
UNIVERSITY OF GRANADA

Department of Computer Science

and Artificial Intelligence

PhD Program in Information and

Communication Technologies

PhD THESIS DISSERTATION

PREPROCESSING AND ENSEMBLE APPROACHES FOR SINGULAR PROBLEMS:

MONOTONIC AND IMBALANCED CLASSIFICATION

PhD STUDENT

Sergio González Vázquez

PhD ADVISORS

Salvador Garćıa

Francisco Herrera

Granada, June 2020

Editor: Universidad de Granada. Tesis Doctorales

Autor: Sergio González Vázquez

ISBN: 978-84-1306-569-4
URI: http://hdl.handle.net/10481/63381

http://hdl.handle.net/10481/63381

El doctorando / The doctoral candidate Sergio González Vázquez y los directores de la tesis
/ and the thesis supervisors: Salvador Garćıa López and Francisco Herrera Triguero

Garantizamos, al firmar esta tesis doctoral, que el trabajo ha sido realizado por el doctorando
bajo la dirección de los directores de la tesis y hasta donde nuestro conocimiento alcanza, en la
realización del trabajo, se han respetado los derechos de otros autores a ser citados, cuando se han
utilizado sus resultados o publicaciones.

Guarantee, by signing this doctoral thesis, that the work has been done by the doctoral candidate
under the direction of the thesis supervisors and, as far as our knowledge reaches, in the performance
of the work, the rights of the other authors to be cited (when their results or publications have been
used) have been respected.

Granada, June 2020

The PhD student: The PhD advisor: The PhD advisor:

Sgd.: Sergio González Sgd.: Salvador Garćıa Sgd.: Francisco Herrera

This PhD thesis is supported by the Spanish National Research Project TIN2017-89517-P and by a
FPU scholarship from the Spanish Ministry of Education FPU14/03079 holded by the PhD Student, S.
González.

Cuando llegue la inspiración,
que me pille trabajando.

Pablo Picasso

Let everything happen to you:
beauty and terror.
Just keep going.
No feeling is final.

Rainer Maria Rilke

Agradecimientos

La culminación de esta tesis doctoral no hubiera sido posible sin la ayuda de mis directores, amigos y
familia. Por eso, me gustaŕıa dedicarles los siguientes agradecimientos.

He de comenzar agradeciendo a mis directores, Salva y Paco, por su trabajo y tiempo dedicado
tanto a mi formación como a mi investigación durante estos años. Sin su supervisión, esta tesis no seŕıa
la misma. Me gustaŕıa hacer una especial mención a Salva por su apoyo más allá de lo laboral.

También agradezco a mis amigos y compañeros del trabajo, con los cuales he podido compartir las
dudas, frustraciones y alegŕıas de este periodo como doctorando. Además, han estado siempre ah́ı para
poder desconectar y pasar buenos ratos fuera y dentro del CITIC.

Quiero extender dichos agradecimientos al grupo de Repsol. Con ellos, he experimentado otra
manera de trabajar más colaborativa en ciencia de datos. Durante esos meses, me sent́ı bastante unido
a los estudiantes del grupo Visbreaking. Aunque no todo fue ideal, el proyecto de Repsol me ha servido
varias veces de motivación cuando el trabajo de investigación no me llenaba ni progresaba como deseaba.
De este grupo, Juan Antonio ha sido la persona con la que más horas he pasado. Me alegro de haberlo
conocido, trabajado con él, y supervisado sus primeros pasos en la investigación académica. Sin duda
alguna, trabajar con él es una de las cosas que más echo de menos del proyecto de Repsol.

De mi entorno universitario, quiero agradecer especialmente a Jesús Maillo. Juntos, hemos compar-
tido 10 años de estudios universitarios entre el grado, máster y doctorado. Hemos vivido multitud de
experiencias juntos, ayudándonos mutuamente tanto en lo académico como en lo personal. Parece que,
con la finalización de nuestras tesis, nuestros caminos se separan. Pero, sé que estaremos siempre ah́ı el
uno para el otro. Le deseo lo mejor en esta nueva etapa fuera de la universidad.

Ajeno al mundo académico, agradezco a Ana Lućıa y Beth. Con ellas, me siento más libre para
expresar mis sentimientos y estado ańımico. Quiero también dedicar un profundo agradecimiento a
mis amigos de la infancia. Aunque últimamente nos veamos una vez al año en nuestras mı́ticas cenas
de navidad, siempre los siento muy cercanos y les tengo mucho cariño. En particular, quiero dedicar
unas palabras a Juan Carlos, el cual es mi amigo desde los 6 años. Aún viviendo en sitios diferentes
desde hace 10 años, no hemos perdido el contacto. Él siempre ha estado ah́ı para cualquier cosa que
necesitara. También deseo agradecer a mis amistades a miles de kilómetros de distancia, que me han
apoyado como los que más durante estos años.

Por último, doy mis gracias a mi familia, mi padre, mi hermano Ismael, y especialmente a mi
madre. Ella me ha enseñado el esfuerzo y la exigencia hacia en trabajo, entre otros tant́ısimos valores.
Tampoco puedo olvidar a mi hermano pequeño Gonzalo. Aunque con inevitables malas épocas, espero
que crezca feliz y siendo una gran persona, como sé que es. También quiero agradecer al resto de mi
familia que también me ha animado en todo momento.

Table of Contents

I PhD dissertation 13

1 Introduction . 13

2 Preliminaries . 25

2.1 Class imbalance problem . 25

2.2 Monotonic classification . 27

2.3 Ensemble learning . 29

2.4 Fuzzy k Nearest Neighbors . 32

3 Justification . 33

4 Objectives . 35

5 Methodology . 37

6 Summary . 39

6.1 Random Forest for classification with monotonicity constraints 39

6.2 Class switching for highly imbalanced classification 40

6.3 Sampling techniques for monotonic imbalanced classification 41

6.4 Monotonic Fuzzy kNN: Moving towards the robustness of monotonic noise . . 42

7 Discussion of results . 45

7.1 Random Forest for classification with monotonicity constraints 45

7.2 Class switching for highly imbalanced classification 45

7.3 Sampling techniques for monotonic imbalanced classification 46

7.4 Monotonic Fuzzy kNN: Moving towards the robustness of monotonic noise . . 47

8 Conclusions and future work . 49

8.1 Conclusion remarks . 49

8.2 Future work . 53

II Publications 55

1 Monotonic random forest with an ensemble pruning mechanism based on the degree of
monotonicity . 55

12 TABLE OF CONTENTS

2 Class switching according to nearest enemy distance for learning from highly imbalanced
data-sets . 75

3 Chain based sampling for monotonic imbalanced classification 103

4 Fuzzy k -Nearest Neighbors with monotonicity constraints 131

References 159

Chapter I

PhD dissertation

1 Introduction

The technological advances of recent years have enabled massive data generation and storage by
companies, governments, and research institutes. As a result, there has been an increase in the interest
of these organizations in extracting valuable knowledge from such data. Such knowledge can lead to
new advances and a relevant competitive advantage. Therefore, data science has become the flagship
of research, development, and innovation.

The demanding standards of data science, as well as the variety of new applications with different
restrictions, have grown steadily. However, control over the quality of data has been neglected given
its rapid and massive generation. This leads to greater inconsistency in such data.

In this context, the correct application of the Knowledge Discovery in Databases (KDD) process
[1] has become more important. The KDD process is defined as the set of stages that make it possible
to identify valuable patterns and relationships in the data [1, 2]. The stages of the KDD process are as
follows:

• Problem specification: it is responsible for identifying the problem requirements and the objective
of the discovery process.

• Data extraction: it selects data from the most relevant information sources for the problem,
usually with the help of expert knowledge. The extracted data are grouped into a single data-set
to be processed in subsequent stages.

• Data preprocessing: it intends to transform the data to be used by data mining techniques
and to clean all possible impurities present in the data, such as noise, lack of information or
redundant, and irrelevant data [3]. The final objective of data preprocessing is to obtain quality
data, currently known as Smart Data [4, 5], for its use in subsequent stages.

• Data mining: it aims to extract patterns, relationships, and/or models from the processed
data-sets [6]. The kind of knowledge to be extracted determines the category of the data mining
problem and the group of feasible techniques. The selection of the best technique for each problem
is a complex engineering process that requires the optimization and validation of the different
techniques available.

• Interpretation and evaluation: the extracted knowledge is analyzed and described to be under-
standable and useful.

13

14 Chapter I. PhD dissertation

All these steps of the KDD process are essential. However, these do not usually require the
same dedication and time. Some practitioners advocate the need for greater dedication to the data
preprocessing stage due to its importance [3, 5]. Data mining algorithms usually assume the veracity
and correctness of the data. For this reason, the inference of models or patterns with impure data can
lead to misleading or erroneous results. Therefore, data quality must be a priority in the KDD process.

Data preprocessing [3] covers the tasks of data preparation and integration [7, 8], noise processing
[9], missing value imputation [10, 11] and data reduction tasks such as feature selection [12], instance
selection [13] and discretization [14]. The correct application of these tasks on the raw data will
produce Smart Data [5], as is known in the literature to clean and useful quality data for data mining
techniques.

Data mining [2, 6] is another core task of the KDD process, as it is responsible for inferring
the patterns, relationships, or trends hidden in the data. Traditionally, it is divided into two areas
according to the type of target knowledge to be learned:

• Supervised learning: it infers relationships/models between a target variable and input variables
from known data to predict the value of the target variable for future unseen cases. Depending
on the domain of the target variable, two categories are differentiated:

– Classification [15]: the domain of the target variable is discrete with all its possible known
classes or labels. The prediction of whether a patient is sick or healthy is an example of
classification in the area of medicine.

– Regression [16]: the values of the goal variable are continuous. An example of a regression
problem is the estimation of the price of a product.

• Unsupervised learning: it aims to discover different relationships between instances or variables
in the data set without a defined target variable. Two different families are distinguished:

– Clustering [17]: it identifies groups of samples according to a measure of similarity. Clustering
attempts to minimize differences between instances of the same group and to maximize
distances between different groups.

– Association [18]: it detects relevant relationships between different data attributes.

Most supervised learning research focuses on binary or multi-class classification and regression
problems with a single target variable. However, there is a multitude of less known problems. In the
literature, these are referred to as singular or nonstandard supervised learning problems [19].

Singular supervised learning problems are those that do not follow the usual scheme of supervised
problems [20, 19]. Thus, standard data mining algorithms do not work correctly or directly, they
cannot be applied to these problems.

According to the differences with classical supervised learning, singular problems can be
categorized as follows:

• Problems with nonstandard structure: they do not obey the traditional structure of an input
vector with a single target value. That is, these problems have multiple input vectors for each
output or multiple target variables. Multi-instance learning [21] and multi-view learning [22] are
examples of problems with multiple inputs. Multi-label learning [23] and multi-target regression
[24] are examples of data with multiple outputs.

1 Introduction 15

• Problems with partial or imprecise information: they have incorrect information or lack values in
features, instances, or target variable. A well-known example is semi-supervised learning [25],
where part of the instances lacks target variable values. Imbalanced classification [26] may be
considered a problem with partial information due to the lack of representation in the minority
classes. Classification with noisy data [9] has also been considered in this category [20]. Other
more specific examples are one-class learning [27], zero-shot learning [28] or one-shot learning
[29].

• Problems with prior knowledge constraints: they present relationships or restrictions coming from
the expert knowledge of the applied problem. These constraints must be taken into consideration
during the learning process. Ordinal regression [30] includes order relations between class labels.
Monotonic classification [31] incorporates order constraints between the attributes and the class.

Singular supervised problems are mostly treated from two main approaches [19]: problem
transformation and algorithm adaptation. The first approach makes use of preprocessing techniques to
transform the original problem into one or more standard problems with less complexity. These simpler
problems are solved with the usual data mining techniques. Their solutions are combined into a single
solution for the original problem. The second group of solutions seeks to design new algorithms or
adaptations of existing methods that consider the peculiarities of the data of the singular problem.

It should be noted that the singular problems are not mutually exclusive. It is common to find
several singular scenarios in the same real application. The combination of these tends to significantly
complicate the learning process. For example, the presence of class noise in imbalanced classification
or monotonic classification may aggravate the accuracy of the less represented classes [32] or break
the order constraints [33], respectively. Another example is the combination of multi-instance and
multi-label scenarios [34]. However, few proposals study two or more singular problems at the same
time.

This thesis focuses on two singular supervised problems: imbalanced classification [26] and
classification with monotonic constraints [31].

Class imbalance problem [26] alludes to a significant difference in the number of representative
cases of each class. That is, certain classes, commonly called minority classes, have many fewer
instances than others, known as majority classes. Standard classifiers tend to lower the accuracy of
minority classes due to such disparity in the number of examples. This situation is quite common in
real problems, such as bank credit rating [35, 36] or business domain problems [37]. In these real-life
scenarios, the misclassification of a minority class example usually entails a higher cost. Therefore,
addressing this problem is extremely essential.

Therefore, new techniques have been designed to address the class imbalance problem with three
different approaches [26]: algorithmic-based proposals [38, 39, 40], cost-sensitive learning [41, 42, 37],
and data sampling [43]. Ensembles have been successfully combined with these previous methods
obtaining a great performance in this problem [44].

Monotonic classification or classification with monotonic constraints is a singular classification
problem, where there is an order relationship between the ordinal class variable and some ordinal or
numerical input attributes [31]. Such monotonic constraints restrict the increase or decrease of the
class label to the increase or decrease of the attributes. That is, the prediction of the class label should
not decrease in the presence of higher input values while the rest remains the same.

Standard classification algorithms do not consider such constraints on the learning process.
Thus, their predictions tend to violate monotonicity. Therefore, a multitude of monotonic classifiers
have been developed based on decision trees [45, 46, 47], fuzzy classifiers [48, 49], neural networks

16 Chapter I. PhD dissertation

[50, 51], instance-based learning [52, 53, 54] and ensemble learning [55, 56]. However, many of these
suffer from two common problems of monotonic classification: i) Some algorithms require purely
monotonic data, which rarely occurs due to data inconsistencies, and ii) Some models are highly biased
towards monotonic constraints and have very poor performance in terms of accuracy.

These constraints of prior knowledge are often required in real evaluation problems, such as
credit risk modeling [57], housing pricing [58], and professor evaluation [59]. These are also common
scenarios of imbalanced classification because those most valued classes tend to be less represented.

This thesis aims to propose new solutions based on robust classifiers and preprocessing techniques
for these two singular supervised problems. Figure 1 summarizes all the different problems and
techniques treated in the objectives of this thesis.

Singular problems

Monotonic
classification

Imbalanced
classification

Preprocessing

Sampling +
Ensembles

Sampling

Robust classifiers

Ensemble learning:
RF & Switching

Fuzzy k-NN

Figure 1: Objectives of the PhD thesis.

Ensembles are one of the most robust and successful models of data mining [60, 61]. They
combine several base classifiers so that their merged prediction significantly improves the performance
of a single model [62, 63]. This combination allows the correction of possible errors made by the base
learners and promotes a great generalization without neglecting local knowledge [62, 64]. Incorporating
diversity into the base learners of the ensemble is critical to achieving these precision and generalization
benefits. A multitude of diversity promotion techniques are available, such as algorithmic process
randomization [65, 66] or sampling (bootstrapping) [67, 68].

1 Introduction 17

Random Forest [65] is one of the most accurate and popular algorithms [61, 69]. This decision
tree ensemble [70] combines bootstrapping and the incorporation of randomness in the selection of the
best tree cut to reach high levels of accuracy. Given its success, Random Forest with monotonic decision
trees [45, 47] could be an ideal proposal to achieve the previously explained challenges of monotonic
classification: high precision and monotonicity without purely monotonic data. This proposal is studied
and developed later in this thesis.

The manipulation of class labels is another very interesting and little explored approach to
promoting diversity in ensembles. Label switching algorithms [71, 72] modify the class values of
randomly selected instances as a diversity promotion technique. Class Switching algorithm [72] tends
to balance the percentages of samples of each class in slightly imbalanced scenarios. Therefore, a
redesign of this model in combination with sampling techniques [44] is very interesting to mitigate
the impact of class imbalance. In this thesis, an ensemble based on Class Switching according to the
distance to the nearest enemy is proposed for the highly imbalanced classification.

Sampling techniques are preprocessing methods for transforming a class imbalance problem into
a standard problem [3, 26]. These techniques are usually divided into under-sampling and over-sampling.
Under-sampling reduces the number of samples from the majority classes to balance the data-set.
In contrast, over-sampling increases the number of representatives of the minority classes. Both
techniques have shown great results both independently [43] and in combination with ensembles [44].
However, their application in monotonic classification problems with class imbalance could deteriorate
the monotonicity of the data and thus, affect the performance of the classifiers. This event is studied
during the thesis, giving rise to sampling techniques adapted to imbalanced monotonic classification.

Algorithms based on k Nearest Neighbors (kNN) can be a great asset to both preprocessing
techniques and robust classifiers. The kNN algorithm classifies based on the labels of the instances
most similar to the given example. The use of kNN goes beyond classification. It has been used in
many preprocessing techniques of all kinds, such as instance selection [73, 59], prototype generation
[74], border detection [75, 76], sampling for the class imbalance problem [77, 26], noise filters [78],
among others.

In this thesis, kNN is used transversely in multiple proposals. The distance to the nearest
enemy guides the class change of border instances in the Switching-based ensemble. Some sampling
techniques proposed for imbalanced monotonic classification are based on neighborhoods.

In addition, a new noise-robust classifier based on Fuzzy kNN with monotonic constraints is
proposed. In the standard classification, Fuzzy kNN [79] has proven high performance and robustness to
class noise [80], thanks to the prior extraction of class membership for crisp training samples. However,
this mechanism does not take into account restrictions or monotonicity violations. Monotonic Fuzzy
kNN proposal stands out for its high performance even in the presence of monotonic inconsistencies in
the data.

In essence, the main objective of this thesis is to design new solutions for these problems, both
independently and together, and considering other singular data situations, such as the presence of
class noise. As previously mentioned, these proposals follow two different approximations similar to
the traditional approaches for singular problems: robust classifiers and preprocessing based techniques.
These approaches aim at specific issues of imbalanced and monotonic classification:

• Design of robust classifiers for the singular problems of imbalanced and monotonic classification.
This objective includes:

– High levels of accuracy as well as monotonicity with a Random Forest classifier for monotonic
classification.

18 Chapter I. PhD dissertation

– Robust ensemble learning based on Switching according to the Nearest Enemy Distance
(SwitchingNED) for highly imbalanced problems.

– Great robustness to monotonic noise for monotonic classification with a Fuzzy kNN proposal
aware to monotonic constraints and violations.

• Development of preprocessing-based techniques in imbalanced and monotonic classification.
Within this paradigm, the following goals are enclosed:

– To enhance the performance of SwitchingNED through its combination with different
sampling techniques for imbalanced classification.

– To mitigate the impact of skewed class distributions in problems with monotonic constraints
thanks to new sampling techniques for monotonic imbalanced classification.

Finally, the rest of the thesis is organized into two main parts: the PhD thesis and the associated
publications. In this first part, Section 2 develops the preliminary knowledge and background necessary
for this dissertation. In Section 3, the relevance of the thesis and its associated scientific works are
justified in the context of the outlined problems. Section 4 describes the objectives established for the
development of the thesis. Section 5 presents the methodology followed in the course of this work.
In Section 6 and Section 7, the scientific studies of this PhD thesis and its results are summarized,
respectively. Finally, Section 8 highlights the main conclusions drawn and the future lines of this work.

The second part of the thesis document includes the 4 publications associated with the develop-
ment of this dissertation. The scientific papers are ordered according to their publication date:

• Monotonic random forest with an ensemble pruning mechanism based on the degree of mono-
tonicity.

• Class switching according to nearest enemy distance for learning from highly imbalanced data-sets.

• Chain based sampling for monotonic imbalanced classification.

• Fuzzy k-Nearest Neighbors with monotonicity constraints: Moving towards the robustness of
monotonic noise.

1 Introduction 19

Introducción

Los avances tecnológicos de estos últimos años han permitido la masiva generación y almacenamiento
de datos por parte de empresas, gobiernos y centros de investigación. Esto ha promovido el aumento
del interés de estos organismos por extraer conocimiento valioso de dichos datos. Dicho conocimiento
puede suponer nuevos avances y una relevante ventaja competitiva. Por tanto, la ciencia de datos se ha
vuelto el buque insignia de la investigación, desarrollo e innovación.

Los estándares de exigencia sobre la ciencia de datos, aśı como la variedad de nuevas aplicaciones
con diferentes restricciones, han crecido paulatinamente. Sin embargo, el control sobre la calidad
de los datos ha podido descuidarse dada su rápida y masiva generación. Esto conlleva una mayor
inconsistencia en dichos datos.

En este contexto, la correcta aplicación del proceso de descubrimiento de conocimiento en bases
de datos (Knowledge Discovery in Databases - KDD) [1] ha cobrado una mayor importancia. El proceso
KDD se define como el conjunto de etapas que posibilitan la identificación de valiosos patrones y
relaciones en los datos [1, 2]. Las etapas del proceso KDD son las siguientes:

• Especificación del problema: es responsable de identificar los requisitos del problema y el objetivo
del proceso de descubrimiento.

• Extracción de datos: selecciona los datos de las fuentes de información más relevantes para el
problema, habitualmente con ayuda de conocimiento experto. Los datos extráıdos se agrupan en
un solo conjunto para ser procesado en siguientes etapas.

• Preprocesamiento de datos: pretende transformar los datos para poder ser utilizados por las
técnicas de mineŕıa de datos y limpiar todas las posibles impurezas presentes en los mismo, tales
como ruido, falta de información o datos redundantes e irrelevantes [3]. El objetivo final del
preprocesamiento de datos es la obtención de datos de calidad, o actualmente conocidos como
Smart Data [81, 5], para su uso en siguientes etapas.

• Mineŕıa de datos: tiene como objetivo la extracción de patrones, relaciones y/o modelos de un
conjunto procesado de datos [6]. El tipo de conocimiento a extraer determina la categoŕıa del
problema de mineŕıa de datos y el grupo de técnicas viables para dicha categoŕıa. La selección
de la mejor técnica para cada problema es un proceso complejo de ingenieŕıa que requiere de la
optimización y validación de las diferentes técnicas disponibles.

• Interpretación e evaluación: el conocimiento extráıdo se analiza y se describe para ser comprensible
y util.

Todos estos pasos del proceso KDD son esenciales. Sin embargo, habitualmente no todos
requieren la misma dedicación ni tiempo. Algunos profesionales del sector defienden la necesidad de una
mayor dedicación a la etapa de preprocesamiento de datos debido su importancia [3, 5]. Los algoritmos
de mineŕıa de datos suelen asumir la veracidad y corrección de los datos. Debido a esto, la inferencia de
modelos o patrones con datos impuros puede dar lugar a resultados engañosos o erróneos. Por tanto, la
calidad de los datos debe ser prioritaria en el proceso KDD.

El preprocesamiento de datos [3] abarca las tareas de preparación e integración de datos [7, 8],
tratamiento de ruido [9], imputación de valores faltantes [10, 11] y tareas de reducción de datos, como
selección de caracteŕısticas [12], selección de instancias [13] y discretización [14]. La correcta aplicación
de estas tareas sobre los datos en crudo producirá Smart Data [5], tal como se conoce en la literatura a
los datos de calidad limpios y útiles para las técnicas de mineŕıa de datos.

20 Chapter I. PhD dissertation

La mineŕıa de datos [2, 6] es otra tarea núcleo del proceso KDD, ya que es la encargada de
inferir los patrones, relaciones o tendencias ocultos en los datos. Tradicionalmente, se divide en dos
ramas según el tipo de conocimiento objetivo a aprender:

• Aprendizaje supervisado: infiere relaciones/modelos entre una variable objetivo y variables de
entrada a partir de datos conocidos para predecir el valor de la variable objetivo para futuros
casos no vistos. Según el dominio de la variable objetivo, se distinguen dos categoŕıas:

– Clasificación [15]: el dominio de la variable objetivo es discreto con todos sus posibles clases
o etiquetas conocidas. La predicción de si un paciente está enfermo o sano es un ejemplo de
clasificación en el area de la medicina.

– Regresión [16]: los valores de la variable objetivo son continuos. Un ejemplo de problema de
regresión es la estimación del precio de un producto.

• Aprendizaje no supervisado: tiene como objetivo descubrir diferentes relaciones entre instancias
o variables del conjunto de datos sin una variable objetivo definida. Se distinguen dos familias
diferentes:

– Agrupamiento [17]: identifica grupos de muestras de acuerdo a una medida de similitud.
Agrupamiento trata de minimizar las diferencias entre instancias del mismo grupo y de
maximizar las distancias entre diferentes grupos.

– Asociación [18]: detecta relaciones relevantes entre las diferentes variables de los datos.

La mayoŕıa de las investigaciones de aprendizaje supervisado se centran en problemas de
clasificación binaria o multiclase y regresión con una variable objetivo. Sin embargo, existe una multitud
de problemas menos conocidos. En la literatura, estos reciben el nombre de problemas de aprendizaje
supervisado singulares o no estándar [19].

Los problemas de aprendizaje supervisado singurales son aquellos que no siguen el esquema
habitual de los problemas supervisados [20, 19]. Debido a esto, los algoritmos estándares de mineŕıa de
datos no funcionan correctamente o directamente, no se pueden aplicar a estos problemas.

De acuerdo a las diferencias con el aprendizaje supervisado clásico, los problemas singulares
pueden ser categorizados de la siguiente manera:

• Problemas con estructura no-estándar: no obedecen la estructura tradicional de un vector de
entradas por un solo valor objetivo. Es decir, estos problemas poseen multiples vectores de
entradas por cada salida o multiples variables objetivos. El aprendizaje multi-instancia [21] y el
aprendizaje multi-vista [22] son ejemplos de problemas con multiples entradas. El aprendizaje
multi-etiqueta [23] y la regresión multi-objetivo [24] son ejemplos de datos con multiples salidas.

• Problemas con información parcial o imprecisa: tienen información incorrecta o carecen de valores
en caracteŕısticas, instancias o variable objetivo. Un ejemplo bien conocido es el aprendizaje
semi-supervisado [25], donde parte de las instancias carecen de valor para la variable objetivo. La
clasificación desbalanceada [26] puede ser considerada un problema con información parcial por
la falta de representación en las clases minoritarias. La clasificación con ruido de clase [9] también
ha sido considerada en esta categoŕıa [20]. Otros ejemplos más espećıficos son el aprendizaje
one-class [27], el aprendizaje zero-shot [28] o el aprendizaje one-shot [29].

• Problemas con restricciones de conocimiento previo: presentan relaciones o limitaciones prove-
nientes del conocimiento experto del problema aplicado. Estas restricciones deben de tenerse en

1 Introduction 21

consideración durante el aprendizaje. La regresión ordinal [30] incluye relación de orden entre las
etiquetas de clase. La clasificación monotónica [31] incorporan restricciones de orden entre los
atributos y la clase.

Los problemas supervisados singulares se tratan mayormente desde dos enfoques principales
[19]: transformación del problema y adaptación de algoritmos. El primer enfoque hace uso de técnicas
de preprocesamiento para transformar el problema original en uno o más problemas estándares con
menor complejidad. Estos problemas más simples se resuelven con las técnicas habituales de mineŕıa
de datos. Sus soluciones son combinadas en una solo solución del problema original. El segundo grupo
de soluciones busca diseñar nuevos algoritmos o adaptaciones de métodos existentes que consideren las
peculiaridades de los datos del problema singular.

Cabe destacar que los problemas singulares no son excluyentes entre śı. Es común encontrarse
diversos escenarios singulares en una misma aplicación real. La combinación de estos suele complicar
significativamente el aprendizaje. Por ejemplo, la presencia de ruido de clase en clasificación desbalan-
ceada o clasificación monotónica pueden agravar la precisión de las clases menos representadas [32] o
romper la restricciones orden [33], respectivamente. Otro ejemplo es la combinación de los escenarios
multi-instancia y multi-etiqueta [34]. Sin embargo, pocas propuestas estudian dos o más problemas
singulares al mismo momento.

Esta tesis se centra en dos problemas supervisados singulares: clasificación desbalanceada [26] y
la clasificación con restricciones monotónicas [31].

El problema del desequilibrio entre clases [26] alude a una diferencia significativa en el número
de casos representativos de cada clase. Es decir, ciertas clases, comúnmente llamadas clases minoritarias,
poseen muchas menos instancias que otras, conocidas como clases mayoritarias. Los clasificadores
estándar tienden a perder precisión de las clases minoritarias debido a dicha disparidad en la cantidad
de ejemplos. Esta situación es bastante común en problemas reales, tales como la clasificación de
crédito bancario [35, 36] o problemas de dominio empresarial [37]. En estos escenarios reales, la errónea
clasificación de un ejemplo de clases minoritarias habitualmente entraña un mayor coste. Por lo tanto,
abordar este problema es sumamente esencial.

Por consiguiente, se han diseñado nuevas técnicas para hacer frente al problema del desequilibrio
entre clases con tres enfoques diferentes [26]: propuestas basadas en algoritmos [38, 39, 40], aprendizaje
sensible a costes [41, 42, 37], y muestreo de datos [43]. Los ensembles se han combinado con éxito con
estos métodos anteriores obteniendo un gran rendimiento en este problema [44].

La clasificación monotónica o clasificación con restricciones monotónicas es un problema de
clasificación singular, donde existe una relación de orden entre la variable ordinal de clase y algunos
atributos de entrada ordinales o numéricos [31]. Dichas relaciones monotónicas restringen el incremento
o decremento de la etiqueta de clase al incremento o decremento de los atributos. Es decir, la predicción
de la etiqueta de clase no deben disminuir en presencia de mejores valores de entrada mientras que el
resto se mantiene igual.

Los algoritmos de clasificación estándar no consideran dichas restricciones en el aprendizaje,
por lo que sus predicciones tienden a violar la monotońıa. Por ello, se han desarrollado multitud de
clasificadores monotónicos basados en árboles de decisión [45, 46, 47], clasificadores difusos [48, 49],
redes neuronales [50, 51], aprendizaje basado en instancias [52, 53, 54] y aprendizaje de ensemble
[55, 56]. Sin embargo, muchos de estos padecen de dos problemas comunes en la clasificación monotónica:
i) Algunos algoritmos requieren datos puramente monotónicos, lo cual rara vez ocurre debido a las
inconsistencias en los datos y ii) Algunos modelos están altamente sesgados hacia las restricciones de
monotońıa y tienen un rendimiento muy pobre en términos de precisión.

22 Chapter I. PhD dissertation

Estas restricciones de conocimiento previo se requieren frecuentemente en problemas reales de
evaluación, tales como modelado del riesgo de crédito [57], del precio de viviendas [58] y evaluación de
profesorado [59]. Los cuales son también escenarios comunes de la clasificación desbalanceada, debido a
que aquellas clases más valoradas suelen estar menos representadas.

Esta tesis pretende proponer nuevas soluciones basadas en clasificadores robustos y técnicas
de preprocesamiento para estos dos singulares problemas supervisados. La Figura 2 resume todos los
diferentes problemas y técnicas tratadas en los objetivos de esta tesis.

Singular problems

Monotonic
classification

Imbalanced
classification

Preprocessing

Sampling +
Ensembles

Sampling

Robust classifiers

Ensemble learning:
RF & Switching

Fuzzy k-NN

Figura 2: Objetivos de la tesis doctoral.

Los ensembles son uno de los modelos más robustos y exitosos de la mineŕıa de datos [60, 61].
Estos combinan varios clasificadores base para que su predicción fusionada mejore significativamente el
rendimiento de un solo modelo [62, 63]. Dicha combinación permite la corrección de posibles errores
cometidos por los modelos base y promueve una gran capacidad de generalización sin descuidar el
conocimiento más local [62, 64].

La incorporación de diversidad en los modelos base del ensemble es fundamental para conseguir
dichos beneficios de precisión y generalización. Existen una multitud de técnicas de promoción de
la diversidad, tales como aleatorización de procesos algoŕıtmicos [65, 66] o muestreo (bootstrapping)
[67, 68].

Random Forest [65] es uno de los algoritmos más precisos y populares [61, 69]. Este ensemble

1 Introduction 23

de árboles de decisión [70] combina bootstrapping y la incorporación de aleatoriedad en la selección
del mejor corte en los árboles para alcanzar altas cotas de precisión. Dado su éxito, Random Forest
con árboles de decisión monotónicos [45, 47] podŕıa ser un propuesta ideal para conseguir los retos
previamente explicados de la clasificación monotónica: alta precisión y monotońıa sin datos puramente
monotónicos. Dicha propuesta es estudiada y desarrollada más adelante en esta tesis.

La manipulación de las etiquetas de clase es otro enfoque muy interesante y poco explorado de
la promoción de la diversidad en ensembles. Los algoritmos de cambio de etiquetas [71, 72] modifican
los valores de clase de instancias seleccionadas al azar como una técnica de promoción de la diversidad.
El algoritmo Switching [72] tiende a igualar los porcentajes de muestras de cada clase en escenarios
ligeramente desequilibrados. Por lo que, un rediseño de este modelo en combinación con técnicas de
muestreo [44] es muy interesante para paliar el impacto del desequilibrio de clase. En esta tesis, se
propone un ensemble basado en cambio de clases de acuerdo a la distancia al enemigo más cercano
para la clasificación altamente desequilibrada.

Las técnicas de muestreo son métodos de preprocesamiento para transformar un problema de
desequibrio de clases en un problema estándar [3, 26]. Estas técnicas se suelen dividir en infra-muestreo
o sobre-muestreo. El infra-muestreo reduce el número de muestras de las clases mayoritarias para
equilibrar el conjunto de datos. Por el contrario, el sobre-muestreo aumenta el número de representantes
de las clases minoritarias. Ambas técnicas han demostrado grandes resultados tanto de manera
independiente [43] como combinadas con ensembles [44]. Sin embargo, su aplicación en problemas de
clasificación monotónica con desequilibrio de clases podŕıa deteriorar la monotońıa de los datos y por
tanto, afectar al rendimiento de los clasificadores. Este evento es estudiado en el transcurso de la tesis,
dando lugar a técnicas de muestreo adaptadas a la clasificación monotónica desbalanceada.

Los algoritmos basados en los k Vecinos más Cercanos (kNN - k Nearest Neighbours) pueden
ser una gran baza tanto para constituir técnicas de preprocesamiento como clasificadores robustos.
El algoritmo kNN clasifica en base a las etiquetas de las instancias más similares al ejemplo dado.
La utilidad de kNN transciende a la clasificación. Este ha sido usado en infinidad de técnicas de
preprocesamiento de toda indole, tales como selección de instancias [73, 59], generación de prototipos
[74], detección de fronteras [75, 76] y muestreo para el problema de desequilibrio de clases [77, 26],
filtros de ruido [78], entre otros.

En esta tesis, se hace uso de kNN transversalmente en multiples propuestas. La distancia
al enemigo más cercano gúıa el cambio de clase de instancias fronterizas en el ensemble basado en
Switching. Algunas técnicas de muestreo propuestas para la clasificación monotónica desbalanceada
están basadas en vecindarios.

Además, se propone un nuevo clasificador basado en Fuzzy kNN con restricciones monotónicas
robusto al ruido monotónico. En la clasificación estándar, Fuzzy kNN [79] ha demostrado un alto
rendimiento y robustez al ruido de clase [80], gracias a la previa extracción de la membreśıa de clase
para las muestras de entrenamiento ńıtidas. Sin embargo, este mecanismo no considera las restricciones
ni las violaciones de monotonicidad. La propuesta de Fuzzy kNN monotónico destaca por su alto
rendimiento incluso en presencia de inconsistencias de monotońıa en los datos.

En esencia, el objetivo principal de esta tesis es diseñar nuevas soluciones para dichos problemas,
tanto de manera independiente como conjunta, y considerando otras situaciones singulares de datos,
tales como la presencia de ruido. Como se ha mencionado anteriormente, estas propuestas siguen dos
aproximaciones diferentes similares a los enfoques tradicionales para problemas singulares: clasificadores
robustos y técnicas basadas en el preprocesamiento. Estas aproximaciones abordan cuestiones espećıficas
de clasificación desequilibrada y la clasificación monotónica:

24 Chapter I. PhD dissertation

• Diseño de clasificadores robustos para los problemas singulares de clasificación desbalanceada y
monotónica. Dicho objetivo incluye:

– Altos niveles de precisión aśı como de monotonicidad con un clasificador Random Forest
para la clasificación monotónica.

– Robusto aprendizaje de ensembles basado en Switching según la distancia del enemigo más
cercano (SwitchingNED) para problemas altamente desequilibrados.

– Gran robustez al ruido monotónico para la clasificación monótona con una propuesta de
Fuzzy kNN consciente de las restriciones y violaciones de monotońıa.

• Desarrollo de técnicas basadas en preprocesamiento en clasificación desbalanceada y monotónica.
Dentro de este paradigma, se incluyen las siguientes metas:

– Mejorar el rendimiento de SwitchingNED mediante su combinación con diferentes técnicas
de muestreo para la clasificación altamente desequilibrada.

– Mitigar el impacto de las distribuciones desequilibradas de clases en los problemas de
restricciones monótonas gracias a nuevas técnicas de muestreo para la clasificación monótona
desequilibrada.

Finalmente, el resto de la tesis está organizado en dos partes principales: la tesis doctoral y las
publicaciones asociadas. En esta primera parte, la Sección 2 desarrolla los conocimientos preliminares
y los antecedes necesarios para esta tesis doctoral. En la Sección 3, se justifica la relevancia de la tesis
y sus trabajos cient́ıficos asociados en el contexto de los problemas planteados. La Sección 4 describe
los objetivos fijados para el desarrollo de la tesis. La Sección 5 presenta la metodoloǵıa seguida en
el transcurso de este trabajo. En la Sección 6 y la Sección 7, se resumen los estudios cient́ıficos de
esta tesis doctoral y sus resultados, respectivamente. Finalmente, la Sección 8 remarca las principales
conclusiones extráıda y las ĺıneas futuras de este trabajo.

La segunda parte de documento de tesis incluye las 4 publicaciones asociadas al desarrollo de
este trabajo. Los trabajos cient́ıficos está ordenados de acuerdo a su fecha de publicación:

• Monotonic random forest with an ensemble pruning mechanism based on the degree of monotoni-
city.

• Class switching according to nearest enemy distance for learning from highly imbalanced data-sets.

• Chain based sampling for monotonic imbalanced classification.

• Fuzzy k -Nearest Neighbors with monotonicity constraints: Moving towards the robustness of
monotonic noise.

2 Preliminaries 25

2 Preliminaries

This section presents the background preliminaries of the singular supervised problems and the learning
algorithms addressed in this doctoral thesis. Section 2.1 describes the class imbalance problem and
some popular approaches. In Section 2.2, the classification with monotonicity constraints is explained
in details. Section 2.3 introduces a general knowledge of ensemble learning, the most relevant ensemble
approaches and diversity promotion mechanisms. Finally, a description of Fuzzy kNN algorithm is
given in Section 2.4.

2.1 Class imbalance problem

The class imbalance problem occurs with the wide difference between class representations [26]. That
is, one or more classes have much fewer instances than the remaining classes. These underrepresented
classes are usually called minority or positive classes. The others are known as majority or negative
classes.

The underlying issue with imbalanced data-sets is the impairment of minority class accuracy.
Standard classifiers tend to misclassify minority class instances due to their generalization behavior.
Furthermore, these minority classes are often the target in many real-life classification tasks [82, 36],
which make these scenarios even more problematic.

The high Imbalance Ratio (IR) is the main cause of performance loss of standard learning
methods [83, 26]. This ratio represents the fraction between the number of negative instances and
the number of positive examples. Scenarios with an IR over 9 are considered highly imbalanced and
challenging for supervised learning [44, 26]. In addition, other commonly present factors considerably
aggravate the imbalanced classification problem, such as lack of density, overlapping, noisy data and
others.

The great problem complexity and its high presence in real applications have encouraged the
design of many new proposals for the imbalanced classification. These approaches are categorized in
three different groups [26]:

• Algorithm-level approaches: These solutions are adaptations of learning algorithms to handle
imbalanced data-sets [38, 39, 40]. These proposals aim to modify the specific learning procedure
of an existing classifier that produces the bias towards the most represented class. This requires
a very deep knowledge of the classifier and its behavior. Therefore, these proposals are usually
limited to a few classifier types.

• Cost-sensitive learning: These approaches take into account different costs for classification errors
of each class [41, 42, 37]. A custom misclassification cost function different from the standard
evaluation guides the learning process. These loss functions or error costs are usually determined
by domain experts or other learning approaches. In imbalanced scenarios, cost-sensitive learning
strongly penalizes the misclassification of minority class samples. Thus, learning is mainly focused
on minority classes.

• Data level preprocessing methods: Data level techniques seek to balance class distributions
through preprocessing [43]. These are relatively independent of the learning process. Moreover,
they have the advantage of enabling existing standard classifiers. Figure 3 graphically exemplifies
the main data level approaches. As seen in Figure 3a, the skewed class distribution causes the
misclassification of many white-colored points from the minority class. Three main kinds of data
level solutions are represented in Figure 3:

26 Chapter I. PhD dissertation

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Decision boundaries with imbalanced data.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Decision boundaries with under-sampled data.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Decision boundaries with over-sampled data

Figure 3: Examples of the impact of sampling techniques in decision tree learning.

2 Preliminaries 27

– Under-sampling: This group of methods removes examples from the majority class to achieve
a balanced data-sets. As shown in Figure 3b, many black dots have been eliminated and
thus, the white decision boundaries have grown. The most basic under-sampling approach,
known as Random Under-Sampling, randomly performs such sampling. Most sophisticated
techniques attempt to retain the most relevant instances and eliminate the most dispensable
or redundant ones [84, 85]. Under-sampling has the disadvantage of potentially eliminating
valuable information about the problem.

– Over-sampling: As a counterpart, over-sampling techniques raise the number of instances of
minority classes. Figure 3c shows better decision boundaries thanks to the generation of
many more white examples using an over-sampling technique. The simplest over-sampling
solution replicates some randomly selected instances from the minority class. This is called
as Random Over-sampling. However, the state-of-the-art of over-sampling relies on the
creation of synthetic data for the minority class [77, 86, 87]. SMOTE – Synthetic Minority
Oversampling TEchnique [77] is the most popular approach. SMOTE produces synthetic
data via linear interpolations of randomly chosen instances and their nearest neighbors of
the same class. Over-sampling techniques may lead to noisy data.

– Hybrid techniques: These proposals combine under-sampling and over-sampling techniques
to balance the class distributions. They seek to mitigate the potential disadvantages of the
two main approaches [88].

Ensemble proposals for imbalanced classification may constitute an additional fourth category
[26]. These approaches aim to improve the performance of standard cost-sensitive learning and data
sampling methods. To do so, they combine different instances of a specific imbalanced classification
method.

Cost-sensitive ensembles help to adjust the different misclassification costs during the learning
process [41]. Data preprocessing ensembles incorporate different sampled data [44] in their iterations.
Sampling techniques promote diversity in the ensemble, as well as balancing class distributions. Besides,
ensemble schemes minimize the potential drawbacks of the sampling methods. For these reasons,
ensembles are one of the most successful approaches for classification with imbalanced data-sets.

Another important aspect of the imbalanced classification is the evaluation of the different
algorithms [26]. Standard evaluation metrics, such as accuracy, assume similar representations between
classes. Thus, they fail to properly capture the misclassification of minority classes.

Therefore, practitioners employ other more suitable measures for imbalanced classification. The
Geometric Mean or the Area Under the ROC Curve are commonly used in binary class imbalance
scenarios [83, 43, 44]. For multi-class imbalanced classification, the averaged per-class accuracy or
Macro Average Arithmetic is preferred [89].

2.2 Monotonic classification

Classification with monotonicity constraints is an extension of ordinal regression with additional order
relations between the input features and the classes [31]. Both monotonic classification and ordinal
regression are singular supervised problems with order constraints given by the problem prior knowledge
[19]. In these problems, the output variable is ordinal without a precise magnitude between different
class values. Monotonic classification restricts the increase or decrease of the class value to the increase
or decrease of the input features.

These order constraints are sought by many real-life classification problems, such as credit rating
[57], housing pricing [58], and professor evaluation[59]. To illustrate this, Table I.1 presents a small

28 Chapter I. PhD dissertation

Id. Task #1 Task #2 Task #3 Class Rating

#1 High High High Excellent
#2 High Low Low Good
#3 Low Medium Low Bad

#4 High Low Medium Bad

Table I.1: Example of an employee evaluation problem where monotonic constraints are desired.

example of employee evaluation. This evaluation problem aims to rate some employees according to
their performance in three different tasks. In Table I.1, employees from #1 to #3 are monotonically
labeled. Employee #1 has a better evaluation than employees #2 and #3 because of his better
performance in the tasks. And, employees #2 and #3 are not comparable since worker #2 is not
strictly better in every task. However, the rating of employee #4 seems unfair. Worker #4 is rated
worse than employee #2 even though the former performs the same or better than the later on all
tasks. According to monotonic constraints, employee #4 should be labeled at least as good. The
relation between employees #2 and #4 are monotonic violations. Classification with monotonicity
constraints aims to avoid these violations in their predictions.

Formally, monotonic classification seeks to predict the class value y ∈ Y = {l1, l2, . . . , lC} for a
given feature vector x. Class labels Y are ordinal with a specific order relation ≺ as l1 ≺ l2 ≺ . . . ≺ lC .
The feature values are also ordinal or numerical. The class predictions of monotonic classifiers are
monotonically constrained by the order relations of the problem knowledge [31], that is, x � x′ →
f(x) ≥ f(x′), where x � x′ ⇔ ∀j , xj ≥ x′j . The main goal is to build models whose predictions respect
these constraints.

Standard classification algorithms are unaware of these monotonic constraints, which often
lead to monotonic violations. Therefore, a multitude of proposals has recently been designed for the
monotonic classification. These approaches are divided into two different groups [31]:

• Monotonic classifiers: These classifiers aim to satisfy the monotonicity constraints. There
are different families of approaches such as instance-based learning [52, 53, 54], decision trees
[45, 46, 47], neural networks [50, 51], fuzzy methods [48, 49], support vector machines [57, 48],
and ensemble learning [55, 56]. Monotonic classifiers face two main challenges: i) learning with
non-monotonic data, and ii) excellent performance in terms of both monotonicity and precision.

• Monotonic data preprocessing: Data inconsistencies such as noise impair learning with monotonic
constraints. Preprocessing techniques must be aware of the monotonic constraints. Otherwise,
they can also compromise the data monotonicity. These monotonic preprocessing proposals
solve the common problems of poor data quality and facilitate the learning process of monotonic
classifiers. Among these approaches, relabeling techniques [90, 91] and instances selection methods
[59, 33] are noteworthy. These strategies pursue improving the monotonicity of a data-set by
changing labels or filtering out non-monotonic examples.

The evaluation of monotonic classifiers is usually done considering two different perspectives of
their performance: prediction capability and monotonicity.

Their prediction capability is commonly measured with standard accuracy [31]. Other common
ordinal regression metrics are also used, such as Mean Absolute Error (MAE). MAE expresses the
average of the differences between the real and predicted ratings.

2 Preliminaries 29

There are several measures to evaluate monotonicity [31]. However, the majority of them are
based on the same information: the number of monotonic violation pairs (NMP). Non-Monotonic
Index (NMI) is the most popular metric to evaluate monotonicity. NMI is computed as the fraction of
non-monotonic pairs (NMP) and the total number of sample pairs:

NMI =
NMP

N2 −N

2.3 Ensemble learning

Ensemble techniques combine several base learners to enhance the predictive performance of a single
learner [62, 64, 70, 63]. These base methods are trained in a slightly different manner which leads to
diverse predictions. The aggregation of such different predictions provides the ensemble with a high
generalization without obviating the more local knowledge [62, 64]. Ensemble learning is considered
one of the most powerful approaches in machine learning [60, 61]. Moreover, their performance has
proven successful in a multitude of real-life problems [92, 93].

Ensemble algorithms are among the best methods for every supervised learning problem [62, 61],
such as classification, regression, and ranking. These also stand out as excellent proposals for other
learning problems, such as singular supervised tasks [31] and preprocessing [3, 5]. As previously
mentioned, class imbalance classification is one of the singular problems where ensembles have proven
to be very useful [44]. Besides, ensembles excel in each of the main preprocessing applications: noise
filtering [94, 4], missing value imputation [95], data reduction [96, 97].

Diversity promotion is a key aspect of the prominent performance of ensembles. Many different
mechanisms have been proposed to achieve diverse base estimators [63]. These methods are classified
as data-level, algorithm-level, and hybrid techniques [62]. Data-level mechanisms introduce minor
alterations to the training data to achieve different predictions from the same learning algorithm. Data
sampling, such as bootstrapping [67], is one of the most popular data-level techniques. Algorithm-level
approaches promote diversity through different parameter tuning, randomization of some algorithmic
processes, or the use of different learning algorithms.

Ensemble pruning or selection is considered as an additional way to improve ensemble diversity
[98, 99]. An oversized number of learners may impair the overall diversity and results in over-fitting.
Ensemble pruning methods aim to select the best subset of estimators to improve the diversity and the
performance of an ensemble.

Over the past few years, a vast amount of ensemble approaches have been designed with several
combinations of diversity mechanisms, different prediction aggregations, and various base learners
[62, 63]. Nevertheless, bagging [67] and boosting [100] schemes have been the most popular among the
existing ensembles. Figure 4 presents the flowcharts of these ensemble techniques. Label Switching is
also highlighted in Figure 4 due to its particular diversity promotion and its relevance to this doctoral
thesis. These three ensemble schemes have the following characteristics:

• Bagging-based ensembles [67]: These algorithms train their different base learners independently
of one another. Data-level mechanisms are usually their main source of diversity. Particularly,
bagging-like ensembles commonly use data sampling with replacement, also known as boot-
strapping. These features are represented in Figure 4a with slightly different training sets and
separated estimators.

Random Forest [65] is the most popular bagging ensemble. This ensemble uses weakly randomized
decision trees to reach high levels of performance. Each tree is trained with bootstrapped data

30 Chapter I. PhD dissertation

and selects its next best cut from a subset of randomly chosen features. Random Forest is one of
the most successful machine learning algorithms [61, 69].

• Boosting algorithms [100]: These ensembles have a sequential learning scheme. They learn
from the classification mistakes made by previous learners. In future iterations, the learning
importance increases for those misclassified training instances. As seen in Figure 4b, each base
learner depends on the previous iterations, which set the weights of the training instances. These
weights are represented with different sizes in Figure 4b.

Some iconic examples of boosting ensembles are AdaBoost [68] or Gradient Boosting Machine
[101].

• Label switching methods [71, 72]: These approaches manipulate the target attributes of some
samples to promote diverse estimators. The negative impact of the introduced class noise
disappears with the combination of a large number of base learners, as long as the modified
instances are a considerably small fraction of the data-set. Figure 4c shows an example of a label
switching scheme, where some red circles and blue squares switch their classes to blue and red,
respectively.

There are two different label switching approaches: Output Flipping [71] and Class Switching
[72]. Output Flipping exchanges the classes of some instance pairs maintaining the original
class distributions. On the contrary, Class Switching changes the labels of randomly selected
examples. Thus, Class Switching achieves a better performance than Output Flipping and similar
to Bagging in standard classification scenarios. However, label switching algorithms are not as
explored as Bagging. This particular diversity promotion mechanism may have a great potential
for other learning tasks.

2 Preliminaries 31

…

(a
)
B
a
g
g
in
g

…

(b
)
B
o
o
st
in
g

…

(c
)
L
a
b
el

S
w
it
ch
in
g

F
ig

u
re

4:
E

n
se

m
b

le
sc

h
em

es
.

32 Chapter I. PhD dissertation

2.4 Fuzzy k Nearest Neighbors

The k Nearest Neighbors algorithm predicts the class label of a given sample x with the aggregation
of the class values of the k most similar training instances to x. The similarity between examples is
usually measured with distances, such as the Euclidean distance. In classification, the majority voting
probably is the most common aggregation rule used by kNN algorithm.

Fuzzy classifiers model the possible uncertainty of belonging of different individuals to the
existing classes. In Fuzzy Sets [102], such uncertainty is represented for each example xi as a class

membership vector ui = (ui1, ui2, . . . , uiC), where C is the number of classes, uil ∈ [0, 1] and,
c∑

l=1

uil = 1.

Fuzzy k Nearest Neighbors algorithms [80] embed fuzzy principles into this classic kNN algorithm
(kNN), which enable the learning of fuzzy sets and fuzzy classification decisions. Many different
approaches of Fuzzy kNN have been designed with diverse fuzzy mechanisms. And yet, the first Fuzzy
k Nearest Neighbors algorithm (FkNN) [79] is one of the most outstanding proposals [80].

Similarly to classic kNN, the FkNN algorithm [79] classifies a given new instance xi based
on its K nearest training samples. However, the aggregation rule of FkNN combines the different
memberships for each class l as follows:

u(x, l) =

K∑

j=1

u(xj , l) ∗
1

||x− xj ||(m−1)
K∑

j=1

1

||x− xj ||(m−1)

(I.1)

As seen in Equation I.1, the membership u(xi, l) = uil of individual xi to label l is computed
with the sum of the class memberships u(xj , l) of the neighbors xj weighted by their distances to xi.
Neighbors with shorter distances have a greater weight in the aggregation of class memberships. The
parameter m establishes the effect of the neighbor distances in the aggregation rule. With m = 2, the
neighbor contribution to the class membership is linearly proportional to the inverse of its distance.

Once the class memberships are calculated, the crisp output value for the sample xi is defined
as the class l with the highest membership degree uil.

Another major feature of FkNN comes from its application to standard classification data-sets.
These data-sets do not include the class memberships of the training samples. Therefore, FkNN must
transform the original crisp labels into class memberships to obtain a fuzzy set.

This transformation is carried out with an additional nearest neighbor procedure. The mem-
bership degree u(xi, l) of a training instance xi to the class label l is calculated as the frequency of
occurrences nnl of the label l among the k nearest neighbors of xi. The original class label of a sample
xi has a minimum membership value of 0.51. Equation I.2 expresses the explained calculation of the
class memberships for a training sample xi:

u(xi, l) =

{
0.51 + 0.49 ∗ (nnl/k) , if yi = l

0.49 ∗ (nnl/k) , otherwise
(I.2)

This procedure is the main reason for its noise robustness. Noisy instances lose their negative
impact as their class memberships are shared among the surrounding classes, and not the labeled noisy
class.

3 Justification 33

3 Justification

As introduced in previous sections, singular supervised problems are a reality of data mining applications.
However, these do not usually draw the same attention as standard problems and they are rarely
addressed in conjunction with others.

Imbalanced classification is transversely common in multiple real classification problems. Al-
though more specific, monotonic classification also has its interest in multiple fields of application. Due
to the nature of problems with monotonic constraints, they often suffer from class imbalance and data
inconsistencies that disrupt the monotonicity. These obstacles have to be treated considering these
restrictions.

Therefore, it is necessary to design robust solutions to these two problems separately and
combined. To this end, the following main fronts should be tackled:

• In imbalanced classification, ensemble algorithms in combination with sampling have been very
successful [44]. While sampling techniques balance the training sets, the ensembles use them
as diversity promotion and correct possible errors of these preprocessing techniques. These
ensembles are mainly built with standard bagging and boosting schemes [44]. However, there
are other ensemble schemes, that have not been explored and could be effective [63]. Class
Switching is a very promising ensemble for this purpose, due to its good behavior in sightly
imbalanced data-sets. This thesis explores a design based on Switching for the highly imbalanced
classification.

• Predictive models of classification with monotonic constraints pursue two desired features:
obtaining accurate and monotonic predictions and the tolerance to monotonic inconsistencies
in the data. Ensembles are one of the most accurate methods in machine learning [61]. In
particular, Random Forest [65] is probably the most popular algorithm among the different
ensembles. Besides, decision trees have performed remarkably well in monotonic classification
[45, 46, 47]. Therefore, Random Forest of monotonic decision trees could accomplish excellent
levels of accuracy when addressing problems with monotonicity constraints. At the time of the
exploration of this proposal, ensemble learning was little explored in monotonic classification,
with only a few approaches [55] and none based on Random Forest.

• Tolerance to monotonic violations in the data is very desirable in monotonic classification, as
the presence of inconsistencies such as class noise is highly common. Instance-based learning
has shown great performance in monotonic classification [52, 53, 54]. However, these algorithms
are very sensitive to monotonic violations in the training data. Fuzzy k Nearest Neighbors [79]
has proven great robustness and excellent performance in standard classification [80]. Therefore,
a proposal based on Fuzzy kNN with monotonic constraints could employ such robustness to
mitigate the impact of monotonic violations on the training process.

• As stated before, skewed class distributions are widespread in monotonic classification problems.
Sampling techniques are probably the most convenient solutions for imbalanced monotonic
problems, due to the transformation into simpler monotonic problems and the possibility of
enabling all existing monotonic classifiers. However, such techniques that do not consider
monotonic constraints could exacerbate existing monotonic violations of the training set, or even
introduce new ones. Thus, these preprocessing techniques need to be adapted to respect the
data monotonicity. Furthermore, it may be worthwhile to reduce some monotonic violations
simultaneously with sampling.

34 Chapter I. PhD dissertation

All these matters and the proposed solutions fall under the theme of this doctoral thesis: the
design of preprocessing techniques and robust classifiers for the singular problems of imbalanced and
monotonic classification.

4 Objectives 35

4 Objectives

After the introduction of the fundamental principles of this thesis, its main objective is presented in
detail. The central purpose of the PhD dissertation is to explore new solutions for certain singular
supervised problems: imbalanced classification and monotonic classification. This research involves
the tasks of analysis, design, implementation, and evaluation of novel approaches that address both
problems independently or together with other singular scenarios.

Before addressing these tasks, a study of the current state of the class imbalance problem and
monotonic classification is necessary. This theoretical study of the problems and existing approaches
allows a better understanding of the situation and the open challenges of these research fields. The
design of innovative proposals would be hard to accomplish without the knowledge foundations acquired
by the conduct of this study.

In addition to the initial study of these singular problems, the global objective of the thesis is
divided into two according to the followed approximations of the designed solutions. These objectives
are described as follows:

1. Design of robust classifiers for the singular supervised problems of imbalanced and
monotonic classification with the following purposes:

1.0. An initial study of existing robust classifiers for standard and singular problems: this study
aims to provide awareness of existing robust techniques that are suitable to adapt to the
faced singular problems. In particular, ensemble-based proposals are studied in-depth, since
they are among the most robust in standard classification.

1.1. High levels of accuracy as well as monotonicity in monotonic classification: With this
purpose, we design a Random Forest classifier of monotonic decision trees and an ensemble
pruning technique guided by monotonicity.

1.2. New ensemble learning for highly imbalanced problems: We develop a new ensemble based
on a Switching scheme for highly imbalanced classification. The proposal improves the basis
of the good performance of Class Switching with slightly imbalanced data. The switching
scheme is redesigned to favor the learning of minority classes.

1.3. Great robustness to monotonic noise for classification with monotonic constraints: With
this goal, we design an algorithm based on Fuzzy kNN with monotonicity constraints. This
new classifier is aware of monotonic violations in data of monotonic classification.

2. Development of preprocessing-based techniques in imbalanced and monotonic clas-
sification:

2.1. Combination of the Switching based ensemble with sampling techniques for imbalanced
classification: this combination aims to enhance the performance of the robust Switching
based ensemble when facing highly imbalanced data. Sampling techniques can relieve the
responsibility of class switching scheme to balance the class distribution.

2.2. To mitigate the impact of skewed class distributions in problems with monotonic constraints:
With this objective, we design sampling techniques for monotonic imbalanced classification.
The most popular sampling techniques for class imbalance problems are redesigned to respect
monotonicity during preprocessing and to enable all monotonic classifiers.

5 Methodology 37

5 Methodology

Now, the methodology followed during the conduct of this thesis is introduced. This methodology is
an adaption of the standard scientific method to both theoretical and empirical research works done in
recent years. The following steps constitute the methodological development of the thesis:

1. Problem characterization: throughout the study of the current state of the singular supervised
problems, their existing solutions and open challenges. The interactions of imbalanced and
monotonic classification and other singular situations are also analyzed. Among the existing
solutions, the robust classifiers, such as ensembles, are studied in standard and singular problems.

2. Hypothesis formulation: design of new preprocessing- and ensemble-based robust approaches
for singular supervised problems: imbalanced and monotonic classification. These proposals
address both problems independently or together with other singular scenarios.

3. Experimentation: gathering performance results of the implementation of the new approaches
of these singular problems. The performance is measured in terms of the accuracy by default
or specialized precision metrics for imbalanced classification, and monotonicity for monotonic
classification.

4. Hypothesis contrasting: an empirical comparison of the gathered results with the performance
of other state-of-the-art algorithms for imbalanced and monotonic classification. Through the
analysis of the experimental comparison, the quality of the novel proposed algorithms is assessed
concerning their problem-solving capabilities.

5. Hypothesis validation or refutation: confirmation or rejection of the stated hypothesis
through the analysis of the results gathered in the different experiments. If the hypothesis is
rejected, some modifications should be considered before iterating over the previous steps again.

6. Scientific thesis: extraction and acknowledgment of conclusions regarding the research progress.
These conclusions along with the entire scientific process should be compiled into a thesis
dissertation and journal publications.

6 Summary 39

6 Summary

In this section, the approaches proposed with the thesis are summarized. Each of the summaries
includes a brief introduction of the problem context, a description of the proposed method, and an
outline of the experimental study carried out. Their main results are described in the subsequent
Section 7. These proposals were published as the following research papers in scientific journals:

• González, S., Herrera, F., & Garćıa, S. (2015). Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Generation Computing, 33(4),
367-388.

• González, S., Garćıa, S., Lázaro, M., Figueiras-Vidal, A. R., & Herrera, F. (2017). Class switching
according to nearest enemy distance for learning from highly imbalanced data-sets. Pattern
Recognition, 70, 12-24.

• González, S., Garćıa, S., Li, S. T., & Herrera, F. (2019). Chain based sampling for monotonic
imbalanced classification. Information Sciences, 474, 187-204.

• González, S., Garćıa, S., Li, S. T., John, R., & Herrera, F. (Accepted, 2020). Fuzzy k-Nearest
Neighbors with monotonicity constraints: Moving towards the robustness of monotonic noise.
Neurocomputing.

The rest of this section is organized as follows. First, Section 6.1 describes a monotonic Random
Forest with an ensemble pruning mechanism for monotonic classification. In Section 6.2, an ensemble
approach based on Class Switching is presented for highly imbalanced classification. Then, Section
6.3 summarizes the proposal of popular sampling techniques for monotonic imbalanced classification.
Finally, Fuzzy kNN with monotonicity constraints is explained along with its robustness to monotonic
noise in Section 6.4.

6.1 Random Forest for classification with monotonicity constraints

Classification with monotonicity constraints is common in real-life problems with ordinal data. Such
problems require classifiers that respect the order relationships between the ordinal target variable and
ordinal attributes [31]. That is, the presence of better input values should not lead to a worse class
value.

Recently, multiple algorithms of different nature have been developed for monotonic classification
[45, 46, 47]. Among these, decision trees are worth highlighting because of their good performance
and explainable models [45, 46, 47]. However, monotonic predictive models tend to be biased towards
the monotonicity constraints of possibly inconsistent training data, and thus their accuracy is severely
impaired [103].

Therefore, the implementation of more robust models is interesting to achieve high levels of
accuracy, while maintaining monotonicity. In this sense, ensembles and in particular, Random Forest
[65], are some of the most robust and accurate methods of data mining [61].

The application of Random Forest is proposed to increase the accuracy in monotonic classification
tasks (Objective 1.1.). This Random Forest approach is built with Monotonic Induction based C4.5
trees (MID-C4.5) as base learners [45]. MID-C4.5 combines information gain or entropy with the non-
monotonic index as an impurity measure to guide tree growth. This measure of MID-C4.5 trees includes
a parameter to determine the priority of monotonicity over information gain. Besides bootstrapping

40 Chapter I. PhD dissertation

and the random selection of the potential tree cuts, Monotonic Random Forest uses this parameter as a
diversity promotion technique. That is, the forest trees are grown with different random values for this
parameter. This results in more diverse trees with different priorities of accuracy and monotonicity.
Finally, an ensemble pruning mechanism discards those trees with a lower non-monotonic index.

An empirical comparison is conducted against 5 representative algorithms of monotonic clas-
sification. The experimental framework includes 90 monotonic and non-monotonic data-sets and 3
evaluation metrics: accuracy, mean absolute error, and non-monotonic index. The obtained results are
checked with non-parametric statistical tests.

The journal paper related to this proposal is:

González, S., Herrera, F., & Garćıa, S. (2015). Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Generation Computing,
33(4), 367-388.

6.2 Class switching for highly imbalanced classification

Class imbalance problem is globally common in many real classification tasks. Imbalanced classification
refers to an accuracy decrease of weakly represented classes due to the significant difference in the
number of instances with other classes. Moreover, this situation is even more harmful when these
minority classes are often the target of the problems.

Ensemble learning has shown great potential for training with imbalanced data-sets [44, 26].
These approaches combine the robustness of standard ensembles algorithms with under- and over-
sampling techniques [26]. There are other unexplored ensemble schemes differently from the standard
bagging and boosting [63], which could be very effective for imbalanced classification (Objective 1.2.).
Class Switching algorithm [72] changes the class labels of randomly selected instances to build diverse
base learners of the ensemble. This ensemble scheme tends to balance the class distributions of
the training data-set. Therefore, Switching has a bit better performance than bagging for slightly
imbalanced data-sets.

A new Switching-based ensemble with Nearest Enemy Distance (SwitchingNED) is proposed
for learning from highly imbalanced data-sets. The switching mechanism is redesigned to prioritize
examples near to a different class. With this, SwitchingNED aims for smarter and better balance class
distributions due to the growth of the minority class samples near to the boundaries. Furthermore,
SwitchingNED intends to preserve the information of the under-represented class by switching only
the majority class samples to the minority class.

The new NED-based switching procedure is implemented with random selections guided by
a probability distribution. This distribution is calculated just once with the inverse of the NED of
each majority sample. First, SwitchingNED gathers the nearest example of the minority class for
each majority class instance. The switching probability of each majority class sample is computed as
the inverse of the euclidean distance to its nearest minority instance. The extracted probabilities are
normalized. These are employed in each iteration of the ensemble.

As done with standard ensembles, SwitchingNED can be combined with different sampling
techniques. Thus, the responsibility for balancing the class distribution is shared between the switching
mechanism and the sampling methods (Objective 2.1.).

Several different empirical comparisons are carried out concerning this new ensemble. First,
SwitchingNED is compared against the original Class Switching algorithm to test the potential

6 Summary 41

improvement of the new switching mechanism. Then, the performance of SwitchingNED is analyzed in
combination with 3 different sampling techniques. Finally, SwitchingNED is compared with 5 different
combinations of sampling techniques and ensembles. All these experiments share the same experimental
framework composed of 33 highly imbalanced data-sets, Area Under the Curve as evaluation metric
and non-parametric statistical testing.

The journal publication associated with this approach is:

González, S., Garćıa, S., Lázaro, M., Figueiras-Vidal, A. R., & Herrera, F. (2017). Class
switching according to nearest enemy distance for learning from highly imbalanced data-sets.
Pattern Recognition, 70, 12-24.

6.3 Sampling techniques for monotonic imbalanced classification

Monotonic classification [31] arises from real-life ordinal tasks [35, 36, 37], such as evaluation and rating
problems. These tasks usually suffer from skewed class distributions because highly rated examples
are much less frequent than those with an average rating. The imbalanced classification problem
together with the strict enforcement of monotonicity constraints may highly deteriorate the accuracy
of underrepresented classes.

Therefore, the imbalanced class distributions must be addressed in the scenarios with monotonic
constraints. Sampling techniques [43, 26] can be one of the most appropriate solutions to monotonic
imbalanced classification. Through training set preprocessing, these methods offer the advantage
of enabling all available monotonic classifiers. However, sampling techniques may cause monotonic
inconsistencies in the training data due to their lack of awareness of monotonicity.

This research work studies some solutions for the negative impact of standard sampling pro-
cedures on the monotonicity (Objective 2.2.). Chain based sampling techniques are proposed for
monotonic imbalanced classification tasks. Chains are sets of comparable samples with useful mono-
tonic information [52, 53]. These new sampling schemes employ knowledge of monotonic chains and
monotonic violations to preserve, as much as possible, the data monotonicity.

Chain based sampling schemes follow several good practices concerning the relevance of samples
towards data monotonicity. Given this criterion, three different types of instances are defined with
their sampling policies as follows:

• Samples at the chain limit: are not upper- or lower-dominated by other samples of the same
class. That is, they are the greatest or smallest sample in the chain. These examples establish
the ordering border of each class. Thus, these should be preserved during under-sampling or
reinforced with over-sampling.

• Instances inside chains: are fully dominated by other instances of the same class. Therefore, their
removal may cause less loss of ordering information. During sampling, samples inside chains
receive less priority than those at the chain limits.

• Monotonic violations: are inconsistencies that break the data monotonicity. If possible, sampling
techniques should avoid or eliminate them. Otherwise, the preprocessing methods involve such
instances proportionally to the number of violations they cause.

These good practices apply to the majority of under- and over-sampling techniques. In this
study, the schema is implemented in five popular sampling approaches: Random Under-Sampling
(RUS), Random Over-Sampling (ROS), Synthetic Minority Oversampling TEchnique (SMOTE) [77],

42 Chapter I. PhD dissertation

ADAptive SYNthetic sampling approach (ADASYN) [86] and Majority Weighted Minority Oversampling
TEchnique (MWMOTE) [87].

The empirical study is divided into two different experiments. First, some standard and ordinal
sampling techniques are analyzed in terms of their influence on the predictions of monotonic classifiers.
The second experiment compares the performance of the proposed and standard sampling techniques
in combination with different monotonic classifiers. The performance of 5 different monotonic models is
measured as the multi-class accuracy and non-monotonic index on 8 well-known monotonic imbalanced
data-sets. The outcomes are contrasted with several non-parametric statistical tests.

The research paper of this study is:

González, S., Garćıa, S., Li, S. T., & Herrera, F. (2019). Chain based sampling for
monotonic imbalanced classification. Information Sciences, 474, 187-204.

6.4 Monotonic Fuzzy kNN: Moving towards the robustness of monotonic noise

Monotonic violations are common in the training data of practical monotonic classification applications,
due to the existence of data inconsistencies such as class noise. This monotonic noise negatively affects
the learning and predictions of many monotonic classifiers [33, 31]. Instance-based learning approaches
[52, 53, 54] are a clear example of monotonic classifiers that are highly sensitive to monotonic violations.
Therefore, classifiers highly tolerant to monotonic noise are very desirable for classification with
monotonicity constraints.

Fuzzy k Nearest Neighbors (FkNN) [79] has shown excellent noise robustness and performance
in standard classification [80]. Its tolerance mainly comes from the extraction of class memberships for
each training instance according to their neighborhood classes. In this procedure, the class membership
of a noisy sample is shared with nearby classes. Then, the wrong label loses some of its influence.

This research work proposes a FkNN classifier with monotonic constraints and great robustness
against monotonic violations (Objective 1.3.). Monotonic Fuzzy k Nearest Neighbors (MonFkNN) aims
for highly accurate and monotonic predictions without pure monotonic training set and performance
versatility in monotonic classification. With these purposes, MonFkNN is designed with the following
features:

• MonFNN is fully aware of monotonic violations during training class membership extraction.
First, the inconsistencies from repeated samples with different labels are combined into one class
membership. Then, the class memberships for the remaining training instances are calculated
with a monotonic nearest neighbor algorithm. For a given sample x, its neighbors are restricted
to those ones with monotonic valid classes for x. The upper label of valid class set is defined as
the lower class label among the training instances greater than x. The lower class is the highest
label of the samples smaller than x.

• In the prediction phase, the aggregation of the previous monotonic class memberships is also
monotonically restricted by a monotonic nearest neighbor rule or a contribution penalty.

• MonFkNN is a versatile classifier that satisfies different needs of monotonic classification. Through
parameter tuning, MonFkNN can be configured in two different versions: a more monotonicity
biased version (Pure Monotonic FkNN) and accuracy focused model (Approximate Monotonic
FkNN).

6 Summary 43

The experiments of this study analyze the performance of MonFkNN in different scenarios.
First, the two versions of MonFkNN are compared against the standard FkNN. Then, the performance
of MonFkNN is contrasted with 7 different representative classifiers of monotonic classification. Finally,
the impact of monotonic noise and the robustness of MonFkNN are analyzed. The performance is
measured in terms of accuracy, mean absolute error, and non-monotonic index on 12 different commonly
used data-sets. All conclusions are subjected to different non-parametric statistical tests.

The journal paper associated with this approach is:

González, S., Garćıa, S., Li, S. T., John, R., & Herrera, F. (Accepted, 2020). Fuzzy
k-Nearest Neighbors with monotonicity constraints: Moving towards the robustness of
monotonic noise. Neurocomputing

7 Discussion of results 45

7 Discussion of results

This section is devoted to analyze the main results of the research works submitted as part of this
thesis. The result discussion is organized with the same subsections as the previous section.

7.1 Random Forest for classification with monotonicity constraints

In this research work, Random Forest is applied to increase the accuracy in classification problems with
monotonicity constraints. To do so, the Monotonic Random Forest proposal is built with randomized
monotonic induction C4.5 trees. Then, a monotonic based pruning mechanism selects the trees with the
smallest non-monotonic index. Several empirical comparisons are carried out to test the performance
of the Random Forest approach for monotonic classification.

The following conclusions are drawn given the experimental outcomes:

• The monotonic based ensemble pruning does not significantly influence the prediction capacities
of Random Forest. However, the pruning mechanism strongly improves the monotonicity of the
model as ratified by the statistical tests.

• In comparison with other classifiers, Monotonic Random Forest is overwhelmingly better in terms
of accuracy and mean absolute error for both monotonic and non-monotonic data-sets. The main
reason is the potential robustness and precision of ensemble schemes.

• Even though the maximum depth is not limited for the ensemble trees, Random Forest grows
simpler decision trees than other approaches. This event is explained by the training randomization
and the ensemble pruning procedure. The most monotonic trees usually have smaller numbers of
leaves.

• In terms of monotonicity, the ensemble-based proposal performs better than almost all algorithms
with exception of MID-C4.5. Statistical tests support similar good monotonic behavior between
MID-RF and MID-C4.5.

To conclude, Random Forest succeeds to improve accuracy while maintaining high monotonicity
in monotonic classification tasks. The ensemble approach achieves better performance in every precision
measure than the compared methods. Random Forest also obtains great levels of monotonicity in its
predictions. As a result, this contribution permits the fulfillment of Objective 1.1.

7.2 Class switching for highly imbalanced classification

A Switching based ensemble according to Nearest Enemy Distance is proposed for learning from highly
imbalanced data. SwitchingNED limits the label changes from the majority class to the minority class.
Its new procedure prioritizes samples near to the boundaries. With these techniques, the proposal
aims for smarter balanced class distributions and improved learning in highly imbalance scenarios.

Several empirical studies analyze the performance of SwitchingNED compared with the stan-
dard Switching algorithm, in the combination with sampling techniques and against other ensemble
algorithms.

SwitchingNED significantly improves the performance of the original Class Switching algorithm.
Its NED-based mechanism allows more switched examples with an overall better behavior. This

46 Chapter I. PhD dissertation

improvement is widely confirmed by statistical tests. Besides, a graphical study shows greater and
more precise decision areas for the SwitchingNED ensemble.

The combination of SwitchingNED with sampling techniques helps to balance the skewed class
distributions. SwitchingNED combined with Random Under Sampling (RUS), Random Over Sampling
(ROS), and SMOTE considerably outperforms the ensemble on itself. The strengths of these three
approaches are clearly different. SwitchingNED with Random Under Sampling is substantially the
best combination, as evidenced by the statistical tests.

SwitchingNED has a great performance compared to other representative ensembles for imbalance
classification tasks. Under-sampling based SwitchingNED significantly outperforms almost all chosen
ensembles. The SwitchingNED approach shows slightly better outcomes than EUSBoost without
statistical support. However, the switching ensemble is computationally much more efficient.

Therefore, SwitchingNED is a great approach to address highly imbalanced classification
problems. The new switching procedure alleviates the limitation of the switching rate of the original
algorithm. This contribution opens news opportunities for label switching in different contexts, such as
imbalance classification. SwitchingNED and its combinations with different sampling techniques fulfill
Objective 1.2. and Objective 2.1. of this thesis, respectively.

7.3 Sampling techniques for monotonic imbalanced classification

This research study proposes chain based sampling techniques for monotonic imbalanced classification
tasks. A new sampling scheme is designed with the awareness of monotonic constraints and violations
to preserve the data monotonicity. In this work, five different well-know sampling techniques implement
this monotonic sampling scheme: RUS, ROS, ADASYN, SMOTE, and MWMOTE. The empirical
study includes two different experiments involving both standard and monotonic versions of these
procedures.

The first experiment studies the effect of standard and ordinal sampling procedures on the
average accuracy and monotonicity of monotonic classifiers. The outcomes of this experiment show that
the standard and ordinal sampling methods improve the general precision of the classifiers. However,
these techniques severely harm monotonicity.

In the second experiment, the five monotonic sampling techniques are compared with their
standard versions. Both monotonic and standard methods achieve a similar level of improvement on
the average accuracy improvements of the classifier predictions. But, the monotonic preprocessing
procedures succeed to preserve better the monotonicity. Monotonic RUS and MWMOTE have a more
remarkable difference with their standard counterparts.

Among the proposed monotonic techniques, monotonic ADASYN and ROS are the best on
average in terms of average accuracy and monotonicity, respectively. Monotonic RUS has the worst
performance in general. However, all of these techniques have their unique behaviors and different
strengths. For example, monotonic RUS achieves good performance with slightly imbalanced data.
Both monotonic ROS and RUS are interesting in the presence of repeated samples with different
labels. Monotonic SMOTE has a balanced performance between improving precision and preserving
monotonicity.

As a result, this research work connects the class imbalance problem and monotonic classification.
The experimental study shows the negative influence of the existing sampling techniques on monotonicity.
Chain based sampling proposals prove a similar improvement of the classifier precision while preserving
better the data monotonicity. This meets the goals expressed in Objective 2.2. of this thesis.

7 Discussion of results 47

7.4 Monotonic Fuzzy kNN: Moving towards the robustness of monotonic noise

As previously stated, a monotonic FkNN is proposed to mitigate the influence of monotonic noise and
thus, achieve predictions with a good level of accuracy and monotonicity. MonFkNN is also designed
to be flexible to the different requirements of monotonic problems. Three different experiments are
carried out to prove its excellent performance.

The first experiment compares the performance of the two versions of MonFkNN against the
standard FkNN. Both Pure and Approximate Monotonic versions of MonFkNN outperform on average
the original FkNN algorithm in all tree metrics: accuracy, mean absolute error, and non-monotonic index.
In particular, MonFkNN is overwhelmingly better than FkNN in terms of monotonicity. FkNN has a
better accuracy performance only in 3 data-sets. But, there is no scenario where FkNN outperforms
the monotonicity of MonFkNN. These wide differences are supported by Wilcoxon statistical tests.

In the second experimental study, MonFkNN is compared with 7 other monotonic classifiers
of the state-of-the-art. MonFkNN results again the best algorithm on average in terms of predictive
capacities and monotonicity. The proposed method achieves much better accuracy and mean absolute
error than the other monotonic classifiers. According to monotonicity, our new approach is as good as
the best models of the state-of-the-art. These outcomes are also contrasted by the Friedman rank test
and the Bayesian Sign test.

Finally, the robustness of MonFkNN against large amounts of noise is analyzed in comparison
with MkNN. The number of class noise is graphically shown to proportionally influence the number of
monotonic violations. The performance of the two algorithms decreases significantly as the amount
of class noise increases. However, MonFkNN maintains better performance than MkNN at all times.
The performance loss in terms of monotonicity is significantly lower for the MonFkNN algorithm. In
addition, MonFkNN manages to respect the class boundaries of Artiset data-set with 35% of noisy
instances.

In conclusion, the proposal MonFkNN has significantly better precision while maintaining the
best monotonicity of monotonic classifies. It also proves overwhelming robustness against a great
number of noisy instances (Objective 1.3.).

8 Conclusions and future work 49

8 Conclusions and future work

This section presents the conclusion remarks of this thesis and some future research lines related to the
outlined problems and proposals.

8.1 Conclusion remarks

This thesis has presented in-depth some singular supervised learning problems. In particular, imbalanced
classification and monotonic classification are the two main problems addressed. The main objective
of this thesis is the design of new solutions to address these two problems independently and in
conjunction with other singular scenarios. Within these solutions, two different perspectives stand
out which are represented with two sub-objectives. The first one is the design of robust classifiers for
singular supervised problems. The second approach is the design of preprocessing-based techniques for
monotonic and imbalance classification problems.

Regarding the first objective, this thesis includes several novel proposals based on robust
classifiers such as ensembles for the two outlined problems.

The first proposal is the application of Random Forest for classification with monotonic con-
straints. This proposal constitutes a Random Forest with C4.5 decision trees and an ensemble pruning
mechanism both guided by the non-monotonicity index to solve a common issue of monotonic classifiers.
This problem is low precision due to a bias towards the prior knowledge constraints. The results of this
empirical study have shown that the Random Forest proposal achieves high levels of both accuracy
and monotonicity in monotonic classification tasks.

The next contribution is the SwitchingNED ensemble for learning highly imbalanced data. This
ensemble exchanges some examples from the majority class to the minority class in each iteration. This
switching procedure is guided by the Nearest Enemy Distance to prioritize the growth of minority class
boundaries. As empirical results show, these mechanisms reduce the limitation of the original Switching
algorithm and allow a better and more intelligent class distribution. As a result, SwitchingNED shows
great robustness to highly imbalanced data.

The design of a monotonic Fuzzy kNN algorithm is the latest robust classifier presented for
singular problems. This proposal aims at another major dilemma of monotonic classification: obtaining
accurate monotonic predictions in the presence of monotonic noise. MonFkNN includes a class
membership extraction for the training set aware of the relationships and violations of monotonicity.
This procedure facilitates to mitigate the negative influence of monotonic inconsistencies. Besides, the
mechanism of membership aggregation has been designed to promote the flexibility of the algorithm.
The experiments conducted with this proposal show one of the best performances in terms of precision
and monotonicity. Furthermore, MonFkNN empirically reveals high robustness to large amounts of
noise.

The second group of approaches is based on preprocessing techniques in monotonic and imbal-
anced classification problems.

The first proposal of this group retakes the SwitchingNED ensemble to be combined with
popular sampling techniques. SwitchingNED incorporates three different sampling techniques to
facilitate balanced class distributions. In the experimental studies, the three combinations demonstrate
different behaviors. The approach based on random under-sampling shows better performance on
average. Compared to other ensembles, the latter combination also exhibits the best behavior in highly
imbalanced scenarios.

50 Chapter I. PhD dissertation

The second research work of this group proposes several sampling techniques for monotonic
imbalanced classification. These implement some good practices into the sampling priority based
on the relevance of the examples for the data monotonicity. During the experimental study, these
new sampling procedures show a significant increase in the accuracy and better preservation of the
monotonicity of the monotonic classifiers.

As a final conclusion, the presented proposals concede to widely fulfill the objectives of this
thesis. These proposals are not only excellent approaches for the faced singular supervised problems.
They also address specific aspects of those problems.

8 Conclusions and future work 51

Conclusiones

Esta tesis ha presentado en profundidad algunos problemas de aprendizaje supervisado singular. En
particular, la clasificación desequilibrada y la clasificación monotónica son los dos principales problemas
tratados. El objetivo principal de esta tesis es el diseño de nuevas soluciones para afrontar estos
dos problemas de manera independiente y en conjunto a otros escenarios singulares. Dentro de estas
soluciones, destacan dos vertientes diferentes presentadas como subobjetivos. El primero es el diseño de
clasificadores robustos para problemas supervisados singulares. Por otra parte, la segunda aproximación
es el diseño de técnicas basadas en preprocesamiento en los problemas de clasificación monotónica y
desequilibrada.

En cuanto al primer objetivo, esta tesis incluye varias propuestas novedosas basadas en clasifica-
dores robustos tales como los ensembles para los dos problemas planteados.

La primera propuesta es la aplicación de Random Forest para la clasificación con restricciones
monotónicas. Esta propuesta constituye un Random Forest con árboles de decision C4.5 y un mecanismo
de poda de ensemble ambos guiados por el ı́ndice de no monotonicidad para solucionar un problema
común de los clasificadores monotónicos. Dicho problema es la baja precisión debido a un sesgo hacia
las restricciones de conocimiento previo. Los resultados de este estudio emṕırico han mostrado que la
propuesta Random Forest consigue altas cotas tanto de precisión como monotonicidad en tareas de
clasificación monotónica.

La siguiente contribución es el ensemble SwitchingNED para el aprendizaje de datos altamente
desequilibrados. Este ensemble intercambia algunos ejemplos de la clase mayoritaria a la minoritaria
en cada iteración. Dicho procedimiento de intercambio está guiado por la distancia del enemigo más
cercano para priorizar el crecimiento de las fronteras de la clase minoritaria. Tal como muestran los
resultados emṕıricos, estos mecanismos reduce la limitación del algoritmo original Switching y permiten
una mejor y más inteligente distribución de clases. Como resultado, SwitchingNED muestra una gran
robustez a datos altamente desequilibrados.

El diseño de un algoritmo monotónico Fuzzy kNN es el último clasificador robusto presentando
para problemas singulares. Esta propuesta tiene como objetivo otro de los importantes dilemas de
la clasificación monotónica: la obtención de predicciones monotónicas y precisas en presencia de
ruido monotónico. MonFkNN incluye una extracción de membreśıas de clase para el conjunto de
entrenamiento consciente de las relaciones y violaciones de monotonicidad. Este procedimiento permite
paliar la influencia negativa de las inconsistencias monotónicas. Además, el mecanismo de agregación de
membreśıas ha sido diseñado para promover la flexibilidad del algoritmo. Los experimentos realizados
con dicha propuesta exhiben uno de los mejores rendimientos en términos de precisión y monotonicidad.
Asimismo, MonFkNN emṕıricamente revela una alta robustez a grandes cantidades de ruido.

El segundo grupo de aproximaciones está basada en técnicas de preprocesamiento en problemas
de clasificación monotónica y desequilibrada.

La primera propuesta de este grupo retoma el ensemble SwitchingNED para ser combinado con
técnicas de muestreo populares. SwitchingNED incorpora tres técnicas de muestreo diferentes para
facilitar distribuciones de clase equilibradas. En los estudios experimentales, las tres combinaciones
demuestran comportamientos diferentes. La propuesta basada en infra-muestreo aleatorio manifiesta un
mejor rendimiento en media. En comparación con otros ensembles, esta última combinación también
exhibe el mejor comportamiento en escenarios altamente desequilibrados.

El segundo trabajo de investigación de este grupo propone varias técnicas de muestreo para la
clasificación monotónica y desequilibrada. Estas implementan una serie de buenas prácticas de prioridad
de muestreo basadas en la relevancia de los ejemplos para la monotonicidad de los datos. Durante el

52 Chapter I. PhD dissertation

estudio experimental, estos nuevos procedimientos de muestreo muestran un incremento significativo
de la precisión y una mejor preservación de la monotonicidad de los clasificadores monotónicos.

Como conclusión final, las diversas propuestas presentadas permiten cumplir ampliamente
los objetivos de esta tesis. Dichas propuestas no solo son excelentes enfoques para los problemas
supervisados singulares planteados. Además, estas abordan aspectos concretos de dichos problemas.

8 Conclusions and future work 53

8.2 Future work

The proposals and the outcomes presented in this thesis dissertation enable new open challenges
and research lines. This section presents some future research works related to the previously drawn
conclusions:

• Switching based diversity promotion mechanism for other classification scenarios: Switching
algorithm has proven good performance similar to other ensembles in the standard classification
[72]. In this thesis, the SwitchingNED ensemble has improved those results for the imbalance
classification. Therefore, an interesting line of research would be the implementation of Switch-
ingNED to standard multi-class classification problems. One would expect a better performance
than the original Switching algorithm and competitive outcomes against other ensembles.

Furthermore, the diversity promotion mechanisms of SwitchingNED and Switching algorithms
could be combined with other diversity techniques to improve the performance of an ensemble.
In the ensemble learning literature, there are plenty of examples of ensembles with different
diversity promotion procedures. For example, Random Forest [65], Random Patches [104] and
Extra-Trees [66] combine different types of random subspace and bootstrapping/sub-sampling.
Gradient Boosting Machines have also incorporated other diversity mechanisms such as random
subspace, random sub-sampling, or dropouts [105, 106, 107]. Thus, the inclusion of Switching
based diversity promotion in other ensembles, such as Random Forest or Boosting, is a very
attractive future research work.

Besides, the Class Switching ensemble could be applied to other singular classification problems,
such as monotonic classification. Class switching ensembles have been already designed with a
successful performance for ordinal regression [108]. Then, Class Switching seems a very promising
approach for classification with monotonicity constraints.

• Ensemble learning for monotonic imbalance classification: As stated along this thesis, ensemble
learning proves great performance for imbalance classification problems [44, 26]. The combination
of ensembles and sampling techniques are one of the most successful approaches in class imbalance
scenarios [44]. Chain based sampling scheme has enabled these preprocessing techniques for
monotonic classification. And, ensemble learning with monotonic Random Forest has also shown
good results in monotonic tasks. Ensembles with chain based sampling techniques are very
promising techniques for monotonic imbalance classification.

Moreover, decomposition ensembles could be very interesting for both standard monotonic and
monotonic imbalance scenarios. The majority of monotonic data-sets are multi-class problems. In
standard multi-class classification, decomposition ensembles divide a complex multi-class problem
into several simpler binary problems [63]. In monotonic classification, decomposition ensembles
could be adapted to simplify the monotonicity constraints in each binary monotonic classifier.
Then, the ensemble fusion mechanism must ensure the monotonicity constraints between the
classes. These multi-class decomposition techniques are also very popular for imbalanced multi-
class problems [109, 26]. Monotonic decomposition ensembles may be useful for sampling data in
class pairs. One-vs-One and other more advanced decomposition scheme have not been adapted
yet to monotonic classification [31].

• Fuzzy techniques for monotonic classification: Fuzzy based algorithms have achieved very
promising outcomes as shown in the thesis and other research studies [48, 49]. Besides, fuzzy
systems could be also helpful to properly model different elements of classification with monotonic
constraints.

54 Chapter I. PhD dissertation

For example, they may be useful when representing different degrees of constraints between
labels and features. That is, some input features could be more relevant than others regarding
monotonicity. This problem definition would be very interesting for monotonic classifiers to
define the importance of different monotonic violations. Additionally, the real distances between
the different categories of ordinal input variables and classes are usually unknown in monotonic
classification. Fuzzy techniques may help to quantify the category differences.

• Monotonic constraints in other singular learning problems: As seen in this thesis, several singular
problems can coexist in a single real-life learning task. Monotonicity constraints may be present
in the problem knowledge of other singular learning paradigms, such as semi-supervised learning
[25] and crowdsourced learning [110].

Certain evaluation data-sets commonly used in the monotonic classification originate from surveys
or multiple-person evaluations, i.e., these are crowdsourced data. Labeling by different individuals
rather than by an expert often facilitates data acquisition but also impairs data quality and
the learning process. Currently, these monotonic classification data sets are being treated as
standard sets. Crowd machine learning techniques may help to better treat these sets and better
accommodate monotonic constraints.

• Big Data and Smart Data in monotonic classification: Nowadays, the generation of new data is
incredibly massive and fast, which leads to serious computing problems during the data science
process. This is known as Big Data problems. Big Data technologies aim to alleviate the high
computing and storage requirements with cloud-based and distributed computing systems, such
as Apache Spark [111, 112]. Another common difficulty of Big Data problems is the lack of
control over data quality [5]. Therefore, preprocessing techniques have to be used to produce
valid and clean data, also known as Smart Data [81, 5].

Many data mining and preprocessing approaches have been redesigned with Big Data technologies
for standard supervised problems [113, 114, 5]. However, there are none Big Data proposals
for singular problems such as monotonic classification. The design of monotonic classifiers and
monotonic preprocessing mechanism with Big Data techniques are very interesting and needed,
but also challenging because the monotonic constraints are a global knowledge of a whole data-set.

Chapter II

Publications

1 Monotonic random forest with an ensemble pruning mechanism
based on the degree of monotonicity

• González, S., Herrera, F., & Garćıa, S. (2015). Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Generation Computing, 33(4),
367-388.

– Status: Published

– Impact Factor (JCR 2015): 0.533

– Subject Category: Computer Science, Theory & Methods

– Rank: 91/105

– Quartile: Q4

55

56 Chapter II. Publications

MONOTONIC RANDOM FOREST WITH AN ENSEMBLE PRUNING

MECHANISM BASED ON THE DEGREE OF MONOTONICITY

Sergio González
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

sergiogvz@decsai.ugr.es

Salvador Garcı́a
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

salvagl@decsai.ugr.es

Francisco Herrera
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

herrera@decsai.ugr.es

ABSTRACT

In classification problems, it is very common to have ordinal data in the variables, in both ex-
planatory and class variables. When the class variable should increase according to a subset of
explanatory variables, the problem must satisfy the monotonicity constraint. It is well known
that standard classification tree algorithms, such as CART or C4.5, are not guaranteed to pro-
duce monotonic trees, even if the data set is completely monotone. Recently, some classifiers
have been designed to handle these kinds of problems. In decision trees, growing and pruning
mechanisms have been updated to improve the monotonicity of the trees. In this paper we
study the suitability of using these mechanisms in the generation of Random Forests. For this,
we propose a simple ensemble pruning mechanism based on the degree of monotonicity of the
resulting trees. The performance of several decision trees are evaluated through experimen-
tal studies on monotonic data sets. We deduce that the trees produced by the Random Forest
also hold the monotonicity restriction but achieve a slightly better predictive performance than
standard algorithms.

Keywords Monotonic Classification · Decision Tree Induction · Random Forest · Ensemble Pruning.

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 57

1 Introduction

The classification of examples in ordered categories is a popular problem which has drawn attention in data
mining practitioners over the last years. This problem has been given with different names, such as ordinal
classification, ordinal regression or ranking labelling, but all they share a common property in the data: the
output attribute or class is ordinal. Classification with monotonicity constraints, also known as monotonic
classification [1], is an ordinal classification problem where monotonic restriction is clear: a higher value of an
attribute in an example, fixing other values, should not decrease its class assignment.

The monotonicity of relations between the dependent and explanatory variables is a very common prior knowl-
edge form in data classification [2]. To illustrate, while considering a credit card application [3], an income
between $1000 to $2000 may be considered a medium value income in a data set. If a customer A has a medium
income, a customer B has a low income (i.e. less than $1000) and the rest of the input attributes remain the
same, there is a relationship of partial order between A and B: B < A. Considering that the application esti-
mates lending quantities as output class, it is quite obvious that the loan that the system should give to customer
B cannot be greater than that given to customer A. If so, a monotonicity constraint is violated in the decision.

Decision trees [4, 5, 6] and rule induction [7] constitute two of the most promising techniques to tackle mono-
tonic classification. One important reason is that they build legible models by humans which can be easily
implemented in real applications whose monotonicity property has not to be contravened. Any approach for
classification can be integrated into an ensemble-type classifier, thus empowering the achieved performance [8].
However, in particular cases such as limitations in time or memory, contradictions and redundancy; a classifier
selection is needed within the ensemble. It is called ensemble pruning [9, 10] and its main objective is to obtain
a subset of the ensemble that solves the same classification problem with better performance.

Bagging is a well-known form of ensembles [11]. Random Forests (RFs) [12] add an additional layer of
randomness to bagging. In addition to constructing each tree with a different bootstrap sample of the data, it
also changes the construction process, splitting each node using the best among a subset of predictors randomly
chosen at that node. Their main virtues are the robustness against over-fitting achieved and being very user
friendly.

The general goals pursued in this paper are:

• To promote the application of the RF approach in monotonic classification tasks, aiming at increasing
the accuracy for this problem while the decision trees obtained are as weakly monotonic as possible.

• To introduce a monotonicity ordering-based pruning mechanism for RFs based on the non-
monotonicity index.

• To compare our proposal with other monotonic decision tree learning models, obtained by the appli-
cation of the monotonic principle explained in Monotonic Induction Trees (MID) [13] for ID3. Since
ID3 is obsolete, we apply MID in C4.5 [5], CART [4] and RankTree [14]. Also, two representative
algorithms from other groups are involved in the comparison: OLM [15] and OSDL [16].

The experimental evaluation includes a total of 90 data sets, 50 of them are monotonic by using the relabelling
approach proposed in [17] and the other 40 are standard classification data sets. Furthermore, the empirical
study has been checked using non-parametrical statistical testing [18, 19, 20].

This paper is organized as follows. In Section 2 we present some background concepts: the ordinal classification
with monotonic constraints and decision tree approaches for monotonic classification. Section 3 is devoted to
describing our proposal of RF and its adaptation to satisfy the monotonicity constraints. Section 4 describes
the experimental framework and examines the results obtained in the empirical study, presenting a discussion
and analysis. Finally, Section 5 concludes the paper.

58 Chapter II. Publications

2 Background

As we mentioned before, the paper is devoted to the application of the RF algorithm to monotonic classification.
Next, we will present a brief review of the monotonic classification including the description of decision trees
for this problem in Subsections 2.1 and 2.2.

2.1 Monotonic classification

Ordinal classification problems are those in which the class is neither numeric nor nominal. Instead, the class
values are ordered. For instance, a worker can be described as “excellent”, “good” or “bad”, and a bond can
be evaluated as “AAA”, “AA”, “A”, “A-”, etc. Similar to a numeric scale, an ordinal scale has an order, but it
does not posses a precise notion of distance. Ordinal classification problems are important, since they are fairly
common in our daily life. Employee selection and promotion, determining credit rating, bond rating, economic
performance of countries, industries and firms, and insurance underwriting, are examples of ordinal problem-
solving in business. Rating manuscripts, evaluating lecturers, student admissions, and scholarship decisions for
students, are examples of ordinal decision-making in academic life. Ordinal problems have been investigated
in scientific disciplines such as information retrieval, psychology, and statistics for many decades [21] .

A monotonic classifier is one that will not violate monotonicity constraints. Informally, the monotonic clas-
sification implies that the assigned class values are monotonically nondecreasing (in ordinal order) with the
attribute values. More formally, let (Xi, class(Xi)) denote a set of examples with attribute vector Xi and a
class class(Xi), respectively. Let Xi ≥ Xj indicate that all the attribute values of Xi are greater than or equal
to those of Xj in some ordinal order, then Xi ≥ Xj =⇒ class(Xi) ≥ class(Xj). A data set (Xi, class(Xi))
is monotonic if and only if all the pairs of examples i, j are monotonic with respect to each other [13].

Some monotonic ordinal classifiers require monotonic data sets to successfully learn, although there are others
that are capable of learning from non-monotonic data sets as well.

2.2 Decision Tree Approaches for Monotonic Classification

Many data mining algorithms have been adapted to be able to handle monotonicity constraints in several ways.
There are two steps to follow when dealing with monotonic classification problems. The first one is to prepro-
cess the data [22] in order to “monotonize” the data set [23], rejecting the examples that violate the monotonic
restrictions; and the second one is to force learning only monotone classification functions. Proposals of this
type are: classification trees and rule induction [24, 25, 26], neural networks [27, 28, 29], and instance-based
learning [15, 16, 17].

A monotone extension of ID3 (MID) was proposed by Ben-David [13] using an additional impurity measure
for splitting, the total ambiguity score. However, the resulting tree may not be monotone anymore even when
starting from a monotone data set. MID defines the total-ambiguity-score as the sum of the entropy score of
ID3 and the order-ambiguity-score. This last score is defined in terms of the non-monotonicity index of the
tree, which computes the number of pair branches that are non-monotonic regarding the total possible non-
monotonic pairs there may be.

Makino et al. [30] proposed a monotone (or positive) decision tree (P-DT) and a quasi-monotone (quasi-
positive) decision tree (QP-DT) extension of ID3 in the two-class setting. They start from a monotone training
set and demand, in the case of QP-DT, that monotonicity is (only) guaranteed on this training set, while in the
case of P-DT the tree (or equivalently, the derived rule base) is required to be monotone. These methods have
been nontrivially extended in [31, 24] to the multi-class problem and accommodating continuous attributes. In
addition to the fact that these approaches start from a monotone training set, the main technique for guaranteeing
(quasi-)monotonicity is by adding at each step, if necessary, new data generated from the data in the previous
step.

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 59

A splitting criteria thought for monotonic classification has been proposed. For instance, in [25], the criterion
aims are reducing the numbers of non-monotone pairs of points in the resulting branches. It chooses the split
with the least number of inconsistencies/conflicts. Another way to achieve monotone classification models in a
post-processing step is by pruning classification trees [32]. This method prunes the parent of the non-monotone
leaf that provides the largest reduction in the number of non-monotonic leaves’ pairs. Here, similar accuracy is
reported, with increased comprehensibility.

One of the most popular decision trees for ordinal classification is RankTree [14]. It extended the Gini impurity
used in CART to ordinal classification, called ranking impurity. Although RankTree enhances the capability of
extracting ordinal information, it cannot guarantee the construction of a monotone tree, even if the training data
are monotone.

As for explicit monotonic trees, we can find some representatives proposed in the literature. MDT [33] aimed
to predict the implicit ordering in terms of pair comparison in the original classification. In [26] the authors
propose a rank generalization of Shannon mutual information, namely rank mutual information, and underline
that this measure is both sensitive to monotonicity and robust to noisy data. Then, this measure is used to build
binary tree classifiers guaranteed to possess a weak form of monotonicity (rule monotonicity) in the case the
starting data set is monotone consistent. They call this algorithm REMT and show that it behaves well com-
pared to both monotone and non-monotone classifiers. An extension of the interval valued attributes decision
tree to deal with monotonic classification is given in [34], which selects extended attributes by minimizing rank
mutual information to generate a decision tree. Recently, in [35], the authors presented a binary tree classi-
fier RDMT(H) parametrized by a discrimination measure H used for splitting and another three pre-pruning
parameters. According to them, RDMT(H) guarantees a weak form of monotonicity on the resulting tree.

In this paper, we include the impurity measure proposed in MID [13] in two classical decision trees: CART
and C4.5, altering these classifiers to be adapted to monotonic classification. Furthermore, we combine the
RankTree proposal with the same impurity measure, also obtaining a monotonic version of RankTree. Thus, in
summary, we will compare RFs with three algorithms: MID-C4.5, MID-CART and MID-RankTree.

3 Monotonic Random Forest

In this section, we explain our proposal to tackle monotonic classification. We will start by illustrating the
different modifications added to the traditional RF. Then, we will continue with our main contribution, the
monotonicity ordering-based pruning mechanism, which allow us to increase the accuracy while maintaining
the monotonicity constraints. Finally, we will justify the necessity of this method and how it is applied.

The modifications introduced to the standard RF are mainly focused on the way the splitting is made for every
tree, the promotion of the diversity by a new random factor and the aggregation of the results with the pruning
mechanism proposed, maintaining the bootstrap sample method untouched.

First of all, we define the Non Monotonic Index (NMI) as the rate of number of violations of monotonicity
divided by the total number of examples in a data set. Previously, we have introduced the MID based algorithms
in the process of building the trees. With this change, we accomplish the initial objective of adapting the well-
known ensemble to monotonic classification. We choose MID-C4.5 to build every random tree of the forest.
This method selects the best attribute to perform the split using the total-ambiguity-score as a criterion. This
measurement was defined by Ben-David in [13] as the sum of the E-score of the ID3 algorithm and the order-
ambiguity-score weighted by the parameter R. The order − ambiguity − score is computed, as shown in
Equation 1, using the concept of the non-monotonicity index, which is the ratio between the actual number of

60 Chapter II. Publications

Algorithm 1 Monotonic RF algorithm.
function MONRF(D - dataset, nTrees - number of random trees built, Rlimit - importance factor for mono-
tonic constrains, T - Threshold used in the pruning procedure, S - the predicted version of D)

initialize: S = {}, Trees[1..nTrees], Dbootstraps[1..nTrees], NMIs[1..nTrees]
for i in [1,nTrees] do

Dbootstraps[i] = Bootstrap Sampler(nTrees,D)
rand = Random(1, Rlimit)
Trees[i] = Build Tree(Dbootstraps[i], rand)
NMIs[i] = Compute NMI(Trees[i])

end for
Trees = Sort(Trees,NMIs)
for i in [1,dnTrees ∗ T e] do

Trêes← Trees[i]
end for
for d in D do

S ← Predict Majority V oting(Trêes, d)
end for
return S

end function

non-monotonic branch pairs and the maximum number of pairs that could have been non-monotonic. In the
MID-C4.5, the entropy of the ID3 is substituted by the gain information of the C4.5 decision tree.

A =

{
0 if NMI = 0
−(log2NMI)−1 otherwise

(1)

The factor R was first introduced by Ben-David[13] as an importance factor of the order-ambiguity-score in
the decision of the splitting with the calculation of the total-ambiguity-score. As higher as R was set, more
relevant were the monotonicity constraints considered. We use this parameter as a way to further randomise
and diversify the different trees built in the RF and at the same time, we force the tree building procedure to be
dominated by the monotonicity considerations. In order to fulfill this, each tree is built from the beginning with
a different factor R, picked as a random number from 1 to Rlimit, set as a parameter shown in Algorithm 1.

Furthermore, we did not consider for our proposal the maximum depth imposed to all the random trees of the
standard RF. We have decided this, due to the fact that monotonic decision tree classifiers already highly reduce
the complexity of the built tree compared with the traditional ones.

Finally, we design a pruning threshold mechanism in the final combination of the different results to predict
the class of each example. Instead of using all the decision trees built, to form the class through the majority
vote of the predictions, we choose the best trees in term of monotonicity constraints within a certain threshold,
latest lines of the Algorithm 1. With this objective, our Monotonic RF sorts the different trees built by the Non-
Monotonic-Index in increasing order and the pruning method selects the first n trees, where n is the number
of trees computed by product of the total number of trees built and the threshold T within the range (0,1]. We
recommend to set it at 0.50, due to the results obtained in the next section.

It is highly important to understand the need for this pruning method and why without it, the result obtained
would not be as good. By introducing randomness in the bootstrap selection of training data and in the attributes
used to split the trees, we are obstructing, in a certain way, the possibility of obtaining real good monotonic
trees, even though we can obtain better results in terms of accuracy. Therefore, it is necessary to find a way of
balancing these two objectives with our pruning threshold proposal.

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 61

4 Experimental Framework, Results and Analysis

In this section, we present the experimental framework followed to compare and analyze the application of RFs
to monotonic classification.

4.1 Experimental Methodology

The experimental methodology is described next by specifying some basic elements:

• Data Sets: A total number of 90 data sets are used in the study, 50 monotonic data sets and other
40 standard classification problems. Their main characteristics are described in Table 1. Most of
the monotonic data sets are standard data sets used in the classification scope and extracted from the
UCI and KEEL repositories [36, 37] which have been relabeled following the procedure used in the
experimental design of [17]. We must point out that this relabeling process applied to the original
data sets transforms them into monotonic data sets, changing their class distribution and complexity
but maintaining the number of attributes and examples. Four classical monotonic data sets are also
included [15]: ERA, ESL, LEV, SWD.

Table 1 shows the name of the data sets and their number of instances, attributes and classes. The total
number of instances of the original data set appears in parenthesis. Sometimes, this number differs
because of the missing values, which have been ignored in this study.

• Algorithms to compare: We will compare RFs with three decision trees: MID-C4.5, MID-CART and
MID-RankTree; and two classical algorithms in this field: OLM and OSDL. These algorithms were
described in Subsection 2.2.

• Evaluation metrics: Several measures will be used in order to estimate the performance of the algo-
rithms compared.

– Accuracy (Acc): is the number of successful hits relative to the total number of classifications. It
has been by far the most commonly used metric for assessing the performance of classifiers for
years [38].

– Mean Absolute Error (MAE): is calculated summing the absolute values of the errors and then di-
viding it by the number of classifications. It has been selected considering the studies of Gaudette
and Japkowicz [39] and Japkowicz and Shah [40], which conclude that MAE is one of the best
performance metrics in ordered classification.

– Non Monotonic Index (NMI): explained above, is computed as the rate of number of violations of
monotonicity divided by the total number of examples in a data set [13].

– Number of Leaves/Branches (NL): is the number of possible paths from the root to each leaf of
the tree. It corresponds with the number of rules which can be extracted from the decision tree
[6].

• Parameters configuration: Table 2 depicts the parameters used by the algorithms considered in the
study. The choice of parameters has been done according to the standards and recommendations given
by the authors in the original proposal papers. Due to the fact that the experimental evaluation com-
prises a high number of data sets, it is unreasonable to adjust each parameter individually for each data
set. In fact, our purpose is just the opposite; we aim at comparing them in the most general scenario
possible. We have not performed any tuning to adapt these parameters, because our objective is not to
maximize the accuracy or any other performance metric, but to fairly compare the algorithms and their
robustness in a common environment and upon different data sets. The run of the algorithms has been
carried out following a ten fold cross validation schema (10-fcv) three times.

62 Chapter II. Publications

Table 1: Description of the 90 data sets used in the study. Super indexes: * denotes both monotonic and
non-monotonic version, + denotes only monotonic version and # denotes only non-monotonic version

Data set Ins. At. Cl. Data set Ins. At. Cl.

appendicitis* 106 7 2 led7Digit* 500 7 10
australian* 690 4 2 LEV+ 1000 4 5

automobile* 150 (205) 25 6 lymphography* 148 18 4
auto-mpg+ 392 7 4 machinecpu+ 209 6 4
balance* 625 4 3 mammographic* 830 (961) 5 2
bands# 365 (539) 19 2 monk-2* 432 6 2

bostonhousing+ 506 12 4 movement libras+ 360 90 15
breast* 277 (286) 9 2 newthyroid* 215 5 3
bupa+ 345 6 2 phoneme# 5404 5 2
car* 1728 6 4 pima* 768 5 2

cleveland* 297 (303) 13 5 post-operative* 87 (90) 8 3
contraceptive* 1473 9 3 saheart* 462 9 2

crx* 653 (690) 15 2 segment+ 2310 19 7
dermatology+ 358 (366) 34 6 sonar+ 208 60 2

ecoli* 336 7 8 spectfheart+ 267 4 2
ERA+ 1000 4 9 SWD+ 1000 10 4
ESL+ 488 4 9 tae* 151 5 3
flare* 1066 11 9 titanic* 2201 3 2

german# 1000 20 2 vehicle* 846 18 4
glass* 214 9 7 vowel* 990 13 11

haberman* 306 3 2 wdbc* 569 30 2
hayes-roth* 160 4 3 windorhousing+ 546 11 2

heart* 270 13 2 wine* 178 13 2
hepatitis* 80 (155) 19 2 winequality-red# 1599 11 11

housevotes* 232(245) 16 2 wisconsin* 683 (699) 9 2
ionosphere* 351 33 2 yeast* 1484 10 8

iris* 150 4 3 zoo* 101 16 7

Table 2: Parameters considered for the algorithms compared.

Algorithm Parameters

C4.5 itemsetsPerLeaf = 2; confidence = 0.25
CART maxDepth = 90
RankTree maxDepth = 90
MID R = 1
Random Forest nTrees = 100; Rlimit = 100; Threshold = 0.50

mAttributes =
√
TotalAttributes

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 63

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
o

n
 M

o
n

o
to

n
ic

 I
n

d
e

x

Pruning Rate

(a) Average NMI of the Random Tree depending on the pruning
rate.

0,79

0,795

0,8

0,805

0,81

0,815

0,82

0,825

0,83

0,835

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
c
c
u
ra
c
y

Pruning Rate

(b) Average accuracy of the Random Tree depending on the prun-
ing rate.

Figure 1: Effect of the pruning rate in the Random Forest

• Statistical procedures: Several hypothesis testing procedures are considered to determine the most
relevant differences found between the methods. To address this, the use of nonparametric tests will
be preferred to parametric ones, since the initial conditions that guarantee the reliability of the latter
may not be satisfied, causing the statistical analysis to lose credibility. We use the Friedman ranks test
[18, 19], to contrast the behaviour of each algorithm. It is used to highlight the existence of significant
differences between methods. In a later stage, post-hoc procedures like Holm will find out which
algorithms are distinctive among the 1× n comparisons performed [20].

4.2 Results

This section is dedicated to present the results gathered from the runs of the algorithms using the configuration
described in the previous subsection.

First of all, we present the study that allows us to determine the best choice of the monotonicity pruning
parameter value for the RF proposal. For this, we employ all the monotonic data sets specified in Table 1
running RF over them. The trees built from the ensemble are sorted by their NMI in increasing order. The
pruning mechanism selects the trees using a threshold coming from 0.05 to 1. This represents the rate of trees
that will belong to the ensemble. In this way, if the rate is 1 all the trees will belong to the ensemble and if the
rate is 0.3, only 30% of the most monotonic trees will form the ensemble.

Figure 1 shows the effect of the pruning rate explained above in RF. The values represented for both graphics
are associated with the average values of Acc and NMI of the 50 data sets. Observing Figure 1a, we can see
that there is a turning point in the growth curve surrounding the rate value of 0.5. Simultaneously, in Figure 1b
there is a limit in which the improvement registered in accuracy stops decreasing and this limit matches with
the same turning point indicated previously: the rate of 0.5. Hence, it seems logical that this rate could be an
interesting value to be adopted as the monotonicity pruning rate used for RFs.

Henceforth, we will consider 0.5 as the pruning rate used in RFs; that means that the most monotonic half of
the trees belonging to the forest will be used in the classification stage and the other half will be discarded. The
effect of this choice can be observed in Tables 3 and 4, where the results obtained by MID-RF are reported
over monotonic and non-monotonic data sets respectively. Three configurations have been studied: (1) MID-
RF with enable pruning mechanism, MID-RF without pruning and MID-RF with the R parameter fixed to 50
instead of using random numbers from 1 to Rlimit for each tree.

64 Chapter II. Publications

Furthermore, under our recommended configuration of pruning and random choice of R parameter, we compare
RF with the other three considered decision tree methods and two representative algorithms from other groups
such as OLM [15] and OSDL [16]. Tables 5 and 6 exhibit the results obtained for the algorithms over monotonic
data sets, in terms of average values of the three runs of 10-fcv.

In addition, Tables 7 and 8 present the results obtained for the algorithms over non monotonic data sets.

In order to support the results, we include a statistical analysis based on non parametric tests. The results
obtained by the application of the Friedman test and the Holm post-hoc procedure are depicted in Table 9.
This table shows the rankings obtained by using the Friedman test for each algorithm, measure and group
(monotonic and non monotonic data sets). Furthermore, the Adjusted P-Value (APV) [20] computed by the
Holm procedure is reported in the algorithms whose ranking is not the best in each group. This represents the
p-value adjusted for the group associated with the comparison between the control algorithm (the one with the
lowest ranking) and the algorithm in question. If this p-value is lower than 0.10, the differences between both
algorithms are statistically significant.

4.3 Analysis

This section is devoted to studying the behaviour of the proposed ensemble compared to the other algorithms
included in the study, with the ultimate objective of analysing the results and determining whether or not our
proposal is valuable. Conclusions will be extracted in terms of the four different measurements that were used
in the study.

From this study, we may stress the following conclusions:

• First of all, we focus our attention in the results reported in Tables 3 and 4, where the MID-RF algorithm
is analyzed according to whether or not pruning is used and the effects on fixing the R parameter instead
of using a random value for each decision tree. The statistical analysis conducted by the Friedman test
indicates that there are no significant differences in accuracy and MAE for both monotonic and non-
monotonic data sets (p-values equal to 0.835 and 0.869 for monotonic data sets, 0.219 and 0.294 for
non-monotonic data sets, respectively). However, considering NMI, the pruning mechanism strongly
influences in obtaining more monotonic models regarding to not to use it (p-value equals to 0.000 in
both cases). Hence, NMI based pruning is useful to monotonize models without decreasing accuracy.

• The R parameter does not produce significant differences whether it is fixed or randomly chosen.
Hence, it is safe to ensure that the R parameter has little influence in the results obtained when the
pruning mechanism is enabled.

• With respect to the comparison with other learning algorithms, in terms of accuracy, the goodness of
the Monotonic RF the with pruning threshold mechanism is clear. In all cases and, both for monotonic
and non-monotonic data sets; the RF outperforms the other 5 algorithms by a significant difference,
a fact that can be noticed in Tables 5, 7 and 9, where the p-value is smaller than 0.10. This result is
obtained thanks to the potential of the RF scheme, which can accomplish really accurate and robust
results, through the combination of diverse trees.

• With the same results, the superiority of RF in relation to the MAE over the other algorithms is over-
whelming. This outcome was expected, when such a difference in terms of accuracy was obtained. It is
worth noting how robust the results are as they barely change from the monotonic to the non-monotonic
data.

• Furthermore, RF succeeds to obtain less complex trees, as can be seen with a smaller number of leaves
for both types of data, in Tables 6 and 8. A remarkable fact keeping in mind that the maximum depth of

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 65

Table 3: Results reported over monotonic data sets of MID-RF with the parameter R fixed, with and without
pruning.

Accuracy Mean Absolute Error Non Monotonic Index

No With No With No With
Pruning Pruning R=50 Pruning Pruning R=50 Pruning Pruning R=50

appendicitis 0.8667 0.8818 0.8636 0.1333 0.1182 0.1364 0.0352 0.1059 0.0350
australian 0.8261 0.8251 0.8290 0.1739 0.1749 0.1710 0.0120 0.0344 0.0118
auto-mpg 0.6529 0.6504 0.6513 0.4630 0.4654 0.4603 0.0006 0.0008 0.0006
automobile 0.8039 0.7957 0.8164 0.3069 0.3129 0.2988 0.0003 0.0008 0.0003
balance 0.9830 0.9793 0.9835 0.0186 0.0229 0.0186 0.0211 0.0396 0.0210
bostonhousing 0.6483 0.6528 0.6403 0.4958 0.4882 0.5118 0.0004 0.0005 0.0004
breast 0.7597 0.7537 0.7597 0.2403 0.2463 0.2403 0.0001 0.0002 0.0001
bupa 0.7981 0.7981 0.7990 0.2019 0.2019 0.2010 0.0050 0.0129 0.0050
car 0.8731 0.8887 0.8731 0.1609 0.1449 0.1609 0.0001 0.0001 0.0001
cleveland 0.5644 0.5690 0.5567 0.6893 0.6747 0.7228 0.0009 0.0010 0.0009
contraceptive 0.8185 0.8181 0.8228 0.2351 0.2358 0.2263 0.0001 0.0001 0.0001
crx 0.8290 0.8321 0.8321 0.1710 0.1679 0.1679 0.0001 0.0001 0.0001
dermatology 0.8633 0.8614 0.8642 0.2810 0.2857 0.2856 0.0014 0.0021 0.0014
ecoli 0.6441 0.6439 0.6421 1.0802 1.0999 1.0740 0.0012 0.0021 0.0012
ERA 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0021 0.0023 0.0021
ESL 0.9043 0.9043 0.9050 0.1107 0.1100 0.1100 0.0009 0.0011 0.0009
flare 0.9025 0.8981 0.9025 0.1256 0.1300 0.1256 0.0002 0.0005 0.0002
glass 0.7464 0.7492 0.7465 0.4934 0.5065 0.5150 0.0026 0.0035 0.0026
haberman 0.9291 0.9248 0.9280 0.0709 0.0752 0.0720 0.0082 0.0132 0.0082
hayes-roth 0.9042 0.9125 0.9083 0.1104 0.0958 0.1063 0.0074 0.0102 0.0073
heart 0.8235 0.8296 0.8296 0.1765 0.1704 0.1704 0.0025 0.0039 0.0025
hepatitis 0.8917 0.8958 0.8875 0.1083 0.1042 0.1125 0.0261 0.0546 0.0260
housevotes 0.9528 0.9584 0.9528 0.0472 0.0416 0.0472 0.0073 0.0152 0.0073
ionosphere 0.8832 0.8822 0.8861 0.1168 0.1178 0.1139 0.0042 0.0096 0.0042
iris 0.9711 0.9689 0.9644 0.0289 0.0311 0.0356 0.0487 0.0924 0.0481
led7digit 0.8600 0.8360 0.8600 0.3800 0.4607 0.3800 0.0040 0.0059 0.0040
LEV 0.9993 0.9993 0.9993 0.0007 0.0007 0.0007 0.0009 0.0010 0.0009
lymphography 0.7819 0.7978 0.7886 0.2314 0.2133 0.2225 0.0013 0.0019 0.0013
machinecpu 0.6520 0.6280 0.6504 0.4741 0.5062 0.4821 0.0017 0.0022 0.0017
mammographic 0.9763 0.9743 0.9763 0.0237 0.0257 0.0237 0.0072 0.0161 0.0072
monk-2 0.9807 0.9800 0.9815 0.0193 0.0200 0.0185 0.0184 0.0365 0.0183
movement libras 0.6796 0.6917 0.6769 1.1602 1.0880 1.2278 0.0005 0.0006 0.0005
newthyroid 0.8621 0.8620 0.8637 0.1905 0.1906 0.1873 0.0098 0.0165 0.0098
pima 0.8702 0.8711 0.8724 0.1298 0.1289 0.1276 0.0014 0.0021 0.0013
post-operative 0.6968 0.6968 0.6968 0.3773 0.3736 0.3773 0.0040 0.0056 0.0040
saheart 0.7302 0.7410 0.7403 0.2698 0.2590 0.2597 0.0020 0.0043 0.0020
segment 0.9759 0.9749 0.9756 0.0447 0.0475 0.0468 0.0004 0.0006 0.0004
sonar 0.8042 0.8123 0.8090 0.1958 0.1877 0.1910 0.0063 0.0109 0.0064
spectfheart 0.8028 0.8065 0.8076 0.1972 0.1935 0.1924 0.0047 0.0115 0.0046
SWD 0.9993 1.0000 0.9990 0.0007 0.0000 0.0010 0.0004 0.0004 0.0004
tae 0.8278 0.8190 0.8278 0.1921 0.2051 0.1921 0.0061 0.0100 0.0061
titanic 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.1163 0.1812 0.1161
vehicle 0.7409 0.7378 0.7315 0.4929 0.5024 0.5158 0.0002 0.0003 0.0002
vowel 0.9525 0.9552 0.9481 0.1010 0.0980 0.1219 0.0001 0.0001 0.0001
wdbc 0.7183 0.7171 0.7247 0.2817 0.2829 0.2753 0.0013 0.0034 0.0013
windsorhousing 0.8932 0.8944 0.8889 0.1068 0.1056 0.1111 0.0015 0.0021 0.0015
wine 0.7926 0.7981 0.7944 0.2882 0.2791 0.2827 0.0062 0.0106 0.0062
wisconsin 0.9747 0.9752 0.9747 0.0253 0.0248 0.0253 0.0075 0.0112 0.0075
yeast 0.4095 0.4165 0.4059 1.7143 1.7041 1.7517 0.0000 0.0000 0.0000
zoo 0.7427 0.7427 0.7427 0.7000 0.6900 0.7000 0.0090 0.0161 0.0090

66 Chapter II. Publications

Table 4: Results reported over non-monotonic data sets of MID-RF with the parameter R fixed, with and
without pruning.

Accuracy Mean Absolute Error Non Monotonic Index

No With No With No With
Pruning Pruning R=50 Pruning Pruning R=50 Pruning Pruning R=50

appendicitis 0.8791 0.8821 0.8821 0.1209 0.1179 0.1179 0.0298 0.1235 0.0298
australian 0.8725 0.8758 0.8734 0.1275 0.1242 0.1266 0.0007 0.0012 0.0006
automobile 0.8045 0.8068 0.7934 0.2650 0.2609 0.2790 0.0003 0.0008 0.0003
balance 0.8634 0.8639 0.8618 0.1868 0.1899 0.1904 0.0006 0.0007 0.0006
bands 0.7137 0.6903 0.7064 0.2863 0.3097 0.2936 0.0016 0.0102 0.0017
breast 0.7327 0.7385 0.7327 0.2673 0.2615 0.2673 0.0001 0.0002 0.0001
car 0.8609 0.8764 0.8609 0.1919 0.1674 0.1919 0.0001 0.0001 0.0001
cleveland 0.5745 0.5724 0.5936 0.6450 0.6641 0.6184 0.0009 0.0011 0.0009
contraceptive 0.5493 0.5504 0.5452 0.6618 0.6569 0.6684 0.0001 0.0001 0.0001
crx 0.8651 0.8675 0.8677 0.1349 0.1325 0.1323 0.0001 0.0002 0.0001
ecoli 0.8403 0.8433 0.8384 0.5611 0.5708 0.5667 0.0026 0.0057 0.0027
flare 0.7502 0.7546 0.7502 0.4964 0.4874 0.4964 0.0002 0.0003 0.0002
german 0.7420 0.7480 0.7423 0.2580 0.2520 0.2577 0.0000 0.0000 0.0000
glass 0.7613 0.7719 0.7600 0.4890 0.4716 0.5049 0.0028 0.0037 0.0028
haberman 0.7304 0.7370 0.7304 0.2696 0.2630 0.2696 0.0082 0.0576 0.0078
hayes-roth 0.7688 0.7875 0.7708 0.2479 0.2250 0.2438 0.0055 0.0081 0.0055
heart 0.8346 0.8284 0.8321 0.1654 0.1716 0.1679 0.0025 0.0039 0.0025
hepatitis 0.8710 0.8646 0.8710 0.1290 0.1354 0.1290 0.0245 0.0528 0.0247
housevotes 0.9472 0.9654 0.9472 0.0528 0.0346 0.0528 0.0097 0.0264 0.0097
ionosphere 0.9299 0.9393 0.9298 0.0701 0.0607 0.0702 0.0057 0.0165 0.0058
iris 0.9533 0.9533 0.9556 0.0467 0.0467 0.0444 0.0406 0.0843 0.0412
led7digit 0.7127 0.7087 0.7127 1.2300 1.2353 1.2300 0.0033 0.0050 0.0033
lymphography 0.8309 0.8230 0.8259 0.1812 0.1810 0.1844 0.0016 0.0026 0.0016
mammographic 0.8360 0.8420 0.8368 0.1640 0.1580 0.1632 0.0027 0.0058 0.0027
monk-2 0.9757 0.9742 0.9765 0.0243 0.0258 0.0235 0.0044 0.0236 0.0043
newthyroid 0.9618 0.9618 0.9618 0.0628 0.0598 0.0628 0.0237 0.0454 0.0239
phoneme 0.8824 0.8772 0.8816 0.1176 0.1228 0.1184 0.0001 0.0002 0.0001
pima 0.7549 0.7527 0.7549 0.2451 0.2473 0.2451 0.0014 0.0045 0.0014
post-operative 0.6972 0.7051 0.6972 0.3139 0.3060 0.3139 0.0046 0.0068 0.0046
saheart 0.7071 0.7064 0.7042 0.2929 0.2936 0.2958 0.0031 0.0144 0.0031
tae 0.5904 0.5792 0.5882 0.5311 0.5335 0.5289 0.0045 0.0123 0.0045
titanic 0.7862 0.7865 0.7862 0.2138 0.2135 0.2138 0.0199 0.0290 0.0199
vehicle 0.7530 0.7514 0.7541 0.4723 0.4754 0.4625 0.0003 0.0004 0.0003
vowel 0.9525 0.9552 0.9481 0.1010 0.0980 0.1219 0.0001 0.0001 0.0001
wdbc 0.9561 0.9555 0.9596 0.0439 0.0445 0.0404 0.0036 0.0114 0.0037
wine 0.9792 0.9810 0.9792 0.0208 0.0190 0.0208 0.0064 0.0294 0.0062
winequality-red 0.6825 0.6831 0.6827 0.3509 0.3513 0.3527 0.0000 0.0001 0.0000
wisconsin 0.9714 0.9734 0.9719 0.0286 0.0266 0.0281 0.0056 0.0088 0.0056
yeast 0.6144 0.6220 0.6106 0.7689 0.7547 0.7803 0.0000 0.0000 0.0000
zoo 0.9583 0.9541 0.9583 0.0667 0.0726 0.0667 0.0144 0.0277 0.0144

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 67

Table 5: Accuracy and MAE results reported over monotonic data sets.

Accuracy Mean Absolute Error

MID MID MID MID MID MID MID MID
RF C4.5 CART RankTree OLM OSDL RF C4.5 CART RankTree OLM OSDL

appendicitis 0.8667 0.8964 0.8864 0.9064 0.8109 0.6418 0.1333 0.1036 0.1136 0.0936 0.1891 0.3582
australian 0.8261 0.8029 0.8319 0.8362 0.7232 0.8319 0.1739 0.1971 0.1681 0.1638 0.2768 0.1681
auto-mpg 0.6529 0.6247 0.4489 0.6223 0.6812 0.3854 0.4630 0.4851 1.0335 0.5001 0.3879 0.8291
automobile 0.8039 0.8250 0.7304 0.7429 0.2333 0.3758 0.3069 0.2688 0.4696 0.4263 2.1046 0.8958
balance 0.9830 0.9777 0.9777 0.9856 0.9776 0.9777 0.0186 0.0239 0.0271 0.0176 0.0272 0.0271
bostonhousing 0.6483 0.5674 0.4982 0.5237 0.3003 0.2569 0.4958 0.6102 0.7504 0.6856 1.3045 1.0099
breast 0.7597 0.7337 0.6933 0.7440 0.8409 0.8015 0.2403 0.2663 0.3067 0.2560 0.1591 0.1985
bupa 0.7981 0.7508 0.7534 0.7879 0.8375 0.7625 0.2019 0.2492 0.2466 0.2121 0.1625 0.2375
car 0.8731 0.9433 0.8183 0.9386 0.9705 0.9705 0.1609 0.0666 0.2396 0.0735 0.0324 0.0324
cleveland 0.5644 0.4909 0.5284 0.5253 0.5793 0.5421 0.6893 0.8332 0.8014 0.8586 0.8311 0.7848
contraceptive 0.8185 0.7991 0.5601 0.7719 0.8799 0.8398 0.2351 0.2552 0.6449 0.2844 0.1534 0.1602
crx 0.8290 0.7903 0.7933 0.7839 0.6110 0.7058 0.1710 0.2097 0.2067 0.2161 0.3890 0.2942
dermatology 0.8633 0.8437 0.8408 0.7512 0.4499 0.1593 0.2810 0.3325 0.3465 0.5339 1.3821 1.6421
ecoli 0.6441 0.6074 0.5750 0.5779 0.6368 0.0652 1.0802 1.0549 1.5201 1.1250 0.9467 2.1998
ERA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ESL 0.9043 0.9159 0.6162 0.9344 0.9179 0.9364 0.1107 0.1026 0.5788 0.0738 0.0923 0.0656
flare 0.9025 0.9165 0.6380 0.9456 0.9738 0.9606 0.1256 0.1191 0.6479 0.0826 0.0318 0.0572
glass 0.7464 0.6773 0.6258 0.6883 0.3175 0.3223 0.4934 0.6929 0.7747 0.6747 1.7994 1.8000
haberman 0.9291 0.9177 0.9312 0.9537 0.9310 0.9606 0.0709 0.0823 0.0688 0.0463 0.0690 0.0394
hayes-roth 0.9042 0.9438 0.7688 0.8500 0.9500 0.9438 0.1104 0.0563 0.2500 0.1688 0.0750 0.0563
heart 0.8235 0.7926 0.7593 0.8111 0.6704 0.6259 0.1765 0.2074 0.2407 0.1889 0.3296 0.3741
hepatitis 0.8917 0.7750 0.8375 0.9000 0.2375 0.8000 0.1083 0.2250 0.1625 0.1000 0.7625 0.2000
housevotes 0.9528 0.9741 0.8750 0.9266 0.9047 0.9096 0.0472 0.0259 0.1250 0.0734 0.0953 0.0904
ionosphere 0.8832 0.8348 0.7863 0.7810 0.6580 0.7237 0.1168 0.1652 0.2137 0.2190 0.3420 0.2763
iris 0.9711 0.9667 0.9733 0.9867 0.9000 0.3733 0.0289 0.0333 0.0267 0.0133 0.1000 0.9067
led7digit 0.8600 0.9520 0.7880 0.9660 0.9820 0.9740 0.3800 0.1140 0.6780 0.0700 0.0340 0.0340
LEV 0.9993 1.0000 0.6990 1.0000 1.0000 1.0000 0.0007 0.0000 0.4450 0.0000 0.0000 0.0000
lymphography 0.7819 0.7705 0.6767 0.6900 0.7100 0.7029 0.2314 0.2567 0.3633 0.3714 0.3571 0.2971
machinecpu 0.6520 0.5638 0.4398 0.6369 0.6267 0.6362 0.4741 0.6086 0.7564 0.4726 0.5031 0.4067
mammographic 0.9763 0.9831 0.9735 0.9904 0.9892 0.9831 0.0237 0.0169 0.0265 0.0096 0.0108 0.0169
monk-2 0.9807 0.9746 0.9792 0.9769 0.9721 0.9908 0.0193 0.0254 0.0208 0.0232 0.0279 0.0092
movement libras 0.6796 0.5194 0.5583 0.5333 0.3139 0.1194 1.1602 2.0306 1.7861 1.8528 4.3472 5.7000
newthyroid 0.8621 0.8279 0.8511 0.8329 0.6223 0.1818 0.1905 0.2186 0.1909 0.2139 0.5504 0.8413
pima 0.8702 0.8242 0.7837 0.8007 0.8151 0.6224 0.1298 0.1758 0.2163 0.1993 0.1849 0.3776
post-operative 0.6968 0.6333 0.4403 0.7403 0.8292 0.7569 0.3773 0.4806 0.7292 0.3153 0.2042 0.2431
saheart 0.7302 0.6627 0.6645 0.6624 0.6862 0.6839 0.2698 0.3373 0.3355 0.3376 0.3138 0.3161
segment 0.9759 0.9649 0.9632 0.9602 0.3061 0.1684 0.0447 0.0610 0.0671 0.0723 2.4022 2.8597
sonar 0.8042 0.7681 0.7250 0.7648 0.4662 0.5724 0.1958 0.2319 0.2750 0.2352 0.5338 0.4276
spectfheart 0.8028 0.7379 0.7412 0.7339 0.2095 0.8016 0.1972 0.2621 0.2588 0.2661 0.7905 0.1984
SWD 0.9993 1.0000 0.3820 1.0000 1.0000 1.0000 0.0007 0.0000 1.0240 0.0000 0.0000 0.0000
tae 0.8278 0.8483 0.5904 0.8417 0.8546 0.8946 0.1921 0.1650 0.5283 0.1913 0.1850 0.1054
titanic 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vehicle 0.7409 0.6904 0.6384 0.6644 0.2530 0.2588 0.4929 0.5661 0.6475 0.6334 1.4917 0.9717
vowel 0.9525 0.7758 0.2182 0.7778 0.0909 0.0859 0.1010 0.6242 2.9313 0.5232 5.0000 4.8273
wdbc 0.7183 0.6768 0.6749 0.6713 0.6451 0.5607 0.2817 0.3232 0.3251 0.3287 0.3549 0.4393
windsorhousing 0.8932 0.8939 0.8738 0.8664 0.9174 0.8847 0.1068 0.1061 0.1262 0.1336 0.0826 0.1153
wine 0.7926 0.6794 0.7297 0.7578 0.3484 0.3314 0.2882 0.4219 0.3719 0.3154 0.9660 0.9667
wisconsin 0.9747 0.9591 0.9693 0.9591 0.8815 0.9547 0.0253 0.0409 0.0307 0.0409 0.1185 0.0453
yeast 0.4095 0.3659 0.2811 0.3639 0.4596 0.0836 1.7143 1.8605 3.1107 1.8111 1.6300 3.0862
zoo 0.7427 0.8127 0.4564 0.8127 0.8409 0.7727 0.7000 0.4727 1.8073 0.4336 0.3682 0.3745

68 Chapter II. Publications

Table 6: Number of leaves and Non Monotonic Index results reported over monotonic data sets.

Number of leaves Non Monotonic Index

MID MID MID MID MID MID MID MID
RF C4.5 CART RankTree RF C4.5 CART RankTree OLM OSDL

appendicitis 5.2 7.0 11.2 10.6 0.0352 0.0353 0.1592 0.1499 0.2180 0.0000
australian 9.7 8.2 90.0 90.1 0.0120 0.0131 0.0008 0.0034 0.2922 0.2794
auto-mpg 43.3 65.6 90.0 130.0 0.0006 0.0003 0.0003 0.2300 0.0464 0.0397
automobile 62.0 56.9 80.6 35.8 0.0003 0.0006 0.3764 0.4684 0.0002 0.0008
balance 6.7 9.6 90.0 17.1 0.0211 0.0106 0.0220 0.1946 0.0271 0.0000
bostonhousing 55.2 83.0 135.9 156.4 0.0004 0.0002 0.3375 0.3595 0.0011 0.0000
breast 95.3 118.6 90.0 71.7 0.0001 0.0001 0.0000 0.2498 0.0328 0.0328
bupa 16.9 23.3 77.2 57.5 0.0050 0.0025 0.1501 0.2218 0.1049 0.0803
car 128.3 125.4 91.4 180.0 0.0000 0.0001 0.0378 0.2624 0.0868 0.0868
cleveland 36.1 61.1 104.5 107.0 0.0009 0.0003 0.2528 0.2428 0.0116 0.0086
contraceptive 112.3 163.0 94.6 382.4 0.0000 0.0000 0.0280 0.2517 0.0794 0.0794
crx 122.9 154.5 92.2 103.2 0.0000 0.0001 0.0335 0.2762 0.0033 0.0031
dermatology 25.9 26.1 109.9 71.8 0.0014 0.0013 0.2647 0.3781 0.0020 0.0020
ecoli 33.7 50.7 115.4 116.3 0.0012 0.0005 0.2507 0.2853 0.1313 0.0024
ERA 31.0 28.5 27.4 36.0 0.0021 0.0026 0.2153 0.2633 0.1279 0.1279
ESL 36.7 39.9 112.1 85.4 0.0009 0.0006 0.3047 0.1189 0.6354 0.6354
flare 87.0 146.8 91.4 100.4 0.0002 0.0001 0.0623 0.3625 0.2779 0.2779
glass 21.7 27.8 49.7 54.0 0.0026 0.0016 0.3378 0.4485 0.0001 0.0000
haberman 13.2 17.4 39.2 30.0 0.0082 0.0057 0.1518 0.2181 0.2046 0.2046
hayes-roth 12.9 15.4 94.9 38.8 0.0074 0.0076 0.0571 0.3026 0.2187 0.2187
heart 20.2 30.8 55.9 44.3 0.0025 0.0012 0.1677 0.2009 0.0080 0.0083
hepatitis 5.1 7.9 9.9 10.7 0.0261 0.0187 0.1761 0.2527 0.0009 0.0009
housevotes 12.8 6.8 82.6 18.7 0.0073 0.0184 0.0766 0.3653 0.0509 0.0509
ionosphere 16.0 19.9 91.5 39.8 0.0042 0.0040 0.0498 0.2236 0.0038 0.0035
iris 5.1 4.6 8.1 7.7 0.0487 0.1114 0.2539 0.2552 0.2137 0.0390
led7digit 19.1 34.6 90.1 50.5 0.0040 0.0016 0.0233 0.2547 0.2513 0.2513
LEV 46.4 36.4 101.1 47.3 0.0009 0.0016 0.1472 0.2545 0.1925 0.1925
lymphography 31.2 30.5 91.2 39.3 0.0013 0.0015 0.0453 0.4516 0.0887 0.0887
machinecpu 25.8 35.7 93.6 79.9 0.0017 0.0008 0.0488 0.2028 0.0572 0.0572
mammographic 13.1 11.8 92.2 18.4 0.0072 0.0085 0.1064 0.1985 0.3230 0.3230
monk-2 5.4 12.6 91.8 20.8 0.0184 0.0093 0.0369 0.1589 0.0262 0.0262
movement libras 47.2 66.1 104.2 128.4 0.0005 0.0003 0.2691 0.3227 0.0062 0.0002
newthyroid 11.9 12.6 39.2 29.0 0.0098 0.0086 0.2520 0.2378 0.0311 0.0013
pima 32.4 44.7 108.5 98.7 0.0014 0.0007 0.1469 0.2052 0.0554 0.0014
post-operative 18.6 27.9 91.0 33.0 0.0040 0.0018 0.0352 0.3957 0.1322 0.1322
saheart 26.5 47.7 82.1 94.5 0.0020 0.0006 0.1845 0.2179 0.0342 0.0385
segment 56.4 47.8 77.9 84.2 0.0004 0.0006 0.3421 0.4048 0.0001 0.0000
sonar 13.0 15.7 21.5 21.3 0.0063 0.0063 0.1842 0.2222 0.0000 0.0000
spectfheart 14.3 22.3 37.8 32.0 0.0047 0.0032 0.1830 0.3067 0.0000 0.0000
SWD 69.3 53.5 90.0 62.3 0.0004 0.0007 0.0000 0.2728 0.0979 0.0979
tae 15.0 16.3 93.4 36.9 0.0061 0.0041 0.0424 0.2397 0.1216 0.1216
titanic 4.0 4.0 4.0 4.0 0.1163 0.1667 0.1667 0.1667 0.0282 0.0282
vehicle 71.3 99.8 147.6 178.8 0.0002 0.0001 0.3101 0.2928 0.0000 0.0000
vowel 102.5 102.5 94.9 198.0 0.0001 0.0001 0.0590 0.3976 0.0000 0.0000
wdbc 31.5 53.1 84.1 86.6 0.0013 0.0005 0.2172 0.2267 0.0287 0.0057
windsorhousing 24.6 35.0 62.6 79.5 0.0015 0.0007 0.1852 0.1837 0.1918 0.1918
wine 13.8 18.8 30.6 34.8 0.0062 0.0040 0.2524 0.3337 0.0021 0.0004
wisconsin 12.4 16.8 57.0 27.0 0.0075 0.0050 0.0766 0.1854 0.3778 0.3778
yeast 231.6 349.3 129.8 802.5 0.0000 0.0000 0.2918 0.3101 0.0494 0.0023
zoo 13.5 16.6 90.0 25.2 0.0090 0.0049 0.0200 0.5680 0.0389 0.0389

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 69

Table 7: Accuracy and MAE results reported over non-monotonic data sets.

Accuracy Mean Absolute Error

MID MID MID MID MID MID MID MID
RF C4.5 CART RankTree OLM OSDL RF C4.5 CART RankTree OLM OSDL

appendicitis 0.8791 0.8218 0.7855 0.7655 0.8018 0.7727 0.1209 0.1782 0.2145 0.2345 0.1982 0.2273
australian 0.8725 0.8377 0.8493 0.8246 0.6971 0.7362 0.1275 0.1623 0.1507 0.1754 0.3029 0.2638
automobile 0.8045 0.8097 0.7086 0.7374 0.2195 0.3940 0.2650 0.2641 0.4765 0.3903 2.1534 0.8801
balance 0.8634 0.7903 0.5859 0.7728 0.4575 0.4991 0.1868 0.2545 0.7434 0.2560 1.0034 0.9234
bands 0.7137 0.6206 0.6148 0.6088 0.3702 0.6219 0.2863 0.3794 0.3852 0.3912 0.6298 0.3781
breast 0.7327 0.6395 0.7080 0.7112 0.6583 0.5464 0.2673 0.3605 0.2920 0.2888 0.3417 0.4536
car 0.8609 0.9335 0.8131 0.9294 0.9230 0.9392 0.1919 0.0868 0.2321 0.0932 0.1198 0.0642
cleveland 0.5745 0.5154 0.4852 0.5483 0.5625 0.5562 0.6450 0.7734 0.8341 0.6739 0.8408 0.6731
contraceptive 0.5493 0.4861 0.5065 0.4637 0.4324 0.3116 0.6618 0.7372 0.7113 0.8478 0.8473 0.7631
crx 0.8651 0.8327 0.8508 0.8056 0.5988 0.6333 0.1349 0.1673 0.1492 0.1944 0.4012 0.3667
ecoli 0.8403 0.8009 0.7443 0.7680 0.5715 0.0324 0.5611 0.7100 0.9428 0.8535 1.5379 2.3482
flare 0.7502 0.7336 0.6117 0.5994 0.5357 0.4944 0.4964 0.5111 0.6200 0.6689 0.8430 0.6894
german 0.7420 0.6940 0.6160 0.6750 0.7120 0.3730 0.2580 0.3060 0.3840 0.3250 0.2880 0.6270
glass 0.7613 0.6476 0.6811 0.6513 0.3244 0.3379 0.4890 0.7356 0.6567 0.7182 1.7816 1.7729
haberman 0.7304 0.7252 0.6988 0.6962 0.3496 0.7158 0.2696 0.2748 0.3012 0.3038 0.6504 0.2842
hayes-roth 0.7688 0.7938 0.5938 0.4563 0.5625 0.8125 0.2479 0.2063 0.4188 0.6688 0.4813 0.1938
heart 0.8346 0.7704 0.7296 0.7630 0.6667 0.6259 0.1654 0.2296 0.2704 0.2370 0.3333 0.3741
hepatitis 0.8710 0.7942 0.8257 0.8692 0.2497 0.8118 0.1290 0.2058 0.1743 0.1308 0.7503 0.1882
housevotes 0.9472 0.9525 0.9620 0.9507 0.8586 0.6843 0.0528 0.0475 0.0380 0.0493 0.1414 0.3157
ionosphere 0.9299 0.9060 0.8235 0.8491 0.6269 0.7407 0.0701 0.0940 0.1765 0.1509 0.3731 0.2593
iris 0.9533 0.9533 0.9533 0.9467 0.9333 0.3667 0.0467 0.0467 0.0467 0.0533 0.0667 0.9067
led7digit 0.7127 0.7180 0.2960 0.3320 0.3340 0.2240 1.2300 1.1940 2.3780 2.2300 2.6680 2.3860
lymphography 0.8309 0.7660 0.6991 0.7847 0.4866 0.5789 0.1812 0.2474 0.3009 0.2411 0.6176 0.4554
mammographic 0.8360 0.7991 0.8276 0.7888 0.8074 0.6291 0.1640 0.2009 0.1724 0.2112 0.1926 0.3709
monk-2 0.9757 1.0000 1.0000 1.0000 0.4734 0.5243 0.0243 0.0000 0.0000 0.0000 0.5266 0.4757
newthyroid 0.9618 0.9212 0.9491 0.9673 0.5636 0.1439 0.0628 0.1065 0.0786 0.0468 0.7662 0.8654
phoneme 0.8824 0.8699 0.7728 0.8605 0.7618 0.7060 0.1176 0.1301 0.2272 0.1395 0.2382 0.2940
pima 0.7549 0.7265 0.6993 0.6966 0.7110 0.6563 0.2451 0.2735 0.3007 0.3034 0.2890 0.3437
post-operative 0.6972 0.5528 0.6778 0.6653 0.6056 0.3417 0.3139 0.4472 0.3333 0.3458 0.4403 0.7750
saheart 0.7071 0.7099 0.6298 0.6514 0.6557 0.5066 0.2929 0.2901 0.3702 0.3486 0.3443 0.4934
tae 0.5904 0.5971 0.4317 0.4850 0.3508 0.3154 0.5311 0.5154 0.7138 0.6604 0.9871 0.7975
titanic 0.7862 0.7883 0.7669 0.7756 0.3249 0.4698 0.2138 0.2117 0.2331 0.2244 0.6751 0.5302
vehicle 0.7530 0.7505 0.6374 0.7352 0.2352 0.2447 0.4723 0.4528 0.6461 0.4905 1.5283 1.0260
vowel 0.9525 0.7758 0.2182 0.7778 0.0909 0.0859 0.1010 0.6242 2.9313 0.5232 5.0000 4.8273
wdbc 0.9561 0.9403 0.9226 0.9227 0.3392 0.3568 0.0439 0.0597 0.0774 0.0773 0.6608 0.6432
wine 0.9792 0.9271 0.8931 0.9157 0.3042 0.3261 0.0208 0.0729 0.1402 0.0843 0.9536 0.9487
winequality-red 0.6825 0.6091 0.5829 0.6110 0.2958 0.0119 0.3509 0.4747 0.4803 0.4553 1.7174 2.5341
wisconsin 0.9714 0.9401 0.9561 0.9501 0.8872 0.9593 0.0286 0.0599 0.0439 0.0499 0.1128 0.0407
yeast 0.6144 0.5115 0.4333 0.4892 0.2183 0.1820 0.7689 0.9953 1.1091 1.1448 1.9616 2.0214
zoo 0.9583 0.9381 0.7328 0.9425 0.8561 0.4547 0.0667 0.0903 0.3839 0.1500 0.6250 1.4744

70 Chapter II. Publications

Table 8: Number of leaves and Non Monotonic Index results reported over non-monotonic data sets.

Number of leaves Non Monotonic Index

MID MID MID MID MID MID MID MID
RF C4.5 CART RankTree RF C4.5 CART RankTree OLM OSDL

appendicitis 3.7 3.4 14.4 17.3 0.0298 0.1936 0.2715 0.2929 0.0000 0.0021
australian 41.1 61.4 90.8 94.2 0.0007 0.0003 0.0201 0.2786 0.0175 0.0187
automobile 60.6 60.2 86.7 35.7 0.0003 0.0007 0.3602 0.4770 0.0002 0.0009
balance 41.7 58.9 98.7 158.8 0.0006 0.0002 0.1286 0.3383 0.0053 0.0277
bands 26.3 46.7 93.8 74.0 0.0003 0.0007 0.1752 0.2396 0.0001 0.0000
breast 97.4 145.7 90.0 101.3 0.0001 0.0001 0.0000 0.0954 0.0279 0.0347
car 129.1 134.1 90.3 178.3 0.0000 0.0001 0.0291 0.2620 0.0837 0.0864
cleveland 34.7 58.8 108.0 104.2 0.0009 0.0003 0.2711 0.2520 0.0095 0.0086
contraceptive 138.5 261.9 103.8 99.2 0.0000 0.0000 0.1347 0.0940 0.0681 0.0342
crx 104.7 127.5 93.6 83.9 0.0001 0.0001 0.0756 0.3070 0.0024 0.0029
ecoli 22.1 27.3 81.0 73.1 0.0026 0.0015 0.2379 0.2989 0.1271 0.0002
flare 88.4 148.1 90.3 94.8 0.0002 0.0000 0.0308 0.1466 0.2120 0.2252
german 202.1 284.3 93.3 220.0 0.0000 0.0000 0.0441 0.2468 0.0005 0.0006
glass 21.0 28.7 47.1 52.0 0.0028 0.0016 0.3329 0.4635 0.0000 0.0000
haberman 10.3 7.2 94.4 98.9 0.0347 0.0365 0.0869 0.1257 0.1108 0.0056
hayes-roth 15.0 17.2 91.3 92.1 0.0055 0.0044 0.0223 0.0296 0.1267 0.2341
heart 19.8 32.0 54.5 45.3 0.0025 0.0011 0.1585 0.2171 0.0072 0.0086
hepatitis 5.2 8.5 9.7 10.6 0.0245 0.0138 0.1646 0.2658 0.0010 0.0010
housevotes 9.7 5.8 48.9 15.6 0.0097 0.0251 0.2304 0.3493 0.0076 0.0290
ionosphere 12.5 13.6 90.6 28.7 0.0057 0.0044 0.0449 0.2670 0.0023 0.0029
iris 5.4 4.4 10.4 11.3 0.0406 0.0524 0.2567 0.2501 0.2098 0.0390
led7digit 20.4 26.8 90.0 90.0 0.0033 0.0007 0.0218 0.0433 0.3411 0.3512
lymphography 26.9 26.9 91.0 27.9 0.0016 0.0020 0.0414 0.3394 0.0898 0.0798
mammographic 17.7 21.9 90.0 90.3 0.0027 0.0009 0.0000 0.0066 0.3156 0.2060
monk-2 14.4 5.0 7.2 7.0 0.0044 0.0600 0.4224 0.4286 0.0000 0.0000
newthyroid 7.0 8.1 15.8 12.5 0.0237 0.0248 0.2867 0.3075 0.0332 0.0009
phoneme 112.8 163.1 164.9 603.6 0.0001 0.0001 0.3036 0.2341 0.0126 0.0000
pima 31.7 28.2 96.0 151.0 0.0014 0.0021 0.0473 0.2126 0.0369 0.0012
post-operative 14.7 23.1 91.6 92.5 0.0046 0.0019 0.0209 0.0261 0.0617 0.0817
saheart 21.4 16.1 109.7 103.0 0.0031 0.0044 0.1677 0.2224 0.0208 0.0318
tae 16.4 30.4 90.0 97.7 0.0045 0.0011 0.0222 0.1399 0.0391 0.1220
titanic 6.0 6.1 90.0 90.0 0.0199 0.0152 0.0224 0.0236 0.2015 0.4673
vehicle 66.6 91.3 137.8 155.8 0.0003 0.0002 0.2873 0.2840 0.0000 0.0000
vowel 102.5 102.5 94.9 198.0 0.0001 0.0001 0.0590 0.3976 0.0000 0.0000
wdbc 11.6 14.1 24.6 21.3 0.0036 0.0052 0.2888 0.3359 0.0137 0.0000
wine 6.8 7.1 14.3 9.5 0.0064 0.0063 0.3470 0.5500 0.0005 0.0001
winequality-red 160.2 245.9 235.6 422.9 0.0000 0.0000 0.4761 0.2300 0.0027 0.0000
wisconsin 14.2 20.7 50.8 30.9 0.0056 0.0034 0.1459 0.1764 0.3621 0.3829
yeast 172.3 257.6 150.0 590.0 0.0000 0.0000 0.4240 0.4739 0.0365 0.0023
zoo 11.1 10.8 90.0 12.1 0.0144 0.0187 0.0220 0.2638 0.0220 0.0255

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 71

Table 9: Summary table for statistical inference outcome: Ranks and Adjusted P -Values

Monotonic Data Sets Non Monotonic Data Sets

Acc MAE Acc MAE
Ranks APVs Ranks APVs Ranks APVs Ranks APVs

MID-RF 2.480 – 2.540 – 1.475 – 1.500 –
MID-C4.5 3.360 0.037 3.310 0.079 2.625 0.006 2.550 0.012
MID-CART 4.310 0.000 4.320 0.000 3.600 0.000 3.500 0.000
MID-RankTree 3.200 0.054 3.230 0.079 3.375 0.000 3.425 0.000
OLM 3.650 0.005 3.800 0.003 4.900 0.000 5.175 0.000
OSDL 4.000 0.000 3.800 0.003 5.025 0.000 4.850 0.000

NL NMI NL NMI
Ranks APVs Ranks APVs Ranks APVs Ranks APVs

MID-RF 1.469 – 2.300 0.423 1.550 – 2.287 0.811
MID-C4.5 2.041 0.028 2.000 – 2.125 0.046 2.187 –
MID-CART 2.345 0.000 4.130 0.000 3.025 0.000 4.437 0.000
MID-RankTree 3.255 0.000 5.600 0.000 3.300 0.000 5.500 0.000
OLM – – 3.780 0.000 – – 3.375 0.005
OSDL – – 3.190 0.001 – – 3.212 0.015

the standard RF was not used. This is all due to the variability caused by the pruning procedure, which
allows the most monotonic and simple trees to be selected.

• Finally, referring to the NMI, Tables 6, 8 and 9 reflect better results for MID-C4.5. However, the
difference between MID-RF and MID-C4.5 is not pointed out as significant in both monotonic and
non-monotonic data sets. In conclusion Monotonic RF and MID-C4.5 have performed equally well.

To conclude, our approach performs better in almost every measure considered in the study than all the com-
pared algorithms, except for NMI when comparing with MID-C4.5.

5 Concluding Remarks

The purpose of this paper is to present and to analyse a Random forest proposal for classification with mono-
tonicity constraints. In order to be adapted to this problem, it includes the rate of monotonicity as a parameter
to be randomised during the growth of the trees. After building of all the decision trees, an ensemble pruning
mechanism based on the monotonicity index of each tree is used to select the subset of the most monotonic de-
cision trees to constitute the forest. The results show that Random Forests are promising models to address this
problem obtaining very accurate results involving trees with a low non monotonic index. We have compared it
with other monotonic decision tree approaches and their effectiveness is clearly overwhelmed by the Random
Forest approach.

As future work, we will examine the possibility of using other sophisticated pruning mechanisms, modifying
them to use NMI for criterion.

Acknowledgements

This work is supported by the research project TIN2014-57251-P and by a research scholarship, given to the
author Sergio Gonzalez by the University of Granada.

72 Chapter II. Publications

References

[1] A. Ben-David, L. Sterling, and Y. H. Pao. Learning, classification of monotonic ordinal concepts. Com-
putational Intelligence, 5:45–49, 1989.

[2] W. Kotlowski and R. Slowinski. On nonparametric ordinal classification with monotonicity constraints.
IEEE Transactions on Knowledge Data Engineering, 25(11):2576–2589, 2013.

[3] C.-C. Chen and S.-T. Li. Credit rating with a monotonicity-constrained support vector machine model.
Expert Systems with Applications, 41(16):7235–7247, 2014.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C.J. Stone. Classification and Regression Trees. Chapman
& Hall, 1984.

[5] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

[6] L. Rokach and O. Maimon. Data Mining with Decision Trees. Theory and Applications. 2nd Edition.
World Scientific, 2014.

[7] J. Furnkranz, D. Gamberger, and N. Lavrac. Foundations of Rule Learning. Springer, 2012.

[8] M. Wozniak, M. Graña, and E. Corchado. A survey of multiple classifier systems as hybrid systems.
Information Fusion, 16:3–17, 2014.

[9] Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-definite programming. Journal of
Machine Learning Research, 7:1315–1338, 2006.

[10] G. Martı́nez-Muñoz, D Hernández-Lobato, and A. Suárez. An analysis of ensemble pruning tech-
niques based on ordered aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(2):245–259, 2009.

[11] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[12] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[13] A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms. Machine
Learning, 19(1):29–43, 1995.

[14] F. Xia, W. Zhang, F. Li, and Y. Yang. Ranking with decision tree. Knowledge and Information Systems,
17(3):381–395, 2008.

[15] A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge-based dsss: method-
ology and applications. Decision Sciences, 23:1357–1372, 1992.

[16] S. Lievens, B. De Baets, and K. Cao-Van. A probabilistic framework for the design of instance-based
supervised ranking algorithms in an ordinal setting. Annals of Operaional Research, 163(1):115–142,
2008.

[17] W. Duivesteijn and A. Feelders. Nearest neighbour classification with monotonicity constraints. In
ECML/PKDD (1), pages 301–316, 2008.

[18] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Rechearch, 7:1–30, 2006.

[19] S. Garcı́a and F. Herrera. An extension on “statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008.

[20] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple compar-
isons in the design of experiments in computational intelligence and data mining: Experimental analysis
of power. Information Sciences, 180(10):2044–2064, 2010.

[21] A. Ben-David, L. Sterling, and T. Tran. Adding monotonicity to learning algorithms may impair their
accuracy. Expert Systems with Applications, 36(3):6627–6634, 2009.

Monotonic Random Forest with an ensemble pruning mechanism based on the degree of monotonicity 73

[22] S. Garcı́a, J. Luengo, and F. Herrera. Data Preprocessing in Data Mining. Springer, 2015.

[23] R. Potharst, A. Ben-David, and M. C. van Wezel. Two algorithms for generating structured and unstruc-
tured monotone ordinal datasets. Engineering Applications of Artificial Intelligence, 22(4-5):491–496,
2009.

[24] R. Potharst and A. J. Feelders. Classification trees for problems with monotonicity constraints. SIGKDD
Explorations, 4(1):1–10, 2002.

[25] K. Cao-Van and B. De Baets. Growing decision trees in an ordinal setting. International Journal of
Intelligent Systems, 18(7):733–750, 2003.

[26] Q. Hu, X. Che, Lei Z., D. Zhang, M. Guo, and Daren Yu. Rank entropy-based decision trees for monotonic
classification. IEEE Transactions on Knowledge Data Engineering, 24(11):2052–2064, 2012.

[27] I. Czarnowski and P. Jedrzejowicz. Designing RBF networks using the agent-based population learning
algorithm. New Generation Computing, 32(3-4):331–351, 2014.

[28] H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE Transactions on
Neural Networks, 21(6):906–917, 2010.

[29] F. Fernández-Navarro, A. Riccardi, and S. Carloni. Ordinal neural networks without iterative tuning.
IEEE Transactions on Neural Networks and Learning Systems, 25(11):2075–2085, 2014.

[30] K. Makino, T. Suda, H. Ono, and T. Ibaraki. Data analysis by positive decision trees. IEICE Transactions
on Information and Systems, E82(D(1)):76–88, 1999.

[31] R. Potharst and J. C. Bioch. Decision trees for ordinal classification. Intelligent Data Analysis, 4(2):97–
111, 2000.

[32] A. J. Feelders and M. Pardoel. Pruning for monotone classification trees. In IDA, volume 2810 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2003.

[33] J. W. T. Lee, D. S. Yeung, and X. Wang. Monotonic decision tree for ordinal classification. In IEEE
International Conference on Systems, Man and Cybernetics., pages 2623–2628, 2003.

[34] H. Zhu, J. Zhai, S. Wang, and X. Wang. Monotonic decision tree for interval valued data. In Machine
Learning and Cybernetics - 13th International Conference, pages 231–240, 2014.

[35] C. Marsala and D. Petturiti. Rank discrimination measures for enforcing monotonicity in decision tree
induction. Information Sciences, 291:143–171, 2015.

[36] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[37] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, L. Sánchez, and F. Herrera. KEEL data-
mining software tool: Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.

[38] R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard. A survey on graphical methods for classification pre-
dictive performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 23(11):1601–
1618, 2011.

[39] L. Gaudette and N. Japkowicz. Evaluation methods for ordinal classification. In Canadian Conference on
AI, volume 5549 of Lecture Notes in Computer Science, pages 207–210, 2009.

[40] N. Japkowicz and M. Shah, editors. Evaluating Learning Algorithms: A Classification Perspective. Cam-
bridge University Press, 2011.

2 Class switching according to nearest enemy distance for learning from highly imbalanced data-sets 75

2 Class switching according to nearest enemy distance for learning
from highly imbalanced data-sets

• González, S., Garćıa, S., Lázaro, M., Figueiras-Vidal, A. R., & Herrera, F. (2017). Class switching
according to nearest enemy distance for learning from highly imbalanced data-sets. Pattern
Recognition, 70, 12-24.

– Status: Published

– Impact Factor (JCR 2017): 3.965

– Subject Category: Computer Science, Artificial Intelligence

– Rank: 16/132

– Quartile: Q1

76 Chapter II. Publications

CLASS SWITCHING ACCORDING TO NEAREST ENEMY DISTANCE

FOR LEARNING FROM HIGHLY IMBALANCED DATA-SETS

Sergio González
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

sergiogvz@decsai.ugr.es

Salvador Garcı́a
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

salvagl@decsai.ugr.es

Marcelino Lázaro
Department of Signal Theory and Communications

Carlos III University of Madrid, 28903 Getafe, Madrid
mlazaro@tsc.uc3m.es

Anı́bal R. Figueiras-Vidal
Department of Signal Theory and Communications

Carlos III University of Madrid, 28903 Getafe, Madrid
arfv@tsc.uc3m.es

Francisco Herrera
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

herrera@decsai.ugr.es

ABSTRACT

The imbalanced data classification has been deeply studied by the machine learning practi-
tioners over the years and it is one of the most challenging problems in the field. In many
real-life situations, the under representation of a class in contrary to the rest commonly pro-
duces the tendency to ignore the minority class, this being normally the target of the problem.
Consequently, many different techniques have been proposed. Among those, the ensemble ap-
proaches have resulted to be very reliable. New ways of generating ensembles have also been
studied for standard classification. In particular, Class Switching, as a mechanism to produce
training perturbed sets, has been proved to perform well in slightly imbalanced scenarios. In
this paper, we analyze its potential to deal with highly imbalanced problems, fighting against
its major limitations. We introduce a novel ensemble approach based on Switching with a new
technique to select the switched examples based on Nearest Enemy Distance. We compare
the resulting SwitchingNED with five distinctive ensemble-based approaches, with different
combinations of sampling techniques. With a better performance, SwitchingNED is settled as
one of best approaches on the field.

Keywords Imbalanced classification · Ensembles · Preprocessing · Class Switching.

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 77

1 Introduction

The classification of datasets with skewed class distributions has drawn the attention of practitioners along the
years of machine learning research. The class imbalance problem refers to datasets with a wide disparity in
the number of instances for each class. In a binary imbalanced scenario, the minority class has much fewer
examples than those of the majority class. These differences in the amount of samples cause a great loss of the
minority class accuracy when applying standard classifiers. Real-life classification problems frequently suffer
from this difficulty and misclassifying an example of the minority class usually entails greater costs. Therefore,
the treatment of this problem is extremely important.

However, the skewed class distribution is not the only problem that has to be handled in order to obtain good
behaviors [1, 2]. Those other problems are the overlapping between classes [3], the high impact of noise [4, 5],
the identification of small disjuncts [6], the lack of density in the training data [7, 8] and the possible differ-
ences in the data distribution between the training and test sets (dataset shift) [9, 10]. Even though these are
common problems in standard classification, they have a greater impact over the minority class in imbalanced
environments.

Consequently, a large number of techniques have been proposed over these years to deal with this problem.
Three groups can be defined: Algorithmic based approaches [11], cost-sensitive learning [12, 13], and sampling
data based approaches [2]. Ensembles have been successfully combined with these earlier methods recalling
the best performances towards the problem [14]. EUSBoost was proposed in [15], and it has been found as the
best ensemble to deal with highly imbalanced scenarios.

A type of ensemble known as Output Flipping was proposed in [16], based on randomizing the output of the
training set, maintaining the input data untouched, differently to Bootstrapping. Output Flipping exchanges
the class labels between instances preserving the relative frequencies of the classes. This last characteristic
limits its applicability to imbalanced datasets. Later on, this same concept was extended in [17] and named as
Class Switching. This algorithm randomly selects the instances to be changed without maintaining the same
number of representatives from each class. These approaches have been proved to perform similarly to Bagging.
However, the particularities of the Switching algorithm tend to equal the number of representatives from all
classes. Consequently, Switching performs better than other ensembles in slightly imbalanced scenarios.

Due to its effectiveness in slightly imbalanced scenarios, we explore the suitability of Switching for classifica-
tion in highly imbalanced problems. We set the challenge of using the goodness of Switching approaches to
successfully deal with highly imbalanced datasets, expecting to get performance advantages. In particular, we
propose a novel Switching-based ensemble with a new technique to select the switched examples based on the
Nearest Enemy Distance (NED). We call this approach SwitchingNED. Its new way of selecting the switched
instances changes drastically the initial idea of the base approaches and solves their drawbacks for this kind
of problems. Class Switching is applied to instances of the majority class according to their proximity to the
minority class, measured by the NED. This allows a growth of the minority class population near to the classifi-
cation boundaries, finding a better balanced representation between classes in highly imbalanced scenarios. As
done with other ensembles [14], we combine SwitchingNED with different sampling methods, obtaining very
promising results.

In order to test the proposed method under the given hypotheses, we perform several experiments which sup-
port that SwitchingNED successfully deals with highly imbalanced datasets and is one of the best approaches
on the field. We have checked the improvement of our scheme against the basic Switching algorithm and its
behavior in combination of preprocessing techniques. SwitchingNED is compared with five different represen-
tative approaches of each combination of sampling techniques and ensemble schemes [14]: EUSBoost [15],
UnderBagging [18], SMOTEBoost [19], SMOTEBagging [20] and EasyEnsemble [21]. Among these methods,
the best method of the literature is included, which is EUSBoost [15]. This experimental framework includes a

78 Chapter II. Publications

total of 33 highly imbalanced datasets, where the majority class is at least 9 times bigger than the minority one.
Furthermore, the empirical study has been validated using non-parametric statistical testing [22].

This paper is organized as follows. In Section 2 we present the class imbalance problem, within its drawbacks,
its measures and the possible solutions to it. Section 3 introduces the randomizing output approaches. Section
4 is devoted to introducing SwitchingNED with its novel technique of selecting the instances to be switched
based on NED. Section 5 describes the experimental framework followed by the empirical results and compares
them to those offered by the original Switching approach. In Section 6 the use of sampling techniques in
SwitchingNED is presented and analyzed with different experiments. Section 7 closes the paper presenting its
main conclusions.

2 The problem of imbalanced class distributions in classification

In this section, we first present the class imbalance problem in detail, specifying its characteristics, the diffi-
culties that it creates for standard classifiers, and the particular metrics used in this problem. Afterwards, we
briefly survey the different approaches to deal with this problem.

2.1 The imbalanced class problem

This problem appears when one of the classes, known as minority or positive class, has fewer representing
examples than the other, majority or negative class. It is common in many real applications, such as biometric
identification [23, 24] and bioinformatics [25, 26], that have brought a growth of attention by researchers.
Furthermore, the minority class normally merits more interest from a learning point of view, implying a greater
cost when it is not well classified [27].

The main concern with imbalanced datasets is that the standard classification learning methods are usually
biased toward the majority class. Standard classifiers use commonly global performance measures, like the
accuracy rate, to guide the learning process, which benefits the majority class. Even more, they are normally
designed to discard very highly specialized classification rules, those needed to predict the positive class, in
favour of more general ones. Consequently, there is a higher misclassification rate for the minority class.

This loss of performance is mainly caused by the differences in the amounts of samples between classes,
increasing with the Imbalance Ratio (IR) [1] of the datasets. This ratio is computed as the number of the
negative class examples divided by the number of positive class examples. The datasets with IR greater than
9 are considered as highly imbalanced [15]. There are several studies [1, 14] pointing out that there are other
problems to consider in order to obtain good behaviors. The presence of small disjuncts, overlapping, lack of
density or noisy have been proved to greatly reduce the accuracy of the minority class prediction [1].

The evaluation of the algorithms applied to this problem is of great relevance in order to properly guide their
learning phase. Standard measures like accuracy cannot be used, because they assess the methods with the
overall performance on the entire datasets and not the performance on each class independently. There are
other more suitable measures for this environment, such as the Area Under the ROC Curve or Geometric Mean.
The Area Under the ROC Curve (AUC) [28] is a widely used measure in imbalanced domains [1, 2, 14]. The
Receiver Operating Characteristic (ROC) curve [29] represents graphically the trade-off between the percentage
of well classified positive instances (TPrate) and the percentage of incorrectly classified negative instances
(FPrate). In our experiments, we use the simplified expression of the AUC computed with the TPrate and
FPrate[15].

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 79

2.2 Solutions to the class imbalance problem

As previously mentioned, the approaches for dealing with imbalanced dataset classifications could be divided
in the three groups: Cost-sensitive learning solutions [13, 30], algorithmic approaches [11, 31] or data level
methods [2, 19, 32].

The cost-sensitive learning considers the costs of the errors by minimizing a cost function that includes them. In
imbalanced classification, these methods take into account the higher cost of misclassification of the minority
class with respect to its alternative. These costs are defined by domain experts or learned with other approaches.
The algorithmic approaches are modifications of base learning algorithms that achieve good performance with
imbalanced datasets.

Finally, the data level methods focus on pre-processing the original dataset in order to obtain a more balanced
one. These techniques allow to use standard learning algorithms after the preprocessing. The equal represen-
tation between classes is reached by generating more examples for the positive class (oversampling), removing
examples from the negative class (undersampling) or both (hybrid methods). The most elementary techniques
in this field are Random Under/Over- sampling, which randomly remove or replicate instances from the ma-
jority/minority class. Its first modality has the disadvantage of being able to eliminate real valuable data, while
the oversampling can come out with over-fitting. Several sophisticated approaches have been proposed, such
as SMOTE (Synthetic Minority Oversampling TEchnique)[33] and others based on complex heuristics like
genetic algorithms [34].

Another category can be defined when ensemble classifiers are considered. Recently, these types of approaches
have become more and more popular [14], due to their potential to enhance the results of traditional data
preprocessing and cost-sensitive learning approaches by combining them. The cost-sensitive ensembles [12]
have been less attractive, because the misclassification costs are not easy to define and the standard classification
datasets usually do not include them. On the contrary, the data preprocessing ensembles are more general [32].
In this sub-group, Bagging- [18, 35], Boosting [19, 36]-, and Hybrid-based ensembles are combined with one or
more of the traditional sampling techniques. This combination permits, while making the class representations
equal, to increase the diversity of the ensemble and to reduce the impact of the sampling mistakes, such as
removing relevant instances in the case of undersampling. Due to that fact, these methods achieve the best
results for class imbalanced problems. An extensive empirical study of the ensembles solutions to this problem
was presented in [14]. Among these solutions, it is worth to mention the superiority of EUSBoost [15] with
respect to the other approaches in highly imbalanced scenarios.

3 Randomizing output and class-switching

In this section, we review the randomizing output and class-switching ensembles with enough depth to poste-
riorly settle down the new proposal. In [16], Breiman brought up a thrilling question about the possibility of
obtaining a comparable performance to that of other ensembles by just altering the outputs of the problem, i.e.
the class labels. The main idea for his approach, called Output Flipping, is to randomize the output of a small
fraction of the dataset, producing different controlled noises that will be canceled when aggregated, leading to a
better prediction accuracy. Breiman’s Output Flipping has been proved in [17] to be very limited for imbalanced
scenarios, with its flipping rate constrained by the minority class proportion. Therefore, we have not considered
this proposal for our study. Posteriorly, a new ensemble based on randomizing outputs was proposed in [17],
under the name of Switching, solving that issue in some degree. The Switching algorithm differs from Output
Flipping in the mechanism used to change the class labels. In each iteration of the ensemble, a fixed fraction fr

80 Chapter II. Publications

of the instances is randomly selected. All these examples are switched to another randomly chosen class. This
is represented with the following transition matrix:

Pj←i = fr /(K − 1) for i 6= j

Pi←i = 1− fr
(1)

where Pj←i is the probability to change an instance from the class i to the class j, andK, the number of classes.
This output switching mechanism does not ensure to maintain the original distribution of the data. Actually,
the procedure tends to equilibrate the class distribution of imbalanced datasets with the rising of the parameter
fr. The probability of randomly selecting an example of the majority class is higher than for positive examples.

Due to this fact, the constraint for the parameter fr becomes less restrictive. To fulfil the convergence of the
ensemble, the majority of the examples for each class should not be switched, keeping the integrity of every
class. This is generally satisfied if Pj←i < Pi←i and, according to Eq. 1, the restriction for fr is:

fr < (K − 1)/K (2)

This permits a greater range of acceptable values for imbalanced sets than the flipping procedure does. This
characteristic and the tendency to re-balance the class distribution turn this ensemble into a very promising
initial approach to deal with the imbalanced data classification problem. However, this expression does not
consider the maintenance of the integrity of the minority class in imbalanced problems due to flooding. Once
the switching process is applied, there should be more real instances (i.e., not switched) than switched examples
in each class. If this condition is not fulfilled, the models start to give more importance to the switched instances,
deteriorating the results. The minority class is affected in a greater degree by this situation. Therefore, we do
not recommend to exceed the value shown in Eq. 3 (this formulation and its development is explained in the
A):

fr <
K − 1

(Pm)−1 +K − 2
(3)

where Pm is the proportion of the entire dataset samples belonging to minority classes. In the common binary
scenario, the constraint is simplified to fr < Pm. Due to this fact, Switching only works well with slightly
imbalanced sets. For highly imbalanced datasets, the problem of flooding the minority class with examples of
the majority class remains unsolved. Therefore, a new design is needed to finally cope with that problem.

4 Class-Switching according to the Nearest Enemy Distance

In this section, we introduce SwitchingNED and explain how it is able to handle highly imbalanced data. We
will separately detail in two subsections the different aspects of our Switching-based algorithm. In Subsection
4.1, we will start by focusing on the problems of Switching with imbalanced datasets and the first necessary
step to solve them. Along Subsection 4.2, we present a novel way of selecting the instances to be changed to
the minority class based on the Nearest Enemy Distance.

4.1 Switching-I: Switching for Imbalanced scenarios

For highly imbalanced scenarios, the Switching algorithm finds several difficulties. The convergence is com-
promised, needing a high switching rate and an excessive number of classifiers. The minority class is also
flooded with majority class examples. Then, the classifiers could give more importance to the switched in-
stances than to the real minority class instances while inferring the models. This could degenerate the majority

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 81

class accuracy, while still ignoring the minority class. Finally, with the increase of the switching rate, there is
the possibility of loosing the few relevant minority instances towards other class, which makes impossible to
infer a proper model for the minority class.

We maintain the minority instances untouched. The examples of the majority class are the only ones to be
changed. This allows to retain all the relevant information of the minority class. This modification is an impor-
tant step to facilitate the balancing process for slightly imbalanced datasets. We will refer to it as Switching-I.

Nevertheless, the flooding problem is still there for highly imbalanced datasets. We have noticed that it is
not recommendable to excessively surpass the number of instances of the minority class with the switched
samples. Exceeding a certain threshold, the real minority instances start to loose importance in the learning
stage, deteriorating the ensemble models and the results. The convergence of the ensemble gets also harder to
achieve, needing an excessive number of iterations. Therefore, we could set the restriction of fr < Pmin, where
fr is the fraction of samples to be changed to the minority class, and Pmin the proportion of actual positive
instances. This is the same restrictive threshold set of the Output Flipping algorithm, which has the problem of
not allowing enough range of values for the parameter fr to reach the equal representation between classes.

4.2 SwitchingNED: Switching according to Nearest Enemy Distance

One way to mitigate the loss of importance of the real positive instances is to ensure that the switched negative
examples are located as near as possible to these positive examples. This helps the classifiers to focus the
attention on the real minority class subspace or its neighborhood, where the number of instances has suddenly
grown.

We have designed a new way of selecting the instances to be switched, following the previous idea and avoiding
the uniformly random way of the original Switching. The negative samples are chosen according to their
proximity to the positive ones. Concretely, we define this proximity as the Nearest Enemy Distance (NED),
the Euclidean distance to its closest positive sample. Farther a negative example is from the minority class,
greater the distance to its nearest enemy is, and, consequently, it is less probable to switch it. We call this
original Switching algorithm SwitchingNED. Its implementation is represented in Algorithm 1. In Lines 2-4,
the switching probabilities (Prob) and number of switched examples are computed. In each iteration, the fr ∗N
negative instances are switched according to Prob in dataset D̂, which is used to train a decision tree stored
in Trees (Lines 5-12). Finally, unknown examples are labeled with majority voting prediction of the trees in
Trees.

SwitchingNED changes drastically how the instances are switched and moves away from the general concept
of the Class Switching algorithm. The main idea behind the earlier randomizing output approaches was to
introduce a controlled diversity to generate different perturbed training datasets, while dissipating it with the
increasing of the ensemble, tending to a lower error. However, we want to use the switched examples to
form a better class distribution, maintaining these changes few enough to avoid damaging the behaviour of the
ensemble. Therefore, a totally random way of switching instances seems to be harmful for our purposes.

We implement this new switching technique with a probability distribution computed with the inverse of the
NED of each majority instance. This distribution is used to choose the samples by roulette wheel selection
in each iteration, as seen in Line 8. Algorithm 2 exhibits the computational process of the distribution. First,
the nearest instance from the minority class is found for each sample of the majority class. The corresponding
switching probability is set proportional to the inverse of the Euclidean distance to its nearest positive instance.
These probabilities are normalized to sum one. This is a static process, computed once at the beginning of the
algorithm, as shown in Line 3.

Summarizing, SwitchingNED is a novel and distinct ensemble that, as Bagging does with bootstrapping, uses
the instance switching procedure to promote diversity along the different classifiers built. In addition, Switch-
ingNED has the property to properly learn from skewed data thanks to Nearest Enemy Distance.

82 Chapter II. Publications

Algorithm 1 SwitchingNED Algorithm.

1: function SWITCHINGNED(D - dataset, nTrees - number of trees built, S - the predicted version of D, fr
- switching rate, M - majority tag, m - minority tag)

2: initialize: S = {}, Trees[1..nTrees], Prob[1..size(D)]
3: Prob = NEDprob(D,M,m) . Assign 0 to minority samples
4: #Switched = fr ∗N
5: for i in [1,nTrees] do
6: D̂ = D
7: for j in [1,#Switched] do
8: t = RouletteSelection(Prob) . Sample t from majority class
9: D̂class

t = m . Switched to minority class
10: end for
11: Treesi = BuildTree(D̂)
12: end for
13: for d in D do
14: Ŝi,d = Predict(Treesi, d)
15: end for
16: S = PredictMajorityV oting(Ŝ)
17: return S
18: end function

Algorithm 2 NED probabilities function.

1: function NEDPROB(D - dataset, M - majority tag, m - minority tag)
2: initialize: Prob[1..size(D)] = 0, Dist[1..size(D)]
3: for i in [1,size(D)] do
4: if Dclass

i = M then . Just for majority samples, else Probi = 0
5: for j in [1,size(D)] do
6: if Dclass

j = m then
7: if distance(Di, Dj) < Disti then
8: Disti = distance(Di, Dj)
9: end if

10: end if
11: end for
12: Probi = 1/Disti
13: end if
14: end for
15: Normalize(Probi)
16: return Probi
17: end function

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 83

Figure 1 exemplifies SwitchingNED learning procedure from a given imbalanced dataset. As shown in Stage
1, SwitchingNED first computes the nearest enemies of all negative instances and, with the inverse of their
distances, their probabilities of being switched. The resultant probabilities are sorted, normalized and prepared
for the selection of N ∗ fr instances. In the exhibited array, the general positive, core and border negative
samples are represented with their real switching probabilities and their states along the method. Positive
instances are never selected, because their probabilities are set to 0. And border instances are more frequently
switched than core ones.

In each iteration, a new modified training set is constructed by switching N ∗ fr negative instances to the
minority class guided by the previous probability distribution. These sets are used to train several C4.5 trees
which will infer different decision boundaries. This process is illustrated with the 3 scatter plots of the second
step of Figure 1 (Stage 2). In those, one can be observe that certain groups of instances near to the borders are
always switched. Additionally, big decision regions are inferred for the minority class. The erroneous ones do
not overlap with each other, and as a result they will not matter when the predictions are aggregated.

Finally, the inferred C4.5 trees form an ensemble that decides the class predictions of unlabeled instances with
majority voting scheme (Stage 3). The last illustration of Figure 1 manifests this scheme with the overlap of
the different decision boundaries. The resultant model performs a nearly perfect classification of the data.

5 Experimental Framework, Results and Analysis

In this section, we present the experimental study carried out with all the class switching algorithms men-
tioned. In Subsection 5.1, we start by introducing the framework for this and posterior studies, pointing out
the datasets, measures and general parameters used. Subsection 5.2 is dedicated to analyze the performance of
SwitchingNED in comparison with the other Switching approaches. Finally, we present a graphical analysis of
our method in Subsection 5.3.

5.1 Experimental Framework

The experimental framework has been completely extracted from [15], where a full study is carried out with the
main state-of-the-art ensemble-based proposals. For our experiments, we use exactly the same 33 binary highly
imbalanced datasets, i.e. with their IR greater than 9. This is a very diverse collection of datasets in terms of
IR, going from barely reaching 9 till exceeding one hundred. The different datasets and their characteristics are
presented in Table 1, ordered by their increasing IR. All these sets have been extracted from the UCI and KEEL
repositories [37, 38].

They are multi-class standard classification datasets that have been adapted to conform binary imbalanced
problems. This process mainly consists of labeling as positive class one or more small classes, and the rest as
negative class.

Table 1 shows the name of the datasets, their number of instances (#Ex.), their number of attributes (#Att.), the
percentage of examples of the minority (%min) and majority (%maj) classes, and their IR.

The execution of the algorithms has been carried out following a 5-fold stratified cross validation schema
(5-fcv), with the same partitions used in [15] provided by the software KEEL [38]. These ensembles use ran-
domness in some of their processes. Therefore, these executions have been repeated three times with different
seeds to gather the average results.

As weak learners for these ensembles, decision tree C4.5 [39] has been used. Output switching algorithms
have been presented with decision trees [16, 17]. This baseline classifier has been chosen for the most relevant
ensembles in some studies of imbalanced scenarios [1, 14, 15].

84 Chapter II. Publications

º º º

Tree #1 Tree #2 Tree #ntrees

SwitchingNED(nTrees, fr, TR)

Training Set (TR)

∞ 0.359 º º ºº º º∞ 0.353 0.047 0.045 0.027

0 0.003 º º ºº º º0 0.003 0.026 0.027 0.047

NE Distancesi

Normalized
probabilitiesi

Positive samples
(never switched)

For j in [1, nTrees]: Switch instancesi according to probabilitiesi
Infer Treej with the resultant datasetj

For i in [1, N]: Compute distancesi to nearest enemyi
Calculate selection probabilitiesi as 1/distancesi

Negative samples
Core samples

(seldom switched)
Border samples

(frequently switched)

Build Ensemble with resultant Trees
with majority voting scheme

Training AUC: 0.99 Test AUC: 0.91

Test Set (TS)

Stage 1

Stage 0

Stage 2

Stage 3

Figure 1: Learning procedure of SwitchingNED from an Imbalanced Chess3x3 Synthetic Data.

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 85

Table 1: Description of the 33 datasets used in the study.

No. Datasets #Ex. #Atts. (%min, %maj) IR

1 Glass04vs5 92 9 (9.78, 90.22) 9.22
2 Ecoli0346vs5 205 7 (9.76, 90.24) 9.25
3 Ecoli0347vs56 257 7 (9.73, 90.27) 9.28
4 Yeast05679vs4 528 8 (9.66, 90.34) 9.35
5 Ecoli067vs5 220 6 (9.09, 90.91) 10.00
6 Vowel0 988 13 (9.01, 90.99) 10.10
7 Glass016vs2 192 9 (8.89, 91.11) 10.29
8 Glass2 214 9 (8.78, 91.22) 10.39
9 Ecoli0147vs2356 336 7 (8.63, 91.37) 10.59
10 Led7Digit02456789vs1 443 7 (8.35, 91.65) 10.97
11 Ecoli01vs5 108 9 (8.33, 91.67) 11.00
12 Glass06vs5 240 6 (8.33, 91.67) 11.00
13 Glass0146vs2 205 9 (8.29, 91.71) 11.06
14 Ecoli0147vs56 332 6 (7.53, 92.47) 12.28
15 Cleveland0vs4 177 13 (7.34, 92.66) 12.62
16 Ecoli0146vs5 280 6 (7.14, 92.86) 13.00
17 Ecoli4 336 7 (6.74, 93.26) 13.84
18 Shuttle0vs4 459 8 (6.72, 93.28) 13.87
19 Yeast1vs7 1829 9 (6.72, 93.28) 13.87
20 Glass4 214 9 (6.07, 93.93) 15.47
21 Page-blocks13vs4 472 10 (5.93, 94.07) 15.85
22 Abalone918 731 8 (5.65, 94.25) 16.68
23 Glass016vs5 184 9 (4.89, 95.11) 19.44
24 Shuttle2vs4 129 9 (4.65, 95.35) 20.50
25 Yeast1458vs7 693 8 (4.33, 95.67) 22.10
26 Glass5 214 9 (4.20, 95.80) 22.81
27 Yeast2vs8 482 8 (4.15, 95.85) 23.10
28 Yeast4 1484 8 (3.43, 96.57) 28.41
29 Yeast1289vs7 947 8 (3.17, 96.83) 30.56
30 Yeast5 1484 8 (2.96, 97.04) 32.78
31 Ecoli0137vs26 281 7 (2.49, 97.51) 39.15
32 Yeast6 1484 8 (2.49, 97.51) 39.15
33 Abalone19 4174 8 (0.77, 99.23) 128.87

86 Chapter II. Publications

Finally, as evaluation metric, we choose a widely used measure in imbalanced scenarios [1, 2, 14]: the above
mentioned AUC [15]. We support the results with a non-parametric statistical analysis [22].

5.2 SwitchingNED for the class imbalance problem

The purpose of the following experiment is to test the performance of the new SwitchingNED with highly
imbalanced datasets and to compare it with the original Switching and its modified version the Switching-I.
The algorithms have been executed with different values for the parameter fr (0.1; 0.2; 0.3). However, we have
fixed the number of classifiers to 40, a common value used in Bagging-based approaches. We wanted to seek an
algorithm that fairly competes with the rest and not to exceed the number of trees where the rest of ensembles
reach the over-fitting.

Table 2 contains the results for all datasets for each switching rate. These results show an overwhelming im-
provement of SwitchingNED over the original Switching and Switching-I. Even the small modification done
with Switching-I results better than the Switching algorithm (see also Fig. 2) . Counting with the different fr
configurations, the original Switching results better only in one dataset, being tied in 5. On the other hand,
SwitchingNED beats both original Switching and the proposed modified version Switching-I in 20 different
datasets. Additionally, all three average results are superior than the rest obtained by each different configura-
tions of the other methods. These facts indicate a convincing superiority of the proposed SwitchingNED.

By prioritizing the exchange of instances near to the classification borders and just from the majority to the
minority class, an equal representation for all classes of these highly imbalanced datasets can be achieved.
This is supported by the Wilcoxon statistical test summarized in Table 3, which stresses this enhancement for
different values of fr. Table 3 represents the hypothesis of equivalence for the pairwise comparison of the three
algorithm. A rejected hypothesis means that there is a significant difference between the pair of algorithms.

Figure 2 exhibits the differences of average results obtained over the previous selected datasets by the three
methods while fr grows. With a brief glance, the improvement of SwitchingNED over Switching is clearly
visible. Looking deeply, two different behaviors can be observed. For Switching and Switching-I, the per-
formance decreases with the growth of fr due to the loss of important information and the flooding problem.
However, this declining tendency is broken by the SwitchingNED, because the impact of these two problems
are mitigated when switching border samples. Better results are obtained for higher fr because it is easier to
reach a balanced representation. Summarizing, SwitchingNED is, with any doubt, a better method to deal with
imbalanced classification with strictly better performance and with a greater variety of fr values.

5.3 Graphical analysis of SwitchingNED

The purpose of this analysis is to improve the comprehension of the behavior of SwitchingNED and to further
prove the superiority of SwitchingNED over the previous Switching, all with graphical case studies.

For our graphical case study, we chose a binary 2D synthetic data with 1000 examples forming a 5 × 5 chess-
board. Then, we under-sampled the white class to only 12% of the instances, resulting a dataset with approx.
500 black and 60 white instances (IR = 8.33). Figure 3a and Figure 3b illustrate these balanced and imbal-
anced data with their classification boundaries inferred by C4.5 decision trees. Figure 3b exhibits the inability
of the C4.5 to learn from the imbalanced data.

On the contrary, Figure 3c illustrates a better performance obtained with SwitchingNED. This figure was de-
signed with the overlap of the classification boundaries inferred by 40 C4.5s within SwitchingNED ensemble.
Its gradient map represents the probability of belonging to the minority class. With a quick look, the 5× 5 grid
is clearly perceived, which represents a better generalization of the data compared to Figure 3b. This is also
supported by the AUC results obtained.

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 87

Table 2: AUC results for the original Switching, Switching-I and SwitchingNED. The best global results are
stressed in bold-face.

Switching Switching-I SwitchingNED
fr = 0.1 fr = 0.2 fr = 0.3 fr = 0.1 fr = 0.2 fr = 0.3 fr = 0.1 fr = 0.2 fr = 0.3

Glass04vs5 0.9941 0.9775 0.5500 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941
Ecoli0346vs5 0.8511 0.864 0.8083 0.8419 0.8577 0.8743 0.8401 0.8502 0.8586
Ecoli0347vs56 0.769 0.7809 0.6533 0.7557 0.7736 0.7995 0.7550 0.7876 0.8529
Yeast05679vs4 0.6741 0.6316 0.5063 0.6974 0.7186 0.7405 0.7003 0.7559 0.7898
Ecoli067vs5 0.8342 0.8425 0.6742 0.7925 0.8258 0.8425 0.7925 0.8258 0.8767
Vowel0 0.9661 0.9100 0.8467 0.9685 0.9674 0.9598 0.9713 0.9813 0.9749
Glass016vs2 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5613
Glass2 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4974 0.6118
Ecoli0147vs2356 0.7323 0.7378 0.5211 0.7156 0.7429 0.7418 0.7656 0.7823 0.7904
Led7Digit02456789vs1 0.8959 0.9001 0.8698 0.8955 0.908 0.9056 0.8955 0.8989 0.9034
Ecoli01vs5 0.8280 0.8129 0.6894 0.8682 0.8432 0.8773 0.8727 0.8879 0.8955
Glass06vs5 0.945 0.5167 0.5000 0.995 0.9283 0.7500 0.995 0.9617 0.865
Glass0146vs2 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5083 0.5083 0.6327
Ecoli0147vs56 0.7434 0.7445 0.5133 0.7367 0.7695 0.7751 0.7501 0.7901 0.8196
Cleveland0vs4 0.6384 0.6081 0.6409 0.6955 0.7924 0.8655 0.6843 0.8116 0.8926
Ecoli0146vs5 0.7692 0.7699 0.6833 0.7756 0.7929 0.7917 0.7846 0.8109 0.8186
Ecoli4 0.8275 0.8286 0.5667 0.8093 0.8416 0.8400 0.8176 0.8394 0.8844
Shuttle0vs4 0.9997 0.9997 0.9999 0.9997 0.9997 0.9997 0.9997 0.9997 0.9996
Yeast1vs7 0.5488 0.5000 0.5000 0.5806 0.5413 0.5211 0.5655 0.5329 0.6155
Glass4 0.6600 0.5000 0.5000 0.7503 0.5736 0.5483 0.7414 0.7236 0.6506
Page-blocks13vs4 0.9489 0.7889 0.5067 0.9911 0.9133 0.8700 0.9978 0.9981 0.9891
Abalone918 0.5516 0.5000 0.5000 0.5755 0.5358 0.5238 0.5649 0.5354 0.5194
Glass016vs5 0.7814 0.500 0.5000 0.8924 0.6314 0.5000 0.8952 0.6657 0.5500
Shuttle2vs4 1.0000 0.95 0.5833 1.0000 0.9833 1.0000 1.0000 1.0000 0.9793
Yeast1458vs7 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Glass5 0.6817 0.5000 0.5000 0.9142 0.6167 0.4992 0.8642 0.6476 0.5000
Yeast2vs8 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Yeast4 0.5578 0.5000 0.5000 0.5765 0.5720 0.6111 0.6060 0.6085 0.6968
Yeast1289vs7 0.5165 0.5000 0.5000 0.5326 0.5165 0.5000 0.5219 0.5000 0.5000
Yeast5 0.8767 0.7207 0.5193 0.8767 0.8712 0.9074 0.9122 0.9471 0.9603
Ecoli0137vs26 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.7000 0.6167 0.749
Yeast6 0.6560 0.5000 0.5000 0.7075 0.6978 0.7012 0.7547 0.7944 0.8423
Abalone19 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4965

Avg: 0.7196 0.6632 0.5798 0.7406 0.7184 0.7103 0.7500 0.7440 0.7597

88 Chapter II. Publications

Table 3: Summary of the results obtained by a Wilcoxon test over Switching algorithms: Switching(1),
Switching-I(2) and SwitchingNED(3)

fr = 0.1

Comparison R+ R− Hypothesis (α = 0.05) p-Value

(2)vs(1) 382.5 145.5 Rejected 0.02607
(3)vs(1) 465.0 96.0 Rejected 0.000948
(3)vs(2) 331.5 196.5 Not Rejected 0.201426

fr = 0.2

Comparison R+ R− Hypothesis (α = 0.05) p-Value

(2)vs(1) 506.0 55.0 Rejected 0.000054
(3)vs(1) 509.5 51.5 Rejected 0.000041
(3)vs(2) 442.5 85.5 Rejected 0.000817

fr = 0.3

Comparison R+ R− Hypothesis (α = 0.05) p-Value

(2)vs(1) 491.0 37.0 Rejected 0.000021
(3)vs(1) 545.0 16.0 Rejected 0.000002
(3)vs(2) 503.0 58.0 Rejected 0.000068

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ar
ea
	U
nd

er
	th

e	
Cu

rv
e	
RO

C

Switching	Rates		(fr)

Switching Switching-I SwitchingNED

Figure 2: AUC results of Switching algorithms with different fr settings.

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 89

(a) C4.5 with Chess5× 5 Synthetic Data. (b) C4.5 with Imbalanced Chess5× 5 Synthetic Data.

(c) Boundaries aggregation of 40 SwitchingNED trees.

Figure 3: Decision surfaces over Chess5x5 Synthetic Data.

90 Chapter II. Publications

(a) Decision surface of Switching with 40 trees and fr = 0.2. (b) Decision surface of SwitchingNED with 40 trees and fr =
0.2.

Figure 4: Behavior comparison of Switching and SwitchingNED.

Figure 4 exhibits the classification boundaries obtained from Switching and SwitchingNED with the same
parameter settings. SwitchingNED (4b) achieves greater decision surfaces for the white class than Switching
does (4a). Therefore, the prediction of the minority class is enhanced without compromising the specificity.

6 Preprocessing techniques in SwitchingNED

Traditionally, the ensemble approaches have been combined with preprocessing techniques to improve their
performance in the imbalanced class problem [14]. In this section, we test the integration of these methods
in SwitchingNED. Subsection 6.1. illustrates how the pre-processing method takes part in balancing the data,
together with the exchange of class labels of the SwitchingNED and the importance of the parameter fr in this
process. We will determinate the responsibility of each of these two methods during this procedure, and specify
which will be prioritized when the inequality between classes is not so high. Later on, in Subsection 6.2, we
analyse the results obtained by SwitchingNED with different preprocessing techniques. Finally, we test the best
Sampling-SwitchingNED approach against the most successful method in the literature in Subsection 6.3.

6.1 Data Sampling for SwitchingNED

SwitchingNED permits to mitigate the flooding impact, thanks to switching mainly the instances near to the
classification boundaries. However, this algorithm still has difficulties with very highly imbalanced datasets,
where nearly half of the negative instances has to be switched to achieve an equal representation between
classes. The final solution is to fuse the sample re-balancing of SwitchingNED with a standard preprocessing
algorithm, as has been done with other ensembles [14] such as Bagging with Under-sampling [18].

By slightly balancing the classes with traditional sampling techniques before switching, fewer switched in-
stances are needed to find an equal representation between classes, reducing the possibility of flooding and
converging easily. On the other hand, using of Switching as an equalization method allows to reduce possible
mistakes introduced by the preprocessing mechanisms, by reducing the amount of instances removed from the
majority class (under-sampling) or the synthetic positive samples (over-sampling).

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 91

This is accomplished by over- or under-sampling until SwitchingNED with a fixed value of parameter fr can
completely equalize the class proportions. i.e. if the original distribution is 20%-80% and the value of fr is
0.2, the preprocessing algorithm will change the proportions to 30%-70%, allowing Switching to completely
balance the data when 20% of the instances are switched to the minority class. The ideal balance is con-
sidered at 1:1, when the majority and minority classes have exactly the same number of instances. Formally,
SwitchingNED will work with most of the under-/over-sampling techniques, such as Random Under-Sampling,
Random Over-Sampling, and SMOTE. Algorithm 3 illustrates this approach, where any sampling can be intro-
duced.

Our algorithm gives priority to the SwitchingNED selection with respect to the sampling method. The NED
distribution is computed independently at the beginning of the algorithm (Line 3), i.e., the probability distribu-
tion will not change with the distribution of the data after sampling. Furthermore, the instances are first selected
by roulette wheel and switched, as indicated in Line 14. Then, sampling is executed over the remaining original
instances (Line 17). If the value of fr is high enough to reach the equilibrium by itself, the preprocessing algo-
rithm will not be triggered. Therefore, the execution of this preprocessing technique is subject to the following
restriction:

fr < (PM − Pm)/2 (4)

where PM and Pm are the proportion of the entire dataset samples belonging to the majority and minority
classes, respectively. This is represented in Line 4.

Due to this fact, fr becomes a quite important parameter of the algorithm. It establishes not only the number
of the instances to be switched, but also in which grade the preprocessing algorithm takes part in the balancing
task, as shown in Lines 4-11. Greater the value of fr is, lesser is the relevance of the preprocessing procedure.
The following mathematical expressions represent the quantity of instances that are switched and the amount
of sampled ones with relation to the parameter fr:

#Switched = fr ∗N ∗ Pm/P
′
m

#Sampled = N ∗ PM − (N ∗ Pm + #Switched ∗ 2)

where P ′m = 0.5− fr

(5)

where P ′m is the proportion of the minority class after the preprocessing stage.

Thanks to this hybridization, the previously mentioned constraint seems to be less limiting, 0.25 being the
maximum suitable value for fr to not surpass the positive instances with the switched examples. fr should be
set by the user, depending of the necessities of the concrete problem. For general purposes, we recommend to
set it at 0.1.

6.2 Evaluation of Sampling techniques for SwitchingNED

This experimental study has been carried out to ensure the best combination of the most popular sampling
approaches (Random Under-Sampling, Random Over-Sampling and SMOTE) with SwitchingNED: USwitch-
ingNED, OSwitchingNED and SMTSwitchingNED, respectively. The number of classifiers was fixed to 40.
The number of neighbors considered by SMOTE was 5, and the distance used was the Heterogeneous Value
Difference Metric (HVDM).

Table 4 collects the AUC results for the best configuration of the three explored. The value chosen for the
parameter fr was 0.1, that recommended for general purposes.

92 Chapter II. Publications

Algorithm 3 SwitchingNED Algorithm with Sampling techniques.

1: function SWITCHING(D - dataset, nTrees - number of trees built, S - the predicted version of D, fr -
switching rate, M - majority tag, m - minority tag)

2: initialize: S = {}, Trees[1..nTrees], Prob[1..size(D)]
3: Prob = NEDprob(D,M,m)
4: if fr < (PM − Pm)/2 then
5: newPm = 0.5− fr
6: #Switched = fr ∗N ∗ Pm/newPm

7: #Sampled = N ∗ PM − (N ∗ Pm + #Switched ∗ 2)
8: else
9: #Switched = fr ∗N

10: #Sampled = 0 . Preprocessing not triggered
11: end if
12: for i in [1,nTrees] do
13: D̂ = D
14: for j in [1,#Switched] do . Switching Balancing stage
15: t = RouletteSelection(Prob)
16: D̂class

t = m
17: end for . Preprocessing Balancing stage
18:

19: D̂ = Sampling(D̂,#Sampled,M)
20: Treesi = BuildTree(D̂)
21: end for
22: for d in D do
23: Ŝi,d = Predict(Treesi, d)
24: end for
25: S = PredictMajorityV oting(Ŝ)
26: return S
27: end function

It can be observed in Table 4 that the results of USwitchingNED are overwhelmingly better than those ob-
tained by Switching-I or SwitchingNED. This is due to the possibility of reaching the equal representation
for all classes together with the more suitable way to switch the instances, avoiding any drawback of the two
techniques that are applied.

In particular, the superiority of the USwitchingNED over the rest has to be stressed. As shown in Table 4, this
approach obtained the best results in the majority of the datasets, with the exception of 12 sets. Its average
results are also significantly higher than the two oversampling-based approaches.

The Wilcoxon statistical test points out the dominance of USwitchingNED over the rest. In Table 5, we observe
how the ranks of USwitchingNED in each comparison are widely greater than the others, resulting in very low
p-Values. This indicates that USwitchingNED is the best performing method.

Before comparing USwitchingNED with the State-of-the-art, the sensitivities of the ensemble to parameter
settings have to be explored. USwitchingNED has two main parameters that are highly relevant and influential
to its performance: the number of trees or iterations (nTrees) and the switching rate (fr).

Figure 5 shows the performance of USwitchingNED and SwitchingNED in terms of the average of the AUC
results of the 33 selected datasets. The performance is shown based on the number of trees and on different fr

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 93

Table 4: AUC results for the different SwitchingNED approaches.

USwitchingNED SMTSwitchingNED OSwitchingNED

Glass04vs5 0.9941 0.9941 0.9941
Ecoli0346vs5 0.9133 0.9032 0.8939
Ecoli0347vs56 0.9076 0.9073 0.8694
Yeast05679vs4 0.8015 0.8046 0.7506
Ecoli067vs5 0.9025 0.8967 0.8758
Vowel0 0.9516 0.9581 0.9529
Glass016vs2 0.7003 0.6393 0.6138
Glass2 0.7475 0.7394 0.7109
Ecoli0147vs2356 0.8872 0.8716 0.8787
Led7Digit02456789vs1 0.8801 0.9043 0.8805
Ecoli01vs5 0.9114 0.8644 0.8598
Glass06vs5 0.9950 0.9950 0.9950
Glass0146vs2 0.7542 0.7878 0.7406
Ecoli0147vs56 0.9096 0.8889 0.8610
Cleveland0vs4 0.8840 0.7444 0.7975
Ecoli0146vs5 0.9096 0.8897 0.8519
Ecoli4 0.9141 0.8623 0.8357
Shuttle0vs4 1.0000 0.9997 0.9997
Yeast1vs7 0.7782 0.7592 0.6691
Glass4 0.9001 0.8958 0.8617
Page-blocks13vs4 0.9805 0.9978 0.9978
Abalone918 0.7189 0.7294 0.6368
Glass016vs5 0.9714 0.8943 0.8943
Shuttle2vs4 0.9918 1.0000 1.0000
Yeast1458vs7 0.5887 0.5918 0.5503
Glass5 0.9724 0.9451 0.9878
Yeast2vs8 0.7718 0.7867 0.7848
Yeast4 0.8415 0.7642 0.6887
Yeast1289vs7 0.7020 0.6479 0.6377
Yeast5 0.9569 0.9740 0.9439
Ecoli0137vs26 0.7935 0.8354 0.8348
Yeast6 0.8808 0.8144 0.8210
Abalone19 0.6991 0.5611 0.5339

Avg: 0.8640 0.8439 0.8244

Table 5: Summary of Wilcoxon test over SwitchingNED with different sampling techniques.

Comparison R+ R− Hypothesis (α = 0.05) p-Value

SMTSwitchingNED vs OSwitchingNED 503.5 91.5 Rejected 0.00022
USwitchingNED vs OSwitchingNED 527.0 68.0 Rejected 0.00003

USwitchingNED vs SMTSwitchingNED 431.5 163.5 Rejected 0.02109

94 Chapter II. Publications

0.720

0.740

0.760

0.780

0.800

0.820

0.840

0.860

0.880

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ar
ea
	U
nd

er
	th

e	
Cu

rv
e	
RO

C

Switching	Rates		(fr)
SwitchingNED USwitchingNED

(a) Average AUC depending on the switching rate (fr).

0.755

0.765

0.775

0.785

10 20 30 40 50 60 70 80 90 100

Ar
ea

U
nd

er
th
e
Cu

rv
e	
RO

C

Number	of	Trees
SwitchingNED

0.850

0.855

0.860

0.865

0.870

USwitchingNED

(b) Average AUC depending on the number of trees (nTrees).

Figure 5: Performance of SwitchingNED and USwitchingNED with different parameter settings.

values, letting the other parameter fixed: fr = 0.1 for USwitchingNED and fr = 0.4 for SwitchingNED (see
Sec. 5.2) and 40 trees for both.

According to number of iterations, our methods have an equivalent pattern to every other ensemble. They reach
over-fitting when the number of trees exceeds a certain limit. As shown in Figure 5b, the limit of USwitch-
ingNED is reached approx. at 60 trees. However, following the study [14, 15], we decided to use 40 trees to
ensure a fair comparison.

Analyzing the impact of parameter fr for USwitchingNED (Fig. 5a), the best results are obtained with fr = 0.1.
And we can certainly declare that the performance of USwitchingNED is highly robust when fr is selected from
0.05 to 0.2. With this experiment, we can conclude that the parameter setting was properly chosen.

It is worthy to mention that USwitchingNED with fr between 0.05 and 0.2 results significantly better than with
fr = 0.0. USwitchingNED with fr = 0.0 has a similar behavior to UnderBagging [18] and USwitchingNED
with fr = 0.1 is overwhelming superior as shown in Section 6.3. This fact proves that the combination of
Under-sampling and Switching is worthy.

Contrary to SwitchingNED (Fig. 2), USwitchingNED performance declines when fr exceeds 0.2 (Fig. 5a).
The interaction between switching re-balance procedure and under-sampling completely changes the ensemble
behavior, therefore such differences were expected. One should notice that USwitchingNED is strictly better
than SwitchingNED because the darker curve (USwitchingNED) is, in every moment, over the lighter one
(SwitchingNED) in Fig. 5a

6.3 USwitchingNED vs State-of-the-art

Subsequently to identify our best approach based on Switching ensembles, we analyze the importance of
USwitchingNED with respect to previously proposed ensembles in the literature. We have tested five dif-
ferent ensembles. Each one is a representative method of a distinct combination of Under-/Over- Sampling and

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 95

Table 6: Ensemble-based proposals considered.

Abbreviation Algorithm Short description

EUSB EUSBoost [15] AdaBoost.M2 with evolutionary under-sampling
UBAG UnderBagging [18] Bagging with random under-sampling
SBAG SMOTEBagging [20] Bagging with over-sampling with SMOTE
SBO SMOTEBoost [19] AdaBoost.M2 with over-sampling with SMOTE
EASY EasyEnsemble [21] Hybrid of under-sampling, Bagging and AdaBoost

Table 7: Parameters considered for the compared methods.
Algorithm Parameters
C4.5 itemsetsPerLeaf=2, confidence=0.25, prune=True
EUSBoost populationSize=50, #evaluations=10000,

HUXprobability=0.25, fitness=EUSBQ,
distance=Euclidean, balancing=True, P=0.2

Bagging or Boosting. Table 6 summarizes the tested methods. In [15], EUSBoost has been proved to be the
best performing ensemble for highly imbalanced classification.

In order to prepare the fairest comparison, we use exactly the same experimental framework of the EUSBoost
paper [15], which was explained in Subsection 5.1. The parameters for the algorithms, represented in Table 7,
was also extracted from that earlier study.

The number of trees generated by the ensembles have being chosen according to the convergence of each algo-
rithm. Generally, Boosting-based ensembles reach their maximum potential earlier than Bagging approaches,
as shown in [14]. Therefore, we contemplate 10 classifiers for Boosting-based ensembles, and 40 for USwitch-
ingNED and similar Bagging approaches.

Table 8 gathers the obtained results in terms of AUC for the 33 selected datasets and the 6 tested methods. In
it, the best results are stressed in bold-face. Even though the best results are distributed between the different
approaches, USwitchingNED has a certain superiority over the rest. USwitchingNED is the method with the
greater number of best results recalled, a total of 12 datasets. And additionally, it has the best performance on
average.

The USwitchingNED superiority is also supported by the Wilcoxon statistical test in Table 9. In this test, the
previous proposals are independently compared to USwitchingNED. The obtained ranks (R+ and R−) point
USwitchingNED out as the best performing method, because the USwicthingNED rank (R+) is always widely
higher than the rank of other compared method (R−). In order to reaffirm this hypothesis, the p-Value obtained
must be smaller than 0.05. This is accomplished in every comparison, with exception of EUSBoost. Therefore,
a deeper analysis of the comparison of USwitchingNED and EUSBoost must be done.

Table 10 collects the AUC results of USwitchingNED and EUSBoost, which stresses the superiority of the
former over the latter. There are 18 sets where USwitchingNED obtains better results, other 12 sets where
EUSBoost results are better, and 3 where they stay tied. On the average, USwitchingNED is still the best
performer method.

USwitchingNED has a clear advantage over EUSBoost in terms of computational complexity. The EUSBoost
training phase is computationally more expensive than training USwitchingNED. This is caused by the execu-
tion of the genetic algorithm EUS [34] in each iteration of Boosting.

96 Chapter II. Publications

Table 8: AUC results for the tested algorithms. The best results are stressed in bold-face.

USwitchingNED EUSB UBAG SBAG SBO EASY

Glass04vs5 0.9941 0.9941 0.9941 0.9819 0.9799 0.9941
Ecoli0346vs5 0.9133 0.8919 0.889 0.9173 0.918 0.8678
Ecoli0347vs56 0.9076 0.8842 0.868 0.8753 0.8918 0.8659
Yeast05679vs4 0.8015 0.7869 0.7991 0.8093 0.7838 0.7702
Ecoli067vs5 0.9025 0.8767 0.8908 0.8417 0.8567 0.8567
Vowel0 0.9516 0.9664 0.9461 0.9826 0.9822 0.9449
Glass016vs2 0.7003 0.7264 0.7193 0.6348 0.644 0.7533
Glass2 0.7475 0.7281 0.7756 0.7951 0.7502 0.7247
Ecoli0147vs2356 0.8872 0.8782 0.8427 0.8867 0.8732 0.8622
Led7Digit02456789vs1 0.8801 0.8755 0.8662 0.8871 0.7467 0.8734
Ecoli01vs5 0.9114 0.8848 0.8311 0.8515 0.847 0.891
Glass06vs5 0.995 0.995 0.9139 0.975 0.9664 0.847
Glass0146vs2 0.7542 0.7768 0.7695 0.7602 0.6872 0.7533
Ecoli0147vs56 0.9096 0.8941 0.8715 0.8474 0.8627 0.8411
Cleveland0vs4 0.884 0.8164 0.8141 0.7954 0.7752 0.8022
Ecoli0146vs5 0.9096 0.8994 0.8968 0.916 0.9135 0.8282
Ecoli4 0.9141 0.9215 0.8825 0.9143 0.8847 0.8782
Shuttle0vs4 1.0 1.0 1.0 0.9995 1.0 1.0
Yeast1vs7 0.7782 0.7644 0.7679 0.6797 0.7048 0.7167
Glass4 0.9001 0.9056 0.872 0.8742 0.909 0.8813
Page-blocks13vs4 0.9805 0.9869 0.9767 0.9891 0.9951 0.9711
Abalone918 0.7189 0.7119 0.7316 0.7424 0.7345 0.7223
Glass016vs5 0.9714 0.9886 0.9429 0.8714 0.9652 0.9524
Shuttle2vs4 0.9918 1.0 1.0 1.0 1.0 0.9905
Yeast1458vs7 0.5887 0.5948 0.6238 0.6137 0.5579 0.58
Glass5 0.9724 0.9878 0.9488 0.8947 0.9797 0.952
Yeast2vs8 0.7718 0.7636 0.7666 0.7848 0.7827 0.732
Yeast4 0.8415 0.8299 0.8449 0.776 0.6954 0.8317
Yeast1289vs7 0.702 0.7184 0.7642 0.6543 0.6559 0.6798
Yeast5 0.9569 0.9382 0.9571 0.9705 0.9128 0.9502
Ecoli0137vs26 0.7935 0.8087 0.736 0.8318 0.836 0.7281
Yeast6 0.8808 0.8601 0.865 0.8392 0.8109 0.8573
Abalone19 0.6991 0.673 0.684 0.5767 0.5103 0.698

Avg: 0.8640 0.8584 0.8500 0.8415 0.8307 0.8363

Table 9: Summary of Wilcoxon test of the comparison USwitchingNED versus the considered ensembles.

USwitchingNED vs R+ R− Hypothesis (α = 0.05) p-Value

EUSB 347.0 181.0 Not rejected 0.12404
UB 420.5 140.5 Rejected 0.01132
SB 395.0 166.0 Rejected 0.04054

SBO 437.0 91.0 Rejected 0.00077
EASY 526.5 34.5 Rejected 0.00001

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 97

Table 10: AUC results for USwitchingNED and EUSBoost

EUSBoost USwitchingNED

Glass04vs5 0.9941 0.9941
Ecoli0346vs5 0.8919 0.9133
Ecoli0347vs56 0.8842 0.9076
Yeast05679vs4 0.7869 0.8015
Ecoli067vs5 0.8767 0.9025
Vowel0 0.9664 0.9516
Glass016vs2 0.7264 0.7003
Glass2 0.7281 0.7475
Ecoli0147vs2356 0.8782 0.8872
Led7Digit02456789vs1 0.8755 0.8801
Ecoli01vs5 0.8848 0.9114
Glass06vs5 0.9950 0.9950
Glass0146vs2 0.7768 0.7542
Ecoli0147vs56 0.8941 0.9096
Cleveland0vs4 0.8164 0.8840
Ecoli0146vs5 0.8994 0.9096
Ecoli4 0.9215 0.9141
Shuttle0vs4 1.0000 1.0000
Yeast1vs7 0.7644 0.7782
Glass4 0.9056 0.9001
Page-blocks13vs4 0.9869 0.9805
Abalone918 0.7119 0.7189
Glass016vs5 0.9886 0.9714
Shuttle2vs4 1.0000 0.9918
Yeast1458vs7 0.5948 0.5887
Glass5 0.9878 0.9724
Yeast2vs8 0.7636 0.7718
Yeast4 0.8299 0.8415
Yeast1289vs7 0.7184 0.7020
Yeast5 0.9382 0.9569
Ecoli0137vs26 0.8087 0.7935
Yeast6 0.8601 0.8808
Abalone19 0.6730 0.6991

Avg: 0.8584 0.8640

98 Chapter II. Publications

The main time-consuming operation in EUS is the evaluation of the chromosomes using the Geometric Mean
of an 1NN. The 1NN complexity is linear with respect to the number of instances and attributes, i.e., O(nref ·
A), where nref is the number of the reference set (in this case, the undersampled one, which equals two
times the minority class size, m) and A the number of attributes. The evaluation is done using a hold-one-out
scheme, therefore, the 1NN is executed N times (the number of examples of the original dataset), resulting
in a complexity of O(N · 2m · A). This process is repeated for every iteration and every chromosome, till
reaching the maximum number of allowed evaluations (maxeval, 10000 in this experiments). Summarizing,
the complexity of each EUSBoost iteration is approximately O(N · 2m ·A ·maxeval).

On the contrary, USwitchingNED lacks of this overhead cost in each iteration. The main costly function is the
random selection of the instances by the Roulette Selection algorithm. If this selection is implemented with
an ordered structure, it has a complexity of O(log n), using a binary search. Even less, because the minority
samples are excluded. The probability distribution used is computed once at the beginning, consuming just an
1NN process outside the main loop of the ensemble. The computational complexity of this 1NN and the sorting
by QuickSort of the weight distribution is O(M · m · A + M · logM), where M is the number of negative
examples and m the number of positives. None of them are more expensive than the over-cost imposed by
EUS.

7 Concluding Remarks

We have proposed a novel ensemble approach based on Switching ensembles to deal with highly imbalanced
datasets. SwitchingNED represents an improvement due to its novel way of guiding the switching process
based on the Nearest Enemy Distance, which changes entirely the concept of Class Switching algorithms. This
technique permits to utilize the switched instances as a way of balancing the class distribution by ensuring
that they are near to the classification boundary, reducing the induced noise and maintaining the minority
class information. SwitchingNED mitigates the limitations of the switching approaches for highly imbalanced
scenarios, freeing its switching fraction parameter, and resulting very promising in terms of performance.

Subsequently, we have explored three different approaches based on these previous improvements and the most
popular sampling techniques: Random Under/Over-Sampling and SMOTE. These techniques help Switch-
ingNED to balance the class distribution of really high imbalanced datasets, and they are triggered just when
are needed. After performing an experimental study, the Under-Sampling SwitchingNED technique (USwitch-
ingNED) turned out to be the most promising from the three ensembles. Finally, a comparison versus a rep-
resentative set of the combinations of preprocessing and ensembles was carried out. The quality of USwitch-
ingNED was clarified by the empirical results, settling it as one of best approaches on the field.

Preprocessing-based ensembles have been one of essential manners to address the imbalanced class problem.
SwitchingNED, as a new ensemble, opens new opportunities and possibilities up in the context of imbalanced
data. Other ensemble schemes within the scope of class switching can be explored to find better rebalanced
class distributions. For example, boosting scheme could be applied in conjunction with NED probabilities to
estimate the best instances to be switched. Additionally, the most recent models of artificial instances generation
would be interesting to be explored with a switching-based setting.

A Formulation on the constraint of parameter fr

To avoid the flooding problem, each class should have a majority of real instances, not switched, That is, the
number of instances of a class minus the examples switched of this class must be greater than the switched

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 99

examples from other classes. Assuming that the class distributions are maintained in the uniformly random
selection of instances to switch, the resulting expression is the following:

n− fr ∗n > (N − n) ∗ fr
K − 1

(6)

where n is the number of instances of the minority class, N is the total number of examples of the dataset, K
is the number of classes, and fr denotes the switching rate. This formula is expressed with the proportion of
minority class, because it is the most vulnerable to the flooding problem and proportionally it will receive much
more instances than the rest. The left side of the expression represents the number of unchanged instances from
the minority class, while the right side is the number of instances switched from other classes to the minority
class. After performing some simplifications (Eq. 7), the final expression shown in Eq. 8 limits the parameter
fr to consider the integrity of the minority class.

n∗(1− fr)(K − 1) > fr ∗(N − n)

(1− fr)(K − 1) > fr ∗(N
n
− 1)

N

n
=

1

Pm

k − 1− fr ∗k + fr >
fr

Pm
− fr

k − 1− fr ∗k > fr
Pm
− 2 fr

k − 1 >
fr
Pm
− 2 fr + fr ∗K

k − 1 > fr ∗(1

Pm
+K − 2)

(7)

fr <
K − 1

(Pm)−1 +K − 2
(8)

Acknowledgements

This work is supported by the research project TIN2014-57251-P, by a first research scholarship given to the
author Sergio Gonzalez by the University of Granada and a second scholarship (FPU) given to the same author
by the Spanish Ministry of Education, Culture and Sports.

References

[1] Victoria López, Alberto Fernández, Salvador Garcı́a, Vasile Palade, and Francisco Herrera. An insight
into classification with imbalanced data: Empirical results and current trends on using data intrinsic char-
acteristics. Information Sciences, 250:113 – 141, 2013.

[2] Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Diego F Silva. Class imbalance revisited: a new
experimental setup to assess the performance of treatment methods. Knowledge and Information Systems,
45(1):247–270, 2015.

[3] Vicente Garcı́a, Ramón Alberto Mollineda, and José Salvador Sánchez. On the k-nn performance in a
challenging scenario of imbalance and overlapping. Pattern Analysis and Applications, 11(3-4):269–280,
2008.

100 Chapter II. Publications

[4] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of Artificial Intelli-
gence Research, 11:131–167, 1999.

[5] Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Andres Folleco. An empirical study of
the classification performance of learners on imbalanced and noisy software quality data. Information
Sciences, 259:571–595, 2014.

[6] Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explor. Newsl.,
6(1):40–49, 2004.

[7] Sarunas J Raudys and Anil K. Jain. Small sample size effects in statistical pattern recognition: recom-
mendations for practitioners. IEEE Transactions on Pattern Analysis & Machine Intelligence, 3:252–264,
1991.

[8] Gary M Weiss and Foster Provost. Learning when training data are costly: the effect of class distribution
on tree induction. Journal of Artificial Intelligence Research, pages 315–354, 2003.

[9] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227 – 244, 2000.

[10] Victoria López, Alberto Fernández, and Francisco Herrera. On the importance of the validation technique
for classification with imbalanced datasets: Addressing covariate shift when data is skewed. Information
Sciences, 257:1 – 13, 2014.

[11] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello, C. Cornelis, and F. Herrera. Ifrowann:
Imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Transactions on
Fuzzy Systems, 23(5):1622–1637, 2015.

[12] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive boosting for classi-
fication of imbalanced data. Pattern Recognition, 40(12):3358–3378, 2007.

[13] Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision tree induction algorithms. ACM
Computing Surveys, 45(2):16:1–16:35, 2013.

[14] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. A
review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(4):463–484,
2012.

[15] Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. EUSBoost: Enhanc-
ing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition,
46(12):3460–3471, 2013.

[16] Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3):229–242,
2000.

[17] Gonzalo Martı́nez-Muñoz and Alberto Suárez. Switching class labels to generate classification ensembles.
Pattern Recognition, 38(10):1483–1494, 2005.

[18] Ricardo Barandela, Rosa Maria Valdovinos, and José Salvador Sánchez. New applications of ensembles
of classifiers. Pattern Analysis & Applications, 6(3):245–256, 2003.

[19] Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. SMOTEBoost: Im-
proving prediction of the minority class in boosting. In Knowledge Discovery in Databases: PKDD 2003,
pages 107–119. Springer, 2003.

Class Switching according to Nearest Enemy Distance for learning from highly imbalanced data-sets 101

[20] Shuo Wang and Xin Yao. Diversity analysis on imbalanced data sets by using ensemble models. In IEEE
Symposium on Computational Intelligence and Data Mining. (CIDM’09), pages 324–331, 2009.

[21] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(2):539–550, 2009.

[22] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple compar-
isons in the design of experiments in computational intelligence and data mining: Experimental analysis
of power. Information Sciences, 180(10):2044–2064, 2010.

[23] Miguel De la Torre, Eric Granger, Robert Sabourin, and Dmitry O. Gorodnichy. Adaptive skew-sensitive
ensembles for face recognition in video surveillance. Pattern Recognition, 48(11):3385 – 3406, 2015.

[24] Hunny Mehrotra, Richa Singh, Mayank Vatsa, and Banshidhar Majhi. Incremental granular relevance
vector machine: A case study in multimodal biometrics. Pattern Recognition, 56:63 – 76, 2016.

[25] Isaac Triguero, Sara del Rı́o, Victoria López, Jaume Bacardit, José M. Benı́tez, and Francisco Herrera.
ROSEFW-RF: The winner algorithm for the ECBDL’14 big data competition: An extremely imbalanced
big data bioinformatics problem. Knowledge-Based Systems, 87:69 – 79, 2015.

[26] Alberto Freitas. Building cost-sensitive decision trees for medical applications. AI Communications,
24(3):285–287, 2011.

[27] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: Special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.

[28] Jin Huang and Charles X Ling. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans-
actions on Knowledge and Data Engineering, 17(3):299–310, 2005.

[29] Andrew P Bradley. The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

[30] Nitesh V Chawla, David A Cieslak, Lawrence O Hall, and Ajay Joshi. Automatically countering im-
balance and its empirical relationship to cost. Data Mining and Knowledge Discovery, 17(2):225–252,
2008.

[31] Shounak Datta and Swagatam Das. Near-bayesian support vector machines for imbalanced data classifi-
cation with equal or unequal misclassification costs. Neural Networks, 70:39 – 52, 2015.

[32] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. RUSBoost: A hybrid
approach to alleviating class imbalance. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 40(1):185–197, 2010.

[33] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, pages 321–357, 2002.

[34] Salvador Garcı́a and Francisco Herrera. Evolutionary undersampling for classification with imbalanced
datasets: Proposals and taxonomy. Evolutionary computation, 17(3):275–306, 2009.

[35] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[36] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[37] K. Bache and M. Lichman. UCI machine learning repository, 2013.

102 Chapter II. Publications

[38] J. Alcala-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, L. Sánchez, and F. Herrera. KEEL data-
mining software tool: Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2011.

[39] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

3 Chain based sampling for monotonic imbalanced classification 103

3 Chain based sampling for monotonic imbalanced classification

• González, S., Garćıa, S., Li, S. T., & Herrera, F. (2019). Chain based sampling for monotonic
imbalanced classification. Information Sciences, 474, 187-204.

– Status: Published

– Impact Factor (JCR 2018): 5.524

– Subject Category: Computer Science, Information Systems

– Rank: 9/155

– Quartile: Q1

104 Chapter II. Publications

CHAIN BASED SAMPLING FOR MONOTONIC IMBALANCED

CLASSIFICATION

Sergio González
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

sergiogvz@decsai.ugr.es

Salvador Garcı́a
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

salvagl@decsai.ugr.es

Sheng-Tun Li
Department of Industrial and Information Management

Institute of Information Management
Center for Innovative FinTech Business Models

National Cheng Kung University, Tainan 701, Taiwan
stli@mail.ncku.edu.tw

Francisco Herrera
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

herrera@decsai.ugr.es

ABSTRACT

Classification with monotonic constraints arises from some ordinal real-life problems. In these
real-life problems, it is common to find a big difference in the number of instances representing
middle-ranked classes and the top classes, because the former usually represents the average or
the normality, while the latter are the exceptional and uncommon. This is known as class im-
balance problem, and it deteriorates the learning of those under-represented classes. However,
the traditional solutions cannot be applied to applications that require monotonic restrictions
to be asserted. Since these were not designed to consider monotonic constraints, they com-
promise the monotonicity of the data-sets and the performance of the monotonic classifiers.
In this paper, we propose a set of new sampling techniques to mitigate the imbalanced class
distribution and, at the same time, maintain the monotonicity of the data-sets. These methods
perform the sampling inside monotonic chains, sets of comparable instances, in order to pre-
serve them and, as a result, the monotonicity. Five different approaches are redesigned based
on famous under- and over-sampling techniques and their standard and ordinal versions are
compared with outstanding results.

Keywords Monotonic Classification · Imbalanced classification · Sampling techniques · Preprocessing · Data
mining.

Chain based Sampling for Monotonic Imbalanced Classification 105

1 Introduction

Ranking and evaluation of assets or even individuals are intrinsic characteristics of human nature. Hence, the
presence of ordinal variables is common in tons of real-life data-sets. Credit rating [1, 2], house ranking [3]
and employee evaluation [4, 5] are good examples of their presence in present-day applications.

These problems aim to determine the most valuable items according to their virtues, i. e. classification into
ordinal labels according to ordinal attributes. Additionally, these applications usually require a monotonic
restriction between the inputs and the class. That is, the class prediction of an individual should not decrease
with a better value for a certain variable, fixing the remainder. Otherwise, an unfair evaluation of the individuals
can be made. These classification problems with prior knowledge of the order relations between attributes and
the class are known as classification with monotonicity constraints or monotonic classification [6]. Failure to
respect these constraints are referred to as violations of monotonicity and must be avoided in the class decision
of new samples.

When dealing with monotonic classification problems [6], we look for those examples that belong to the most
remarkable class, with a higher value. It is reasonable to have fewer samples of really good and remarkable
individuals than those considered normal or average. For example, in the evaluation of future employees of a
company, there will probably be fewer ”excellent candidates” than ”average candidates.”

This difference in the number of representatives between classes has proven to cause a great loss of prediction
accuracy in the minority classes [7, 8]. This issue is known as a class imbalance problem or imbalanced clas-
sification. Multiple real-life applications present this problem, even those from non-standard classifications,
such as Monotonic Classification [6, 4, 2] or Multi-task learning [9, 5]. The majority of the monotonic prob-
lems considered in the literature suffers due to this issue. Therefore, the imbalance class distribution must be
approached in the scope of monotonic classification.

Traditionally data level approaches [8] have been well accepted because they allow the use of a standard clas-
sifier after balancing the skewed training sets by under-/over- sampling. However, these techniques also have
their own drawbacks. When using under-sampling, there is the risk of losing relevant information from the
treated class. On the other hand, over-sampling can introduce noisy instances.

These approaches are not designed for monotonic classification [6] and do not take monotonic constraints into
consideration. Due to this lack of awareness of monotonicity [6], these preprocessing techniques can severely
deteriorate the monotonicity of the data-sets and reduce the performance of the classifiers. For example, the
possible noisy instances generated by over-sampling could mean a greater damage in monotonic classifica-
tion, because they may increase the number of monotonicity violations in the data-sets. The under-sampling
techniques could remove important instances that determine the limit of the classes in term of monotonicity.

Therefore, new sampling approaches must be designed considering the monotonicity constraints. We propose
new sampling techniques based on monotonic chains. In monotonic classification, a chain [10] is a set of com-
parable instances, that is, they can be sorted. These are very important assets of the classification carried out
relevant methods such as KNN [11] and OSDL [10, 12], because they determine the possible classes without
monotonic violations for new instances. Our techniques perform the sampling using these chains and pre-
serving, as much as possible, the monotonicity of the data-sets. Additionally, these methods take monotonic
noise into consideration, in order to avoid instances that violate monotonicity during the sampling process.
These differences with the traditional methods reduce the deterioration of monotonicity of sampled data-sets
and maintain the improvement of the accuracy for minority classes.

To do so, we have put together a new scheme for applying both under- and over-sampling to monotonic imbal-
anced data-sets. This scheme consists of several good practices, related to the influence of monotonic violations
and chains on sampling, that can be extended to the almost all the sampling techniques in the literature. This
scheme has been implemented in five famous under- and over-sampling approaches of the State-of-the-Art of

106 Chapter II. Publications

imbalanced classification: Random Under-Sampling (RUS), Random Over-Sampling (ROS), Synthetic Minor-
ity Oversampling TEchnique (SMOTE) [13], ADAptive SYNthetic sampling approach (ADASYN) [14] and
Majority Weighted Minority Oversampling TEchnique (MWMOTE) [15].

Throughout this paper, two different empirical studies are carried out with exactly the same experimental frame-
work. The first experiments test the selected sampling techniques in their standard and ordinal versions using
8 monotonic imbalanced sets which are very common in the literature. The majority are multi-class and can be
considered highly imbalanced problems. The original and sampled data-sets are classified by five well-known
classifiers. Two evaluation metrics are used: Macro Average Arithmetic (MAvA) [16] evaluates the prediction
capability in multi-class imbalanced scenarios and Non-Monotonic Index (NMI) [6] determines the monotonic-
ity of data-sets and predictions. The obtained results show empirically the deterioration of the monotonicity
degree in data-sets caused by standard and ordinal sampling approaches.

Then, a second experimental study is performed following the same framework to analyze the behavior of
new monotonic sampling techniques. The different predictions obtained are compared in terms of multi-class
accuracy and monotonicity. The comparison shows the capacity of monotonicity preservation of the monotonic
sampling techniques over the standard ones. The outcomes are corroborated by the use of non-parametric
statistical tests: Friedman ranking test [17, 18] and Bayesian Sign test [19].

This paper is organized as follows. In Section 2, we present the problems approached and their solutions:
classification with monotonic constraints and class imbalance problem. Section 3 is devoted to setting up the
bases to adapt sampling approaches to monotonic scenarios and explain in detail the chain based sampling
techniques. In Section 4, the experimental framework used in the different empirical studies is presented.
Section 5 recalls two experimental studies: an analysis on the impact of standard and ordinal sampling on
monotonic classification and a comparison of the results achieved by monotonic sampling. Finally, in Section
6, the main conclusions of this study are given.

2 Background

In this section, we introduce the background knowledge of the problems addressed in this paper.

2.1 Monotonic Classification

Monotonic classification, just as ordinal regression and/or classification, aims to predict an ordinal class label
y for new sample x with ordinal attributes with the help of a labeled set, i.e. f : x → y. In both problems, the
classes Y are categories Y = {L1,L2, . . . ,LC} with a problem imposed arrangement L1 ≺ L2 ≺ . . . ≺ LC .
However, there is a big difference between both problems. Ordinal classification just focuses on minimizing
the errors of predicted and real labels. Monotonic classification imposes monotonicity constraints between
the input variables and predicted labels, that is, every instance x′ dominated by x should have a lower or
the same assigned class f(x′) than x class label f(x). Formally, x � x′ → f(x) ≥ f(x′) [20], where
x � x′ ↔ xj ≥ x′j , j = 1, . . . , A.

Recently this problem has drawn the attention of data mining practitioners, who have designed monotonic
classifiers based on distinct models, such as, instance-based learning [21, 11, 10, 22], rules-based methods
and decision trees [6, 23, 24, 25], support vector machines [1, 26], neural networks [27, 28, 29] and ensemble
learning [30, 31, 32]. These monotonic classifiers avoid monotonicity violations in their predictions. And they
can be pure, when their decisions are always monotonic, or partial, if they minimize their violations as much
as possible. Some of these monotonic classifiers have to learn from monotonic data-sets in order to properly
predict new samples. Only if all the pairs of example i, j of a training set D are monotonic, the data-set D is
considered monotonic [21], i.e. xi � xj → yi ≥ yj , ∀xi, xj ∈ D.

Chain based Sampling for Monotonic Imbalanced Classification 107

Even though these constraints are defined in the learning and prediction phases of the classification process,
they have to be taken into consideration in preprocessing phases. Otherwise the monotonicity of the involved
training set can be severely compromised. Few studies have been undertaken in this field [33, 4, 34]. For
example, imbalanced classification in scenarios with monotonic constraints has not been explored, although it
has been for ordinal classification [35, 36].

2.2 The class imbalance problem

The class imbalance problem refers to a severe loss of classification accuracy of certain classes due to their
under-representation in the training data-set [7]. That is, some classes have a lot less instances than others,
which affects their identification by standard classifiers. These under-represented classes are known as minority
or positives, whilst the rest are referred to as majority or negative classes. In many real-life applications, the
most important classes are usually the most imbalanced. Therefore, the misclassification of these classes entails
greater costs [37].

The inaccurate prediction of the minority classes mainly results from the generalization of the standard clas-
sifiers used to infer models and avoid over-fitting. The use of global performance measures, such as accuracy
rate, also negatively affects the learning phase. Therefore, the difference in the number of representatives of
each class has a great influence on this issue. However, there are other issues that aggravate this problem [7, 38],
such as noise, overlapping, lack of density and small disjuncts.

Many data scientists have shown great interest in the field and several approaches have been designed to deal
with it. These can be categorized into the following three [7]:

• Data level approaches [8, 13]: the affected data-sets are rebalanced by sampling. The equal represen-
tation between classes is reached by generating more examples for the minority class (over-sampling)
[13], removing examples from the majority class (under-sampling) or both (hybrid methods).

• The cost-sensitive learning [39, 40] considers the costs of the errors of the misclassification of the
minority class into function minimization.

• The algorithmic approaches [41, 42] are modifications of base learning algorithms in order to achieve
better performance with imbalanced data-sets.

Data level approaches are the most popular solutions to the problem, since they enable the standard classifica-
tion methods. Random Over- and Under-Sampling are the most basic procedures that randomly duplicate or
remove examples from the minority or majority classes. Other more complex methods have been proposed,
such as SMOTE (Synthetic Minority Oversampling TEchnique) [13], ADASYN (ADAptive SYNthetic sam-
pling approach) [14] or MWMOTE (Majority Weighted Minority Oversampling TEchnique) [15]. These five
are remarkable approaches among the State-of-the-Art methods.

SMOTE [13] generates synthetic instances xg through the linear interpolation of randomly selected instances
x and their nearest neighbors xn from the same minority class (see Eq. 1). Similarly, ADASYN [14] also
generates new instances through this interpolation, however, the selection of the examples are not uniformly
random. It prioritizes instances near to the borders of the class according to a distribution of weights. These
weights are computed per instance as the ratio of neighbors with a different class label of the class of the
evaluated instance.

Linear interpolation is carried out using the following formula:

xg = x+ (xn − x) ∗ α (1)

where α is a random number chosen in the range [0,1].

108 Chapter II. Publications

MWMOTE [15] is based on clustering to define the group of instances to be interpolated. First, MWMOTE
identifies the minority instances at the borders, i.e. hard to learn instances, and removes the possible noisy
instances. Then, sample weights are assigned in relation to their closeness to a border and the low density of
their clusters. Finally, these instances are randomly selected according to their weights and interpolated with
another sample of the same cluster.

Additionally, standard global metrics negatively influence the performance and they have to be replaced by
more suitable options: Area Under the ROC Curve [43] or Geometric Mean are commonly used in binary
imbalance problems [7, 8]. Macro Average Arithmetic (MAvA) [16] has been frequently chosen for multi-class
scenarios and is computed as followed:

MAvA =
1

m

m∑

i=1

ACCi (2)

where ACCi is the partial accuracy rate for the class i independently.

3 Chain based Sampling in Monotonic Imbalanced Classification

The intention of this work is to design proper ways of sampling monotonic data-sets without loosing their
monotonicity. To do so, we propose a new sampling schema based on chains. The main difference is the
maintenance of the essential parts of the chains of each class. That is, the upper- and lower- instances of each
class in each chain [10].

A monotonic chain is a set S of comparable instances, i.e. those which can be sorted. The upper-instance ↑ xS
of the chain S is the one that dominates all the other samples of the chain. The lower-instance ↓ xS of the chain
is dominated by the rest. The upper- and lower- instances of each class for a whole chain determine the upper
and lower bounds of the range of possible labels without monotonic violations for new instances which are in
that chain [10, 11]. Formally, the upper- and lower- instances are defined as the following:

↑ xS = x ∈ S : ∀xi ∈ S x � xi (3)

↓ xS = x ∈ S : ∀xi ∈ S xi � x (4)

Since sampling techniques usually work independently for each class, chains can be segmented in subsets of a
certain class. Then, the instances at the limits of these subsets are the ones that must remain untouched.

In contrast to traditional methods, monotonic sampling also takes monotonic noisy instances into consideration,
avoiding them so as not to greatly affect the decisions during preprocessing. Even more, our techniques mitigate
their impacts when possible.

To achieve these objectives, the monotonic sampling techniques classify the instances of each class in three
different groups of relevance. This classification is used to bias the selection of the examples involved in the
sampling, promoting instances at the limits and inside chains and avoiding monotonic noise. The three groups
of representatives are detailed in the following:

• At the limits of chains: As said before, these are the most important instances of the chains and the
classes, because they determine the ordering limit of each class. Therefore, the sampling techniques
prioritize them over the rest. This type of example is identified when there is no comparable example
of the same class that is greater or smaller, i.e. upper- or lower- limit, respectively. As explained above,
chains are treated independently for each class.

Chain based Sampling for Monotonic Imbalanced Classification 109

Algorithm 1 Example in pseudo-code of the identification of the type of an example x.

1: function SAMPLETYPE(x - evaluated instance, y - instance x class label, D - data-set)
2: if ∃(xi, yi) ∈D | xi � x ∧ y > yi ∨ x � xi ∧ yi > y then
3: Set x as violation of monotonicity
4: else . Get set of instances with same class as y
5: Sy ← {∀(xi, yi) ∈ D | yi = y}
6: if @xi ∈ Sy | xi � x ∨ x � xi then
7: Set x as a instance at the limit of chain
8: else
9: Set x as a instance inside a chain

10: end if
11: end if
12: end function

• Inside chains: These representatives give consistency to the chains. The more of this type there is in a
chain, the stronger and more relevant the chain is. When possible, these examples must be conserved
during sampling. These are the counterparts of the previous type, so they are identified by finding
greater and smaller comparable samples.

• Violation of monotonicity: These are monotonic discrepancies, that is, instances that are not mono-
tonically consistent with others. They must be avoided, because they are one of the main reasons for
monotonic deterioration of the models. They are identified by comparison with comparable instances
of other classes. Sampling techniques avoid them when possible. Tolerance to these examples is com-
puted as indirectly proportional to the number of violations of the instances. When a instance has a
high number of violations, there will be only a small possibility of being involved in the sampling.

Algorithm 1 exemplifies with pseudo-code and formal expressions how the types of an instance x are deter-
mined.

With these ideas, we settle the bases to extend the use of chains in nearly every sampling technique, both
under-sampling and over-sampling approaches.

3.1 Under-Sampling for Monotonic Imbalanced Classification

For monotonic versions of under-sampling methods, it is highly important to preserve the upper- and lower-
limits of the chains. As many as possible of these instances will be prioritized and maintained in the final
sampled set until equal balance is reached.

Additionally, under-sampling methods could help to mitigate the impact of monotonic violations of the data-set
by purposely sampling the monotonic noisy instances. This feature is unique in under-sampling methods, since
over-sampling lacks any similar characteristics.

Depending on the original under-sampling technique, this knowledge can be introduced in different ways.
For weight-based sampling, a monotonic weight can be given to each instance according the three previously
mentioned types of instances. The weights given to instances at the limits of chains are recommended to be
higher than the ones given to the samples inside chains. Non monotonic instances receive a weight of 0 ensuring
their exclusion, but only if there are enough samples of the other two types to achieve class balance. Otherwise,
these weights may be indirectly proportional to the number of monotonic violations caused by the instances.
These monotonic weights can be included as a factor of the original weighting. See the following subsection
for more details.

110 Chapter II. Publications

However, we have extended the famous Random Under-Sampling. The original method randomly selects a
subset of the majority classes to rebalance the data-set. RUS does not use any weights or probabilities in its
process of selection. It merely chooses the samples in a uniformly random way. Therefore, the monotonic
RUS approach (mRUS) is designed as a hierarchical selection according to the mentioned groups of relevance
instead of being purely random. This hierarchical selection has the following steps:

• Step 1: If the number of at-the-limits samples is big enough to fulfill the rebalance of the data-sets, a
subset of this group is uniformly and randomly selected. Otherwise, every instance is selected and Step
2 will be executed.

• Step 2: If the number of instances inside the chains is enough to rebalance the data-sets within the
already selected instances, the same selection procedure is applied to this type of instances. Otherwise,
all are selected and Step 3 will continue with the rebalance.

• Step 3: Only if needed, monotonic noisy instances will be used to complete the balanced data-set. The
selection is not uniform; it is guided by a probability distribution. The probability to select a certain non
monotonic sample is computed as the inverse of the number of monotonic violations. So, instances with
more discrepancies have less chance of being selected, while instances with just one inconsistency have
the highest probability. This final selection has been implemented following a roulette wheel scheme,
as seen in Line 26. This procedure computes a cumulative probability distribution and generates a
random number between 0 and 1. The first cumulative probability greater than this number indicates
the selected instance.

These steps are exemplified in the following algorithm 2.

3.2 Over-Sampling for Monotonic Imbalanced Classification

Over-Sampling techniques are more likely to be weight-based methods. Therefore, their monotonic exten-
sions could easily include a monotonic weighting according to the three categories of the previously defined
instances. These weights can then be transformed in a probability distribution to guide the selection of the over-
sampled instances. The hierarchical approach used for under-sampling lacks common sense for over-sampling
techniques, since they cannot easily implement it.

As previously mentioned, monotonic noise or non monotonic instances should be excluded from the sampling
decisions. However, they cannot be removed from the final data-set, as in under-sampling. In order to reduce
their impact as much as possible, the probability of them being selected is equal to zero. Then, they will not be
replicated. But if the sampled class is entirely composed of instances with monotonic violations, they cannot
be avoided. Then, they will be selected according to the inverse of their number of violations within the range
(0,1].

Since instances at the limit of chains seize more valuable information, they should have a significantly higher
chance than those inside chains. At least, the probability of the former instances should double that of the latter.
Finally, these weights are normalized to form a probability distribution. Algorithm 3 shows the implementation
of this weight scheme in pseudo-code.

According to this weighting approach, we have chosen four well-known over-sampling techniques to design a
monotonic version of them. We have detailed the highlights of each of these methods in the following:

• ROS: The original Random Over-Sampling technique randomly replicates instances of the minority
classes, which could greatly deteriorate the monotonicity of the data-sets if non monotonic instances
are frequently selected. The monotonic version of ROS (mROS) does not perform a uniformly random
selection anymore. It selects the instances following a roulette wheel selection scheme as in mRUS,

Chain based Sampling for Monotonic Imbalanced Classification 111

Algorithm 2 Monotonic Random Under-Sampling

1: function MRUS(N - number of instances to select, Sy - sampled set of class y, D - data-set)
2: initialize: Sviolations ← ∅, SatLimits ← ∅, SinChain ← ∅, Prob← ∅, Sres ← ∅
3: for (xi, yi) ∈ Sy do
4: if sampleType(xi, yi, D) = monotonicV iolation then
5: Probi = 1.0/numV iolations(xi, yi, D)
6: Sviolation ← (xi, yi)
7: else
8: if sampleType(xi, yi, D) = atLimits then
9: SatLimits ← (xi, yi)

10: else
11: SinChain ← (xi, yi)
12: end if
13: end if
14: end for
15: if Size(SatLimits) > N then . Step 1
16: Sres ← uniformlyRandomSelection(SatLimits)
17: else . Step 2
18: Sres ← SatLimits

19: if Size(SinChain) > (N − Size(SatLimits)) then
20: Sres ← uniformlyRandomSelection(SinChain)
21: else . Step 3
22: Sres ← SinChain

23: Normalize(Prob)
24: #Samples = N − Size(SatLimits)− Size(SatChains)
25: for j ∈ [1,#Samples] do
26: Sres ← rouletteSelection(Sviolations, P rob)
27: end for
28: end if
29: end if
30: return Sres
31: end function

but with the previously explained probability distribution computed by Algorithm 3. An explanation in
pseudo-code of mROS can be found in Algorithm 4.

mROS is not so effective for the methods that transform replicas into class membership, such as OSDL
[10] or some relabeling techniques [44, 45]. These methods intend to mitigate the impact of replicas
with different classes by fusing them into probabilities. For data-sets with these inconsistencies, mROS
is very effective. On the other hand, mROS achieves nothing. Therefore, we have designed a different
method of replication (Line 7). The replications will have a small variation in their values, to avoid at-
taining exactly the same instances. This is done using jittering, that is, by introducing a small Gaussian
noise to the feature values of the selected instance.

In order to ensure that the derived sample is as close as possible to the selected one, the standard
deviation σ of the Gaussian noise generator must be sufficiently small, so that σ = 0.001. Therefore,
this small variation of each feature is randomly generated following a Gaussian distribution with a
mean µ equal to original feature value and a σ of 0.001 (Line 8). These two versions of mROS are

112 Chapter II. Publications

Algorithm 3 Monotonic weights function

1: function MONOTONICWEIGHTS(Sy - data-set of class,D - data-set)
2: initialize: Prob[1..size(Sy)] = 0, Sviolations ← ∅
3: for (xi, yi) ∈ Sy do
4: if sampleType(xi, yi, D) = monotonicV iolation then
5: Probi = 1.0/numV iolations(xi, yi, D)
6: Sviolations ← i
7: else
8: if sampleType(xi, yi, D) = atLimits then
9: Probi = 4.0

10: else
11: Probi = 2.0
12: end if
13: end if
14: end for
15: if Size(Sviolations) ! = Size(Sy) then
16: for i ∈ Sviolations do
17: Probi = 0
18: end for
19: end if
20: Normalize(Prob)
21: return Prob
22: end function

Algorithm 4 Monotonic Random Over-Sampling

1: function MROS(rep - option of replication (std or 1-NN), N - number of instances to replicate, Sy -
sampled set of class y, D - data-set)

2: initialize: Prob← monotonicWeights(Sy, D), Sres ← Sy
3: for i ∈ [1, N] do
4: (xi, yi) = rouletteSelection(Sy, P rob)
5: if rep = true then
6: Sres ← (xi, yi)
7: else
8: xg = gaussianRandom(µ = 0, σ = 0.001) + xi
9: Sres ← (xg, yi)

10: end if
11: end for
12: return Sres
13: end function

implemented as a parameter of the same method, so the best result is always chosen according to the
features of the classification method.

• SMOTE [13]: This method generates synthetic instances through interpolation of randomly selected
instances and their nearest neighbors. Its adaption must avoid the selection of monotonic noisy in-
stances, because their interpolations will probably be noisy. Algorithm 5 represents the method Mono-
tonic SMOTE (mSMOTE).

Chain based Sampling for Monotonic Imbalanced Classification 113

Algorithm 5 Monotonic SMOTE
1: function MSMOTE(k - nearest neighbors, interpolationRatio = 0.5, N - number of instances to repli-

cate, Sy - sampled set of class y, D - data-set)
2: initialize: Prob← monotonicWeights(Sy, D), Sres ← Sy
3: for i ∈ [1, N] do
4: (xi, yi) = rouletteSelection(Sy, P rob)
5: Snn ← kNN(k, Sy).getNeighbors(xi, yi)
6: Probnn ← monotonicWeights(Snn, D)
7: (xnn, ynn) = rouletteSelection(Snn, P robnn)
8: α = random(0, 1)
9: xg = xi + interpolationRatio ∗ (xnn − xi) ∗ α

10: Sres ← (xg, yi)
11: end for
12: return Sres
13: end function

mSMOTE follows exactly the same selection procedure as mROS. When a sample is selected (Line 4),
its k nearest neighbors are computed and just one is chosen to perform the interpolation. As shown in
Line 6, the nearest neighbors are selected with the same probabilities scheme mentioned before. That
is, neighbors at the limits of chains are prioritized over those that are inside a chain.

For mSMOTE, the interpolations are limited and ensured to be computed with a maximum distance of
a percentage of the total distance to the selected nearest neighbor. This percentage can be considered
to be a parameter of the method, interpolationRatio. This parameter can be set from 0, meaning no
interpolation is performed and thus it works as a mROS with repetitions, to the value of 1, as the
standard linear interpolation. Values in this range modulate ”room for error” during the interpolation
process. If we want to be conservative and try to preserve monotonicity as much as possible, we will
try to generate synthetic instances near the one selected, i.e. setting a low value for the parameter. We
recommend setting it to 0.5, as a good trade off between being conservative and covering more of the
problem space. The expression in Line 9 reflects the modification of the standard expression for linear
interpolation.

• ADASYN [14]: The original ADASYN already includes a weighting schema to prioritize samples at
the borders of the minority class. The weight of a instance is obtained as the ratio of nearest neighbors
with a different class value. The instances are selected according to these weights, then, the linear
interpolation with their neighbors are performed as SMOTE.

Monotonic ADASYN (mADASYN) is similar to mSMOTE. However, since it already computes
weights for each instance, a combination of both schemes has to be defined. This is done by the
product of both normalized weights, then they are normalized again. The following expression shows
this transformation:

Probi =
∆i

k
∗monotonicWeights(xi, D) (5)

where ∆i is the number of neighbors with a different class than xi in the set of k nearest neighbors
and monotonicWeight(xi, D) is the monotonic weight of xi defined in Algorithm 3 and normalized
in the range (0,1]

• MWMOTE [15]: The original MWMOTE is a very different approach compared to SMOTE and
ADASYN. It uses clustering as well as several nearest neighbor rules to define the instances Simin from

114 Chapter II. Publications

the minority class that are really hard to learn. To do so, the set Sminf is obtained with the minority
instances which are not considered to be noise, that is, instances that have at least one minority instance
among their k1 nearest neighbors. Then, Sbmaj is computed as the union of all k2 nearest enemies,
instances from other classes, of the instances in Sminf . Finally, Simin is the result of all k3 nearest
neighbors belonging to the minority class of Sbmaj . Instances in Simin are the only samples that can
be selected according to weight distribution Sw.

The weight Sw for given sample xi is computed with the sum of the information weights Iw contributed
by all the instances in Sbmaj :

Sw(xi) =
∑

xj∈Sbmaj

Iw(xj , xi) (6)

The information weight is composed of a closeness factor Cf (xj , xi) and a density factor Df (xj , xi).
The former determines the closeness to the decision boundaries, while the latter quantifies the density
of the cluster to which the instance xi belongs.

Iw(xj , xi) = Cf (xj , xi) ∗Df (xj , xi) (7)

Monotonic MWMOTE (mMWMOTE) maintains this algorithmic structure untouched. Similarly as
mADASYN, the monotonic weight distribution is merged with the original distribution Sw. This is
done by multiplying both factors:

Probi = Sw(xi) ∗monotonicWeights(xi, D) (8)

As a reminder, the selection of the neighbor or corresponding cluster instance to be interpolated with the
previously selected sample xi is also guided using the monotonic weighting in the monotonic methods
SMOTE, ADASYN and MWMOTE.

4 Experimental framework

This section introduces the experimental framework followed in all the experiments conducted in this paper.
In order to study the viability of sampling in monotonic environments, we select five well-known sampling
techniques from the-State-of-the-Art: RUS, ROS, SMOTE [13], ADASYN [14] and MWMOTE [15]. These
were explained in previous sections.

They were chosen following the study [36] that develops a version of these methods for ordinal regression.
Then, we can also test them within monotonic scenarios. Ordinal versions of ROS and SMOTE do not change
much: they are just applied to all the classes to balance them. For this reason, we have only included one
version of RUS, ROS and SMOTE. However, ADASYN and MWMOTE ordinal extensions include a factor to
consider the ordinal rank difference between the evaluated instances and their neighbors or closest samples. For
ADASYN, this factor is introduced in the weights calculation, while for MWMOTE, it appears in the closeness
factor.

Additionally, in the experiments we have included the new over-sampling technique developed in [36].
CWOSOrd is a cluster-based oversampling technique that is focused on the more complex and smaller clusters,
where it generates more synthetic samples. The ordering relationship and the distances to other classes samples
are used to compute a probability distribution to guide the random selection of samples for synthetic generation.
For more specific details, we refer the readers to original paper [36]. Table 1 recalls the sampling techniques
used and their parameters, including our proposals.

Chain based Sampling for Monotonic Imbalanced Classification 115

Table 1: Summary of the sampling techniques and their suggested parameters.

Sampling techniques Parameters

RUS & ROS no parameters

SMOTE & k = 5,
ADASYN & distance = Euclidean
ADASYNOrd

MWMOTE & k1 = 5, k2 = 3, k3 = 3, Cp = 3,
MWMOTEOrd Cf = 5, Cmax = 2, distance = Euclidean

CWOSOrd NN = 5, NS = 5, α = 1,
Cthres = 2, distance = Euclidean

mRUS & mROS no parameters

mSMOTE & Same recommended parameters,
mADASYN & interpolationRatio = 0.5
mMWMOTE

Table 2: Description of the data-sets used.

Data-set Ins. At. Cl. At. Directions %Ins. per Class

balance 625 4 3 {-, -, +, +} 46.1/7.8/46.1
car 1728 6 4 All direct 70.1/22.2/4.0/3.8
ERA 1000 4 9 All direct 9.1/14.2/18.1/17.2/15.8/11.8/8.8/3.1/1.9
ESL 488 4 9 All direct 0.2/2.5/7.7/20.5/23.9/27.6/12.8/3.9/0.9
LEV 1000 4 5 All direct 9.2/28.0/40.3/19.7/2.8
SWD 1000 10 4 All direct 3.1/35.2/39.9/21.8

windsorhousing 546 11 2 All direct 76.6/23.4
wisconsin 699 9 2 All direct 65.3/34.7

These methods are applied to 8 different monotonic data-sets that have been selected as they are commonly used
in the literature of classification with monotonic constraints. . Table 2 shows the characteristics of each data-
set: number of instances (Ins.), attributes (At.) and classes (Cl.), monotone direction between each attribute and
the class, and the percentage of representation of each class label in the data-set. As can be seen in the table,
the majority of these data-sets are multi-class and highly imbalanced problems. However, the classification
cannot be carried out by class decomposition schemes [46, 47], such as One-vs-One [48, 49] or One-vs-All
[50]. Since these algorithms perform the classification in decomposed binary independent problems, the order
and monotonic relations between classes are distorted.

Therefore, the sampling techniques are applied to the classes depending on whether they are majority or minor-
ity classes for under- or over-sampling, respectively. The sampling is stopped when equal balance is reached.
The minority classes are represented with bold-face font in the column %Ins. per Class at Table 2, the rest are
considered majority classes.

Then, the resulting data-sets are classified by 5 different multi-class monotonic classifiers. Table 3 recalls
the monotonic classifiers used during these experiments and their parameters. All this process is carried out
following a 10-fold stratified cross validation scheme (10-fcv) with the partitions found in the software KEEL
[51].

116 Chapter II. Publications

Table 3: Parameters considered for the algorithms compared.

Algorithm Parameters

MkNN [11] k = 5, distance = euclidean, neighborsType = inRange
OSDL [10] balanced = No, classificationType = median,

lowerBound = 0, upperBound = 1
tuneInterpolationParameter = No, weighted = No,
interpolationStepSize = 10, interpolationParameter = 0.5

OLM [21] modeResolution = conservative
modeClassification = conservative

C4.5-MID [6] R = 1, confidence = 0.25, items per leaf = 2
MonMLP [27] default parameters, hidden1 = 8

iter.max = 1000, monotone = all att

As performance measures, we have selected MAvA and Non-Monotonic Index (NMI). The above mentioned
MAvA evaluates the prediction capability of the classifiers for multi-class imbalance problems. MAvA results
should improve after applying sampling. Non-Monotonic Index is used to determine the impact of the sam-
pling techniques on the monotonicity of the monotonic classifier predictions. Non-Monotonic Index (NMI) [6]
measures the ratio of instance pairs NMP that violate monotonicity, with respect to the total number of pairs
of instances in a predicted set. To compute it, the sets of test predictions resulting from the 10-fcv classification
are merged into only one set. Then, the NMI is computed over this set following the expression:

NMI =
NMP

N2 −N (9)

where N stands for the total number of instances.

In order to corroborate the different outcomes of the experiments, we use non-parametric statistical tests: the
well-known Friedman rank test [17, 18] and Bayesian Sign test [19].

Bayesian Sign test is a pairwise Bayesian non-parametric sign test based on the Dirichlet Process [19]. This
test computes a distribution with the difference of the results obtained by the two compared algorithms (A vs
B). Then, a decision is made according to the position of the majority of the distributions in one of the three
regions: left (superiority of method B), rope (statistical equivalence) and right (superiority of method A)[19].

We have used the R package, named rNPBST[52], to perform the different tests and to present the graphics in
the following section.

5 Experimental studies

This section is devoted to experimentally showing the influence on monotonicity of standard, ordinal and mono-
tonic chain based sampling techniques. First, the performance results of several standard and ordinal sam-
plings are analyzed, paying special attention to their impact on the monotonicity of the prediction of different
monotonic classifiers. The following subsection presents the results obtained by our new monotonic sampling
scheme. An extensive comparison is made with the original results of the classifiers and the standard sampling.

5.1 On the viability of standard sampling techniques in monotonic imbalanced scenarios

In order to test the feasibility of sampling for monotonic imbalanced data-sets, we must first assure that the
prediction capability has increased after applying them. Table 4 recalls the average MAvA results achieved
by each classifier with and without the resulting set of each preprocessing method. The table cells colored in

Chain based Sampling for Monotonic Imbalanced Classification 117

Table 4: MAvA average results obtained by the selected classifiers with standard and ordinal sampling.
Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd

MkNN 0.5727 0.5827 0.5742 0.6106 0.6143 0.5828 0.6128 0.6105 0.6137
OSDL 0.5909 0.4587 0.4502 0.4351 0.4344 0.4373 0.4459 0.4472 0.4429
OLM 0.5468 0.5273 0.5656 0.5762 0.5771 0.5771 0.5810 0.5815 0.5746
MID 0.5434 0.5693 0.6272 0.6064 0.6104 0.5955 0.5929 0.5987 0.5912
MonMLP 0.5582 0.6034 0.6300 0.5902 0.5865 0.5924 0.5689 0.5771 0.5709

Table 5: Friedman ranking for MAvA results obtained by the selected classifiers with standard and ordinal
sampling.

MAvA
Rank MkNN OLM MID OSDL MonMLP

1 ADASYN (3.50) MWMOTEOrd (3.31) ROS (2.50) Original (1.50) SMOTE (3.75)
2 MWMOTE (3.75) MWMOTE (3.93) ADASYN (3.56) RUS (3.62) ADASYN (3.93)
3 CWOSOrd (3.75) ADASYNOrd (4.06) SMOTE (3.62) SMOTE (4.93) ADASYNOrd (4.18)
4 SMOTE (4.62) SMOTE (4.37) MWMOTEOrd (4.06) ADASYNOrd (5.00) ROS (4.37)
5 MWMOTEOrd (4.75) ADASYN (4.50) MWMOTE (5.56) ROS (5.12) MWMOTEOrd (4.68)
6 RUS (5.25) CWOSOrd (4.56) ADASYNOrd (5.81) ADASYN (5.31) RUS (5.25)
7 ADASYNOrd (5.37) ROS (5.62) Original (6.00) MWMOTEOrd (5.5) MWMOTE (5.31)
8 ROS (7.00) Original (7.12) CWOSOrd (6.25) MWMOTE (6.81) CWOSOrd (6.50)
9 Original (7.00) RUS (7.50) RUS (7.62) CWOSOrd (7.18) Original (7.00)

gray indicate an improvement compared to the original results obtained by the classifier. Italics font is used
to highlight the best performance for each sampling group; in this case, the comparison of the standard and
ordinal version of ADASYN and MWMOTE.

As shown in Table 4, nearly all results achieved with balanced sets outperform the classification with skewed
data-sets. Even though it was expected, these improvements are remarkably significant, especially the one
obtained with the combination of ADASYN+MkNN, ROS+MID and ROS+MonMLP. However, OSDL always
achieves better results with the original data-sets. With this outcome, we can deduce that sampling techniques
will not work properly for OSDL. Probably, this is related to its particular way of classification based on
stochastic dominance and probability distribution functions extracted from repeated instances with different
class labels[10]. Therefore, we exclude OSDL from the rest of the experiments.

In addition, Table 5 shows a Friedman ranking per selected classifier of the sampling techniques sorted by their
performance in terms of MAvA. Here, the MAvA advantage of sampling can be also appreciated, since the
original results are usually ranked last, with the exception of OSDL.

There is not one sampling method which is superior to the rest. For some classifiers, certain sampling methods
are well ranked, while for others, they are not. Their good or bad performance strongly depends on the base
learner. For ordinal sampling, there is no significant improvement over their standard versions. ADASYN
is ranked higher more times than ADASYNOrd, while, for MWMOTE, the ordinal version is usually ranked
better. CWOSOrd is not well ranked for any of the selected classifiers.

A better prediction ability thanks to a preprocessing technique is not enough to prove its viability for classifi-
cation with monotonic constraints. Its impact on monotonicity must be studied. Table 6 gathers the average
NMI retrieved from the selected classifiers with the different sampling methods. As in the previous Table 4,
the results in gray improve those recalled purely by the classifier. With exception of SMOTE and ADASYN
for OLM, all NMI measured with sampling are much higher. Therefore, these sampling techniques really
deteriorate the monotonicity of the data-sets and, as consequence, the monotonicity of the monotonic learner.

118 Chapter II. Publications

Table 6: NMI average results obtained by the selected classifiers with standard and ordinal sampling.
Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd

MkNN 0.0011 0.0034 0.0014 0.0020 0.0024 0.0053 0.0020 0.0022 0.0026
OSDL 0.0009 0.0020 0.0164 0.0052 0.0051 0.0048 0.0044 0.0057 0.0069
OLM 0.0018 0.0028 0.0021 0.0017 0.0016 0.0015 0.0019 0.0019 0.0020
MID 0.0030 0.0090 0.0050 0.0038 0.0045 0.0051 0.0042 0.0044 0.0037
MonMLP 0.0005 0.0021 0.0013 0.0013 0.0015 0.0016 0.0036 0.0037 0.0076

Table 7: Friedman ranking for NMI results obtained by the selected classifiers with standard and ordinal sam-
pling.

NMI
Rank MkNN OLM MID OSDL MonMLP

1 Original (2.43) ADASYNOrd (3.31) Original (3.37) Original (3.18) Original (2.50)
2 ROS (3.81) ADASYN (3.68) MWMOTEOrd (4.00) RUS (4.43) ADASYN (4.37)
3 ADASYN (4.68) ROS (4.68) SMOTE (4.12) SMOTE (4.81) ADASYNOrd (4.62)
4 SMOTE (4.87) SMOTE (4.75) ADASYN (4.56) MWMOTE (4.81) SMOTE (4.87)
5 MWMOTE (5.12) Original (5.12) CWOSOrd (4.87) ADASYN (5.31) MWMOTE (4.87)
6 CWOSOrd (5.25) RUS (5.5) MWMOTE (5.12) ADASYNOrd (5.37) ROS (5.00)
7 MWMOTEOrd (5.50) MWMOTEOrd (5.62) ADASYNOrd (5.68) ROS (5.62) MWMOTEOrd (5.37)
8 ADASYNOrd (5.93) CWOSOrd (6.06) ROS (5.87) MWMOTEOrd (5.62) CWOSOrd (6.00)
9 RUS (7.38) MWMOTE (6.25) RUS (7.37) CWOSOrd (5.81) RUS (7.37)

This fact can be also observed in the Friedman ranking presented in the Table 7 that composed of all the NMI
results. The original classifiers are nearly always ranked first with a small ranking value compared to the second
best.

Additionally, thanks this study of monotonicity, ordinal sampling methods become impractical, since ADASYN
is still usually better than ADASYNOrd, MWMOTE is now ranked higher than its ordinal version in most cases
and once again, CWOSOrd ranks last in the Friedman ranking.

With this first experimental study, we can conclude that standard sampling can improve the prediction of the
classifiers, but they impair the monotonicity to a large extent. And the existing ordinal sampling methods do
not solve the problem.

The complete results achieved by these methods in terms of MAvA and NMI can be found in the following
experimental study, for the standard sampling methods, and in A. They have been removed from this section
for the sake of clarity.

5.2 Standard and Monotonic Sampling: Results and Analysis

Throughout this empirical study, we analyze the behavior of our chain based sampling techniques. Their
performance in terms of MAvA and NMI are compared with the classifiers with and without the standard
sampling methods. Given the bad performance shown in the previous experimental study using OSDL with
sampled data-sets in comparison to the one with original sets, OSDL has been excluded from this experiment.

Table 8 recalls the MAvA achieved per data-set with the different configurations of base learners and standard
or monotonic preprocessing. The best results between the standard and monotonic versions of each sampling
are highlighted in italics. The gray cells represent an improvement when compared to the classifiers without
sampling.

All the classifiers improve their performance in terms of MAvA by using sampling, both standard and mono-
tonic, for most of the data-sets. The best sampling methods on average are the standard ROS sampling and

Chain based Sampling for Monotonic Imbalanced Classification 119

(a) RUS (b) mRUS (c) ROS (d) mROS

(e) SMOTE (f) mSMOTE (g) ADASYN (h) mADASYN

(i) MWMOTE (j) mMWMOTE

Figure 1: Bayesian Sign Test heatmap for the sampling MAvA results vs the original MAvA results.

Monotonic ADASYN (mADASYN). RUS and mRUS are the methods which show the least improvement,
probably because the under-sampling performed to balance the class distribution is too aggressive. The mono-
tonic version is slightly better. At first sight, it is difficult to guess which is the best set of methods in terms of
predictability: standard or monotonic sampling.

Bayesian Sign test has been used to thoroughly analyze the results and to clearly present the significance of the
differences between the evaluated methods with the help of heatmap plots. Figure 1 represents the probability
distributions of the differences between the sampling methods and the original results of the classifiers. As we
can observe, the majority of the points in nearly all the plots are on the right side of the triangle. This means
that the results obtained with sampling are significantly better than those obtained without sampling. With the
exception of RUS (Fig. 1a) and mRUS (Fig. 1a), the test assigns an almost 0 probability in favor of the original
classifiers. Monotonic RUS (Fig. 1a) is still valued, since most of the distribution is in the right region.

Figure 2 graphically compares the MAvA results of the monotonic versus standard sampling techniques. With
a large part of distributions in the rope regions, there is no significant difference in terms of predicative ca-
pability between these two sampling groups. Monotonic RUS, ROS and MWMOTE (Figures 2a, 2b and 2e,
respectively) are slightly better than their standard versions, since their distributions have shifted a bit to the
right.

120 Chapter II. Publications
Table

8:M
A

vA
results

obtained
by

the
selected

classifiers
w

ith
standard

and
m

onotonic
sam

pling.

O
riginal

R
U

S
m

R
U

S
R

O
S

m
R

O
S

SM
O

T
E

m
SM

O
T

E
A

D
A

SY
N

m
A

D
A

SY
N

M
W

M
O

T
E

m
M

W
M

O
T

E

balance
0.6343

0.7241
0.6575

0.6100
0.6100

0.6436
0.5982

0.6376
0.5974

0.6637
0.6969

car
0.9134

0.8824
0.9759

0.9553
0.9673

0.9696
0.9673

0.9709
0.9677

0.9660
0.9620

E
R

A
0.1357

0.1480
0.1450

0.1338
0.1338

0.2501
0.2878

0.2794
0.2949

0.2845
0.2717

E
SL

0.4674
0.3986

0.3573
0.4621

0.4834
0.4660

0.4764
0.4711

0.4754
0.4945

0.4843
M
kN

N
LE

V
0.3924

0.4182
0.4372

0.3834
0.4783

0.4682
0.5097

0.4737
0.5089

0.4467
0.4680

SW
D

0.4004
0.4692

0.4908
0.4111

0.4111
0.4608

0.4703
0.4616

0.4605
0.4034

0.3989
w

indsorhousing
0.6755

0.6467
0.6318

0.6755
0.6755

0.6562
0.6755

0.6477
0.6755

0.6726
0.6755

w
isconsin

0.9625
0.9745

0.9716
0.9625

0.9662
0.9699

0.9669
0.9721

0.9709
0.9709

0.9706

Avg:
0.5727

0.5827
0.5834

0.5742
0.5907

0.6106
0.6190

0.6143
0.6189

0.6128
0.6160

balance
0.6019

0.5243
0.5961

0.6019
0.6019

0.6268
0.6019

0.6200
0.6019

0.6632
0.6480

car
0.8704

0.8424
0.9231

0.9028
0.8849

0.8885
0.8740

0.8885
0.8740

0.8885
0.8801

E
R

A
0.2423

0.2276
0.2289

0.2674
0.2665

0.2962
0.2900

0.3012
0.2954

0.2716
0.2825

E
SL

0.3981
0.3242

0.3588
0.4070

0.4250
0.3974

0.4358
0.4019

0.4342
0.4225

0.4176
O

L
M

LE
V

0.4044
0.3801

0.4188
0.3729

0.4225
0.4165

0.4530
0.4075

0.4560
0.4155

0.4315
SW

D
0.4834

0.4024
0.5004

0.4707
0.4692

0.4834
0.4834

0.4834
0.4834

0.4830
0.4834

w
indsorhousing

0.5320
0.6358

0.6358
0.6352

0.5599
0.6444

0.5442
0.6324

0.5410
0.6487

0.5553
w

isconsin
0.8418

0.8814
0.8814

0.8668
0.8446

0.8567
0.8432

0.8821
0.8425

0.8551
0.8467

Avg:
0.5468

0.5273
0.5679

0.5656
0.5593

0.5762
0.5657

0.5771
0.5660

0.5810
0.5681

balance
0.5705

0.5531
0.5531

0.5941
0.6499

0.5849
0.5848

0.5674
0.5826

0.5755
0.5849

car
0.4603

0.8191
0.7840

0.8810
0.6499

0.8374
0.8808

0.8786
0.8640

0.8222
0.8588

E
R

A
0.3182

0.2907
0.2872

0.3040
0.3131

0.3059
0.3026

0.2926
0.2916

0.2867
0.3102

E
SL

0.4254
0.3213

0.2767
0.4384

0.4644
0.4411

0.4432
0.4608

0.4404
0.4372

0.4633
M

ID
LE

V
0.4731

0.4592
0.4517

0.5732
0.5641

0.5367
0.5048

0.5101
0.5073

0.5157
0.4958

SW
D

0.4470
0.4676

0.4916
0.5542

0.5592
0.5192

0.4565
0.4993

0.4940
0.4542

0.4888
w

indsorhousing
0.7000

0.6912
0.6684

0.7165
0.6873

0.6642
0.6764

0.7064
0.7056

0.6868
0.7128

w
isconsin

0.9524
0.9522

0.9509
0.9566

0.9548
0.9619

0.9628
0.9678

0.9577
0.9651

0.9607

Avg:
0.5434

0.5693
0.5580

0.6272
0.6053

0.6064
0.6015

0.6104
0.6054

0.5929
0.6094

balance
0.9051

0.8523
0.8799

0.9114
0.9138

0.8837
0.9057

0.8918
0.9080

0.8291
0.8591

car
0.6487

0.7788
0.7260

0.7326
0.7769

0.7754
0.7532

0.7564
0.8088

0.6941
0.7552

E
R

A
0.1723

0.1957
0.2017

0.2887
0.2894

0.3084
0.3027

0.3108
0.2913

0.2886
0.2795

E
SL

0.5370
0.4503

0.4435
0.4941

0.1111
0.1111

0.1111
0.1111

0.1111
0.1325

0.1111
M

onM
L

P
LE

V
0.4839

0.5077
0.5023

0.5259
0.5000

0.5561
0.4697

0.5367
0.5018

0.5451
0.5450

SW
D

0.3497
0.4247

0.4433
0.4740

0.4974
0.4679

0.4875
0.4842

0.4877
0.4415

0.4014
w

indsorhousing
0.5566

0.6637
0.6609

0.6544
0.6581

0.6562
0.6478

0.6359
0.6478

0.6595
0.6463

w
isconsin

0.8118
0.9537

0.9564
0.9588

0.9548
0.9628

0.9570
0.9648

0.9688
0.9611

0.9665

Avg:
0.5582

0.6034
0.6017

0.6300
0.5877

0.5902
0.5794

0.5865
0.5907

0.5689
0.5705

C
om

plete
Avg:

0.5553
0.5707

0.5778
0.5993

0.5857
0.5959

0.5914
0.5971

0.5953
0.5889

0.5910

Chain based Sampling for Monotonic Imbalanced Classification 121

(a) mRUS (b) mROS (c) mSMOTE

(d) mADASYN (e) mMWMOTE

Figure 2: Bayesian Sign Test heatmap for the monotonic sampling MAvA results vs the standard sampling
MAvA results.

Table 9 gathers the NMI results reached using the different standard and monotonic sampling methods for
every classifier per data-set. Cells in gray indicate the preservation of monotonicity. Even though there are
not a huge amount of cells in gray, monotonic sampling results are quite similar to the original results when
they do not achieve an improvement. It is worth mentioning that monotonicity is preserved on average for
OLM and MID for nearly all monotonic sampling, except mROS and mRUS, respectively. On average, every
monotonic sampling outperforms its counterpart for each classifier and the mean of all the results. The majority
of best results per data-set and type of sampling, marked in italics, are located in the monotonic columns. These
results represent a better preservation of monotonicity using the monotonic sampling compared to the traditional
methods.

Figure 3 represents the Bayesian Sign test results for the difference of each of the sampling techniques and the
NMI results obtained without them. At first glance, there is a change in the tendency of the distributions of
the standard and the monotonic methods. Even though all of them have shifted to the left, towards the original
results of the classifiers, the distributions of the monotonic sampling techniques are largely located in the rope
region, i.e. the practical equivalence region. Monotonic RUS is excluded from this good behavior. Additionally,
for monotonic MWMOTE (Fig. 3j), a good amount of points are located in the right section, indicating some
monotonic improvements as compared to the original results.

Figure 4 shows the result of the Bayesian Sign test for the NMI comparison of monotonic sampling vs standard
sampling methods. As we can observe, all the distributions are heavily shifted to the right, emphasizing the
superiority of monotonic sampling over standard ones using NMI as measure. For the monotonic RUS and
MWMOTE comparisons (Fig. 4a and 4e), the majority of the distribution is located in the right part. For the
rest, the distributions are more or less shared by the rope and right sections. However, for monotonic ROS (Fig.

122 Chapter II. Publications
Table

9:N
M

Iresults
obtained

by
the

selected
classifiers

w
ith

standard
and

m
onotonic

sam
pling.

O
riginal

R
U

S
m

R
U

S
R

O
S

m
R

O
S

SM
O

T
E

m
SM

O
T

E
A

D
A

SY
N

m
A

D
A

SY
N

M
W

M
O

T
E

m
M

W
M

O
T

E

balance
0.0001

0.0006
0.0003

0.0003
0.0003

0.0004
0.0005

0.0004
0.0005

0.0004
0.0003

car
0.0000

0.0004
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

E
R

A
0.0056

0.0081
0.0084

0.0071
0.0071

0.0113
0.0112

0.0146
0.0114

0.0118
0.0113

E
SL

0.0012
0.0072

0.0030
0.0014

0.0012
0.0013

0.0012
0.0015

0.0011
0.0011

0.0010
M
kK

N
N

LE
V

0.0010
0.0066

0.0044
0.0016

0.0012
0.0019

0.0012
0.0018

0.0012
0.0019

0.0016
SW

D
0.0005

0.0043
0.0026

0.0008
0.0008

0.0007
0.0011

0.0007
0.0011

0.0011
0.0009

w
indsorhousing

0.0000
0.0002

0.0000
0.0000

0.0000
0.0001

0.0000
0.0001

0.0000
0.0000

0.0000
w

isconsin
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

Avg:
0.0011

0.0034
0.0023

0.0014
0.0013

0.0020
0.0019

0.0024
0.0019

0.0020
0.0019

balance
0.0000

0.0001
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0003
0.0000

car
0.0000

0.0001
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

E
R

A
0.0063

0.0040
0.0041

0.0100
0.0081

0.0056
0.0052

0.0058
0.0055

0.0064
0.0054

E
SL

0.0025
0.0084

0.0025
0.0023

0.0032
0.0023

0.0025
0.0023

0.0025
0.0018

0.0027
O

L
M

LE
V

0.0043
0.0038

0.0025
0.0028

0.0043
0.0039

0.0043
0.0028

0.0044
0.0051

0.0051
SW

D
0.0015

0.0062
0.0046

0.0016
0.0016

0.0015
0.0015

0.0015
0.0015

0.0016
0.0015

w
indsorhousing

0.0000
0.0000

0.0000
0.0000

0.0000
0.0002

0.0000
0.0001

0.0000
0.0002

0.0000
w

isconsin
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

Avg:
0.0018

0.0028
0.0017

0.0021
0.0021

0.0017
0.0017

0.0016
0.0017

0.0019
0.0018

balance
0.0017

0.0056
0.0056

0.0015
0.0012

0.0012
0.0017

0.0016
0.0014

0.0025
0.0014

car
0.0034

0.0050
0.0060

0.0014
0.0012

0.0013
0.0009

0.0012
0.0011

0.0014
0.0013

E
R

A
0.0086

0.0064
0.0071

0.0115
0.0085

0.0087
0.0090

0.0101
0.0087

0.0106
0.0109

E
SL

0.0023
0.0205

0.0146
0.0064

0.0031
0.0041

0.0021
0.0038

0.0033
0.0044

0.0025
M

ID
LE

V
0.0024

0.0116
0.0139

0.0037
0.0021

0.0027
0.0028

0.0031
0.0023

0.0025
0.0022

SW
D

0.0020
0.0089

0.0107
0.0026

0.0025
0.0027

0.0025
0.0029

0.0027
0.0024

0.0025
w

indsorhousing
0.0035

0.0135
0.0014

0.0127
0.0040

0.0094
0.0024

0.0135
0.0043

0.0094
0.0034

w
isconsin

0.0001
0.0001

0.0001
0.0000

0.0000
0.0001

0.0001
0.0000

0.0000
0.0000

0.0000

Avg:
0.0030

0.0090
0.0074

0.0050
0.0028

0.0038
0.0027

0.0045
0.0030

0.0042
0.0030

balance
0.0000

0.0001
0.0001

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0003
0.0000

car
0.0001

0.0006
0.0010

0.0006
0.0003

0.0003
0.0003

0.0003
0.0009

0.0002
0.0005

E
R

A
0.0026

0.0050
0.0054

0.0048
0.0043

0.0063
0.0056

0.0069
0.0055

0.0056
0.0056

M
onM

L
P

E
SL

0.0003
0.0030

0.0025
0.0016

0.0000
0.0000

0.0000
0.0000

0.0000
0.0196

0.0000
LE

V
0.0008

0.0041
0.0049

0.0027
0.0018

0.0023
0.0018

0.0023
0.0015

0.0020
0.0016

SW
D

0.0004
0.0044

0.0024
0.0011

0.0012
0.0013

0.0019
0.0021

0.0015
0.0011

0.0028
w

indsorhousing
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

w
isconsin

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

Avg:
0.0005

0.0021
0.0020

0.0013
0.0010

0.0013
0.0012

0.0015
0.0012

0.0036
0.0013

C
om

plete
Avg:

0.0016
0.0043

0.0034
0.0025

0.0018
0.0022

0.0019
0.0025

0.0020
0.0029

0.0020

Chain based Sampling for Monotonic Imbalanced Classification 123

(a) RUS (b) mRUS (c) ROS (d) mROS

(e) SMOTE (f) mSMOTE (g) ADASYN (h) mADASYN

(i) MWMOTE (j) mMWMOTE

Figure 3: Bayesian Sign Test heatmap for the sampling NMI results vs the original NMI results.

4b), ADASYN (Fig. 4d) and MWMOTE (Fig. 4e), there are barely no points on the left side, therefore their
superiority is significant.

Recapitulating, the five monotonic sampling techniques based on monotonic chains increase the predictability
of the classifier and, at the same time, to a large extent, improve the standard sampling approaches in terms of
monotonicity. mRUS and mMWMOTE show a marked improvement as compared to the standard versions.

Among the monotonic sampling methods analyzed, it is difficult to choose the best technique, since the best
results strongly depend on the characteristics of the problem and classifier used. On average, mADASYN
results in the best techniques in terms of MAvA, while mROS achieves the best monotonic results. mRUS
is the worst on average, but it obtains fairly good results for those datasets where there is a good amount of
representatives of the minority classes, such as car and wisconsin, especially when combined with OLM and
MonMLP. mROS is very interesting for problems with repeated samples of different classes. Comparing the
methods based on linear interpolation, mSMOTE is the best at maintaining monotonicity and a good trade-off
between predictability improvement and monotonicity maintenance.

124 Chapter II. Publications

(a) mRUS (b) mROS (c) mSMOTE

(d) mADASYN (e) mMWMOTE

Figure 4: Bayesian Sign Test heatmap for the monotonic sampling NMI results vs the standard sampling NMI
results.

6 Concluding Remarks

The imbalanced class problem is a real issue for many real-life applications and commonly used data-sets in
classification with monotonic constraints. However, as shown empirically in this paper, traditional solutions are
not valid for those scenarios in which monotonic constraints are assumed, since these methods heavily degrade
the monotonicity of the data-sets.

In this paper, a new sampling scheme based on monotonic chains was designed to consider the constraints
of monotonicity and to be able to be applied to monotonic data-sets. The main objective was to improve the
accuracy of those minority classes, while preserving the monotonicity of the models. We have developed this
scheme within 5 different well-known sampling techniques, one under-sampling and four over-sampling algo-
rithms. These new methods have been empirically tested with their standard versions, statistically resulting in
the same results in terms of prediction enhancement and in much better preservation of the monotonicity of the
predictions. In some cases, they have even improved the monotonicity of the models compared to the original
without sampling. Among the chain based sampling methods, mROS is the best in terms of monotonicity and
mSMOTE is the best in predictability improvement and monotonicity preservation.

Chain based Sampling for Monotonic Imbalanced Classification 125

A Results tables for standard and ordinal sampling

Table 10: MAvA results obtained by the selected classifiers with standard and ordinal sampling.
Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd

balance 0.6343 0.7241 0.6100 0.6436 0.6376 0.6376 0.6637 0.6637 0.6657
car 0.9134 0.8824 0.9553 0.9696 0.9709 0.9709 0.9660 0.9636 0.9645
ERA 0.1357 0.1480 0.1338 0.2501 0.2794 0.2588 0.2845 0.2769 0.2911
ESL 0.4674 0.3986 0.4621 0.4660 0.4711 0.3228 0.4945 0.4915 0.5123

MKNN LEV 0.3924 0.4182 0.3834 0.4682 0.4737 0.3925 0.4467 0.4414 0.4491
SWD 0.4004 0.4692 0.4111 0.4608 0.4616 0.4599 0.4034 0.4031 0.4044
windsorhousing 0.6755 0.6467 0.6755 0.6562 0.6477 0.6477 0.6726 0.6726 0.6526
wisconsin 0.9625 0.9745 0.9625 0.9699 0.9721 0.9721 0.9709 0.9709 0.9702

Avg: 0.5727 0.5827 0.5742 0.6106 0.6143 0.5828 0.6128 0.6105 0.6137

balance 0.6019 0.5243 0.6019 0.6268 0.6200 0.6200 0.6632 0.6632 0.6577
car 0.8704 0.8424 0.9028 0.8885 0.8885 0.8885 0.8885 0.8909 0.8885
ERA 0.2423 0.2276 0.2674 0.2962 0.3012 0.2983 0.2716 0.2794 0.2550
ESL 0.3981 0.3242 0.4070 0.3974 0.4019 0.4069 0.4225 0.4203 0.4253

OLM LEV 0.4044 0.3801 0.3729 0.4165 0.4075 0.4054 0.4155 0.4109 0.4077
SWD 0.4834 0.4024 0.4707 0.4834 0.4834 0.4834 0.4830 0.4834 0.4834
windsorhousing 0.5320 0.6358 0.6352 0.6444 0.6324 0.6324 0.6487 0.6487 0.6293
wisconsin 0.8418 0.8814 0.8668 0.8567 0.8821 0.8821 0.8551 0.8551 0.8502

Avg: 0.5468 0.5273 0.5656 0.5762 0.5771 0.5771 0.5810 0.5815 0.5746

balance 0.5705 0.5531 0.5941 0.5849 0.5674 0.5674 0.5755 0.5755 0.5621
car 0.4603 0.8191 0.8810 0.8374 0.8786 0.8683 0.8222 0.8422 0.8723
ERA 0.3182 0.2907 0.3040 0.3059 0.2926 0.2997 0.2867 0.3044 0.2929

MID ESL 0.4254 0.3213 0.4384 0.4411 0.4608 0.4638 0.4372 0.4430 0.4179
LEV 0.4731 0.4592 0.5732 0.5367 0.5101 0.5226 0.5157 0.4981 0.4947
SWD 0.4470 0.4676 0.5542 0.5192 0.4993 0.4441 0.4542 0.4689 0.4566
windsorhousing 0.7000 0.6912 0.7165 0.6642 0.7064 0.6489 0.6868 0.6966 0.6741
wisconsin 0.9524 0.9522 0.9566 0.9619 0.9678 0.9490 0.9651 0.9607 0.9593

Avg: 0.5434 0.5693 0.6272 0.6064 0.6104 0.5955 0.5929 0.5987 0.5912

balance 0.5159 0.5130 0.5299 0.3980 0.3965 0.3965 0.5106 0.5106 0.5181
car 0.9179 0.4976 0.4594 0.4648 0.4638 0.4621 0.4562 0.4615 0.4496
ERA 0.2525 0.2005 0.1990 0.1988 0.2000 0.1987 0.1878 0.1923 0.1967
ESL 0.4934 0.1470 0.1429 0.1618 0.1612 0.1618 0.1560 0.1560 0.1560

OSDL LEV 0.4936 0.3532 0.3597 0.3538 0.3545 0.3791 0.3594 0.3606 0.3318
SWD 0.4588 0.4515 0.4497 0.4344 0.4359 0.4368 0.4334 0.4334 0.4311
windsorhousing 0.6334 0.5854 0.5400 0.5480 0.5424 0.5424 0.5424 0.5424 0.5392
wisconsin 0.9617 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211

Avg: 0.5909 0.4587 0.4502 0.4351 0.4344 0.4373 0.4459 0.4472 0.4429

balance 0.9051 0.8523 0.9114 0.8837 0.8918 0.8918 0.8291 0.8291 0.8258
car 0.6487 0.7788 0.7326 0.7754 0.7564 0.8133 0.6941 0.7508 0.7552
ERA 0.1723 0.1957 0.2887 0.3084 0.3108 0.2927 0.2886 0.3023 0.2867
ESL 0.5370 0.4503 0.4941 0.1111 0.1111 0.1111 0.1325 0.1305 0.2985

MonMLP LEV 0.4839 0.5077 0.5259 0.5561 0.5367 0.5029 0.5451 0.5403 0.5370
SWD 0.3497 0.4247 0.4740 0.4679 0.4842 0.5270 0.4415 0.4431 0.4419
windsorhousing 0.5566 0.6637 0.6544 0.6562 0.6359 0.6359 0.6595 0.6595 0.5000
wisconsin 0.8118 0.9537 0.9588 0.9628 0.9648 0.9648 0.9611 0.9611 0.9221

Avg: 0.5582 0.6034 0.6300 0.5902 0.5865 0.5924 0.5689 0.5771 0.5709

Complete Avg: 0.5624 0.5620 0.5694 0.5637 0.5645 0.5570 0.5603 0.5630 0.5587

126 Chapter II. Publications

Table 11: NMI results obtained by the selected classifiers with standard and ordinal sampling.
Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd

balance 0.0001 0.0006 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
car 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ERA 0.0056 0.0081 0.0071 0.0113 0.0146 0.0172 0.0118 0.0130 0.0106
ESL 0.0012 0.0072 0.0014 0.0013 0.0015 0.0125 0.0011 0.0011 0.0012

MKNN LEV 0.0010 0.0066 0.0016 0.0019 0.0018 0.0116 0.0019 0.0019 0.0024
SWD 0.0005 0.0043 0.0008 0.0007 0.0007 0.0007 0.0011 0.0011 0.0010
windsorhousing 0.0000 0.0002 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0053
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Avg: 0.0011 0.0034 0.0014 0.0020 0.0024 0.0053 0.0020 0.0022 0.0026

balance 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0003
car 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ERA 0.0063 0.0040 0.0100 0.0056 0.0058 0.0051 0.0064 0.0057 0.0059
ESL 0.0025 0.0084 0.0023 0.0023 0.0023 0.0023 0.0018 0.0018 0.0023

OLM LEV 0.0043 0.0038 0.0028 0.0039 0.0028 0.0027 0.0051 0.0053 0.0053
SWD 0.0015 0.0062 0.0016 0.0015 0.0015 0.0015 0.0016 0.0015 0.0015
windsorhousing 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0002 0.0002 0.0004
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Avg: 0.0018 0.0028 0.0021 0.0017 0.0016 0.0015 0.0019 0.0019 0.0020

balance 0.0017 0.0056 0.0015 0.0012 0.0016 0.0016 0.0025 0.0025 0.0028
car 0.0034 0.0050 0.0014 0.0013 0.0012 0.0008 0.0014 0.0012 0.0014
ERA 0.0086 0.0064 0.0115 0.0087 0.0101 0.0103 0.0106 0.0102 0.0103

MID ESL 0.0023 0.0205 0.0064 0.0041 0.0038 0.0030 0.0044 0.0033 0.0038
LEV 0.0024 0.0116 0.0037 0.0027 0.0031 0.0031 0.0025 0.0025 0.0030
SWD 0.0020 0.0089 0.0026 0.0027 0.0029 0.0027 0.0024 0.0020 0.0022
windsorhousing 0.0035 0.0135 0.0127 0.0094 0.0135 0.0188 0.0094 0.0138 0.0057
wisconsin 0.0001 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0000 0.0001

Avg: 0.0030 0.0090 0.0050 0.0038 0.0045 0.0051 0.0042 0.0044 0.0037

balance 0.0006 0.0016 0.0000 0.0058 0.0060 0.0060 0.0022 0.0022 0.0015
car 0.0000 0.0019 0.0025 0.0034 0.0034 0.0033 0.0057 0.0052 0.0035
ERA 0.0049 0.0009 0.0301 0.0310 0.0299 0.0274 0.0251 0.0302 0.0326
ESL 0.0006 0.0000 0.0963 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

OSDL LEV 0.0004 0.0051 0.0010 0.0005 0.0006 0.0009 0.0011 0.0068 0.0163
SWD 0.0009 0.0030 0.0009 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008
windsorhousing 0.0036 0.0000 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Avg: 0.0009 0.0020 0.0164 0.0052 0.0051 0.0048 0.0044 0.0057 0.0069

balance 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0002
car 0.0001 0.0006 0.0006 0.0003 0.0003 0.0002 0.0002 0.0002 0.0001
ERA 0.0026 0.0050 0.0048 0.0063 0.0069 0.0069 0.0056 0.0071 0.0111
ESL 0.0003 0.0030 0.0016 0.0000 0.0000 0.0000 0.0196 0.0190 0.0426

MonMLP LEV 0.0008 0.0041 0.0027 0.0023 0.0023 0.0035 0.0020 0.0019 0.0035
SWD 0.0004 0.0044 0.0011 0.0013 0.0021 0.0022 0.0011 0.0011 0.0008
windsorhousing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022

Avg: 0.0005 0.0021 0.0013 0.0013 0.0015 0.0016 0.0036 0.0037 0.0076

Complete Avg: 0.0015 0.0040 0.0052 0.0028 0.0030 0.0037 0.0032 0.0036 0.0045

Acknowledgements

This work was supported by the Spanish National Research Project TIN2017-89517-P and the Project BigDaP-
TOOLS - Ayudas Fundación BBVA a Equipos de Investigación Cientı́fica 2016 and by a research scholarship
(FPU) given to the author Sergio González by the Spanish Ministry of Education, Culture and Sports. Addi-
tionally, this paper is the result of a collaboration with the Prof. Sheng-Tun Li during the international stay
made by Sergio González at National Cheng Kung University. This stay was partially supported by the 2017

Chain based Sampling for Monotonic Imbalanced Classification 127

Summer Program in Taiwan for Spanish Graduate Students held by the Ministry of Science and Technology of
Taiwan (R.O.C.).

References

[1] Chih-Chuan Chen and Sheng-Tun Li. Credit rating with a monotonicity-constrained support vector ma-
chine model. Expert Systems with Applications, 41(16):7235–7247, 2014.

[2] Jie Sun, Jie Lang, Hamido Fujita, and Hui Li. Imbalanced enterprise credit evaluation with dte-sbd:
Decision tree ensemble based on smote and bagging with differentiated sampling rates. Information
Sciences, 425:76–91, 2018.

[3] Marina Velikova and Hennie Daniels. Decision trees for monotone price models. Computational Man-
agement Science, 1(3):231–244, Oct 2004.

[4] Jose-Ramon Cano, Naif R Aljohani, Rabeeh Ayaz Abbasi, Jalal S Alowidbi, and Salvador Garcia. Proto-
type selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence,
60:128–135, 2017.

[5] Ye Liu, Luming Zhang, Liqiang Nie, Yan Yan, and David S Rosenblum. Fortune teller: Predicting your
career path. In AAAI, volume 2016, pages 201–207, 2016.

[6] A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms. Machine
Learning, 19(1):29–43, 1995.

[7] Victoria López, Alberto Fernández, Salvador Garcı́a, Vasile Palade, and Francisco Herrera. An insight
into classification with imbalanced data: Empirical results and current trends on using data intrinsic char-
acteristics. Information Sciences, 250:113 – 141, 2013.

[8] Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Diego F Silva. Class imbalance revisited: a new
experimental setup to assess the performance of treatment methods. Knowledge and Information Systems,
45(1):247–270, 2015.

[9] Ye Liu, Liqiang Nie, Lei Han, Luming Zhang, and David S Rosenblum. Action2activity: Recognizing
complex activities from sensor data. In IJCAI, volume 2015, pages 1617–1623, 2015.

[10] Stijn Lievens, Bernard De Baets, and Kim Cao-Van. A probabilistic framework for the design of instance-
based supervised ranking algorithms in an ordinal setting. Annals of Operations Research, 163(1):115–
142, 2008.

[11] W. Duivesteijn and A. Feelders. Nearest neighbour classification with monotonicity constraints. In
ECML/PKDD (1), pages 301–316, 2008.

[12] Stijn Lievens and Bernard De Baets. Supervised ranking in the weka environment. Information Sciences,
180(24):4763–4771, 2010.

[13] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, pages 321–357, 2002.

[14] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE International Joint Conference on, pages 1322–1328. IEEE, 2008.

128 Chapter II. Publications

[15] Sukarna Barua, Md Monirul Islam, Xin Yao, and Kazuyuki Murase. Mwmote–majority weighted minority
oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data
Engineering, 26(2):405–425, 2014.

[16] Juan Pablo Sánchez-Crisostomo, Roberto Alejo, Erika López-González, Rosa Marı́a Valdovinos, and
J. Horacio Pacheco-Sánchez. Empirical analysis of assessments metrics for multi-class imbalance learning
on the back-propagation context. In Advances in Swarm Intelligence: 5th International Conference, ICSI
2014, pages 17–23. Springer, 2014.

[17] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the american statistical association, 32(200):675–701, 1937.

[18] S. Garcı́a and F. Herrera. An extension on “statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008.

[19] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change: a tutorial for
comparing multiple classifiers through bayesian analysis. The Journal of Machine Learning Research,
18(1):2653–2688, 2017.

[20] W. Kotłowski and R. Słowiński. On nonparametric ordinal classification with monotonicity constraints.
IEEE Transactions on Knowledge and Data Engineering, 25(11):2576–2589, 2013.

[21] A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge-based dsss: method-
ology and applications. Decision Sciences, 23:1357–1372, 1992.

[22] Javier Garcı́a, A. M. AlBar, N. R. Aljohani, J.-R. Cano, and S. Garcı́a. Hyperrectangles selection for
monotonic classification by using evolutionary algorithms. International Journal of Computational Intel-
ligence Systems, 9(1):184–202, 2016.

[23] Christophe Marsala and Davide Petturiti. Rank discrimination measures for enforcing monotonicity in
decision tree induction. Information Sciences, 291:143–171, 2015.

[24] Jesús Alcalá-Fdez, Rafael Alcalá, Sergio González, Yusuke Nojima, and Salvador Garcı́a. Evolutionary
fuzzy rule-based methods for monotonic classification. IEEE Transactions on Fuzzy Systems, 25(6):1376–
1390, 2017.

[25] Shenglei Pei and Qinghua Hu. Partially monotonic decision trees. Information Sciences, 424:104–117,
2018.

[26] Sheng-Tun Li and Chih-Chuan Chen. A regularized monotonic fuzzy support vector machine model for
data mining with prior knowledge. IEEE Transactions on Fuzzy Systems, 23(5):1713–1727, 2015.

[27] Bernhard Lang. Monotonic multi-layer perceptron networks as universal approximators. In International
Conference on Artificial Neural Networks, pages 31–37. Springer, 2005.

[28] Francisco Fernández-Navarro, Annalisa Riccardi, and Sante Carloni. Ordinal neural networks without
iterative tuning. IEEE Transactions on Neural Network and Learning Systems, 25(11):2075–2085, 2014.

[29] Hong Zhu, Eric CC Tsang, Xi-Zhao Wang, and Rana Aamir Raza Ashfaq. Monotonic classification
extreme learning machine. Neurocomputing, 225:205–213, 2017.

[30] K. Dembczyński, W. Kotłowski, and R. Słowiński. Learning rule ensembles for ordinal classification with
monotonicity constraints. Fundamenta Informaticae, 94(2):163–178, 2009.

Chain based Sampling for Monotonic Imbalanced Classification 129

[31] Yuhua Qian, Hang Xu, Jiye Liang, Bing Liu, and Jieting Wang. Fusing monotonic decision trees. IEEE
Transactions on Knowledge Data Engineering, 27(10):2717–2728, 2015.

[32] Sergio González, Francisco Herrera, and Salvador Garcı́a. Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Generation Computing, 33(4):367–388,
2015.

[33] Qinghua Hu, Weiwei Pan, Yanping Song, and Daren Yu. Large-margin feature selection for monotonic
classification. Knowledge-Based Systems, 31:8 – 18, 2012.

[34] J.-R. Cano and S. Garcı́a. Training set selection for monotonic ordinal classification. Data & Knowledge
Engineering, 112:94 – 105, 2017.

[35] Marı́a Pérez-Ortiz, Pedro Antonio Gutierrez, César Hervás-Martı́nez, and Xin Yao. Graph-based ap-
proaches for over-sampling in the context of ordinal regression. IEEE Transactions on Knowledge and
Data Engineering, 27(5):1233–1245, 2015.

[36] Iman Nekooeimehr and Susana K. Lai-Yuen. Cluster-based weighted oversampling for ordinal regression
(cwos-ord). Neurocomputing, 218:51 – 60, 2016.

[37] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: Special issue on learning from
imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6, 2004.

[38] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. A
review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(4):463–484,
2012.

[39] Nitesh V Chawla, David A Cieslak, Lawrence O Hall, and Ajay Joshi. Automatically countering im-
balance and its empirical relationship to cost. Data Mining and Knowledge Discovery, 17(2):225–252,
2008.

[40] Fenglian Li, Xueying Zhang, Xiqian Zhang, Chunlei Du, Yue Xu, and Yu-Chu Tian. Cost-sensitive and
hybrid-attribute measure multi-decision tree over imbalanced data sets. Information Sciences, 422:242–
256, 2018.

[41] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello, C. Cornelis, and F. Herrera. Ifrowann:
Imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE Transactions on
Fuzzy Systems, 23(5):1622–1637, 2015.

[42] Shounak Datta and Swagatam Das. Near-bayesian support vector machines for imbalanced data classifi-
cation with equal or unequal misclassification costs. Neural Networks, 70:39 – 52, 2015.

[43] Jin Huang and Charles X Ling. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans-
actions on Knowledge and Data Engineering, 17(3):299–310, 2005.

[44] Rob Potharst, Arie Ben-David, and Michiel C. van Wezel. Two algorithms for generating structured and
unstructured monotone ordinal data sets. Engineering Applications of Artificial Intelligence, 22(4-5):491–
96, 2009.

[45] Ad Feelders. Monotone relabeling in ordinal classification. In ICDM, pages 803–808. IEEE Computer
Society, 2010.

130 Chapter II. Publications

[46] Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. An
overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-
vs-one and one-vs-all schemes. Pattern Recognition, 44(8):1761 – 1776, 2011.

[47] Alberto Fernández, Victoria López, Mikel Galar, Marı́a José del Jesus, and Francisco Herrera. Analysing
the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc ap-
proaches. Knowledge-Based Systems, 42:97 – 110, 2013.

[48] Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera. NMC:
nearest matrix classification–a new combination model for pruning one-vs-one ensembles by transforming
the aggregation problem. Information Fusion, 36:26–51, 2017.

[49] Zhong-Liang Zhang, Xing-Gang Luo, Sergio González, Salvador Garcı́a, and Francisco Herrera. DRCW-
ASEG: One-versus-one distance-based relative competence weighting with adaptive synthetic example
generation for multi-class imbalanced datasets. Neurocomputing, 285:176–187, 2018.

[50] Loı̈c Cerf, Dominique Gay, Nazha Selmaoui-Folcher, Bruno Crémilleux, and Jean-François Boulicaut.
Parameter-free classification in multi-class imbalanced data sets. Data & Knowledge Engineering,
87:109–129, 2013.

[51] Isaac Triguero, Sergio González, Jose M Moyano, Salvador Garcı́a, Jesús Alcalá-Fdez, Julián Luengo,
Alberto Fernández, Maria José del Jesús, Luciano Sánchez, and Francisco Herrera. Keel 3.0: an open
source software for multi-stage analysis in data mining. International Journal of Computational Intelli-
gence Systems, 10(1):1238–1249, 2017.

[52] Jacinto Carrasco, Salvador Garcı́a, Marı́a del Mar Rueda, and Francisco Herrera. rNPBST: An R package
covering non-parametric and bayesian statistical tests. In International Conference on Hybrid Artificial
Intelligence Systems, pages 281–292. Springer, 2017.

4 Fuzzy k-Nearest Neighbors with monotonicity constraints 131

4 Fuzzy k-Nearest Neighbors with monotonicity constraints: Mov-
ing towards the robustness of monotonic noise

• González, S., Garćıa, S., Li, S. T., John, R., & Herrera, F. (2020). Fuzzy k-Nearest Neighbors with
monotonicity constraints: Moving towards the robustness of monotonic noise. Neurocomputing.

– Status: Accepted

– Impact Factor (JCR 2018): 4.072

– Subject Category: Computer Science, Artificial Intelligence

– Rank: 28/134

– Quartile: Q1

132 Chapter II. Publications

FUZZY k-NEAREST NEIGHBORS WITH MONOTONICITY

CONSTRAINTS: MOVING TOWARDS THE ROBUSTNESS OF

MONOTONIC NOISE

Sergio González
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

sergiogvz@decsai.ugr.es

Salvador García
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

salvagl@decsai.ugr.es

Sheng-Tun Li
Department of Industrial and Information Management

Institute of Information Management
Center for Innovative FinTech Business Models

National Cheng Kung University, Tainan 701, Taiwan
stli@mail.ncku.edu.tw

Robert John
ASAP Research Group School of Computer Science

University of Nottingham NG8 1BB, Nottingham, UK
robert.john@nottingham.ac.uk

Francisco Herrera
Department of Computer Science

and Artificial Intelligence
University of Granada, Granada, Spain 18071

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, Saudi Arabia

herrera@decsai.ugr.es

ABSTRACT

This paper proposes a new model based on Fuzzy k-Nearest Neighbors for classification with
monotonic constraints, Monotonic Fuzzy k-NN (MonFkNN). Real-life data-sets often do not
comply with monotonic constraints due to class noise. MonFkNN incorporates a new calculation
of fuzzy memberships, which increases robustness against monotonic noise without the need for
relabeling. Our proposal has been designed to be adaptable to the different needs of the problem
being tackled. In several experimental studies, we show significant improvements in accuracy
while matching the best degree of monotonicity obtained by comparable methods. We also
show that MonFkNN empirically achieves improved performance compared with Monotonic
k-NN in the presence of large amounts of class noise.

Keywords Fuzzy k-NN · monotonic constraints · ordinal classification · ordinal regression · class noise.

Fuzzy k-Nearest Neighbors with monotonicity constraints 133

1 Introduction

Monotonic constraints are prior-knowledge of some ordinal classification or regression problems about the order
relationships between attributes and class labels [1]. Consider the example of house pricing. The following
constraints are applied: A bigger house in the same neighborhood is constrained by higher prices as compared
to smaller houses with the same features. That is, the classifier decisions should not decrease in the presence
of better features while the rest remains the same. These prior constraints are required by many real-life
evaluation problems, such as credit risk modeling [2] and lecturer evaluation [3]. These problems are known as
Classification with Monotonic Constraints or Monotonic Classification [4].

These learning tasks have additional objectives besides accurate models, such as the monotonic consistency of
predictions and minimization of the misclassification costs. The latter is also relevant since the errors between
ordered classes do not hold the same importance. More metrics must be used during the learning and validation
of the models. However, these other objectives may impair accuracy [5]. Hence, a fair balance must be sought
between the different needs of each problem.

Standard classifiers are discouraged for monotonic classification since they do not contemplate these constraints
and their predictions violate the monotonicity required by certain applications. A classic example of these
non-monotonic models is the standard decision tree [4]. Standard k-Nearest Neighbors algorithm also does not
take these restrictions into account, which may lead to further harm as a result of their presence in preprocessing
techniques [6].

In recent years, new algorithms have been designed to minimize the number of monotonic violations in their
predictions [4, 7, 1], i.e. the number of pairs of instances that break monotonicity [4]. To do so, some approaches
focus their entire learning mechanism just on monotonicity. This strategy usually achieves completely monotonic
models, but it could lead to wrong generalizations being made that are different to the knowledge of the problem.
Others infer monotonic relations from the training set while maximizing their accuracy. These models have been
adapted from different families of classifiers [1], such as decision trees [4, 8, 9], support vector machines [2],
fuzzy model based classifiers [10, 11], neural networks [12, 13] and ensemble learning [14, 15, 7].

Instance-based learning has proven to be a good approach for monotonic classification [16, 17, 18, 19]. However,
some of these methods, such as Monotonic k-Nearest Neighbors [17] (MkNN), need to learn from a fully
monotonic set to ensure monotonic predictions. This is rarely the case in real-life scenarios, where class noise
and discrepancies are common. Therefore, data preprocessing [20, 21, 22, 6] and relabeling strategies [23, 24]
must be used to remove non-monotonic samples or to change their class labels in order to force a monotonic set.

In standard classification, Fuzzy k-Nearest Neighbors [25] is a very solid method with high performance, thanks
to its high robustness to class noise [26]. This class noise robustness mainly lies in the extraction of the class
memberships for the crisp training samples by nearest neighbor rule. In this process, the class memberships
of noisy instances are shared with surrounding classes and the incorrectly assigned class looses its influence.
However, these mechanisms do not consider monotonic constraints and Fuzzy k-NN cannot deal with monotonic
violations or monotonic noise in the training set.

In this paper, a new model designed on the basis of Fuzzy k-NN with notions of MkNN is proposed to
take monotonic constraints into account, and is called Monotonic Fuzzy k-Nearest Neighbors (MonFkNN).
MonFkNN has been designed with three desired features:

(i) Robustness against monotonic violations.

(ii) Monotonic predictions without a pure monotonic training set.

(iii) Flexibility in its configurations covering different needs of performance.

134 Chapter II. Publications

With these objectives in mind, MonFkNN has been designed with new mechanisms to manage monotonicity
constraints and the monotonic violations in the training set. The main contributions of the MonFkNN design are:

(i) The initial robustness of Fuzzy k-NN has been redesigned to mitigate the influence of monotonic violations.
Firstly, the violations due to sample replicas with different classes are joined to form one class membership.
Then, our approach incorporates a strictly monotonic nearest neighbor rule to the calculation of the
memberships of the training examples.

(ii) These monotonically constrained memberships and their medians are used in the prediction phase. The
class memberships aggregation of MonFkNN is also monotonically constrained by the nearest neighbor
extraction or a penalty to the contribution of non-monotonic instances.

(iii) MonFkNN was built as a flexible classifier that covers different necessities of monotonicity and accuracy by
tuning its parameters. It can be configured with a rigidly monotonic or standard k-NN rule if monotonicity
or precision is preferred in the predictions, respectively.

All these mechanisms reinforce the robustness of our proposal against monotonic noise without the need for
relabeling. We understand monotonic noise as being the actual noise that can alter the class labels and, as a result,
change the monotonic constraints among the samples in the data. Their parameters make our proposal adaptable
to the different objectives of monotonic classification. We distinguish two different parameter configurations: a
pure monotonic version in which monotonicity is prioritized, and an approximate configuration that focuses
more on the prediction accuracy.

We have performed several empirical studies to verify the desired features of MonFkNN. First, different behaviors
of its two configurations are empirically analyzed and compared to the original FkNN. Then, our proposal
is compared with 7 methods from the state-of-the-art, exhibiting substantial improvements in accuracy and
maintaining the best degree of monotonicity. Finally, the robustness of our method against monotonic noise, i.e.
monotonic violations, is shown in contrast to MkNN. In this last experiment, MonFkNN performs considerably
better than Monotonic k-NN in scenarios with large amounts of class noise. The experimental framework
used consists of 12 data-sets commonly used in monotonic classification, 7 monotonic classifiers and 3 metrics
covering different aspects of performance: Accuracy, Mean Absolute Error and Non-Monotonic Index. All
results are additionally validated with the non-parametric statistical Wilcoxon and Friedman rank [27, 28] and
Bayesian Sign tests [29].

The paper is organized as follows. In Section 2, we present the problem of classification with monotonic
constraints and the methods related to our proposal: MkNN and Fuzzy k-NN. Section 3 is dedicated to explaining
our model MonFkNN in detail and its algorithmic differences as compared to FkNN. The experimental framework
used in the different empirical studies is presented in Section 4. In Section 5, the previously mentioned empirical
studies are carried out and analyzed. Finally, the main conclusions of this study are stated in Section 6.

2 Preliminaries

In this section, we introduce the preliminaries needed: Classification with monotonicity constraints, Monotonic
k-Nearest Neighbors and the original Fuzzy k-Nearest Neighbors.

2.1 Monotonic Classification

Monotonic classification [1] is an ordinal regression problem with monotonic constraints relating to the order
of the variables and the class labels. Ordinal regression and/or classification can be seen as a nonstandard
classification problem [30], which attempts to minimize the difference between the predicted labels and the real

Fuzzy k-Nearest Neighbors with monotonicity constraints 135

labels. Classification with monotonic constraints is also considered to be a nonstandard supervised learning
problem [30].

Formally, monotonic classification aims to predict the class label y from input vector x with Q number of
features, where y ∈ Y = {l1, l2, . . . , lc} and x represents an individual of our classification problem. The
categories Y are arranged in an order relation ≺ as l1 ≺ l2 ≺ . . . ≺ lc. And, as the main property of monotonic
classification, the attributes and class predictions are monotonically constrained by the problem prior-knowledge,
i.e. x � x′ → f(x) ≥ f(x′) [31], where x � x′ implies ∀j=1,...,Q, xj ≥ x′j , that is, x dominates x′. Therefore,
the main objective is to build classifiers that do not violate these constraints, otherwise known as monotonic
classifiers.

Two different types of monotonic classifiers can be distinguished: approximate monotonic models, which mini-
mizes the number of monotonic violations in their decisions and pure monotonic classifiers, whose predictions
are always monotonic concerning the training and future examples. The latter is hard to achieve, particularly in
real-life applications where the training data-sets are rarely purely monotonic. To be considered monotonic, all
of the pairs of instances in a data-set must be monotonic [16]: xi � xj → yi ≥ yj , ∀i,j .

2.2 Monotonic k-Nearest Neighbors

MkNN [17] modifies the standard nearest neighbor rule of the well-known lazy learning method to avoid
monotonic violations in its predictions. To do so, MkNN computes for each new example xi the range
ri = [ymin, ymax] of valid class labels, which satisfies the monotonic constraints. The lower-bound ymin of ri is
computed as the highest class label of all instances in the training set D below the example xi. Analogously the
upper-bound ymax is the minimum class label of the instances in D that are higher than xi (see Eq. 1).

ri =

{
ymin = max{y | (x, y) ∈ D ∧ xi � x}
ymax = min{y | (x, y) ∈ D ∧ x � xi}

(1)

Two different MkNN variants can be distinguished depending on how the neighbors are extracted for a new
instance xi. The InRange variant considers the k nearest examples xj with their class labels yj in the range
[ymin, ymax]. The OutRange version extracts first the k nearest neighbors xj and then, those neighbors outside
of the range ri are filtered out from the decision. If all of them are removed, a random label in ri is chosen. As
in the standard k-NN method, the majority class among the k neighbors is used as the predicted label.

MkNN is one of the methods that require monotonic data-sets to work properly [17]. Since, with monotonicity
violations, the range ri could not be correctly computed, a relabeling technique should be used to transform
the non-monotonic training data into monotonic data. These techniques intend to identify and remove the
monotonicity violations by making the fewest possible changes with minimum class difference. [17, 23, 24].

2.3 Fuzzy k-Nearest Neighbors

Fuzzy Sets [32] express the uncertainty of the example memberships to each class label. The memberships of
the example xi are represented as a degree of each class belonging ui = (ui1, ui2, . . . , uic), where uil ∈ [0, 1]

and
c∑

l=1

uil = 1. Nowadays, development in fuzzy sets and classifiers is still an ongoing process [33].

Fuzzy k-Nearest Neighbors algorithms [26] incorporate fuzzy concepts into the classical k-NN decision rule to
learn from fuzzy sets and produce fuzzy classification rules. Recently, different approaches have been proposed
based on distinct fuzzy set extensions. However, the original Fuzzy k-NN [25] (FkNN) is still one of the best
approaches [26]. Recent approaches provide for the optimization of parameters in FkNN [34].

136 Chapter II. Publications

For a given new instance xi, Fuzzy k-NN [25] extracts its K nearest neighbors in the same manner as the
standard k-NN. Then, its memberships for each class l are computed with the following expression:

u(x, l) =

K∑

j=1

u(xj , l) ∗
1

||x− xj ||(m−1)
K∑

j=1

1

||x− xj ||(m−1)

(2)

As shown in Eq. 2, the membership u(xi, l) = uil of sample xi to class l is assigned with the product of the class
membership u(xj , l) of the neighbors xj and the inverse of their distances to xi. The latter serves as a weight
that biases towards the memberships of nearer samples. The parameter m determines the degree of influence of
the neighbor distances. The recommended value m = 2 [25] makes the contributions of the neighboring samples
reciprocal to their distances. A crisp class label for the example xi can be decided as being the label l with the
greatest membership degree uil.

Facing a labeled training set, Fuzzy k-NN [25] brings it into a fuzzy set with sample memberships using the
nearest neighbor rule. For each training sample xi, k nearest neighbors are extracted using the leave-one-out
scheme. Then memberships u(xi, l) for each class l are computed according to Eq. 3 with the number of
neighbors nnl found for each class l. This transformation has proven useful against noisy samples as the
memberships lose influence as they are spread to the surrounding classes (not the assigned class).

u(xi, l) =

{
0.51 + 0.49 ∗ (nnl/k) , if yi = l

0.49 ∗ (nnl/k) , otherwise
(3)

3 Monotonic Fuzzy k-Nearest Neighbors

In this section, we explain our approach in detail – MonFkNN and all its mechanisms that consider monotonicity
constraints. In Subsection 3.1, we explain how MonFkNN gives a final class from class memberships in a more
proper manner according to monotonicity. Subsection 3.2 is dedicated to the extraction of the class memberships
from the training set and redesigned to reduce the impact of monotonic noise without the need for monotonic
relabeling. In Subsection 3.3, the class membership aggregation built-in MonFkNN is explained and related to
the robustness and flexibility of the classifier using its parameters. Finally, we discuss the algorithmic differences
between our proposal and the original FkNN in Subsection 3.4.

3.1 From class memberships to the final class label

Since FkNN works with class memberships, a mechanism that respects monotonicity is needed to get a final
class from a vector whose elements sum up to the value of one. The class with the greatest membership is the
most common decision in multiple classifiers. The original Fuzzy k-NN gives their crisp predictions as the class
label with the highest membership.

However, this might not be appropriate for scenarios with monotonic constraints. For example, let xi ≤ xj
and their class memberships ui = (0.2, 0.2, 0.4, 0.2, 0.0) and uj = (0.0, 0.4, 0.3, 0.2, 0.1), then their final
classes chosen with the highest membership break the monotonicity: argmax(ui) = l3 > l2 = argmax(uj).
Even though, the instance xj has more weight values assigned to the higher labels than instance xi. In
fact, uj weakly dominates ui according to the first degree stochastic dominance relation (FSD) [35] since
the xi cumulative distribution function Ui = (0.2, 0.4, 0.8, 1.0, 1.0) is greater, element by element, than
Uj = (0.0, 0.4, 0.7, 0.9, 1.0), that is, ui �FSD uj ⇐⇒ (∀l ∈ Y)(Ui(l) ≥ Uj(l)). To make FSD applicable,

Fuzzy k-Nearest Neighbors with monotonicity constraints 137

class membership vectors are normalized to sum up to the value of one and treated as probability mass functions.
Therefore, a cumulative distribution function U can be computed for given normalized class memberships, where
FSD is defined. This transformation can be done thanks to the order relation between classes in monotonic
classification. FSD is useful for defining monotonicity constraints in probabilistic classifications [18, 36], with
the expression xi ≤ xj =⇒ ui �FSD uj .

Therefore, the function that transfers a membership vector to a class label must satisfy ui �FSD uj =⇒ yi ≤ yj .
Centrality measures, such as mean and median, have proven to be good solutions [35, 18]. Particularly, the
median is applicable to ordinal problems. Following the traditional definition of median as the 50th percentile,
the median is computed as the range [lm, lM]:

lm = min{l ∈ Y | U{X ≤ l} ≥ 1/2}
lM = max{l ∈ Y | U{X ≥ l} ≥ 1/2} (4)

where l is a class label of possible labels Y , U{X ≤ l} is the cumulative membership/probability of belonging
to a class smaller or equal to l and U{X ≥ l} is the analogous definition for a class greater or equal to l.

Going back to the previous example, the classes for xi and xj chosen by the median does not break monotonicity:
med(ui) = med(uj) = 3. For lm 6= lM , any class label l which lm < l < lM must have a membership u(l) = 0
and U(lm) = U(lM) = 1/2. For example, instance xt with class memberships ut = (0.2, 0.3, 0, 0.3, 0.2) could
be assigned to the classes med(ut) = [2, 4] = 3.

3.2 Class memberships robust to monotonic noise

In this subsection, the class membership calculation redesigned to monotonic classification is explained. The
objective of this first stage is to fix or reduce the influence of non-monotonic examples in the classification. Our
method uses the robustness of the traditional Fuzzy k-NN within the knowledge of the monotonic relations
between the neighbors. Algorithm 1 summarizes the procedure of obtaining robust noise class memberships for
the training set.

First, we have to deal with the simplest monotonic violations, that is, instances with the same input values and
different classes (Lines 2-13 of Algorithm 1). These mislabels frequently appear in traditional data-sets [16] of
classification with monotonic constraints as these sets are rankings or evaluations made by different experts.

Therefore, MonFkNN first substitutes the replicas of any example xwith one feature vector x and its memberships
u(x). The membership u(x, l) of the instance x to the class l is computed with the frequency of duplicated
examples xj in the training set D belonging to class l (yj = l), as shown in the following expression:

u(x, l) =
|{xj ∈ D|xj = x ∧ yj = l}|
|{xj ∈ D|xj = x}| (5)

The class label of an instance x after the elimination of its replicas is obtained by the median of the resulting
memberships, as shown in Line 13 of Algorithm 1. However, this vector will be used in the classification
function with the membership aggregation as stated in the next subsection.

Then, MonFkNN estimates the memberships of the remaining instances, which corresponds to Lines 13 - 24 of
Algorithm 1. This estimation is made using the information of the nearest neighbors of each instance. However,
these nearest neighbors are extracted with a monotonic nearest neighbor rule (MkNN) instead of a traditional
rule as we aim for memberships that respect monotonic constraints as much as possible. Algorithm 2 exemplifies
the extraction of these monotonically constrained neighbors for a given instance x as in MkNN.

138 Chapter II. Publications

Algorithm 1 Training class memberships extraction

1: function TRAINCLASSMEMBERSHIPS({D, y} - Training data-set, k - Nearest neighbors considered, RCr -
Real Class relevance)

2: for xi ∈ D do
3: for l ∈ Y do
4: if xi duplicated-in D then
5: Compute u(xi, l) with expression 5
6: else

7: u(xi, l) =

{
1 yi = l

0
8: end if
9: end for

10: end for
11: D′ = removeDuplicates(D)
12: for xi ∈ D′ do
13: y′i = med(ui) . See expression 4
14: end for
15: for xi ∈ D′ do
16: if xi not-duplicated-in D then
17: Compute range ri with (D′, y′) and expression 1
18: . See Algorithm 2
19: nn = neighborsAsMkNN(xi, ri, k, inRange,D′, y′)
20: for l ∈ Y do
21: Compute u(xi, l) with expression 6
22: end for
23: end if
24: end for
25: output: (D′, u)
26: end function

Algorithm 2 Monotonic nearest neighbor rule

1: function NEIGHBORSASMkNN(x - tested sample, r - range of valid classes, k - considered neighbors,
typeRange - inRange or outRange, {D, y} - Training data-set)

2: initialize: nn = {}
3: for xi ∈ D do
4: if typeRange == outRange or yi ∈ r then
5: if Size(nn) < k then
6: Insert xi in nn
7: else
8: xmax = arg maxxj∈nn ||x− xj ||
9: if ||x− xi|| < ||x− xmax|| then

10: Replace xmax by xi in nn
11: end if
12: end if
13: end if
14: end for
15: output: nn
16: end function

Fuzzy k-Nearest Neighbors with monotonicity constraints 139

In this case, Algorithm 2 is configured as an inRange variant as pointed out in Line 16 of Algorithm 1. That is,
the nearest neighbors of an example xi are constrained to a range ri = [ymin, ymax] of possible classes (Line
17), which preserves the monotonicity of the data-set.

Once the nearest neighbors for each example xi are obtained, the information of the neighbor classes is fused
into xi class memberships (Line 20). For an instance xi, the membership u(xi, l) to class l is computed with the
following expression:

u(xi, l) =

{
RCr +(nnl/k) ∗ (1− RCr) if yi = l

(nnl/k) ∗ (1− RCr)
(6)

where nnl is the number of nearest neighbors of the class l, k the total number of neighbors extracted for instance
xi and yi is the original class label of the example xi. RCr is a new parameter called "Real Class relevance".

Apart from the use of the monotonic nearest neighbor rule, the inclusion of RCr is another main difference
between our approach MonFkNN and the original Fuzzy k-NN. RCr can be seen as the minimum membership
assigned to original class yi of the instance xi, in case there are no neighbors labeled with yi. In FkNN, RCr
corresponds to the value of 0.51, that is, every instance maintains its real class, even those noisy examples
surrounded by other classes. By being a parameter, our method lets the user control the treatment of monotonic
noise.

There are some values for RCr in the range [0, 1] that have very interesting and distinct behaviors. In the case of
a really noisy data-set where no labels can be trusted, RCr could be set to 0. This leaves all the responsibility
to the calculation of the range of valid classes ri and the nearest neighbors. In the presence of instances with
the same input values and different classes, the user could choose only to treat them with RCr = 1. Finally, if
practitioners want to consider the originally labeled instances, we recommend assigning RCr to 0.5. This value
ensures that the actual class is within the set of medians. In contrast to Fuzzy k-NN and its 0.51, if all neighbors
belong to a same single class that is different to the current class, our method forces to choose in between these
two classes. Usually, this last value (RCr = 0.5) is a good trade-off, mainly stable and with better performance.

During this process, the impact of monotonic inconsistencies will be either reduced or fixed. The inconsistencies
of instances with the same input vectors and different classes are completely fixed by being substituted by only a
sample and class memberships with the information of their different classes. The mislabeled samples, i.e. noisy
or non-monotonic examples, will have less influence towards their noisy class as they will be surrounded by more
appropriated classes and their class memberships will be shared into classes in which they fit monotonically.
This is the first mechanism of our method to alleviate the presence of monotonic violations, without the need for
relabeling.

3.3 Flexible membership aggregation

After estimating the class memberships of every training instance, our algorithm is ready to predict new examples.
This last phase has been designed to cover different needs of monotonic scenarios. In addition to the control of
noise treatment, greater flexibility has been sought, allowing users to choose between more accurate or pure
monotonic predictions.

Algorithm 3 represents in pseudo-code the whole prediction procedure of our proposal MonFkNN. Particularly,
the prediction of a new instance xi is detailed after having previously computed the monotonically-constrained
class memberships of the training set as the previous Algorithm 1 is referred in Line 2.

As shown in Line 6, MonFkNN embeds another MkNN (Algorithm 2) to obtain the neighbors used in the
membership aggregation and final prediction. This MkNN also has two versions, inRange and outRange versions.
They are, however, substantially different when compared to original variants.

140 Chapter II. Publications

Algorithm 3 MonFkNN: Prediction stage

1: function MONFkNN(xi - sample to predict, {D, y} - training data-set, k - neighbors considered for training
class memberships, RCr - Real Class relevance, K - neighbors considered for prediction, typeRange -
inRange or outRange, pOR′ - out-of-range penalty)

2: (D′, u′) = TrainClassMemberships(D, y, k,RCr)
3: Obtain medians y′ of each sample in D′ with u′ and expression 4
4: Compute range ri with expression 1 and (D′, y′)
5: . See Algorithm 2
6: nn = neighborsAsMkNN(xi, ri,K, typeRange,D′, y′)
7: for xj ∈ nn do
8: if typeRange == inRange or yj ∈ rx then
9: pORj = 1

10: else . Neighbors nn out of range rx are penalized with pOR′

11: pORj = pOR′

12: end if
13: end for
14: Compute class memberships ui of xi with expression 7
15: output: med(ui)
16: end function

The inRange alternative is based on the same idea of the original MkNN, where the neighbors of an example
must belong to a set of monotonically valid classes. However, this range of classes is obtained using the medians
acquired from the class memberships of the training instances constrained by monotonicity, as seen in Line
3 and Line 4. This breakthrough improves our method by increasing monotonic noise robustness. Firstly, an
inRange nearest neighbor rule removes monotonic inconsistencies in the known data-set as previously shown in
Algorithm 1. Then, the second MkNN uses this fixed training set (D′, y′) to give monotonic predictions as seen
in Algorithm 3.

The outRange version of our method is completely different from the previous outRange rule. It has been
designed with the intention of prioritizing to some extent the predictive ability of the classifier over monotonicity.
With this purpose in mind, our method considers any example as a valid neighbor regardless of its class label.
In contrast to the original model, no filtering or removal of neighbors outside the valid range is performed.
However, their relevance in the membership aggregation can be reduced if needed, thanks to a penalty factor
introduced in the aggregation expression.

Then, for a new example x, its nearest neighbors are obtained according to the chosen variant. Their memberships
are aggregated with the original FkNN formula with the addition of the penalty factor for the outRange version.
The following expression shows how this parameter is integrated:

u(x, l) =

K∑

j=1

u(xj , l) ∗
pORj

||x− xj ||(m−1)
K∑

j=1

pORj

||x− xj ||(m−1)

(7)

As previously, the membership u(x, l) of the new sample x to the class label l is the result of the sum of the class
memberships u(xj , l) of the neighbors xj inversely weighted with their distance to x. In the outRange version
of our method, there is another weighting factor in the contribution to the final memberships, the parameter
referred to as "penalty of outRange" (pOR). The factor pORj is applicable only if the class yj of the neighbor

Fuzzy k-Nearest Neighbors with monotonicity constraints 141

FkNN MonFkNN

No special treatment of duplicates. Duplicates are reduced to a single instance.
Standard nearest neighbor rules. Monotonic nearest neighbor rules.

Standard training membership extraction. Monotonically constrained class memberships.
Conservation of original classes in the Loss of influence of original class towards
training class membership extraction. monotonicity with RCr <= 0.5.

Value 0.51 in Eq. 3 Parameter RCr in Eq. 6
Standard class membership aggregation. Monotonically constrained membership aggregation.

No penalty to any neighbors in Eq. 2 pOR Penalty to out-of-range neighbors in Eq. 7.
Final class as highest membership Final class as median of class memberships

Table 1: Summary of algorithmic differences between standard FkNN and MonFkNN.

xj is not in the valid class range rx of x as exemplified in Lines 7 to 13 . It can be configured with continuous
values from 0 to 1. When it is assigned to 1, no penalty is applied. The value 0 means a full penalty, that is,
neighbors with invalid classes will not participate in the membership aggregation. For all practical purposes, this
last behavior is equivalent to the outRange MkNN. We recommend using 0.5 since it is a good balance between
reducing their relevance and considering them in the decision.

Finally, the class prediction of the new example x is the median of the resulting normalized class memberships.

As presented, MonFkNN has been developed to be robust to monotonic noise and versatile in many scenarios.
The two versions inRange and outRange with the parameter pOR and the previously mentioned RCr help to tune
the algorithm according to the necessities of different kinds of problems.

Among the possibilities that offer these parameters, we have named two configurations with very distinctive
behaviors: Pure Monotonic (MonFkNN-PM or PM) and Approximate Monotonic (MonFkNN-AM or AM)
Fuzzy k-NN. The Pure Monotonic configuration corresponds to a value of 0.5 for the RCr parameter and the
use of inRange rule to obtain the memberships of new instances. This approach aims to give predictions with
the minimum violations of monotonicity. In every part of the algorithm, it prioritizes monotonicity over very
accurate predictions.

MonFkNN-AM prioritizes the predictive ability and relaxes the monotonic constraints. The memberships of the
training set are obtained by the treatment of samples with the same feature values and different classes. Those
unique examples will have a membership of 1 to the actual class and 0 for the rest. This behavior is achieved
with RCr = 1. Then, as we are looking for more accurate predictions, all instances can be considered to be valid
neighbors and to contribute to the final aggregation. Those instances with invalid class labels, however, will
contribute with only half of their class memberships (pOR = 0.5).

Our proposal MonFkNN is available at the GitHub Repository1.

3.4 Differences between standard FkNN and MonFkNN: Theoretical discussion

Standard FkNN and MonFkNN have a similar mathematical formulation. In other words, the expressions used
by MonFkNN in the training class membership extraction (Eq. 6) and in the membership aggregation (Eq. 7) are
the same as those used by FkNN (Eq. 3 and Eq. 2), for RCr = 0.51 and pOR = 1. The global behavior of our
method is however still completely different to the standard FkNN, due to significant algorithmic differences.
Table 1 summarizes the main differences between standard FkNN and our proposal MonFkNN.

Each of the differences mentioned in Table 1 is described and explained below:

1https://github.com/sergiogvz/MonFkNN

142 Chapter II. Publications

• The data-set used to compute the training class memberships is modified before applying the neighbor-
hood rule. The inconsistencies of duplicates are eliminated and reduced to a single instance. The classes
of the resultant instances are assigned to the median calculated with the frequency of the appearance of
duplicates for each class. This procedure could not even be considered in standard classification, where
there is no ordering relationship between classes.

• The neighborhood considered for each training instance is constrained to the monotonicity of the
data-set. Then, their resultant class memberships are also monotonically constrained. These adaptations
completely modify the neighbors contributing in Eq. 3 and the whole procedure. In addition, the value
of 0.51 for RCr is discouraged in MonFkNN in favor of 0.5 due to its contribution to the medians of the
samples, above-mentioned in Section 3.2.

• The original FkNN and MonFkNN also share the same membership aggregation, i.e. their expressions
(Eq. 3 and Eq. 6) are the same for InRange and outRange (with pOR = 1) versions of MonFkNN.
However, their behavior and their predictions are completely different, due to the differences in the
nearest neighbor rule, in the training set and class memberships used in the aggregation procedure. As
previously explained, the training class memberships extraction of MonFkNN modifies the training
set fixing some monotonic inconsistencies. Duplicates are removed and some training samples might
change their classes to preserve the monotonicity of the data-set.

• In MonFkNN, the classes of the training samples determine the monotonically valid classes of the
unlabeled instances. Thus, training samples with classes not valid for an instance x will be discarded
from the neighborhood (inRange version) or penalized with the parameter pOR (outRange version). The
configuration outRange version with pOR = 1 is also discouraged since the final purpose of MonFkNN
is to take monotonic constraints into consideration, at least to some extent.

• These mechanics acquire different neighbors to those drawn by FkNN for the same test sample, that is,
different class memberships and prediction. Finally, the median as the final class of the class membership
vector already implies a significant change in the behavior of the method.

These differences between our proposal and the traditional FkNN are clearly supported by the experiments
carried out in Section 5.1.

4 Experimental framework

This section is devoted to introducing the experimental framework used in the different empirical studies of
the paper. In our experiments, we have included 12 data-sets of a good variety of problems presenting real
monotonic constraints. The data-sets can be seen in Table 2, where the number of instances, attributes and
classes are detailed for each data-set in the column Ins., At. and Cl., respectively. The column At. Directions
indicates the monotonic direction of the relationship between each attribute and the class: direct (+) or inverse
monotony (-). This information is extracted from the description of the problems involving the data-sets. The
column Comparable Pairs shows the percentage of pairs of comparable samples over the total number of pairs.
Two instances xi and xj are comparable if their inputs have an order relation, i.e. xi � xj or xi � xj . On
average, one-third of the total number of pairs of these data-sets are comparable and potential violations of
monotonicity in the classification process. This quite large amount cannot be neglected.

These data-sets are chosen as the most frequently used in the monotonic classification literature. The classical
monotonic set ERA, ESL, LEV and SWD [16] are also considered in the study. Additionally, the data-set artiset
is employed for a comparative study on monotonic noise robustness of MonFkNN (see Subsection 5.4). Artiset
is an artificial data-set with two attributes (x1, x2) and nCl number of classes. For attributes x1, x2 ∈ [0, 1], the
class is computed as the truncation of the outcome of the following formula:

Fuzzy k-Nearest Neighbors with monotonicity constraints 143

Table 2: Description of the 12 data-sets used.

Data-set Ins. At. Cl. At. Directions Comparable Pairs

artiset 1000 2 10 All direct directions 49.79%
balance 625 4 3 {-, -, +, +} 25.64%

bostonhousing4cl 506 13 4 {-, +, -, +, -, +, -, +, -, -, -, +, -} 14.85%
car 1728 6 4 All direct directions 14.36%
ERA 1000 4 9 All direct directions 16.77%
ESL 488 4 9 All direct directions 70.65%
LEV 1000 4 5 All direct directions 24.08%

machineCPU 209 6 4 {-, +, +, +, +, +} 49.53%
qualitative_bankruptcy 250 6 2 All inverse directions 43.77%

SWD 1000 10 4 All direct directions 12.62%
windsorhousing 546 11 2 All direct directions 27.07%

wisconsin 683 9 2 All direct directions 58.04%

f(x1, x2) = (x1 +
x22 − x21

2
) ∗ nCl

A 10-fold cross-validation scheme (10-fcv) is carried out to run the different classifiers over these sets. Their
partitions have been extracted from the KEEL repository [37].

The classifiers involved in the empirical comparisons are:

• Monotonic k-NN (MkNN) [17]

• Ordinal Stochastic Dominance Learning (OSDL) [18]

• Ordinal Learning Module (OLM) [16]

• Monotonic Multi-Layer Perceptron network (MonMLP) [38]

• C4.5 decision tree for monotonic induction (MID) [4]

• Rank Discrimination Measure Tree (RDMT) [8]

• Partially Monotonic Decision Tree (PMDT) [9]

Table 3 details the parameters chosen according to the recommendations found in the original papers. As a
requirement of MkNN, a relabeling technique [24] is applied to training data-sets before fitting MkNN. On the
contrary, the rest of the algorithms, including MonFkNN, do not need this relabeling procedure. Therefore, all
the results shown for MkNN are obtained with relabeled training sets, while other methods are trained with the
original training data-sets.

In order to evaluate the classifiers’ proficiency, we have employed three measures of different aspects of their
performance: predictive capability, error cost and monotonicity. Standard accuracy is used to evaluate the
predictive capability of the models. Mean Absolute Error (MAE) is computed as the average differences of
the true instance ranks and the predicted ranks. To evaluate monotonicity, Non-Monotonic Index (NMI) [1]
measures the ratio of pairs of samples (NMP) that break monotonicity among the total of pairs, with N being the
number of samples in the data-set:

NMI =
NMP

N2 −N

144 Chapter II. Publications

Table 3: Parameters considered for the algorithms compared.

Algorithm Parameters

MkNN [17] k = 5, distance = euclidean, neighborsType = inRange
OSDL [18] balanced = No, classificationType = median,

lowerBound = 0, upperBound = 1
tuneInterpolationParameter = No, weighted = No,
interpolationStepSize = 10, interpolationParameter = 0.5

OLM [16] modeResolution = conservative
modeClassification = conservative

MonMLP [38] default parameters, hidden1 = 8
iter.max = 1000, monotonic = all att

MID [4] R = 1, confidence = 0.25, items per leaf = 2
RDMT [8] H = Pessimistic rank discrimination measure,

measureThreshold = 0, items per leaf = 2
PMDT [9] threshold θ = 0, items per leaf = 2
FkNN [25] k = 5, K = 9, distance = euclidean
MonFkNN k = 5, K = 9, distance = euclidean
Pure Monotonic RCr = 0.5, neighborsType = inRange
Approximate Monotonic RCr = 1, neighborsType = outRange, pOR = 0.5

These measures are computed over a set merged from the test predictions of 10-fcv sets for each data-set and
classifier. Finally, the Wilcoxon statistical test, Friedman rank test [27, 28] with Holm post-hoc procedure
[39] and Bayesian Sign test [29] are used to validate the results of the empirical comparisons. In the Bayesian
Sign test, a distribution of the differences of the results achieved by methods A and B is computed thanks to
the Dirichlet Process. This distribution is shown in a graphical space divided into 3 regions: left, rope and
right. The location of the majority of distribution in these sectors indicates the final decision of the pairwise
Bayesian non-parametric sign test: superiority of algorithm B (left sector), statistical equivalence (rope sector)
and superiority of algorithm A (right sector). For the accuracy and MAE results, we have set the inferior and
superior limit of the rope region to −0.01 and 0.01, respectively. However, we have adjusted the limits to
−0.0001 and 0.0001 for NMI since NMI values tend to be significantly smaller due to the big difference between
the numbers of comparable instance pairs and all possible pairs. The R package rNPBST [40] has been used to
extract the graphical representations of the Bayesian Sign tests analyzed in the following empirical studies.

5 Results and analysis

This section presents the results of the empirical studies and their analyses. First, the two configurations of
MonFkNN are compared in Subsection 5.1, showing their different strengths. Then, our proposal is compared
to methods from the state-of-the-art in terms of prediction capability and monotonicity in Subsection 5.3 and
Subsection 5.3, respectively. In Subsection 5.4, the last experiment tests the noise robustness of MonFkNN in
contrast to MkNN.

5.1 Evaluation of Monotonic Fuzzy k-NN approaches. Pure Monotonic vs Approximate Monotonic

A comparison between the Pure and Approximate Monotonic version of MonFkNN stresses the different
behaviors and aspects of their performance. Additionally, the performance differences between the original
FkNN and MonFkNN are analyzed. Table 4 shows the results of FkNN and the two configurations of our

Fuzzy k-Nearest Neighbors with monotonicity constraints 145

Table 4: Results for the Pure and Approximate Monotonic Fuzzy k-NN

Accuracy MAE NMI

MonFkNN MonFkNN MonFkNN
FkNN PM AM FkNN PM AM FkNN PM AM

artiset 0.9339 0.9309 0.9349 0.0661 0.0691 0.0651 0.0000 0.0000 0.0000
balance 0.8896 0.9307 0.9008 0.1424 0.0853 0.1168 0.0000 0.0000 0.0001
bostonhousing4cl 0.7174 0.6561 0.7134 0.3241 0.3972 0.3261 0.0004 0.0000 0.0001
car 0.9311 0.9740 0.9834 0.0793 0.0295 0.0195 0.0002 0.0000 0.0000
ERA 0.1730 0.2420 0.2430 1.6660 1.2813 1.2993 0.0141 0.0052 0.0052
ESL 0.6783 0.7036 0.7131 0.3484 0.3149 0.3053 0.0014 0.0004 0.0003
LEV 0.6020 0.6377 0.6110 0.4330 0.3927 0.4223 0.0021 0.0004 0.0009
machineCPU 0.6699 0.7033 0.6699 0.3589 0.3158 0.3493 0.0058 0.0002 0.0017
qualitative_bankruptcy 0.9960 0.9960 0.9960 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000
SWD 0.5350 0.5807 0.5833 0.5180 0.4370 0.4380 0.0027 0.0007 0.0003
windsorhousing 0.7857 0.7576 0.7839 0.2143 0.2424 0.2161 0.0062 0.0005 0.0051
wisconsin 0.9678 0.9653 0.9663 0.0322 0.0347 0.0337 0.0000 0.0000 0.0000

Avg: 0.7400 0.7565 0.7583 0.3489 0.3003 0.2996 0.0027 0.0006 0.0012

proposal MonFkNN in terms of Accuracy, MAE and NMI. Bold-face font indicates the best results obtained for
each data-set and metric.

In Table 4, the differences between both approaches (PM and AM) can be seen clearly. Just as they were
designed, MonFkNN-AM has better accuracy on average, while MonFkNN-PM achieves monotonically reliable
predictions. Both have good, stable results in terms of MAE, with AM coming out slightly on top.

AM configuration obtains the most accurate predictions for more than 50% of the benchmark used. On the
other hand, the PM model achieves better results according to monotonicity in 10 of the 12 data-sets used, with
large differences in Windsorhousing and MachineCPU problems. When compared with FkNN, MonFkNN
greatly improves the performance of the original algorithm. Both versions of MonFkNN (PM and AM) are better
on average for each of the three different measures. Particularly, there is an overwhelmingly large difference
between FkNN and MonFkNN-PM in terms of monotonicity. FkNN is better only for 3 data-sets when taking
just accuracy and MAE into consideration. However, it does not outperform the monotonic predictions of
MonFkNN.

This improvement is also reflected in the Wilcoxon statistical test applied to the results achieved using these
methods. Table 5 presents the hypothesis of equivalence of the Wilcoxon test for α = 0.1 on the pairwise
comparison of FkNN (1) and our two proposals (MonFkNN-PM (2) and MonFkNN-AM (3)). As shown in
Table 5, MonFkNN-AM is statistically better than FkNN in terms of accuracy and MAE with p-Values under
0.1. Considering monotonicity, MonFkNN-PM and -AM statistically outperform FkNN with very low p-Values.
Overall, MonFkNN is clearly superior to FkNN in scenarios with monotonic constraints.

The reasons for these differences in results are clear and mainly due to their algorithmic differences. MonFkNN
has learning procedures with notions in the order relation of classes and the monotonic constraints between input
and output, which explain an overall better performance in terms of MAE and NMI. Additionally, MonFkNN
has a greater awareness and treatment of noisy data, which helps obtain better accuracy.

Since monotonicity is usually prioritized in classification with monotonic constraints, we will use MonFkNN-PM
in the following empirical studies.

146 Chapter II. Publications

Table 5: Wilcoxon test applied to the results obtained by Fuzzy k-NN algorithms: FkNN (1), MonFkNN-PM (2)
and MonFkNN-AM (3)

Comparison R+ R− Hypothesis (α = 0.1) p-Value

Accuracy:

(2) vs. (1) 49.0 17.0 Not Rejected 0.1748
(3) vs. (1) 61.5 16.5 Rejected 0.0847

MAE:

(2) vs. (1) 51.0 15.0 Not Rejected 0.1230
(3) vs. (1) 57.0 9.0 Rejected 0.0322

NMI:

(2) vs. (1) 76.5 1.50 Rejected 0.0012
(3) vs. (1) 72.5 5.50 Rejected 0.0059

Table 6: Results in terms of Accuracy achieved by the tested algorithms

MonFkNN-PM MkNN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.9309 0.9199 0.1952 0.7948 0.9463 0.7237 0.8749 0.8539
balance 0.9307 0.8624 0.6352 0.8320 0.9131 0.7808 0.7216 0.7792
bostonhousing4cl 0.6561 0.6126 0.2787 0.5277 0.3979 0.6739 0.6304 0.6739
car 0.9740 0.9711 0.9549 0.9543 0.8474 0.8027 0.7297 0.9682
ERA 0.2420 0.1990 0.2320 0.1690 0.2380 0.2760 0.2390 0.2430
ESL 0.7036 0.6332 0.6721 0.5738 0.7234 0.6414 0.5635 0.6598
LEV 0.6377 0.4630 0.6400 0.4250 0.6167 0.6070 0.5210 0.6370
machineCPU 0.7033 0.6890 0.2919 0.6746 0.6730 0.6220 0.6555 0.6507
qualitative_bankruptcy 0.9960 0.9960 0.9160 0.9800 0.6427 0.9840 0.9840 0.9920
SWD 0.5807 0.5200 0.5840 0.4160 0.5063 0.5540 0.5180 0.5830
windsorhousing 0.7576 0.5861 0.4927 0.7564 0.7790 0.8205 0.8022 0.7564
wisconsin 0.9653 0.9649 0.9590 0.8873 0.8604 0.9517 0.9502 0.9561

Avg: 0.7565 0.7014 0.5710 0.6659 0.6787 0.7031 0.6825 0.7294

5.2 Comparison with the State-of-the-Art: Prediction capabilities

Here we evaluate the performance of our approach in comparison to methods from the state-of-the-art of
monotonic classification. In this comparison, we look for a balance between accurate and monotonic predictions.
Therefore, we compare the results obtained in terms of the selected metrics independently. Then, we draw our
conclusions and check if our approach behaves well in the different aspects of classification with monotonic
constraints.

First, we evaluate the prediction capability of our method. Table 6 gathers the accuracy results for the different
data-sets obtained by the tested algorithms. With these outcomes, MonFkNN-PM performs overwhelmingly
better than the rest in terms of accuracy. Our approach achieves the most accurate predictions on average
with a wide margin. Additionally, it obtains the best results for 5 data-sets, with particularly remarkable cases,
such as balance. PMDT is the second best method in terms of accuracy and it is the only method that come
close to the performance of MonFkNN-PM. However, it obtains the overall best results for one data-set only
(bostonhousing).

Fuzzy k-Nearest Neighbors with monotonicity constraints 147

Table 7: Holm test applied to the Accuracy results among the tested algorithms

Control Method: MonFkNN-PM (2.04)

i Algorithm (Rank) Z p-Value Hypothesis (α = 0.05)

7 OLM (6.13) 4.083 0.00004 Rejected
6 OSDL (5.42) 3.375 0.00073 Rejected
5 RDMT (5.38) 3.333 0.00085 Rejected
4 MonMLP (4.67) 2.625 0.00866 Rejected
3 MID (4.42) 2.375 0.01754 Rejected
2 MkNN (4.21) 2.167 0.03026 Rejected
1 PMDT (3.75) 1.708 0.08757 Not Rejected

As mentioned before, we have used the Friedman rank test and the Bayesian Sign test to corroborate the
significance of the differences of our approach and the selected methods. Table 7 includes the outcome of the
Friedman rank and Holm tests in relation to the obtained Accuracy results. MonFkNN-PM is ranked first with a
high ranking value compared to others. All the hypotheses of equivalence are rejected with small p-values with
the exception of PMDT, which would be rejected for α = 0.1. The distance between the ranks of MonFkNN-PM
and PMDT is still quite large.

Figure 1 graphically represents the difference between MonFkNN-PM and other methods and its statistical
significance in terms of accuracy. In order to save space and avoid plotting 7 heat-maps for each metric, we have
only included PMDT, as it is the best and most recent algorithm among the monotonic decision trees [9]. As
mentioned before, the position of the majority of the distribution in these maps determines the decision of the
test: the right sector means the statistical superiority of MonFkNN-PM over the compared method, the rope
sector is the statistical equivalency and the left side indicates the superiority of the other algorithm.

These heat-maps clearly indicate the significant superiority of MonFkNN-PM over all methods except PMDT as
the computed distributions are always located in the right region. The most significant outcome is the comparison
with OLM (Figure 1c), even though it does not obtain the worst results. For MkNN (Figure 1a) and OSDL
(Figure 1b), there are a few cases where their performances are statically equivalent to MonFkNN-PM. On the
contrary, MonMLP is significantly more accurate in a few data-sets, although the MonFkNN-PM is clearly
superior (Figure 1d). Considering the comparison with PMDT (Figure 1d), the majority of the distribution
is located in the statistical equivalence. However, it is still shifted to the right with a large number of points,
indicating a better performance for MonFkNN-PM. Almost none support the performance of PMDT.

Error costs could be essential for monotonic ranking problems. Table 8 shows the error in the form of MAE
made by the evaluated classifiers. As was the case in accuracy performance, MonFkNN-PM clearly performs
better than the rest, with the smallest error on average and for 4 of the data-sets. It also achieves similar results
in problems where other algorithms come out on top, such as LEV or wisconsin.

Table 9 shows the ranking of the methods and p-values obtained with the post hoc test for the MAE comparison.
As in the accuracy tests, our proposal is once again ranked as the best method with a solid statistical significance
as compared to almost all algorithms. PMDT still achieves similar results to MonFkNN-PM with a p-value that
does not reject the hypothesis for α = 0.05, but does for α = 0.1. In this case, the p-value of PMDT is smaller
and its rank difference with our proposal is larger than that obtained in terms of accuracy.

Figure 2 shows the Bayesian Sign test on pairwise comparison with our method according to MAE. As shown
by the distributions in the right part of the majority of the figures, MonFkNN-PM is definitely better when
considering error costs. This is more statistically significant as compared to OLM (Figure 2c), where nearly the
entire distribution is in the right region. MonFkNN, MkNN and OSDL share some good results, but these last

148 Chapter II. Publications

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(a) vs. MkNN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(b) vs. OSDL

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●
●●

●●

●

●

●

●

●

●●

●
●●

●

●

●

● ●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●●●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●●

●
●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
● ●

●

●

●
● ●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●
●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●
●●

●
●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●● ●
●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●
● ●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(c) vs. OLM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●
●

●●
●

● ●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ● ●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

● ●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●●

● ●

●

●

●

●

●●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●

● ●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●● ●

●● ●
●

● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●●

●●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

● ● ●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●
●

●

●●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(d) vs. MonMLP

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(e) vs. PMDT

Figure 1: Bayesian Sign Test heat-map for MonFkNN-PM vs. the rest in terms of accuracy.

Table 8: Results in terms of MAE achieved by the tested algorithms

MonFkNN-PM MkNN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.0691 0.0771 1.6897 0.2082 0.0537 0.3123 0.1251 0.1471
balance 0.0853 0.1504 0.4912 0.1920 0.0992 0.3360 0.3840 0.2560
bostonhousing4cl 0.3972 0.4901 0.9368 0.5988 0.7655 0.3893 0.4249 0.3676
car 0.0295 0.0359 0.0475 0.0538 0.1599 0.2506 0.3079 0.0365
ERA 1.2813 1.4270 1.2850 2.1500 1.2317 1.2970 1.3060 1.2870
ESL 0.3149 0.3791 0.3607 0.4734 0.2910 0.3934 0.4918 0.3750
LEV 0.3927 0.5740 0.3920 0.6680 0.4170 0.4290 0.5430 0.3940
machineCPU 0.3158 0.3301 0.9043 0.3589 0.3413 0.4211 0.3589 0.3732
qualitative_bankruptcy 0.0040 0.0040 0.0840 0.0200 0.3573 0.0160 0.0160 0.0080
SWD 0.4370 0.4840 0.4370 0.7630 0.5167 0.4750 0.4990 0.4340
windsorhousing 0.2424 0.4304 0.5073 0.2436 0.2210 0.1795 0.1978 0.2436
wisconsin 0.0347 0.0337 0.0410 0.1127 0.1396 0.0483 0.0498 0.0439

Avg: 0.3003 0.3680 0.5980 0.4869 0.3828 0.3790 0.3920 0.3305

Fuzzy k-Nearest Neighbors with monotonicity constraints 149

Table 9: Holm test applied to the MAE results among the tested algorithms

Control Method: MonFkNN-PM (2.00)

i Algorithm (Rank) Z p-Value Hypothesis (α = 0.05)

7 OLM (6.17) 4.167 0.00003 Rejected
6 RDMT (5.54) 3.542 0.00040 Rejected
5 OSDL (5.29) 3.292 0.00099 Rejected
4 MID (4.96) 2.958 0.00309 Rejected
3 MonMLP (4.25) 2.250 0.02445 Rejected
2 MkNN (4.04) 2.042 0.04119 Rejected
1 PMDT (3.75) 1.750 0.08011 Not Rejected

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(a) vs. MkNN

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(b) vs. OSDL

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●
●●

●

●

●●

●
●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

● ●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●
●

●

●

●

●
●●

●

●

●
●●

●

●

●●●

●

●

●

●

●●
●●

●
●

●

●

●
●

●●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●● ●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●●

●●

●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●●●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

● ●●

●

●

●

●
●
●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●

● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●
●●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

● ●

●
●

● ●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●●

● ●
●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●●●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

● ●●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●●
●

●

●

●● ●

●

●

●

●
●
●●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

● ●
●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●
20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(c) vs. OLM

●●

●

●

●
●

●● ●

●●

●● ●
●

●
●

●
●

●●

●

●●
●

●
●● ●●

●●

●

●

●

●

●

●

●● ●

●

●

●●
●●

●

●●● ●●

●

●

●

● ● ●●
● ●

●

●
●

●●

●
●

●

● ●●●

●

●●
●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●●

●

● ● ●

●●

●
●● ●●●● ●

●

●

●

●

●

●●
●

● ●● ●●

●

●● ●

●

● ● ●
●● ●●

● ●
●●

●

●● ● ●● ●● ● ●

●
●

●

●

●

● ● ●

●●

●

●

●

●

●

●

● ● ● ●●● ● ●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

● ●●●

●

●
● ●

●

● ●
● ●●

●
●

●

●●

●

●●
● ●

●

●

●

●

●● ● ●
●●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●●

●

●
● ●●

●
●

●
●

●●●

●

● ● ●
●

●
●

●●
●

●

●

● ●

●

● ● ●●● ●
●●

●

●●● ●●●
●

●

●

●

●

●

●● ●● ●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●● ● ● ●●●● ●●

●
●
●

●

●

● ●
●●● ●

●●

●

●
●

●

●●

●

●
●●

●
● ●

●
●

●

● ●
● ●

●
●

●

●● ●●

●

●

●

●●
●

● ●●● ● ●●

●

● ● ●●
●● ● ●●

●

●
●

●

●
●

●

●

● ●●●

●

●
●

●

●

●●

●

●
●●● ● ●● ● ●●

● ●

●

● ●

●

●

●●
●

●

● ●● ●
●

●

●

●● ●●●

●
●●●

●

● ●●
● ●

●

●

●

●

● ●
●●

●

●

●

●

●●
●

●

●
● ●

●

●●

●

● ●
● ●●

●
● ● ●

●

●

●

●
●● ●

●

●●● ●●
●

●

● ●● ●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

● ●● ●
●

●●●● ●
●

●
●

●
●●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●
● ●

●●●

●

●

●

● ●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●●

● ●

●

●●●
●

●●●

●

●●
●

● ●
● ●

●

●●●

●●

●

●

●

●●
●

●●
●

●

●

●
●

●

●
●

●
●

●
● ●●

●

● ●

●

●

●● ● ●

●

●

●●
●

●

●

●

●
●

●

●
●

● ●

●

●
●

●●

●
● ●

●●

●

●

●

● ●

●

● ●● ●● ●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●● ●● ●● ●● ●● ●

●

●

●● ●
●

●

●

● ●●
●

●

●

●
●

●●
●●

●
●

● ●●

●
●

● ●
●

●

● ●
●

●

●

●●
● ●

● ●
●

●

●●

●

●

●●●
●

●

●●● ●●●
●

●

● ●●

●●

●
●

●
●

● ●● ●●●

●

● ● ●●
●

●
●

● ● ●

●

●●
●

● ●●
●

●
●

● ●

●

●
●

●

●

●
● ●

●
●
● ● ●●
●

●

●

●

●

●

●

● ●

●

● ●

●

●●
●

●●
●

●●

●

●●●

●

●

●

●

●

●●
●

●

●●
●

●●●● ● ● ●● ●
●

●

●

●● ●

●

●
●

●●
●

● ●●●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

● ●●

●

●

●

●●

●

● ●
●
●●● ●

●

● ●

●

●●

●

●
● ● ●●

●

●

●

● ●●● ● ●
●●

●
●

●

●
●●

●

●●

●

●●

●

●

●● ●●● ●●

●

● ●
●

●● ●

●

● ●

●
●

●

●

● ●
●

●

●● ●●

●

● ●

●

●

● ●

●

● ●●● ● ●●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●●●●

●
●

●
●

●

●

●

●● ● ●
●

● ●
●

●

● ●

●

●

●
● ●

●

●
●

●

●
●

●
●
● ●●

●

●

●

●

●●

●

●
●●

●
●

●

●

● ●

●

●

●● ● ●
●●

●

●
●

● ●

●

● ●

●
● ●●

● ●
●

● ●●● ●
●

●

●

●

●
●

● ●

●

●
●●

●

●
●

● ● ●

●

●
●●

● ●

●
●

●
●

● ● ●

●

●
● ●

●

●● ●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●
●

●
●

●
●●

●

●

●●

●●
●

●

●

●● ●
●●
● ●

●

●

●

●●
●

●●

●

●
●●

●

●

● ●

●
● ●

●

●

●
● ●

●● ● ●
●

●

●

● ●● ●●● ●● ●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●●

●● ●●
●

● ●

●●●

●
●

●● ●●●

●

●● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●●

●
●

●

●● ●
●

●●● ● ●●

●

●
●

●

●

●
●

●

●

●

●
●

●●●

●

● ●

●

●
●

● ●
●

●
● ●●

●●

●● ●●●

●

●

●

●● ● ● ●● ●
●

●

●

●
●

●●●●
●

●●

●

● ●
● ●

●

●
●

●
●

●

●

●

● ●

●

●
●● ●

●

●

●
● ● ● ●● ●

●

●
●

● ●●
●● ●●

●
●

●

●

●

●

●

●● ● ●●●

●

● ●● ●

●

● ●

●

●● ●● ●

●

●

●● ●● ●● ● ●

●
● ●● ●● ●●

●
●

●

● ● ●●
●

●

● ●●

●

●

●

●●

●

●●

●●
●●

●

●

●
●● ●

●

●

●
● ● ● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●●
●●●

●

●

●
● ●●●

●

●

●●● ●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

● ●●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●●

●● ●●

●

● ● ●● ●
●

●
●

●

●

●

●

●●

●

●

●
●● ●●

●

●
●
●●● ●● ●●●

●●
●●●

●

●

●

● ●●
●

● ●●

●

●

●

●

●● ●●

●
●

●

● ● ●●● ●
●

●
●

●

●

● ●

●
●

●

●

● ●●●

●

● ●● ●● ●

●

●

●
●● ● ●● ●

●

●●
●

●
●●

●
●●

●

●

● ●

●

● ●

●

●
●

●
●

●
●

●
●●

● ●
●

● ●● ●

●

●●● ●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●
●

● ●●
●

●

●

●

●● ●
●● ●●●

●
●●

●

●●

●

● ●●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●●

●

●● ● ●●

●

●● ●●● ●

●

●

● ●

●

●

● ●

●

●

●

● ●● ● ●● ●
●●

●
● ●

●●
●

●

●

●

●●

●●●

●

●

●

● ●●

●

●●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●● ●

●
●

●

●
●

●
●● ●

●

●● ● ●

●

● ● ●●

●

●

●
●

●
●

● ●
●

●

●

●● ● ●● ● ●

●

●
● ●

●

●
●

●

●

●
●●

●

● ● ●● ●
●

●

●
● ●●

●

●

● ● ●● ● ●

●

●

●

●

●

●

●

● ●
●●●

●

●

●
●

●●
●●

● ●●

●

●
●

●

●

●

●
● ● ●

●

●

●

●
●●

●

●

● ●●● ●●

●●

●

●

● ● ●

●

● ● ●● ●

●

●

●

●●● ●

●

● ●
●●

●●

●

●
● ●

●

● ●●● ●

●

●
●

●
● ●

● ●
● ●

●
●

● ●

●

● ●

●

●

●

●

●●

●

● ●● ●●
●

●●●

●●

●
●

●●
●● ●

●

●

●

●●● ●

●

●

● ●●
● ●

●
●

●
●

●

●

●
●

●

●

● ●
●

●●

●

●●● ●● ●
●

●

●

●

●

●● ● ●

●
●

●●

●

●●

● ●●

●

● ●●●
● ●

● ●●● ●
●

●

●

●

●

●
●●

●

●
● ●

●

●

●● ●●●

●

●

●
●

●

●

● ●●

●

●

●

●●
●●

● ●
●

●

●

●

●

●●

●

●

● ●

●
●

●●

●

●●● ●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

● ●●
●

● ●

●

●●

●
●

●
●

● ●● ● ●
●● ●

●
●● ●

●
●

●

●

● ●

●●●
● ●

● ●

●

●

●

●

●

● ●
● ●

●●

●

●●

●

●
●●

● ●

●●

● ●

●

●●

●

● ● ●

●

● ●●

●●

● ●

● ●

●

●
●

●

● ●

●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●●●

●

● ● ●

●
●

●● ●

●

●

●
●

● ● ●●●● ●● ●
● ●

●

●

●
●

● ●

●● ●
●

● ●
● ●●

●

●
● ●

●

●

● ●●
●●●

●

●

● ● ●●●
●

● ●

●●

●●
●

●

● ● ●● ●●
●

●

●

●●

●

●● ●
●

● ●●

●

●● ●●
●

● ●
●

●

●
●

●● ●
●

●

●

●

●

●● ●● ●●● ● ●
●

●
●

●

●● ● ●
●

● ● ● ● ●● ●●● ●●
●●

●

●●

●
●● ●

●
●

●

●● ● ●

●

●

●

●

●

●●

●

●● ● ●
●● ● ●

●

●

●

●

●

●

●
● ●

●
●

●
●●

●
●

●

●

●

● ●

●

●●●

●

●● ●
●

● ●●●●

●●

●

●

●
●

●

●● ●
●●

●
●

●

●

●
●

●●

●

●

●
●

● ●●
●

●

● ●● ●●

●
●

● ●

●

●

●
●

●
●

●
●

●●● ● ●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●●
●●

●

●

●

●

●●
● ●

●

●

●● ●● ●●●

●
●

●
●

●●●

●

●

● ●

●
●

●

●

●

●

● ●

●

● ● ●●
●

●●
●

●

●

●

● ●● ●● ●● ●●
● ●●●

●
●

●

● ●

●

●●
●

●

●

●●
●●

●● ●

●

● ● ●

●

● ●● ●

●

●

●

●

●

●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●
●

● ●

● ●

●

●

●
●●

● ●●

●●

●

●●

●

●

●

●●●

●

● ●●

●
●

●

●

●● ●●

●

● ●●●● ●
●

●● ●●●●

●

● ●
●

●
●

●

●
●

●

● ● ●●

●

● ●●● ● ●

●

●
● ●

●
●

●

●
●

●

●

●● ● ●
●

●●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

● ●●
●

●

●

●

●
●

●

● ●
● ●●

●

● ●●
●

●

●

●

●
●

●

●

●●
●

●●
●

●

●

●

●●
● ●●●

●●

●
●

●

●

●●
● ●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●

●

●
● ●

●● ●● ●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●

● ●●
●

●●●● ● ●● ●

●

●●●

●

●

●●●
●

●

●

●

●
● ●● ● ●● ●

●

●
●

●

●

● ●● ●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●
●●

●

●●
●

● ● ●●
●

●

●

●
●

● ●●

●

●● ● ●

●

●

●● ●
●

● ●
●●●

●

●●● ●● ●●

●
●

●

●

●●

●

● ●●●
●

●
● ●

●

●

● ●

●

●

●

●

●

● ●●
●

●

●

●

●
●

● ●

● ●●

●

●

● ●●
●

●

●●
●●

● ●

●

●● ●
●

●

●

●●

●

●

●

●

●

● ●● ●

●

●

● ●

●● ● ●
●

●

● ●●

●

● ●

●

●●

●

● ●
●

●

●●

●

●

●

●
● ●

● ●
●●

●

● ●● ● ●●

●

●
●

●
●

● ●●

●

●

●

●
●

●
●

●●
●

●

●

●

●
● ●

●● ●●●● ●●● ●
●

●

●

● ●●●

●

●
●

● ● ●

●

●

●

●
●● ●

●
●●●

●

●

●

●

● ●

●

●
●● ●●

●

● ●
●

● ●

●

● ●

●
●

●

●● ●●

●

●● ●●

●
●

● ●

●

●●
●

●

●

●●

●
●

● ● ●● ●

●

●

●
●

●●●● ●

●

●
●

●

●
●●● ● ●

●

●
● ●

●

●●

●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●
●

●

●● ● ●

● ●
●

●
●

● ● ●●

●

●

●

● ● ●●
●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●●
●

●

● ●

● ●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
● ●●●

●

●●

●

●●● ●
●

●

●●

●
●

●
●

●●

●

●● ●
●

●

●
●

●

●●

●

●

●

●
●●●● ●

●

●

●●●

●

● ●

●

●

● ●●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●●

●

●● ●●●

●

●
●

●
●

● ●●

● ●

● ●●● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

● ●●

●

● ●●

●

●
●

●

●

●

●
●● ●● ●● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●● ●● ●

●
●

●●

●

●

● ● ●● ●●

●
●

●

●

●

●●

●
●

●

●●

● ●●
●●

●

● ●●●
●

● ●●● ●

●

●

●●
●● ●●

●

●

●

●

●●
● ●●●

●
●

●

●

●● ●

●

● ● ●●

●
●

●

●

●

●

●

●
●

●●●

●

● ●●

●

● ●
●

●

●●
●

●

●●●
● ●● ●

●

● ●●
●

●
●

●

●

●● ●

●

●

● ●

●

●

●

●
●

● ●● ●● ●●

●

●

●

●●

●

● ●●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●● ● ●●

●

●

●● ●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●● ●

●

● ●

●

●

●
●

●
●

● ●●
●

●

●
●

●● ●● ●
●

● ●
● ●

●

●

●●● ●

●

●

●● ● ●
●

●

●

●

● ● ●
●

●
●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●● ●
●

●

● ●

●

● ● ●●
●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●
● ●● ●● ●●●

●

●
●

●

●●

●
●

●
●

●
●

●● ●● ●● ●● ●

●

● ●
●

●
●

● ●●
●

●●

●

●● ●● ●

●

●

● ●● ●● ● ●
●

●

●

●

●

●● ● ●
●

●●●

●

●● ● ●● ●

●

●

●

●

● ●
●

●

●

●● ● ●

●

●

●
● ●

●

●●●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●●
●

●

●

● ● ●●

●
●

●

●

●
● ●●

●● ●●

●

● ●●

●

●

●
●

●

●
●

●
●

●
●

● ●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

● ●
●

●
●

●

●

● ●●

●

●
●

●

● ●
●

●

● ●

●

●
● ●

●
●●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●
● ●●●

●

●

●

●

● ●●●

●

●

●

●● ● ● ●
● ●

● ●●

●● ●●

●

●
●●

● ●●
●

●

●
●●

●

●
●

● ● ●

●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●● ●

●

●

● ●●● ●●● ● ●

●

●● ●●

●

● ● ●● ●
●

●
●

●●

●

●

●

●

●
●●●

●

●● ●

●
●●● ●●

●

● ●

●
●●

●● ●
●●

●
●

●
● ●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●● ●● ●●

●

●

●

●

●

●
●

●

● ●● ●

●

●

●

●

●

●

●
● ●

●
● ●● ●

●

●

●

●
●●●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●●

●

●

● ●
●

●

● ●●
●

●●●

●

●

●

●

●●
● ●

● ● ●

●

●
●

●

●
●

●

● ●
●

●● ● ● ●●
●

●

●

●

●●

●●● ●●

● ●
● ●● ●

●
●

●

●

●●●●

●

●

●

●● ● ●

●

● ●

●

●●
●

●

●

●●● ●●● ●●

●

●
●

●

●

●● ●

●

●

●

●

●● ● ●

●

● ●●

●

●

●●
●
●●● ●●● ●●

●

●

●
●

●● ● ● ●● ● ● ●

●
● ●

●

●

●

●

●
●

●
●● ●

●

●

●
●

●● ●

●

●
●

●

● ●●●
●

● ●
●

●

●
●

●

● ●
●

●
●

●

●●

●

●

●● ●●
● ●

●

●

●● ●●

●

●
●

●

●

● ●●● ●●

●

●
●● ●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

● ●

●

●

●● ●
●

●

●●

●

●
●

●●

●

●●

●

●● ●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●●

●

● ● ●

●
● ●

●

●

●
●

●

●

●
●● ●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

● ●

●

● ● ● ●
●

●
●

●

●

●●
● ●

●

●

●

●

●

●●
●

●

●● ●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●●

● ● ●
●●

●

● ● ●●● ●

●●
●

●

● ●

●

●

●
●

●●

●

● ● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●●● ● ●●

●

●

●
●

● ●

●
● ●

●
●

●● ●
●

●
●

●● ● ●● ●● ●●
●

● ●

●

●
●

●

●●
●

●

●

●

●

●

●

● ● ●●● ●●●

●
●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●● ●● ●

●

●

●

●

● ●●
●

●
● ●

●

● ●

●
● ●●●

●

●● ●
●

●

●

●

●

● ●
●●

●
●

● ● ●
● ●●

●
●

● ●

●
●

●●

●

●

●

●●
●

●
●

●●

●

●●

●●●
● ●●

●

●

●

●
●

●
●

●

●

●

●

● ● ●●●●

●

● ●●● ● ●

●

●

●

●

● ●
●

● ●● ●●● ●

●

●
●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●
●●●

●

● ●●●
●

●
●

●●● ●● ●●●

●

●
●

●
●

● ●●
●● ●
● ●

●

● ● ●●●●
●

●●
●

●

●

●

●

●

●

●

●●
●

●●
●

●●●

●
●

●
●

●

●●

●
●

●
●

●

●

●●●
●●

●

●

●● ● ●

●

●●●● ●

●

●
●

●

●

●

●●● ●

●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●●●

●

●

● ●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●●
●

●

●●
●
● ●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(d) vs. MonMLP

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(e) vs. PMDT

Figure 2: Bayesian Sign Test heat-map for MonFkNN-PM vs. the rest in terms of MAE.

two are not statistically better than the former in any circumstance as seen in Figure 2a and Figure 2b. As we
have also seen in the accuracy comparison, Figure 2d points out the statistical superiority of MonFkNN-PM
over MonMLP, but the latter has a better MAE in some cases. Given Figure 2e, MonFkNN-PM and PMDT
can be considered to be statistically the same in terms of error costs. However, MonFkNN-PM performs better
statistically than PMDT in an important part of the benchmark, as a fragment of the distribution is located on the
right side and almost none are found on the left.

150 Chapter II. Publications

Table 10: Results in terms of NMI achieved by the tested algorithms

MonFkNN-PM MkNN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 0.0000 0.0001
balance 0.0000 0.0001 0.0006 0.0000 0.0000 0.0017 0.0029 0.0010
bostonhousing4cl 0.0000 0.0000 0.0000 0.0003 0.0007 0.0022 0.0010 0.0010
car 0.0000 0.0000 0.0000 0.0000 0.0001 0.0046 0.0002 0.0000
ERA 0.0052 0.0056 0.0049 0.0063 0.0026 0.0082 0.0085 0.0058
ESL 0.0004 0.0012 0.0006 0.0025 0.0003 0.0021 0.0066 0.0032
LEV 0.0004 0.0010 0.0004 0.0043 0.0008 0.0018 0.0086 0.0006
machineCPU 0.0002 0.0000 0.0000 0.0014 0.0001 0.0037 0.0047 0.0028
qualitative_bankruptcy 0.0000 0.0000 0.0003 0.0000 0.0079 0.0002 0.0000 0.0000
SWD 0.0007 0.0005 0.0009 0.0015 0.0004 0.0020 0.0000 0.0010
windsorhousing 0.0005 0.0000 0.0000 0.0000 0.0000 0.0030 0.0002 0.0059
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

Avg: 0.0006 0.0007 0.0006 0.0014 0.0011 0.0028 0.0027 0.0018

Table 11: Holm test applied to the NMI results among the tested algorithms

Control Method: MonFkNN-PM (2.9583)

i Algorithm (Rank) Z p-Value Hypothesis (α = 0.05)

7 MID (7.00) 4.042 0.00005 Rejected
6 RDMT (6.33) 3.375 0.00074 Rejected
5 PMDT (5.75) 2.792 0.00524 Rejected
4 OLM (4.13) 1.167 0.24335 Not Rejected
3 MonMLP (3.63) 0.667 0.50499 Not Rejected
2 MkNN (3.13) 0.167 0.86763 Not Rejected
1 OSDL (3.08) 0.125 0.90052 Not Rejected

5.3 Comparison with the State-of-the-Art: Monotonicity

Now we will analyze the performance according to the monotonicity of our proposal compared to methods
chosen from the state-of-the-art. Table 10 shows the NMI results achieved by the selected models. In this case,
the competition is close. Monotonic decision trees (MID, RDMT, and PMDT) clearly obtain less monotonic
predictions. MID has the worst behavior considering only monotonicity and PMDT is the most monotonic
decision tree classifier. OLM and MonMLP are slightly better than PMDT, but they still do not come close to the
best methods. MonFkNN-PM, MkNN, and OSDL perform similarly. MonFkNN-PM and OSDL are slightly
better on average. It is worth mentioning the existence of simpler data-sets, such as artiset and wisconsin, in
relation to monotonicity as almost every algorithm accomplishes the same good results. The best results for the
more complex sets are shared by the different methods.

Table 11 summarizes the comparison according to monotonicity with the Friedman statistical test results. In
this case, MonFkNN-PM is barely selected as the control method. For half of the benchmark (OSDL, MkNN,
MonMLP and OLM), the hypotheses of equivalence are not rejected for α = 0.05. On the contrary, all monotonic
decision trees are statistically worse than MonFkNN-PM by a wide margin. The best monotonic decision tree
(PMDT) does not reach good performance in terms of monotonicity of the best algorithms. This is probably due
to the greedy construction of monotonic constraints into the tree.

Fuzzy k-Nearest Neighbors with monotonicity constraints 151

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(a) vs. MkNN

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●● ●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(b) vs. OSDL

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(c) vs. OLM

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(d) vs. MonMLP

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●
●

● ●

●

●

●

●

●
●

●●

●

●●

●

●

●● ●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(e) vs. PMDT

Figure 3: Bayesian Sign Test heat-map for MonFkNN-PM vs. the rest in terms of NMI.

In Figure 3, the statistical comparisons of the NMI results are represented with Bayesian Sign Test heat-maps.
These plots show similar conclusions extracted from the previous table with NMI results. MonFkNN is
significantly superior to PMDT (Figure 3e). In Figure 3c, the right-shifted distribution points out that MonFkNN-
PM is better than OLM. Although they share a part of the distribution in the rope section, OLM has too few
individuals in its left section (Figure 3c). When compared with MkNN (Figure 3a), OSDL (Figure 3b) and
MonMLP (Figure 3d), big parts of the distributions are located in all the decision sectors. Even though their
distributions are slightly shifted to the right (Figure 3a and Figure 3b), the core of the distributions are found in
the rope. Then, we can roughly assume statistical equivalence.

In summary, MonFkNN-PM obtains significantly better results in terms of accuracy and error cost than almost
all of the considered methods. Our approach also achieves the most monotonic predictions alongside OSDL.
MonFkNN-PM is slightly and non-statistically better than PMDT in terms of accuracy and error costs, but the
former overwhelmingly outperforms PMDT considering monotonicity. Therefore, MonFkNN-PM is an overall
better method.

The main reason behind the remarkable performance of MonFkNN is its capability of not sacrificing any
objective of monotonic classification. Usually, some classifiers, such as OSDL, sacrifice accurate predictions in
order to accomplish monotonic models. The results of OSDL for artiset and bostonhousing and the outcome of
MkNN for balance are good examples of this statement. On the other hand, other methods, such as monotonic
decision trees and particularly PMDT, achieve accurate predictions but break the monotonic constraints in their
predictions more frequently. However, the MonFkNN procedure of training class membership extraction is
designed to mitigate the influence of non-monotonic noisy data, without the need to aggressively modify the

152 Chapter II. Publications

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
on

	M
on

ot
on

ic	
In
de

x

Noise	Ratio

Training	set

Figure 4: Impact of the addition of class noise in Artiset on monotonic violations measured by NMI.

training data as done by relabeling in MkNN. The MonFkNN prediction stage offers the flexibility of choice
for most accurate or monotonic predictions. Additionally, MonFkNN includes technologies that are more
appropriate for ordinal and monotonic classification, such as median as a final class.

5.4 On the robustness of Monotonic Fuzzy k-NN to monotonic noise

With this last empirical study, we aim to test the robustness of MonFkNN-PM to the presence of monotonic
violations or noise in the training sets as compared to MkNN. Thus, we have introduced different amounts of
noisy instances in the training partitions of the artificial data-set Artiset. Then, the performance of MonFkNN-PM
and MkNN is measured and compared in terms of accuracy, MAE and NMI while the noise ratio increases.

In order to increase the impact of class noise, we have randomly under-sampled every training set to 25% of
their instances. Then, a subset of randomly selected instances is converted to noise by changing their class labels.
This label modification is done according to the adjacent classes of the implicated instance. Specifically, a large
number of neighbors are computed for the future noisy example xi. 15 nearest neighbors were the value used
in this experiment. Next, the neighbors with the same class as xi are removed and a new class is randomly
obtained in relation to the presence ratio of other classes in its filtered neighbors. This ensures a certain degree
of proximity between the changed sample and its new class.

This process is executed following the same cross-validation scheme mentioned earlier. Since the noise generation
has a random component, the experiment was repeated three times with different seeds, averaging the obtained
results. After the noise generation and before the execution of MkNN, a relabeling technique [24] was applied
to the resultant data-sets.

Figure 4 shows the impact of increasing noise on the number of monotonic violations in Artiset training sets.
This effect is measured by the Non-Monotonic Index (NMI) over the resulting training samples. As previously
mentioned, class noise significantly aggravates the monotonicity of the data-sets. The increase in NMI is directly
proportional to the increase in noise as clearly shown in Figure 4.

Figure 5 shows the performance of MonFkNN-PM and MkNN (darker and lighter lines, respectively) on the
basis of precision (5a), MAE (5b) and NMI (5c), with the progression of noise. As expected, while the amount
of noise grows, the performance of both methods get worse, that is, their accuracy decreases and errors and
non-monotonic predictions increases. However, there are some big differences between classifiers.

Fuzzy k-Nearest Neighbors with monotonicity constraints 153

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Ac
cu
ra
cy

Noise	Ratio

PMFKNN MKNN

(a) Noise effect in terms of Accuracy.

0.15

0.20

0.25

0.30

0.35

0.40

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

M
ea
n	
Ab

so
lu
te
	E
rr
or

Noise	Ratio

PMFKNN MKNN

(b) Noise effect in terms of MAE.

0.0001

0.0006

0.0011

0.0016

0.0021

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
on

	M
on

ot
on

ic	
In
de

x

Noise	Ratio

PMFKNN MKNN

(c) Noise effect in terms of NMI.

Figure 5: Comparison of MonFkNN-PM and MkNN performance on Artiset data-set with the different amounts
of noisy samples.

Firstly, the behavior of MonFkNN-PM facing noise is clearly better than that of MkNN in every tested aspect.
The black lines are always located above the lighter ones in Figure 5a, which indicates greater accuracy, and
under them in Figures 5b and 5c, meaning better MAE and NMI for MonFkNN-PM. Usually, the distance
between both methods is large, with the exception of the NMI results obtained for the smallest values of noise.
In addition, while the noise ratio increases, their differences also increase.

The slope of deterioration of MonFkNN-PM performance remains stable, even being reduced in some cases,
while the MkNN slope becomes steeper as the amount of noise increases. This last event can be clearly seen
when the noise ratio reaches the 25% of the instances, where the decline of MkNN is magnified, especially in
terms of monotonicity (Figure 5c). On the other hand, the NMI results of MonFkNN-PM seem to increase at a
slower rate by that point. This exhibits the great robustness of MonFkNN-PM to monotonic violations.

Next, the behavior of both methods in relation to noise are analyzed using a graphical example. Figure 6 is a
graphical representation of the predictions and classification boundaries inferred by MkNN and MonFkNN-
PM for Artiset with 35% noise. Figure 6a represents the perfect class surfaces defined by Artiset generation
expression (see Section 4) and the training samples. In Figure 6a, black points represent the noise artificially

154 Chapter II. Publications

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Exact decision surface for Artiset. Black points represent
noise.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Decision surfaces inferred by MkNN.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Decision surfaces inferred by MonFkNN-PM.

Figure 6: Classification boundaries inferred by MkNN and MonFkNN-PM from the plotted Artiset with 35%
noisy instances. Black points represent the instances wrongly classified by the decision surfaces shown.

introduced into the data-set. In Figures 6b and 6c, the black examples are wrongly classified instances, while the
right predictions are colored in white.

The first clear difference between the MkNN and MonFkNN-PM performances shown in Figures 6b and 6c is the
amount of black dots. MonFkNN has far fewer classification mistakes than MkNN. Additionally, MonFkNN-PM
is better at conserving the right regions for the classes, while MkNN can lose nearly all the entire sections of
some of them. The regions in lighter and brighter yellow are shrunk by MkNN in favor of their adjacent classes.

With these experiments, MonFkNN has shown strong robustness to monotonic noise preserving the decision
boundaries as precisely as possible, and hence, has performed well in terms of precision, error costs and
monotonicity. This robustness is the result of all the procedures included in MonFkNN, but it may also be mainly
due to the reduction of the impact of non-monotonic noise during the extraction of the class memberships of the
training instances.

Fuzzy k-Nearest Neighbors with monotonicity constraints 155

6 Conclusion

In this paper, we proposed a Fuzzy k-Nearest Neighbors model for classification with monotonic constraints. The
final class label obtained from membership functions has been revised to respect these constraints. MonFkNN
has been designed with different mechanisms to reduce the influence of monotonic violations. As a demonstration
of its flexibility, two different model configurations with different behaviors have been presented.

Over the course of the experimental analyses, the great potential of both proposed versions, namely Pure and
Approximate Monotonic Fuzzy k-NN, has been shown in relation to monotonicity and accuracy, respectively.
Compared to other methods, MonFkNNN is significantly better in terms of accuracy and error cost, matching
the best NMI results. In addition, it has shown its robustness to large amounts of noise while preserving its good
performance.

Future proposals should be robust to monotonic noise in order to obtain accurate and monotonic predictions.
MonFkNN, as an example, opens possibilities to other fuzzy approaches since they are also potentially reliable
against noise. Additionally, fuzzy techniques may be useful when defining different levels of constraints between
input and output attributes. That is, some attributes may be more important than others regarding monotonicity.
This problem representation may be very useful for monotonic classifiers.

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness under Grant TIN2017-
89517-P and a research scholarship (FPU) given to Sergio González by the Spanish Ministry of Education,
Culture and Sports.

References

[1] José-Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Michał Woźniak, and Salvador García.
Monotonic classification: an overview on algorithms, performance measures and data sets. Neurocomputing,
341:168–182, 2019.

[2] Chih-Chuan Chen and Sheng-Tun Li. Credit rating with a monotonicity-constrained support vector machine
model. Expert Systems with Applications, 41(16):7235–7247, 2014.

[3] Jose-Ramon Cano, Naif R Aljohani, Rabeeh Ayaz Abbasi, Jalal S Alowidbi, and Salvador Garcia. Prototype
selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence,
60:128–135, 2017.

[4] A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms. Machine
Learning, 19(1):29–43, 1995.

[5] Arie Ben-David, Leon Sterling, and TriDat Tran. Adding monotonicity to learning algorithms may impair
their accuracy. Expert Systems with Applications, 36(3):6627–6634, 2009.

[6] Sergio González, Salvador García, Sheng-Tun Li, and Francisco Herrera. Chain based sampling for
monotonic imbalanced classification. Information Sciences, 474:187–204, 2019.

[7] Sergio González, Francisco Herrera, and Salvador García. Monotonic random forest with an ensemble
pruning mechanism based on the degree of monotonicity. New Generation Computing, 33(4):367–388,
2015.

[8] Christophe Marsala and Davide Petturiti. Rank discrimination measures for enforcing monotonicity in
decision tree induction. Information Sciences, 291:143–171, 2015.

156 Chapter II. Publications

[9] Shenglei Pei and Qinghua Hu. Partially monotonic decision trees. Information Sciences, 424:104–117,
2018.

[10] Jesús Alcalá-Fdez, Rafael Alcalá, Sergio González, Yusuke Nojima, and Salvador García. Evolutionary
fuzzy rule-based methods for monotonic classification. IEEE Transactions on Fuzzy Systems, 25(6):1376–
1390, 2017.

[11] Sheng-Tun Li and Chih-Chuan Chen. A regularized monotonic fuzzy support vector machine model for
data mining with prior knowledge. IEEE Transactions on Fuzzy Systems, 23(5):1713–1727, 2015.

[12] Francisco Fernández-Navarro, Annalisa Riccardi, and Sante Carloni. Ordinal neural networks without
iterative tuning. IEEE Transactions on Neural Network and Learning Systems, 25(11):2075–2085, 2014.

[13] Hong Zhu, Eric CC Tsang, Xi-Zhao Wang, and Rana Aamir Raza Ashfaq. Monotonic classification
extreme learning machine. Neurocomputing, 225:205–213, 2017.

[14] K. Dembczyński, W. Kotłowski, and R. Słowiński. Learning rule ensembles for ordinal classification with
monotonicity constraints. Fundamenta Informaticae, 94(2):163–178, 2009.

[15] Yuhua Qian, Hang Xu, Jiye Liang, Bing Liu, and Jieting Wang. Fusing monotonic decision trees. IEEE
Transactions on Knowledge Data Engineering, 27(10):2717–2728, 2015.

[16] A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge-based dsss: methodol-
ogy and applications. Decision Sciences, 23:1357–1372, 1992.

[17] W. Duivesteijn and A. Feelders. Nearest neighbour classification with monotonicity constraints. In
ECML/PKDD (1), pages 301–316, 2008.

[18] Stijn Lievens, Bernard De Baets, and Kim Cao-Van. A probabilistic framework for the design of instance-
based supervised ranking algorithms in an ordinal setting. Annals of Operations Research, 163(1):115–142,
2008.

[19] Javier García, A. M. AlBar, N. R. Aljohani, J.-R. Cano, and S. García. Hyperrectangles selection for
monotonic classification by using evolutionary algorithms. International Journal of Computational
Intelligence Systems, 9(1):184–202, 2016.

[20] S. García, J. Luengo, and F. Herrera. Data Preprocessing in Data Mining. Springer, 2015.

[21] Weiwei Pan, Qinghua Hu, Yanping Song, and Daren Yu. Feature selection for monotonic classification
via maximizing monotonic dependency. International Journal of Computational Intelligence Systems,
7(3):543–555, 2014.

[22] J.-R. Cano and S. García. Training set selection for monotonic ordinal classification. Data & Knowledge
Engineering, 112:94 – 105, 2017.

[23] Rob Potharst, Arie Ben-David, and Michiel C. van Wezel. Two algorithms for generating structured and
unstructured monotone ordinal data sets. Engineering Applications of Artificial Intelligence, 22(4-5):491–
96, 2009.

[24] Ad Feelders. Monotone relabeling in ordinal classification. In ICDM, pages 803–808. IEEE Computer
Society, 2010.

[25] James M Keller, Michael R Gray, and James A Givens. A fuzzy k-nearest neighbor algorithm. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-15(4):580–585, 1985.

Fuzzy k-Nearest Neighbors with monotonicity constraints 157

[26] Joaquín Derrac, Salvador García, and Francisco Herrera. Fuzzy nearest neighbor algorithms: Taxonomy,
experimental analysis and prospects. Information Sciences, 260:98–119, 2014.

[27] S. García and F. Herrera. An extension on “statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008.

[28] S. García, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple comparisons
in the design of experiments in computational intelligence and data mining: Experimental analysis of
power. Information Sciences, 180(10):2044–2064, 2010.

[29] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change: a tutorial for
comparing multiple classifiers through bayesian analysis. The Journal of Machine Learning Research,
18(1):2653–2688, 2017.

[30] David Charte, Francisco Charte, Salvador García, and Francisco Herrera. A snapshot on nonstandard
supervised learning problems: taxonomy, relationships, problem transformations and algorithm adaptations.
Progress in Artificial Intelligence, pages 1–14, 2019.

[31] W. Kotłowski and R. Słowiński. On nonparametric ordinal classification with monotonicity constraints.
IEEE Transactions on Knowledge and Data Engineering, 25(11):2576–2589, 2013.

[32] Lotfi A Zadeh. Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A
Zadeh, pages 394–432. World Scientific, 1996.

[33] Igor Škrjanc, Jose Iglesias, Araceli Sanchis, Daniel Leite, Edwin Lughofer, and Fernando Gomide. Evolving
fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey.
Information Sciences, 2019.

[34] Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das. A parameter
independent fuzzy weighted k-nearest neighbor classifier. Pattern Recognition Letters, 101:80–87, 2018.

[35] Haim Levy. Stochastic dominance: Investment decision making under uncertainty. Springer, 2015.

[36] Stijn Lievens and Bernard De Baets. Supervised ranking in the weka environment. Information Sciences,
180(24):4763–4771, 2010.

[37] Isaac Triguero, Sergio González, Jose M Moyano, Salvador García, Jesús Alcalá-Fdez, Julián Luengo,
Alberto Fernández, Maria José del Jesús, Luciano Sánchez, and Francisco Herrera. Keel 3.0: an open source
software for multi-stage analysis in data mining. International Journal of Computational Intelligence
Systems, 10(1):1238–1249, 2017.

[38] Bernhard Lang. Monotonic multi-layer perceptron networks as universal approximators. In International
Conference on Artificial Neural Networks, pages 31–37. Springer, 2005.

[39] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics,
pages 65–70, 1979.

[40] Jacinto Carrasco, Salvador García, María del Mar Rueda, and Francisco Herrera. rNPBST: An R package
covering non-parametric and bayesian statistical tests. In International Conference on Hybrid Artificial
Intelligence Systems, pages 281–292. Springer, 2017.

Bibliography

[1] Gregory Piateski and William Frawley. Knowledge discovery in databases. MIT press, 1991.

[2] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier,
2011.

[3] Salvador Garćıa, Julián Luengo, and Francisco Herrera. Data Preprocessing in Data Mining.
Springer Publishing Company, Incorporated, 2015.

[4] Diego Garćıa-Gil, Julián Luengo, Salvador Garćıa, and Francisco Herrera. Enabling smart data:
noise filtering in big data classification. Information Sciences, 479:135–152, 2019.

[5] Julián Luengo, Diego Garćıa-Gil, Sergio Ramı́rez-Gallego, Salvador Garćıa, and Francisco Herrera.
Big Data Preprocessing: Enabling Smart Data. Springer Nature, 2020.

[6] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher Pal. Data mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[7] Dorian Pyle. Data preparation for data mining. morgan kaufmann, 1999.

[8] Shichao Zhang, Chengqi Zhang, and Qiang Yang. Data preparation for data mining. Applied
artificial intelligence, 17(5-6):375–381, 2003.

[9] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. Artificial
intelligence review, 22(3):177–210, 2004.

[10] Julián Luengo, Salvador Garćıa, and Francisco Herrera. On the choice of the best imputation
methods for missing values considering three groups of classification methods. Knowledge and
information systems, 32(1):77–108, 2012.

[11] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793.
John Wiley & Sons, 2019.

[12] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and
Huan Liu. Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):1–45,
2017.

[13] Huan Liu and Hiroshi Motoda. Instance selection and construction for data mining, volume 608.
Springer Science & Business Media, 2013.

[14] Sergio Ramı́rez-Gallego, Salvador Garćıa, Héctor Mouriño-Taĺın, David Mart́ınez-Rego, Verónica
Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Beńıtez, and Francisco Herrera. Data
discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 6(1):5–21, 2016.

159

160 BIBLIOGRAPHY

[15] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons,
2012.

[16] Norman R Draper and Harry Smith. Applied regression analysis, volume 326. John Wiley &
Sons, 1998.

[17] Boris Mirkin. Clustering: a data recovery approach. CRC Press, 2012.

[18] Krzysztof J Cios, Roman W Swiniarski, Witold Pedrycz, and Lukasz A Kurgan. Unsupervised
learning: association rules. In Data Mining, pages 289–306. Springer, 2007.

[19] David Charte, Francisco Charte, Salvador Garćıa, and Francisco Herrera. A snapshot on
nonstandard supervised learning problems: taxonomy, relationships, problem transformations
and algorithm adaptations. Progress in Artificial Intelligence, 8(1):1–14, 2019.

[20] Jerónimo Hernández-González, Iñaki Inza, and Jose A Lozano. Weak supervision and other
non-standard classification problems: a taxonomy. Pattern Recognition Letters, 69:49–55, 2016.

[21] Francisco Herrera, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-
Tarragó, and Sarah Vluymans. Multiple instance learning. Springer, 2016.

[22] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress
and new challenges. Information Fusion, 38:43–54, 2017.

[23] Francisco Herrera, Francisco Charte, Antonio J Rivera, and Maŕıa J Del Jesus. Multilabel
classification. Springer, 2016.

[24] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larrañaga. A survey on multi-
output regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
5(5):216–233, 2015.

[25] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning. The MIT
Press, 2010.

[26] Alberto Fernández, Salvador Garćıa, Mikel Galar, Ronaldo C Prati, Bartosz Krawczyk, and
Francisco Herrera. Learning from imbalanced data sets. Springer, 2018.

[27] Mary M Moya and Don R Hush. Network constraints and multi-objective optimization for
one-class classification. Neural Networks, 9(3):463–474, 1996.

[28] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. In Advances in neural information processing systems, pages
935–943, 2013.

[29] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE
transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[30] Pedro Antonio Gutierrez, Maria Perez-Ortiz, Javier Sanchez-Monedero, Francisco Fernandez-
Navarro, and Cesar Hervas-Martinez. Ordinal regression methods: survey and experimental
study. IEEE Transactions on Knowledge and Data Engineering, 28(1):127–146, 2015.

[31] José-Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Micha l Woźniak, and Salvador
Garćıa. Monotonic classification: an overview on algorithms, performance measures and data
sets. Neurocomputing, 341:168–182, 2019.

BIBLIOGRAPHY 161

[32] Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Andres Folleco. An empirical
study of the classification performance of learners on imbalanced and noisy software quality data.
Information Sciences, 259:571–595, 2014.

[33] José-Ramón Cano, Julián Luengo, and Salvador Garćıa. Label noise filtering techniques to
improve monotonic classification. Neurocomputing, 353:83–95, 2019.

[34] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance multi-label
learning. Artificial Intelligence, 176(1):2291–2320, 2012.

[35] Jie Sun, Jie Lang, Hamido Fujita, and Hui Li. Imbalanced enterprise credit evaluation with
dte-sbd: Decision tree ensemble based on smote and bagging with differentiated sampling rates.
Information Sciences, 425:76–91, 2018.

[36] Kai Lei, Yuexiang Xie, Shangru Zhong, Jingchao Dai, Min Yang, and Ying Shen. Generative
adversarial fusion network for class imbalance credit scoring. Neural Computing and Applications,
pages 1–12, 2019.

[37] Man Leung Wong, Kruy Seng, and Pak Kan Wong. Cost-sensitive ensemble of stacked denoising
autoencoders for class imbalance problems in business domain. Expert Systems with Applications,
141:112918, 2020.

[38] David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip Kegelmeyer. Hellinger
distance decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery,
24(1):136–158, 2012.

[39] L Gonzalez-Abril, Haydemar Nuñez, Cecilio Angulo, and F Velasco. Gsvm: An svm for handling
imbalanced accuracy between classes inbi-classification problems. Applied Soft Computing,
17:23–31, 2014.

[40] E. Ramentol, S. Vluymans, N. Verbiest, Y. Caballero, R. Bello, C. Cornelis, and F. Herrera.
Ifrowann: Imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. IEEE
Transactions on Fuzzy Systems, 23(5):1622–1637, 2015.

[41] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive boosting
for classification of imbalanced data. Pattern Recognition, 40(12):3358–3378, 2007.

[42] Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision tree induction algorithms.
ACM Computing Surveys, 45(2):16:1–16:35, 2013.

[43] Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Diego F Silva. Class imbalance revisited:
a new experimental setup to assess the performance of treatment methods. Knowledge and
Information Systems, 45(1):247–270, 2015.

[44] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Herrera.
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 42(4):463–484, 2012.

[45] A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms.
Machine Learning, 19(1):29–43, 1995.

[46] Christophe Marsala and Davide Petturiti. Rank discrimination measures for enforcing mono-
tonicity in decision tree induction. Information Sciences, 291:143–171, 2015.

162 BIBLIOGRAPHY

[47] Shenglei Pei and Qinghua Hu. Partially monotonic decision trees. Information Sciences, 424:104–
117, 2018.

[48] Sheng-Tun Li and Chih-Chuan Chen. A regularized monotonic fuzzy support vector machine
model for data mining with prior knowledge. IEEE Transactions on Fuzzy Systems, 23(5):1713–
1727, 2015.

[49] Jesús Alcalá-Fdez, Rafael Alcalá, Sergio González, Yusuke Nojima, and Salvador Garćıa. Evo-
lutionary fuzzy rule-based methods for monotonic classification. IEEE Transactions on Fuzzy
Systems, 25(6):1376–1390, 2017.

[50] Francisco Fernández-Navarro, Annalisa Riccardi, and Sante Carloni. Ordinal neural networks with-
out iterative tuning. IEEE Transactions on Neural Network and Learning Systems, 25(11):2075–
2085, 2014.

[51] Hong Zhu, Eric CC Tsang, Xi-Zhao Wang, and Rana Aamir Raza Ashfaq. Monotonic classification
extreme learning machine. Neurocomputing, 225:205–213, 2017.

[52] W. Duivesteijn and A. Feelders. Nearest neighbour classification with monotonicity constraints.
In ECML/PKDD (1), pages 301–316, 2008.

[53] Stijn Lievens, Bernard De Baets, and Kim Cao-Van. A probabilistic framework for the design
of instance-based supervised ranking algorithms in an ordinal setting. Annals of Operations
Research, 163(1):115–142, 2008.

[54] Javier Garćıa, A. M. AlBar, N. R. Aljohani, J.-R. Cano, and S. Garćıa. Hyperrectangles
selection for monotonic classification by using evolutionary algorithms. International Journal of
Computational Intelligence Systems, 9(1):184–202, 2016.

[55] K. Dembczyński, W. Kot lowski, and R. S lowiński. Learning rule ensembles for ordinal classification
with monotonicity constraints. Fundamenta Informaticae, 94(2):163–178, 2009.

[56] Yuhua Qian, Hang Xu, Jiye Liang, Bing Liu, and Jieting Wang. Fusing monotonic decision trees.
IEEE Transactions on Knowledge Data Engineering, 27(10):2717–2728, 2015.

[57] Chih-Chuan Chen and Sheng-Tun Li. Credit rating with a monotonicity-constrained support
vector machine model. Expert Systems with Applications, 41(16):7235–7247, 2014.

[58] Marina Velikova and Hennie Daniels. Decision trees for monotone price models. Computational
Management Science, 1(3):231–244, Oct 2004.

[59] Jose-Ramon Cano, Naif R Aljohani, Rabeeh Ayaz Abbasi, Jalal S Alowidbi, and Salvador Garcia.
Prototype selection to improve monotonic nearest neighbor. Engineering Applications of Artificial
Intelligence, 60:128–135, 2017.

[60] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data mining.
Knowledge and information systems, 14(1):1–37, 2008.

[61] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, 15(1):3133–3181, 2014.

[62] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman and Hall/CRC, 2012.

BIBLIOGRAPHY 163

[63] Lior Rokach. Ensemble Learning: Pattern Classification Using Ensemble Methods. World
Scientific, 2019.

[64] Cha Zhang and Yunqian Ma. Ensemble machine learning: methods and applications. Springer,
2012.

[65] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[66] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

[67] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[68] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[69] Abraham J Wyner, Matthew Olson, Justin Bleich, and David Mease. Explaining the success
of adaboost and random forests as interpolating classifiers. The Journal of Machine Learning
Research, 18(1):1558–1590, 2017.

[70] Lior Rokach. Decision forest: Twenty years of research. Information Fusion, 27:111–125, 2016.

[71] Leo Breiman. Randomizing outputs to increase prediction accuracy. Machine Learning, 40(3):229–
242, 2000.

[72] Gonzalo Mart́ınez-Muñoz and Alberto Suárez. Switching class labels to generate classification
ensembles. Pattern Recognition, 38(10):1483–1494, 2005.

[73] S. Garćıa, J. Derrac, J.R. Cano, and F. Herrera. Prototype selection for nearest neighbor
classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(3):417–435, 2012.

[74] I. Triguero, J. Derrac, S. Garćıa, and F. Herrera. A taxonomy and experimental study on
prototype generation for nearest neighbor classification. IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and Reviews, 42(1):86–100, 2012.

[75] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method
in imbalanced data sets learning. In International conference on intelligent computing, pages
878–887. Springer, 2005.

[76] Jianjun Zhang, Ting Wang, Wing WY Ng, Shuai Zhang, and Chris D Nugent. Undersampling
near decision boundary for imbalance problems. In 2019 International Conference on Machine
Learning and Cybernetics (ICMLC), pages 1–8. IEEE, 2019.

[77] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357,
2002.

[78] Benôıt Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845–869, 2013.

[79] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy k-nearest neighbor algorithm. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-15(4):580–585, July 1985.

164 BIBLIOGRAPHY

[80] Joaquin Derrac, Salvador Garćıa, and Francisco Herrera. Fuzzy nearest neighbor algorithms:
Taxonomy, experimental analysis and prospects. Information Sciences, 260:98 – 119, 2014.

[81] Isaac Triguero, Diego Garćıa-Gil, Jesús Maillo, Julián Luengo, Salvador Garćıa, and Francisco
Herrera. Transforming big data into smart data: An insight on the use of the k-nearest neighbors
algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 9(2):e1289, 2019.

[82] Isaac Triguero, Sara del Rı́o, Victoria López, Jaume Bacardit, José M. Beńıtez, and Francisco
Herrera. ROSEFW-RF: The winner algorithm for the ECBDL’14 big data competition: An
extremely imbalanced big data bioinformatics problem. Knowledge-Based Systems, 87:69 – 79,
2015.

[83] Victoria López, Alberto Fernández, Salvador Garćıa, Vasile Palade, and Francisco Herrera. An
insight into classification with imbalanced data: Empirical results and current trends on using
data intrinsic characteristics. Information Sciences, 250:113 – 141, 2013.

[84] Jorma Laurikkala. Improving identification of difficult small classes by balancing class distribution.
In Conference on Artificial Intelligence in Medicine in Europe, pages 63–66. Springer, 2001.

[85] Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. EUSBoost:
Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern
Recognition, 46(12):3460–3471, 2013.

[86] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint Conference on, pages 1322–1328. IEEE,
2008.

[87] Sukarna Barua, Md Monirul Islam, Xin Yao, and Kazuyuki Murase. Mwmote–majority weighted
minority oversampling technique for imbalanced data set learning. IEEE Transactions on
Knowledge and Data Engineering, 26(2):405–425, 2014.

[88] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of the behavior
of several methods for balancing machine learning training data. ACM SIGKDD explorations
newsletter, 6(1):20–29, 2004.

[89] Zhong-Liang Zhang, Xing-Gang Luo, Sergio González, Salvador Garćıa, and Francisco Herrera.
DRCW-ASEG: One-versus-one distance-based relative competence weighting with adaptive
synthetic example generation for multi-class imbalanced datasets. Neurocomputing, 285:176–187,
2018.

[90] Rob Potharst, Arie Ben-David, and Michiel C. van Wezel. Two algorithms for generating
structured and unstructured monotone ordinal data sets. Engineering Applications of Artificial
Intelligence, 22(4-5):491–96, 2009.

[91] Ad Feelders. Monotone relabeling in ordinal classification. In ICDM, pages 803–808. IEEE
Computer Society, 2010.

[92] Derek T. Ahneman, Jesús G. Estrada, Shishi Lin, Spencer D. Dreher, and Abigail G. Doyle. Pre-
dicting reaction performance in c–n cross-coupling using machine learning. Science, 360(6385):186–
190, 2018.

BIBLIOGRAPHY 165

[93] Kanggeun Lee, Hyoung-oh Jeong, Semin Lee, and Won-Ki Jeong. Cpem: Accurate cancer type
classification based on somatic alterations using an ensemble of a random forest and a deep
neural network. Scientific reports, 9(1):1–9, 2019.

[94] Julián Luengo, Seong-O Shim, Saleh Alshomrani, Abdulrahman Altalhi, and Francisco Herrera.
Cnc-nos: Class noise cleaning by ensemble filtering and noise scoring. Knowledge-Based Systems,
140:27–49, 2018.

[95] Xiaoling Lu, Jiesheng Si, Lanfeng Pan, and Yanyun Zhao. Imputation of missing data using
ensemble algorithms. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), volume 2, pages 1312–1315. IEEE, 2011.

[96] Nicolás Garćıa-Pedrajas and Aida De Haro-Garćıa. Boosting instance selection algorithms.
Knowledge-Based Systems, 67:342–360, 2014.

[97] Verónica Bolón-Canedo and Amparo Alonso-Betanzos. Ensembles for feature selection: A review
and future trends. Information Fusion, 52:1–12, 2019.

[98] Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas. A taxonomy and short review of
ensemble selection. In Workshop on Supervised and Unsupervised Ensemble Methods and Their
Applications, pages 1–6, 2008.

[99] Rafael MO Cruz, Robert Sabourin, and George DC Cavalcanti. Dynamic classifier selection:
Recent advances and perspectives. Information Fusion, 41:195–216, 2018.

[100] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. Kybernetes, 2013.

[101] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[102] Lotfi A Zadeh. Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by
Lotfi A Zadeh, pages 394–432. World Scientific, 1996.

[103] A. Ben-David, L. Sterling, and T. Tran. Adding monotonicity to learning algorithms may impair
their accuracy. Expert Systems with Applications, 36(3):6627–6634, 2009.

[104] Gilles Louppe and Pierre Geurts. Ensembles on random patches. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 346–361. Springer, 2012.

[105] Jerome H. Friedman. Stochastic gradient boosting. Computional Statistics & Data Analysis,
38(4):367–378, 2002.

[106] Korlakai Vinayak Rashmi and Ran Gilad-Bachrach. DART: Dropouts meet multiple additive
regression trees. In AISTATS, pages 489–497, 2015.

[107] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794. ACM, 2016.

[108] Pedro Antonio Gutiérrez, Maŕıa Pérez-Ortiz, and Alberto Suárez. Class switching ensembles
for ordinal regression. In International Work-Conference on Artificial Neural Networks, pages
408–419. Springer, 2017.

166 BIBLIOGRAPHY

[109] Alberto FernáNdez, Victoria LóPez, Mikel Galar, MaŕıA José Del Jesus, and Francisco Herrera.
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques
and ad-hoc approaches. Knowledge-based systems, 42:97–110, 2013.

[110] Jennifer Wortman Vaughan. Making better use of the crowd: How crowdsourcing can advance
machine learning research. The Journal of Machine Learning Research, 18(1):7026–7071, 2017.

[111] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 1–14, 2012.

[112] Diego Garćıa-Gil, Sergio Ramı́rez-Gallego, Salvador Garćıa, and Francisco Herrera. A comparison
on scalability for batch big data processing on apache spark and apache flink. Big Data Analytics,
2(1):1, 2017.

[113] X. Wu, X. Zhu, G. Wu, and W. Ding. Data mining with big data. IEEE Transactions on
Knowledge and Data Engineering, 26(1):97–107, Jan 2014.

[114] Sergio Ramı́rez-Gallego, Alberto Fernández, Salvador Garćıa, Min Chen, and Francisco Herrera.
Big data: Tutorial and guidelines on information and process fusion for analytics algorithms with
mapreduce. Information Fusion, 42:51–61, 2018.

