assembled by gathering all V different tokens plus an entry
<UNK> in the first position corresponding to unknown token. Original tokens are used, instead of
lemmatizing them, to be coherent with pre-trained WE.

Once the vocabulary was fixed, each token was represented as a vector with V elements, which were
all equal to 0, except the element corresponding to the position of the token in the vocabulary, equal to 1.
Therefore, each question was represented as a matrix X with V columns and Lmax rows, composed by
vectors xj, with j = 1, . . . ,Lmax, where if L < Lmax, last rows were filled with all zeros. This matrix was the
input layer of the deep neural network.

The next embedding phase consisted in the linear transformation of X into a matrix with smaller
dimension. Each one-hot V-dimensional vector xj was transformed into a De-dimensional vector
corresponding to the representation of the word suggested by the pre-trained WE model or to a random
or null vector. In practice, X was multiplied by the embedding matrix Wemb with De columns and
V rows, to obtain a matrix Xemb made of De columns and Lmax rows:

Xemb = XWemb. (2)

The embedding matrix was initialized depending on the choice of the WEinit factor:

WEinit =
{

pre− trained
random

. (3)

If pre-trained WE vectors are used (WEinit = pre-trained), then the row of Wemb corresponding to
each known word was initialized as the pre-trained WE vector, while the other rows corresponding
to OOV words were initialized with null vectors (OOVinit = null). The pre-trained WE
representation chosen for this work was based on fastText model, with 300 dimensions (De = 300),
trained on the Wikipedia corpora (https://fb-public.app.box.com/s/htfdbrvycvroebv9ecaezaztocbcnsdn,
accessed 1 July 2020), both in English and Italian languages. This model was chosen for its outstanding
characteristics. In fact, it was an evolution of the skip-gram model, which trains the representation
of each word by unsupervised learning to predict words that appear in its context, but fastText
also measures similarity between words based on character n-grams included in them. Therefore,
these vectors encode information regarding syntactic structure of the text and semantic features like
the skip-gram model, as well as information regarding the morphology of the words.

On the other hand, if pre-trained vectors were not used (WEinit = random), then all the rows of
Wemb were initialized with random vectors, both for known or unknown words (OOVinit = random).
This representation was made with a number of dimension which was a further degree of freedom,
studied in the following interval:

De ∈ [10, 500]. (4)

Since the values assumed by OOVinit are coupled with those assumed by WEinit, in the following
OOVinit was omitted.

https://fb-public.app.box.com/s/htfdbrvycvroebv9ecaezaztocbcnsdn
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In both cases, the embedding matrix Wemb could be kept constant or fine-tuned during the
network training:

WEtuning =

{
static

dynamic
. (5)

2.2.2. Convolutional Neural Network Architecture

A classical CNN architecture was used here for associating questions with labels. However,
here the architecture was not fixed, but was implemented with freely adjustable settings.

A convolution was firstly applied to Xemb, by using a single channel, with no padding and stride
1, as recommendable in text classification context. Filters of different sizes may be employed, therefore,
if there were Ns different sizes and for each size a number Nf of filters, the total number Ntot of filters was:

Ntot = N f ·Ns. (6)

The sizes and the total number of filters were degrees of freedom, and they were considered in
the following ranges:

Fs ∈ [1, 10], (7)

Ntot ∈ [50, 500]. (8)

Each filter of a certain size consists in a matrix Wi
conv, with i = 1, . . . ,Ntot made of De columns

and Fs rows. The result of the convolution was a vector xconv
i with dimension Lmax − Fs + 1,

whose components xi, j
conv, with j = 1, . . . ,Lmax − Fs + 1, can be written as:

xi, j
conv =

Fs∑
j j=1

De∑
d=1

(
Xemb[ j + j j− 1][d]·Wi

conv[ j j][d]
)
. (9)

Then a bias term bi
conv was added to each component, and an activation function f was applied,

to get each component xi, j
act, with j = 1, . . . ,Lmax − Fs + 1, of the vector xi

act, which was the final result
of the convolution by the given filter Wi

conv:

xi, j
act = f

(
xi, j

conv + bi
conv

)
. (10)

Of course, vectors xi
act with the same size were obtained by using filters with the same Fs,

while vectors of different sizes were obtained by differently sized filters. However, Ntot vectors were
obtained, and they constitute the convolutional layer.

The activation function to use for convolution was a degree of freedom of the proposed
implementation. The following functions were used, whose meaning is shown in Figure 2:

f =



eLU
Identity
ReLU
sigmoid
softplus
softsign
tan h

. (11)
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The following operation was the pooling, which was implemented coherently with the common
choice, i.e., the 1-max pooling strategy. In fact, using the max function was forced by the padding with
zeros the input representation of questions shorter than Lmax, and the choice of only one maximum
element was certainly enough, due to the big number of filters employed. Therefore, the pooling layer was
constituted by a horizontal vector p with dimension Ntot, whose elements pi, with i = 1, . . . ,Ntot, were:

pi = maxxi
act. (12)

The following fully connected layer was constituted by K neurons, where K was also the number
of classes. In the considered case, K = 9. The vector of class activations y was computed by multiplying
p by a matrix of weights Wfc with Ntot rows and K columns, and adding a bias vector bfc:

y = pWfc + bfc. (13)

The final output layer was made of only one node, which contains the position of the class with
the highest activation:

output = argmaxy. (14)

2.2.3. Learning Procedure

The described model includes many parameters that were initialized randomly and have to be
trained, i.e., Wi

conv with i = 1, . . . ,Ntot, bi
conv with i = 1, . . . ,Ntot, Wfc, and bfc, for a total of De · Fs ·

Ntot + Ntot · K + K. Moreover, Wemb can be initialized by pre-trained WE or randomly, but in both
cases they were fine-tuned if WEtuning = Dynamic, bringing other V · De parameters.

These parameters were adapted on data by a learning procedure summarized as follows.
Firstly, the training dataset was divided in batches composed of a certain number of examples.

In this work, the batch size was a degree of freedom, studied in its whole range:

batch ∈ [1, 900]. (15)

All examples of a batch were used as input of the model, but during the training, in order to learn
separately different parts of the network, the pooling layer was modified by the dropout function,
which randomly transforms each component pi multiplying it by zero with probability (1 − Pkeep),
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and by 1/Pkeep with probability Pkeep, so that the expected sum remains unchanged. Here, the dropout
was a degree of freedom, variable in the following interval:

Pkeep ∈ (0.0, 1.0]. (16)

For each input b, the loss was calculated by the cross entropy function (19), where pk (17) was the
softmax transform of the kth component of computed vector y, and ck (18) was 1 for the position of the
true label kTrue, 0 otherwise:

pk =
eyk

K∑
κ=1

eyκ

. (17)

ck =

{
1 if k = kTrue

0 otherwise
. (18)

lossb = −
K∑

k=1

ck· log(pk). (19)

After a batch, the whole associated loss was calculated as:

loss =
1

batch

batch∑
b=1

lossb + l2·
(
|Wfc|

2

2
+
|bfc|

2

2

)
. (20)

The regularization parameter l2, used to prevent big values of fully connected layer weights,
was a degree of freedom here, studied in the following interval:

l2 ∈ [1.0, 5.0]. (21)

The loss gradient was used for updating network weights by a backpropagation approach based
on Stochastic Gradient Descent (SGD) algorithm, which implies a stochastic approximation [36] of
the basic gradient descent algorithm. Since it reduces the computational complexity, achieving faster
iterations in trade for a lower convergence rate [37], it was recognized as a very effective learning
algorithm in machine learning [38]. A variant of the updating rule was freely chosen among the
following ones:

optimizer =



Adadelta
Adagrad
Adam
Ftrl
GradientDescent
Momentum
ProximalAdagrad
ProximalGradientDescent
RMSProp

. (22)

While in case optimizer = Momentum, the momentum parameter was fixed to 0.1, according to
previous findings, the learning rate, which was a further parameter common to all the algorithms,
was the last considered degree of freedom, studied in the following wide range, enlarged with respect
to previous works [19,21]:

η ∈ [0.01, 10]. (23)

The intent in this work was to get the best possible model, therefore the number of epochs was
not taken as an adjustable setting.
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2.2.4. Threats to Validate

Different threats could affect the learning procedure.
First, underfitting could affect results, if the number of epochs chosen for learning was too low.

In order to avoid it, a sufficient number of epochs was chosen for different runs. For most of the runs,
2000 epochs result enough to reach convergence, while in some cases (properly compared with the
others) 20000 epochs were needed.

Second, a large number of epochs could cause overfitting on training data. In order to avoid it,
every 2 epochs, the model was tested on a randomly sampled dev set, and at the end of the epochs,
the model presenting the best accuracy on the dev set was chosen.

Finally, the choice of training and testing questions within the dataset could (positively or
negatively) influence and distort the results. In order to avoid it, each experiment was performed by
stratified 10-fold cross-validation. Therefore, the dataset was randomly divided into 10 subsets of
100 questions with approximately the same rate of labels. Each run was performed with the union of
9 question subsets for training, and the remaining subset for testing, this was repeated 10 times for
considering all the examples for testing, and the results of the 10 runs were averaged to obtain the
result of the experiment.

2.2.5. Model Optimization

In order to optimize the QC model, its classification accuracy was studied by analyzing different
experiments, corresponding to respective configurations of settings (factors).

Since each experiment was the set of 10 training and testing phases constituting a 10-fold
cross-validation, the accuracy of an experiment was the average of the accuracies gained by the
10 trained models on the respective test set. The accuracy on a test set was calculated as a percentage,
by averaging coutput, which was 1 if the network output (14) was equal to the position of the true label
associated with the bth input of the test set (output = kTrue), 0 otherwise:

Acc =
1

Ntest

Ntest∑
b=1

coutput·100%. (24)

The factors here considered to analyze their influence on the model accuracy are summarized in
Table 3. For categorical factors, all the possible values were considered, while for quantitative ones the
considered admitted ranges were based on previous literature findings.

Since considering all the possible interactions among factors would involve an unfeasible
experimentation, some factors were analyzed in the following one by one, since they were hypothesized
to have negligible interactions with the others, while some sets of factors were studied together to
verify potential interactions.

For each factor or set of factors, their individual influences and interactions (effects) were evaluated
in a chosen range by performing a set of experiments. Most sets of experiments were planned according
to full factorial designs, which comprise all the combinations of factors levels. This approach needs
more numerous experiments, but minimizes the risk of confounding different effects. The range of
each factor, and the fixed values of other settings, relative to factors not being evaluated in a set of
experiments, since were hypothesized to not interact, were chosen according to findings of previous
works [19–21,33], or to preliminary experiments.
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Table 3. Freely adjustable settings of the Question Classification (QC) model analyzed here and their
admitted values.

Setting Symbol Set of Admitted Values

Text representation

Eliminate punctuation AvoidPunctuation {True,False}
Pre-trained WE vectors for known words and

null vectors for OOV words, or random vectors
for all the words

WEinit {pre-trained,random}

Embedding dimension De [10,500]
Fine tuning of WE vectors together with other

network weights during training WEtuning {static,dynamic}

CNN architecture

Filter size Fs [1,10]
Total number of filters Ntot [50,500]

Activation function f {eLU,Identity,ReLU,sigmoid,softplus,softsign,tanh}

Learning procedure

Batch size batch [1,900]
Probability that dropout function keeps a node Pkeep (0.0,1.0]

Parameter of loss regularization l2 [1.0,5.0]

Weights updating rule optimizer {Adadelta,Adagrad,Adam,Ftrl,GradientDescent,Momentum,
ProximalAdagrad,ProximalGradientDescent,RMSProp}

Learning rate η [0.01,10]

Due to the random initialization of weights and to some other sources of randomness in the learning
procedure (splitting training data in batches, dropout function, and SGD algorithm), each run, and thus
each whole experiment, gave different results if repeated. Therefore, some repetitions were performed,
to estimate the experimental variance σ2, which was used to evaluate the experiments reproducibility.

The intrinsic variance in the measurement of the experiment performance implies that a
deterministic functional dependence between factors and model accuracy does not exist. Therefore,
in order to analyze the effects on the QC accuracy, an approximate function was extrapolated from
each set of experimental results:

acc = c0 + c1x1 + c2x2 + c12x1x2 + . . . (25)

where x1,x2, . . . represent the individual factors, x1x2, . . . represent their interactions, and coefficients
c0,c1,c2,c12, . . . were used to linearly combine these (also nonlinear) effects to predict
experimental accuracy.

The significance of effects was evaluated in terms of the respective coefficients [39]. Indeed,
each estimated coefficient belongs to a respective confidence interval, corresponding to the interval
comprising the true coefficient value with 95% probability, that was calculated as follows. Given the
estimated experimental varianceσ2, calculated with a certain number of degrees of freedom, the variance
of each coefficient can be estimated as σ2/N, where N is the number of experiments of the full factorial
design. Therefore, the width of the coefficient confidence interval can be calculated as σ/N1/2

· t0.975,
where t0.975 is the value of a t-student distribution with the same degrees of freedom corresponding to
0.975 cumulative probability (two tails t-test). As a consequence, if the estimated coefficient was lower
than the confidence interval semi-width, then the confidence interval comprises the null value, and the
hypothesis that the true coefficient value was zero cannot be rejected, and the corresponding effect was
not significant.

Moreover, the estimated function (24) comprising significant effects can be used to predict the
accuracy, on the basis of the considered factors and their eventual interactions. This allows finding
optimal values of factors, corresponding to higher calculated accuracy.

After that all the factors were individually optimized, some repetitions corresponding to the
optimal settings were performed, to evaluate the performance of the QC model in optimal conditions.
Moreover, optimal conditions were validated on a larger set of data.
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3. Results and Discussion

In this section, the results obtained by the QC model are reported and discussed. As described
before, the accuracy reported in correspondence of a configuration of settings was obtained by the
average of 10 cross-validation runs.

The results were obtained for each configuration by considering questions in both English and
Italian languages.

First of all (Section 3.1), repeated experiments using the same configuration are described
and discussed. Then, the influence of settings regarding text representation (Section 3.2),
network architecture (Section 3.3), and learning procedure (Section 3.4) was evaluated. In addition,
Section 3.5 takes into account all the previous findings to individuate the most influencing parameters.
Finally, Section 3.6 presents optimal settings obtained for different cases, and evaluates the performance
of the associated proposed models, also showing a comparison with baseline models found as optimal
in previous literature, on a widely used dataset.

In total, 2404 runs for training and testing the described QC model were performed.

3.1. Repetitions

As explained before, each experiment reported here was made of 10 runs since cross-validation is
performed. Therefore, for each experiment, an “internal” variance of the testing accuracy is calculated.
Averaging on all the experiments, the “internal” standard deviations found were about 4.0% for English
and 3.5% for Italian. These quite low values were due to the robustness of the random stratified
splitting of the dataset in folds.

On the other hand, some whole experiments were performed 5 times, to evaluate their
reproducibility. In the hypothesis that the system is homoscedastic, the accuracy variance could be
estimated in correspondence of only one configuration. Here, this hypothesis is relaxed, due to the
structural differences between runs performed by using fixed pre-trained WE vectors or random
vectors, and between runs performed with fixed WE vectors or by fine-tuning them. Therefore,
the accuracy variance is estimated in correspondence of the combinations of these settings. For each
configuration, 5 repetitions of the same experiment were performed. In Table 4, the experimental
variance σ2 calculated over repetitions is reported.

Table 4. Variance of testing accuracy over experiments repetitions 1.

WEinit\WEtuning Static Dynamic

σ2
English random 0.37 0.86

pre-trained 0.14 0.23

Italian
random 0.32 0.07

pre-trained 0.72 0.13
1 Other settings were: AvoidPunctuation = True, De = 300, Fs = {1,2,3}, Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5,
l2 = 3.0, optimizer = Adadelta, η = 0.1.

Since the estimated variance is itself a random variable, on the basis of results of Table 4,
the homoscedasticity can be hypothesized, also with respect to the language; therefore, the experimental
variance was estimated by averaging over different configurations the mean pure squared errors of the
repetitions. It corresponds to a low standard deviation σ = 0.6% (calculated with 32 degrees of freedom,
therefore t0.975 = 2.038), and compared to the variance of different experiments, corresponds to a good
reproducibility (= 0.90).

3.2. Text Representation

The first setting analyzed here regards the text representation, and in particular, the possibility
of eliminating all punctuation symbols from the question during pre-processing. This qualitative
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factor can assume 2 levels, and it was hypothesized to not interact with others. Therefore, the only
2 experiments for each language reported in Table 5 were performed.

Table 5. Testing accuracy obtained by eliminating or not punctuation from text 1.

AvoidPunctuation True False

Acc (%)
English 88.1 88.3
Italian 86.6 86.8

1 Other settings were: WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300, f = ReLU,
batch = 10, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Even if for both languages the case AvoidPunctuation = True gives slightly higher accuracy,
the differences with the case AvoidPunctuation = False were statistically not significant, since it is
comparable to (and even smaller than) the standard deviation of repeated experiments. In other words,
if a model describing the accuracy as a function of this variable is constructed, the linear coefficient
results 0.1% for both languages, which is smaller than the semi-width of its confidence interval (0.9%),
therefore the chance that the true value of the coefficient is zero cannot be discarded.

This finding suggests that, in order to simplify the QC model, punctuation can be eliminated
without significant loss of information.

Other two factors regarding the text representation, i.e., the possibility of initializing WE vectors
of known words by fastText pre-trained vectors and OOV words by null vectors or initializing all WE
vectors randomly, and the possibility of fine-tuning these vectors during training or not, were analyzed
together, to evaluate at the same time their effects and eventual interactions. Each of these qualitative
factors can assume 2 levels; therefore, 4 configurations for each language were tested. For each
configuration, 5 repeated experiments were performed, used to estimate variances reported in Table 4,
and whose mean accuracies are reported in Table 6.

Table 6. Testing accuracy obtained by different Word Embedding (WE) initialization and fine-tuning
strategy 1.

WEinit\WEtuning Static Dynamic

Acc (%)
English random 77.6 77.8

pre-trained 77.6 80.2

Italian
random 76.1 76.1

pre-trained 75.2 80.4
1 Other settings were: AvoidPunctuation = True, De = 300, Fs = {1,2,3}, Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5,
l2 = 3.0, optimizer = Adadelta, η = 0.1.

In this case, the effects of the evaluated factors WEinit and WEtuning, and of their interaction,
produced significant results. In particular, random or pre-trained WE vectors give equivalent results if
they are static, and fine-tuning of random vectors does not improve accuracy, but the combination of
WEinit = pre-trained and WEtuning = dynamic gives a contribution to the mean accuracy of about
2.6% for English and 4.3% for Italian. These contributions are greater than the confidence interval
semi-width (about 0.6%).

This behavior can be explained by observing that the generally valid information embodied
by WE pre-trained vectors was not necessarily the same required by the specific classification task,
therefore, if kept static, they could result equivalent to random ones; however, they embody semantic
information that allows, if properly fine-tuned, to get closer to optimal, with respect to random ones.

These findings suggest the following considerations:

• It is convenient to employ fastText pre-trained vectors to initialize WE vectors, which embody
semantic and morphological information in words representation;
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• it is convenient to fine-tune WE vectors, since optimizing the representation of the single words
most influencing on QC allows to stress their importance;

• a significant improvement on QC accuracy is gained if these two settings were used at the same time,
since the WE vectors of words semantically associated with question classes, already represented
by embodying semantic information, can be coherently optimized; and

• all these effects result more relevantly in the Italian language, with respect to English, since all
the improvements regarding words representation were more useful for a morphologically
rich language.

The last factor taken into account for text representation was the embedding dimension De,
hypothesized to have no interactions with the others. This quantitative factor was analyzed in the range
[10,500], and in particular, in correspondence of the representative levels {10,100,300,500}, to analyze
also its nonlinear effects. Therefore, four configurations for each language were tested, and results are
reported in Table 7 and shown in Figure 3.

Table 7. Testing accuracy obtained by different embedding dimensions 1.

De 10 100 300 500

Acc (%)
English 54.8 74.0 77.8 78.1
Italian 41.0 73.7 76.1 75.7

1 Other settings were: AvoidPunctuation = True, WEinit = random, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 26 

 

Figure 3. Testing accuracy obtained by different embedding dimensions, for English (red) and Italian 

(blue). 

From results reported in Table 7, a function was fitted for each language to predict accuracy as 

a quadratic function of De in logarithmic scale, and all coefficients result much greater than their 

confidence interval, therefore, De gives significant effects. The fitted function, in accordance with 

results shown in Figure 3, explains that, as the embedding dimension increases, a great improvement 

to QC was given, since more semantic, syntactic, and morphological aspects of words were 

represented. However, for more than some hundreds dimensions, a plateau was reached, and adding 

other dimensions does not give a significant improvement. 

Therefore, also in accordance with most of the previous literature works, and with the majority 

of the available pre-trained WE vectors, the value De = 300 was chosen as optimal here. 

3.3. CNN Architecture 

The CNN architecture was analyzed firstly in terms of both the filter size (7) and their total 

number (8), and then with regard to the activation function involved in (10), while their interactions 

were neglected. 

Different filter sizes were experimented in the range [1,10], taking into account all possible sizes. 

The functions fitted in this whole range to predict accuracy reveal no significant linear or quadratic 

effect; however, in the restrictions of this range, the experimental results showed significant trends, 

associated with significant improvements in correspondence of individual filter sizes with respect to 

the others, as discussed in the following. 

Firstly, all filters with the same size were employed. Results for both languages are reported in 

Table 8 and shown in Figure 4. 

Table 8. Testing accuracy obtained by different filter sizes 1. 

Fs 1 2 3 4 5 6 7 8 9 10 

Acc (%) 
English 79.0 81.8 79.4 79.2 78.9 78.3 78.6 79.7 78.3 78.0 

Italian 78.6 81.0 79.3 78.3 79.3 77.6 78.1 76.5 77.2 77.5 
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic, 

Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1. 

Figure 3. Testing accuracy obtained by different embedding dimensions, for English (red) and Italian (blue).

From results reported in Table 7, a function was fitted for each language to predict accuracy as
a quadratic function of De in logarithmic scale, and all coefficients result much greater than their
confidence interval, therefore, De gives significant effects. The fitted function, in accordance with results
shown in Figure 3, explains that, as the embedding dimension increases, a great improvement to QC was
given, since more semantic, syntactic, and morphological aspects of words were represented. However,
for more than some hundreds dimensions, a plateau was reached, and adding other dimensions does
not give a significant improvement.

Therefore, also in accordance with most of the previous literature works, and with the majority of
the available pre-trained WE vectors, the value De = 300 was chosen as optimal here.

3.3. CNN Architecture

The CNN architecture was analyzed firstly in terms of both the filter size (7) and their total
number (8), and then with regard to the activation function involved in (10), while their interactions
were neglected.
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Different filter sizes were experimented in the range [1,10], taking into account all possible sizes.
The functions fitted in this whole range to predict accuracy reveal no significant linear or quadratic
effect; however, in the restrictions of this range, the experimental results showed significant trends,
associated with significant improvements in correspondence of individual filter sizes with respect to
the others, as discussed in the following.

Firstly, all filters with the same size were employed. Results for both languages are reported in
Table 8 and shown in Figure 4.

Table 8. Testing accuracy obtained by different filter sizes 1.

Fs 1 2 3 4 5 6 7 8 9 10

Acc (%)
English 79.0 81.8 79.4 79.2 78.9 78.3 78.6 79.7 78.3 78.0
Italian 78.6 81.0 79.3 78.3 79.3 77.6 78.1 76.5 77.2 77.5

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 26 
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Within the first set of experiments, the best single filter size results Fs = 2, which corresponds
to significant improvements with respect to both Fs = 1 and Fs > 2. The trend was similar for both
languages, while a misalignment results for Fs = 8, which may be due to experimental variance.

Then, in order to evaluate the possibility of using filters of different sizes at the same time, as suggested
by previous works [19,20], 150 filters of size 2 were fixed, while the size of the other 150 was varied in the
same interval. Results for both languages are reported in Table 9 and shown in Figure 5.

Table 9. Testing accuracy obtained by different filter sizes 1.

Fs {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {2,9} {2,10}

Acc (%)
English 79.9 81.8 80.9 79.8 81.2 80.8 80.4 80.1 79.9 80.7
Italian 79.4 81.0 80.6 80.1 79.2 79.0 80.3 78.9 78.3 79.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

These results again allow to individuate Fs = 2 as the best filter size, also in association with
other filters of size 2. This corresponds to significant improvements with respect to Fs = 1 and slight
improvements with respect to Fs > 2.
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Figure 5. Testing accuracy obtained by different filter sizes apart from 150 filters of size 2, for English
(red) and Italian (blue).

These results mean that substituting 150 filters with others having different sizes does not improve
the accuracy. Therefore, further experiments were performed by fixing 200 filters of size 2, while the
size of only 100 varies. Results for both languages are reported in Table 10 and shown in Figure 6.

Table 10. Testing accuracy obtained by different filter sizes 1.

Fs {2,2,1} {2,2,2} {2,2,3} {2,2,4} {2,2,5} {2,2,6} {2,2,7} {2,2,8} {2,2,9} {2,2,10}

Acc (%)
English 80.2 81.8 81.4 81.5 80.4 81.0 80.8 80.8 80.8 80.6
Italian 79.2 81.0 80.4 79.9 80.3 80.5 79.6 79.6 79.3 80.3

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.
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Also in this case, the filter size 2 results the best. However, it corresponds to significant
improvements with respect to Fs = 1, while the variations for Fs ≥ 2 were not significant, since they
were comparable with the confidence interval of the linear coefficient of the function approximating
this trend (about 0.9%).

This finding of the best filter size corresponding to Fs = 2 can be explained by observing that, while
other literature results were inferred for classifying sentences, if questions were considered as in this
work, their classification can be done for most of them by considering a sequence of maximum 2 words
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comprised in them. This is coherent with previous findings, e.g., [4], individuating single words like
“head words”, or “WH-words” (why, when, where, . . . ), or couples of words (how much, how long, . . . ) as
the most informative for QC.

The total number of filters was analyzed as well, within the range [50,500], by considering the
following values: {50,100,200,300,400,500}. Results are reported in Table 11 and shown in Figure 7.

Table 11. Testing accuracy obtained by different numbers of filters 1.

Ntot 50 100 200 300 400 500

Acc (%)
English 80.8 81.7 81.5 81.8 81.0 81.3
Italian 80.5 81.4 81.1 81.0 80.5 79.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = 2,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.
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Also in this case, in the whole considered range, the functions fitted to predict accuracy reveal no
significant linear or quadratic effect, but a significant improvement can be detected in correspondence
of Ntot = 100 with respect to Ntot = 100. Moreover, starting from 100 filters, i.e., given that enough
filters were used, as this number increases, the positive influence of adding filters disappears. Even if
for English the result for 300 filters was slightly better than that with 100, for both languages similar
trends can be recognized, therefore this difference can be ascribed to the experimental variance. On the
contrary, a decreasing trend of the accuracy can be detected as Ntot increases.

These results mean that a minimum of 100 filters should be used, since at least 100 filters were
useful to extract different features from text. Moreover, the decreasing trend can be explained by
observing that each filter adds 609 weights to the model, therefore adding a great number of filters
cause overfitting on training data, and thus a worse accuracy on testing. Therefore, the value Ntot = 100
appears the best choice.

As far as the activation function is regarded, those reported in Table 12, together with respective
results, are analyzed.

Table 12. Testing accuracy obtained by different activation functions 1.

f eLU Identity ReLU Sigmoid Softplus Softsign Tanh

Acc (%)
English 84.9 84.7 85.1 65.6 85.0 79.0 83.4
Italian 84.1 84.0 83.7 56.7 84.3 79.2 82.9

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, batch = 100, Pkeep = 1, l2 = 3.0, optimizer = Adadelta, η = 0.1.
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These results, similar for both languages, show that a very low accuracy was obtained by using
the sigmoid function. Also with f = softsign the accuracy was significantly lower than the others,
while using f = tanh, the accuracy was better, but however, a t-test still reveals that the difference with
the others (eLU, Identity, ReLU, softplus) was significant. On the other hand, the activation functions
f = eLU, f = Identity, f = ReLU, and f = softplus allow to obtain higher accuracies, with variations
among them comparable with the experimental variance. From Figure 2, it can be noticed that these
functions giving better results can be distinguished by their characteristic of infinitely increasing
trend, with respect to the worse ones that have asymptotic behavior. Since they offer comparable
results, one of them can be chosen. For example, f = softplus could be chosen by considering resulting
small differences in accuracy, while f = Identity could be preferred in order to design the simplest
network architecture.

3.4. Learning Procedure

The first hyperparameter defining the learning procedure considered here was the batch size,
i.e., the number of examples considered together to calculate the loss value. Given the training
dataset, the variability range was batch ∈ [1,900], and all the orders of magnitude were considered, i.e.,
batch = {1,10,100,900}. Results are reported in Table 13 and graphically represented in logarithmic scale
in Figure 8.

Table 13. Testing accuracy obtained by different batch sizes 1.

batch 1 10 100 900

Acc (%)
English 88.1 88.1 85.1 80.2
Italian 86.4 86.6 83.3 80.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.
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Figure 8 clearly shows that, while the influence of batch size was not significant for sizes between
1 and 10, as the batch size increases, the accuracy clearly decreases, with a very strong effect of this
hyperparameter. This finding confirms the usefulness of employing batches instead of summing up
the loss function for all the examples. In particular, the smaller the batch size was, the higher accuracy
was obtained. However, one should also take into account that smaller batch sizes also cause much
longer training time. For this reason, here, in order to choose the best batch size, between 1 and 10,
having comparable performances, batch = 10 was chosen.
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The dropout was also varied, in the range Pkeep = (0,1], and in particular, in correspondence of the
following representative levels: Pkeep = {0.1,0.5,0.9,1}. Results are reported in Table 14.

Table 14. Testing accuracy obtained by different dropout 1.

Pkeep 0.1 0.5 0.9 1.0

Acc (%)
English 82.6 84.8 84.9 84.8
Italian 81.9 83.5 84.2 84.2

1 Other settings were: AvoidPunctuation = False, WEinit = pre-trained, De = 300,WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, batch = 100, l2 = 3.0, optimizer = Adadelta, η = 0.1.

From Table 14, it can be seen that, excepting the case Pkeep = 0.1, which causes significant accuracy
worsening, the other cases were very similar. This means that for this kind of system, and for the
considered size of the dataset, dropout was not strictly necessary. Therefore, for the considered dataset,
the dropout can be avoided, by choosing Pkeep = 1.0, or equivalently Pkeep = 0.9 can be chosen.

The regularization term l2 was also considered, at the following levels: l2 = {1.0,3.0,5.0}. Results are
reported in Table 15.

Table 15. Testing accuracy obtained by different regularization terms 1.

l2 1.0 3.0 5.0

Acc (%)
English 86.7 85.1 83.4
Italian 85.6 83.9 83.5

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, batch = 100, Pkeep = 0.5, optimizer = Adadelta, η = 0.1.

From Table 15, a slight but significant decreasing trend of the accuracy can be detected while l2
increases. Therefore, l2 = 1.0 was chosen.

Finally, the updating rule optimizer used to perform weights update by SGD backpropagation
algorithm, and the associated learning rate η, were studied together, in order to evaluate also their
probable interactions. According to a full factorial design, all the combinations of factors levels
were experimented, i.e., all the available updating rules optimizer = {Adadelta,Adagrad,Adam,Ftrl,
GradientDescent,Momentum,ProximalAdagrad,ProximalGradientDescent,RMSProp} combined with all the
magnitude orders in the considered range of the learning rate η= {0.01,0.1,1,10}. Results were reported in
Table 16 and shown in Figure 9. In Table 16, some results were not reported (“-“), since the corresponding
experiments were not performed, because they make no sense in light of the other experiments. Moreover,
the results of some experiments were reported as “<20.0”, since in those cases the learning procedure did
not offer acceptable accuracy. Some others were reported as “DIV”, since the learning procedure gave
exceptions due to overflow. The results indicated by an asterisk were obtained by 20,000 epochs instead
of 2000; however, results with different numbers of epochs can be compared, because in all the cases the
training was stopped after that convergence was reached. For each set of experiments with different
learning rates, the best result is reported in bold.

From Table 16, it can be evinced that some updating rules does not work with a too high
learning rate, giving overflow problems. In particular, when optimizer = {GradientDescent,Momentum,
ProximalGradientDescent}, the learning rate η= 1 was already too high. Moreover, when optimizer = Ftrl
and η= 0.01 (too low η), and when optimizer = RMSProp and η= 1 (too high ηin this case), the learning
procedure does not improve the testing accuracy of the initial random model. Another point to take
into account was that experiments obtained by 20000 epochs, necessary to get convergence for some low
values of η, need much more computation time. These observations limit the range of the usable values of
η, peculiarly for each updating rule.
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Table 16. Testing accuracy obtained by different learning updating rules and learning rates 1.

optimizer\η 0.01 0.1 1 10

Acc (%)

English

Adadelta 84.9 * 87.2 * 88.4 88.2
Adagrad 85.8 * 86.1 55.7 -

Adam 85.1 65.8 50.5 -
Ftrl <20.0 57.4 53.5 -

GradientDescent 87.4 * 85.7 DIV -
Momentum 87.2 * 86.4 DIV -

ProximalAdagrad 85.4 * 86.6 57.1 -
ProximalGradientDescent 87.0 * 85.3 DIV -

RMSProp 87.0 55.3 <20.0 -

Italian

Adadelta 83.8 * 87.4 * 88.6 88.0
Adagrad 85.2 * 86.0 57.0 -

Adam 85.9 67.8 66.4 -
Ftrl <20.0 56.4 49.8 -

GradientDescent 86.2 * 82.3 DIV -
Momentum 86.2 * 82.8 DIV -

ProximalAdagrad 85.0 * 85.3 63.6 -
ProximalGradientDescent 86.0 * 82.5 DIV -

RMSProp 86.4 57.0 <20.0 -
1 Experiments not performed reported as “-”. Not acceptable accuracy reported as “<20.0”. Exceptions due to
overflow reported as “DIV”. Results obtained by 20,000 epochs instead of 2000 indicated by an asterisk. Best result for
each set of experiments with different learning rates reported in bold. Other settings were: AvoidPunctuation = True,
WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300, f = softplus, batch = 100, Pkeep= 1.0, l2 = 3.0.
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Most updating rules result equivalent for low learning rates, as can be evinced by
Figure 9, in correspondence of η = 0.01. In particular, the cases optimizer = {GradientDescent,
Momentum,ProximalGradientDescent} result equivalent for this dataset in the whole range of η.
Moreover, as can be seen in Figure 9, in the acceptable ranges of η for each updating rule, most of
them present similar trends, with significantly increasing accuracy values as η decreases. This can be
explained by the network behavior of adapting fast to training data for high learning rates, which allows
to increase predictivity only during the first few epochs. Therefore, while experimenting lower learning
rates was not doable due to too high computation time, the option of higher learning rates was not
promising for most of the cases. On the other hand, when optimizer = Adadelta, accuracy surprisingly
increases with η, even if the differences in the range η = [0.1,10] were comparable with experimental
variance, and this allows using high learning rates (e.g., η = 1), and not too many epochs. Moreover, in
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correspondence of optimizer = Adadelta and η ≥ 0.1, a significant accuracy improvement was gained,
with respect to the maximal values of the other algorithms obtained with η = 0.01. Therefore, the
following couple of values of the considered degrees of freedom was chosen as optimal: optimizer =

Adadelta and η = 1.

3.5. Most Influencing Hyperparameters

The previous findings can be compared and summarized as follows.
For classifying questions (in 9 classes, using 900 training instances, with a CNN), the influence

associated to variations of different settings, relative to text representation, CNN architecture,
and learning procedure, was qualitatively described in Table 17.

Table 17. Qualitative description of influence of settings.

Setting Symbol Influence

Words representation

Eliminate punctuation AvoidPunctuation Not significant
Use of pre-trained and fine-tuned

Word Embedding vectors WEinit AND WEtuning Significant

Embedding dimension De
Very strong (De ≤ 100) – Significant

(100 < De ≤ 300) –
Not significant (300 < De ≤ 500)

CNN architecture

Filter size Fs Significant

Total number of filters Ntot Significant (Ntot ≤ 100) – Not significant
(Ntot > 100)

Activation function f

Not significant (among
eLU,Identity,ReLU,softPlus) –
Significant (vs. softsign,tanh) –

Very strong (vs. sigmoid)

Learning procedure

Batch size batch Not significant (batch ≤ 10) – Strong
(batch > 10)

Dropout Pkeep
Significant (Pkeep < 0.5) – Not significant

(Pkeep ≥ 0.5)
Loss regularization l2 Significant

Weights updating rule optimizer Not significant (associated with η = 0.01) –
Very strong (associated with η ≥ 0.1)

Learning rate η
Significant (associated with optimizer =

Adadelta) –
Very strong (otherwise)

From Table 17, the set of possible causes of very bad results can be individuated, i.e., too few
embedding dimensions, sigmoid activation function, and a wrong choice of learning rate associated
with a certain weights updating rule.

On the other hand, the strongest positive effect on accuracy was associated with a small batch
size. Other settings give significant positive effects: Use of pre-trained and fine-tuned WE vectors,
minimum 300 embedding dimensions, filter size equal to 2, minimum 100 total number of filters,
choice of the activation function among {eLU,Identity,ReLU,softplus}, low loss regularization constant,
and low learning rate. On the contrary, the influence of eliminating punctuation, and of the dropout
function (given Pkeep ≥ 0.5) were not significant.

3.6. Experiments with Optimal Settings

The results reported above allow individuating the best settings, for hopefully obtaining the
highest accuracy values, with respect to those reported so far.
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Therefore, some experiments were performed in correspondence of the best settings, in CV and
with some repetitions, in order to validate the optimization procedure described before. In particular,
two different settings were chosen, one (OPT1) comprising one of the best activation functions
(f = softplus), the other without the activation function (f = Identity).

Moreover, the results obtained here were compared with those obtained with settings individuated
as optimal in previous works [19,21]. For configurations found in previous works, fastText WE
pre-trained vectors are used here.

In Table 18, the settings relative to different final experiments are reported, together with respective
accuracy on testing.

Table 18. Testing accuracy for optimal settings, averaged on experiments repetitions, and for settings
individuated in previous literature.

Symbol OPT1 (This Work) OPT2 (This Work) [21] [19]

Ntrain/Ntest 900/100

Words representation

AvoidPunctuation True True False False
WEinit pre-trained pre-trained pre-trained pre-trained

De 300 300 300 300
WEtuning dynamic dynamic dynamic dynamic

CNN architecture

Fs 2 2 {3,4,5} {2,3,4,5}
Ntot 100 100 300 400

f softplus Identity ReLU ReLU

Learning procedure

batch 10 10 50 50
Pkeep 1 1 0.5 0.7

l2 1.0 1.0 3.0 5.0
optimizer Adadelta Adadelta Adadelta Adadelta

η 1.0 1.0 0.1 0.1

Performance

Acc (%) for English 88.8 89.2 85.6 85.7
Acc (%) for Italian 89.0 89.0 85.4 85.0

Results presented in Table 18, firstly validate the optimization performed of the whole model.
Indeed, the accuracy values were the highest obtained so far on this dataset.

Moreover, the results obtained by taking into account optimal configurations individuated by [19,21]
were significantly worse than those obtained here. The most noticeable differences in the configurations
revealed that the model chosen here was much simpler, since it avoids considering punctuation, uses only
100 filters of size 2, and does not use dropout (nor any activation function, for OPT2).

Since [19,21] found their best configurations on a different dataset, the same comparison was
performed on the most used dataset provided by [35] for the English language. In Table 19, the settings
and the respective accuracy on testing were reported, relative to different final experiments, also on
this bigger sized dataset.
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Table 19. Testing accuracy on [35] data with optimal settings, and with settings individuated in
previous literature.

Symbol OPT1 (This Work) OPT2 (This Work) [21] [19]

Ntrain/Ntest 5452/500

Words representation

AvoidPunctuation True True False False
WEinit pre-trained pre-trained pre-trained pre-trained

De 300 300 300 300
WEtuning dynamic dynamic dynamic dynamic

CNN architecture

Fs 2 2 {3,4,5} {2,3,4,5}
Ntot 100 100 300 400

f softplus Identity ReLU ReLU

Learning procedure

batch 10 10 50 50
Pkeep 1 1 0.5 0.7

l2 1.0 1.0 3.0 5.0
optimizer Adadelta Adadelta Adadelta Adadelta

η 1.0 1.0 0.1 0.1

Performance

Acc (%) for English 93.0 92.2 91.8 91.0

Among results of Table 19, those obtained with the proposed optimal settings were better than
those obtained with settings optimized in previous works for this particular dataset. This confirms
the validity and transferability of the optimal text representation, CNN architecture, and learning
procedure obtained here for the QC task.

3.7. Limitations

The optimal settings found here were based on a multilingual dataset regarding QC, using the
taxonomy explained in Section 2.1. Moreover, they were validated on a further dataset, also regarding
QC, presenting a different taxonomy.

However, the optimality of those settings cannot be demonstrated for any taxonomy of question
classes. Moreover, it cannot be extended to other sentence classification tasks. For example, if a filter of
size 2 was enough to classify some questions by just individuating “How much” sequence of words,
the same small filter could be undersized to distinguish more fine-grained question classes or to classify
sentiment of affirmative sentences.

4. Conclusions

This paper presented a study performed to analyze the settings of Convolutional Neural
Networks for Question Classification, in terms of words representation, network architecture and
learning procedure.

Both English and Italian languages were considered, since they have different morphological
richness, and training sets made of different number of questions were tested. All experiments were
based on questions properly extracted from the same multilingual dataset, in order to check possible
dependencies of optimal settings with respect to language.

All the hyperparameters and the most plausible interactions among them were tested in
correspondence of wide ranges of variability. For each of them, statistical significance of its influence
was evaluated by means of a comparison with intrinsic variability, measured through repetitions of the
same experiments.
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Results of the huge number of experiments drove to the individuation of optimal settings,
which are similar for both languages. They can be summarized as follows. Regarding the text
representation, it is better to avoid punctuation, to use pre-trained word embedding vectors with
dimension 300, and fine-tune them according to available data; regarding the architecture, 100 filters of
size 2 were enough for coarse-grain classification, and an infinitely increasing activation function should
be preferred (eLU, ReLU, softplus), or equivalently no activation function (Identity); regarding the
learning procedure, using a small batch of 10 gives strong improvements, while choosing it smaller
only increases computation time, dropout and loss regularization should be avoided, and the best and
fastest optimizer was Adadelta, associated with learning rate 1.0.

The individuated best configuration was tested on the same data and on a different set of questions
widely used for QC, and compared to the configurations suggested by the most relevant previous
works. These further results validated the optimization performed and confirmed the transferability of
the best settings on different data, since in all cases the models optimized here showed significantly
better classification accuracy than those suggested before.
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