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Most emerging infectious diseases (EIDs) in humans have arisen
from animals. Identifying high-risk hosts is therefore vital for the
control and surveillance of these diseases. Viewing hosts as
connected through the parasites they share, we use network tools
to investigate predictors of parasitism and sources of future EIDs.
We generated host–parasite networks that link hosts when they
share a parasite, using nonhuman primates as a model system
because—owing to their phylogenetic proximity and ecological
overlap with humans—they are an important source of EIDs to
humans. We then tested whether centrality in the network of host
species—a measurement of the importance of a given node (i.e.,
host species) in the network—is associated with that host serving
as a potential EID source. We found that centrality covaries with
key predictors of parasitism, such as population density and geo-
graphic range size. Importantly, we also found that primate spe-
cies having higher values of centrality in the primate–parasite
network harbored more parasites identified as EIDs in humans
and had parasite communities more similar to those found in
humans. These relationships were robust to the use of different
centrality metrics and to multiple ways of controlling for variation
in how well each species has been studied (i.e., sampling effort).
Centrality may therefore estimate the role of a host as a source of
EIDs to humans in other multispecific host–parasite networks.

ecological networks | epidemiology

Emerging infectious diseases (EIDs) pose a serious threat to
human health (1, 2), making the development of tools to predict

future EIDs an urgent goal. Most EIDs are zoonotic, that is, they
have arisen from animals (3–5), yet our ability to predict sources of
new EIDs in humans is remarkably weak, with animal sources of
EIDs identified after—rather than in advance of—disease emer-
gence (6). New pandemics might be predicted and prevented if we
are able to identify potential EID sources before disease emer-
gence. Efforts are therefore underway to make such predictions
on the basis of, for example, phylogenetic relatedness, ecological
overlap, and systematic searches for pathogens in wildlife that have
higher potential for host shifts (6, 7). Here we show that ecological
networks of hosts and parasites predict the occurrence of EIDs in
wild primate hosts. Similar approaches can be applied in other
host–parasite systems to predict EIDs in humans and wildlife.
Infection dynamics have been investigated extensively using

social networks in which nodes represent individuals that are
connected through social or sexual contacts (8, 9). Ecological
networks involve similar connections among species (rather
than individuals) and have been used to investigate a wide range
of important questions involving food webs, mutualisms, and
antagonistic interactions (10). In host–parasite ecological net-
works, nodes represent host species that are linked through
sharing of parasites (11). Thus, two particular host species are
better connected (i.e., they have a stronger edge weight) when
they share more parasites in common. Sharing may be generated
by several processes: parasites may be shared through new host-

shifts (souvenir parasites), through regular pathogen flow of a
generalist parasite among hosts, or through common evolu-
tionary descent (heirloom parasites).
Many metrics have been used to investigate the behavior of

nodes in networks. One metric, centrality, is especially relevant
because it is an indication of the relative importance of the nodes
in the network. Centrality can be defined as the connection in-
tensity of a given node with the other nodes in the network (12) (SI
Appendix, SI Materials and Methods provides a mathematical
definition of centrality). In parasitic networks, host centrality is
related to the number of parasites infecting a host (13) and to the
parasite’s host range and transmission ability at the level of the
whole network (12). Thus, to be central, a host is infected by many
parasites that infect many other hosts in the network (14, 15).
Consequently, the centrality of a given host could be a good estimate
of its potential to be a source of harmful pathogens (15–17). Central
individuals are considered in epidemiology as “super-spreaders”
because they receive and transmit pathogens more frequently
than noncentral individuals (15, 18). Species can also act as super-
spreaders when they transmit parasites very often to other species.
The identification of species that behave as superspreaders is crucial
for developing surveillance protocols and interventions aimed at
preventing future disease emergence in human populations.
Most primates harbor multiple parasites (19). Primates share

a high proportion of their parasite communities (20), with sharing
dependent on geographic range overlap, ecological overlap, and
phylogeny (7, 20). Parasite sharing may thus occur through
common descent or through cross-species transmission. Although
humans share more parasites with domesticated animals than
with primates (21, 22), some studies suggest that we are more
vulnerable to cross-infection from our closest relatives (5, 21).
Some of the most harmful diseases in humans have probably
transmitted from primates, such as falciparum malaria, yellow
fever, and HIV (5, 19).

Results and Discussion
We obtained 6,304 records of parasite and pathogen from the
Global Mammal Parasite Database, representing 300 parasite
species (including viruses, bacteria, helminths, protozoa, arthro-
pods, and fungi) infecting 140 primate hosts (23). We built a
presence/absence bipartite network linking each primate species
with their parasites. We then obtained the weighted unipartite
projection, in which each node was a primate species that was
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connected to other primates on the basis of the number of par-
asite species they shared. Centrality was estimated using fivemetrics:
strength, Opsahl degree, eigenvector, betweenness, and closeness
(14, 24). Each of these metrics captures different and complemen-
tary aspects of centrality (SI Appendix, SI Materials and Methods).
Whereas strength, Opsahl degree, and eigenvector centrality are
more related to the pattern of direct cosharing of parasites with the
rest of the hosts in the network, betweenness and closeness capture
aspects of indirect sharing through other species across the entire
network (8, 12, 14, 15).
Centrality may also be affected by the number of studies that

have been conducted on each primate species (i.e., sampling
effort), because more heavily sampled primates may seem to
have more parasites (7, 19). Thus, to get an accurate estimate of
centrality requires controlling for variation in sampling effort
among primates. We used the number of citations (=number of
studies) as an estimate of sampling effort for each primate (25).
At present, different methods of controlling for sampling effort
are available, and it is unclear which method should be used. To

ensure that our findings are robust, we therefore used four dif-
ferent approaches (I–IV) of controlling for variation in sampling
effort: I, including sampling effort in the computation of cen-
trality estimates by up-weighting those primates that have more
parasites than expected given their sampling effort; II, including
sampling effort in the computation of centrality estimates by up-
weighting the least sampled primates and down-weighting the most
sampled primates; III, obtaining the residuals by regressing cen-
trality on measures of sampling effort (25); and IV, using only the
subset of 38 well-sampled primates from ref. 7. A full explanation
of the four weighting methods can be found in SI Appendix, SI
Materials and Methods. In addition, we ran all analyses in methods
I–III including sampling effort as a covariate. Results were con-
sistent across the methods. For the sake of brevity, we provide
results from method I in the main text (with other results provided
in SI Appendix, SI Results).
All five centrality indices showed positive correlations (0.311 <

r < 0.998, P < 0.0001 in all cases, n = 140 primates; SI Appendix,
Tables S1, S6, and S13), indicating that they detected similar
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Fig. 1. Central primates shared more emerging infectious diseases with humans. (A) Unipartite network depicting the pattern of shared parasites by primates
species. Each node represents a primate species. The links among nodes depict shared parasites (i.e., two nodes are linked whenever they share a parasite
species). The network representation was generated with the Kamada-Kawai energy-minimization algorithm, which associates the mathematical centrality—
calculated as the first factor of a principal component analysis of the five centrality metrics computed for each primate species—with the topological centrality
in the network. Thus, nodes in the center of the presented network are more central than nodes in the periphery. The size of the nodes is proportional to the
number of EIDs. Dark blue, the top 10 primates sharing more EIDs with humans. (B) Relationship between centrality and the similitude between human and
primate parasite communities based on the Bray index. (C) Relationship between centrality and EiD richness found in a primate species.
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primate species as most central. Betweenness was the centrality
index least correlated with the other indices (0.311 < r < 0.690,
P < 0.0001). A main characteristic of betweenness is that, irre-
spective of the network, many nodes attain a score of zero,
resulting in a zero-inflated distribution. This characteristic is thus
responsible for the weaker correlation between betweenness and
the other centrality metrics. To get a clearer picture of the effect of
centrality on primate transmission ability, we obtained a compos-
ite index that integrates the different and complementary aspects
of the five centrality metrics by performing a principal component
analysis on the centrality index correlations. This analysis found
a single factor explaining between 77% and 84% of the variance of
the indices, depending on the weighting method (SI Appendix,
Tables S2, S7, and S14). This factor, hereafter called “centrality,”
is used in the subsequent analyses (results for different measures
of centrality are provided in SI Appendix, Results). The top 10
most central primates were, in descending order, Papio ursinus,
Saimiri sciureus, Alouatta seniculus, Chlorocebus aethiops,
Piliocolobus badius, Papio cynocephalus, Papio anubis, Gorilla
gorilla, Pan troglodytes, and Macaca sinica (Fig. 1A).
Several traits have been found to affect parasitism, such as

population density, geographic range size, group size, body mass,
and diet (19). We explored whether these traits also covary with
centrality of the primates using phylogenetic generalized least
squares (PGLS) models (26) with the primate consensus dated
tree from the 10kTrees Project (27). In a model with multiple
predictor variables, we found that primates with denser pop-
ulations living in larger groups and having broad distributions
were more central [population density: estimate ± 1 SE = 0.32 ±
0.15, t = 2.10, P = 0.04; geographic range size: estimate ± 1 SE =
0.28 ± 0.14, t = 1.95, P = 0.05; group size: estimate ± 1 SE =
0.36 ± 0.17, t = 2.08, P = 0.04, R2 = 0.490; PGLS with phyloge-
netic signal (λ) = 0.138, P = 0.06 compared to a model with λ = 0,
n = 122 primates]. This outcome was similar for each of the
centrality indices considered independently (SI Appendix, Table
S3). We suggest that primates with a large geographic range size
and denser populations will have a higher probability of in-
terspecific encounters with other primate species, enhancing the
conditions for parasite sharing.
Inferring when, where, and to whom parasites are transmitted

are key questions in disease ecology (28). Risk of transmission to
humans has been explored by determining the parasites shared
both by humans and wild primates (19). Those primate species
sharing more pathogens with humans have a higher probability
of behaving as zoonotic reservoirs owing to host shifting ob-
served in most primate pathogens (29). To infer the potential
ability of different primate species to act as zoonotic reservoirs,
we determined the similarity between the parasite communities

harbored by primates and humans. Human parasite community
and EIDs were obtained from Taylor et al.’s database (30),
comprising 1,415 zoonotic and nonzoonotic species. Primates
showed variation in the degree to which their parasite commu-
nity corresponds to that of humans. Some apes, such as G. gorilla
(Bray index = 0.16), P. troglodytes (0.15), and Pongo pygmaeus
(0.12), had parasite communities similar to those in humans. This
outcome is expected owing to the significant phylogenetic con-
servatism observed in ecological interactions in general (31).
Nevertheless, several Old World monkeys also showed similar
levels of sharing by this measure, including C. aethiops (0.18),
P. cynocephalus (0.13), and P. ursinus (0.11). This finding indi-
cates that in addition to apes, other primates may act as sources of
human diseases (7), especially Old World monkeys that show
ecological overlap with humans, such as terrestrial substrate use.
We found that more central primates had parasite communities
that were more similar to humans (estimate ± 1 SE = 0.011 ±
0.002, t = 5.60, P < 0.0001, R2 = 0.750; PGLS with λ = 0.150, P =
0.001, n = 129 primates; Fig. 1B). Again this outcome was consis-
tent across different centrality indices and for most ways of con-
trolling for sampling effort (SI Appendix, Tables S4, S8, and S10).
We found the same significant relationship when using only the
well-sampled primate species (Fig. 2A and SI Appendix, Table S15).
Identifying hosts most frequently associated with EIDs may

predict potential pathogen reservoirs and prevent future dis-
ease outbreaks (4, 32). We found that, after controlling for
sampling effort and phylogeny, the number of infectious
organisms found in primates and identified as emerging in
humans (EID richness) was significantly related to the cen-
trality of the primates in a multivariate model (Fig. 1C and
Table 1). The association with EID richness was significant
and positive for each of the five centrality indices, irrespective
of the methodology used to control for variation in sampling
effort (SI Appendix, Tables S5, S9 , S11, and S16), and main-
tained when using only the 38 well-sampled primates (Fig. 2B).
To assess how phylogenetic uncertainty affects these results,
we repeated the analysis using 100 different trees obtained
from 10kTrees (27) and found that the association between EID
richness and centrality was consistent across all of the phylogenetic
trees (SI Appendix, Table S17). In addition, as noted above, cen-
trality is predicted by several ecological and phenotypic traits, such
as geographic range size and population density. However, we
found that only parasite richness and geographic range size covary
with EID richness (Table 1).
Collectively, these analyses suggest that nonhuman primates

that are more central in the primate–parasite network also have
a higher probability of sharing infectious diseases with humans,
including those identified as EIDs. As expected, apes were found

A B

Fig. 2. Relationship between network centrality and pathogen infection to humans in well-sampled primates. (A) Relationship between centrality and the
similitude between human and primate parasite communities, according to the Bray index. (B) Relationship between centrality and the number of infectious
organisms identified as “emerging” in humans (EID richness).
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among these most-central primates. They are obvious candidates
to share infectious organisms with us owing to their phylogenetic
proximity, and genetic evidence suggests that spillover has oc-
curred from these species to humans [e.g., falciparum malaria
from gorillas (33) and SIV/HIV from chimpanzees (34)]. Nev-
ertheless, we also found that other central non-ape primates, such
as baboons and vervet monkeys, are infected by many parasites
identified as EIDs in humans.
Our findings suggest that centrality may help to detect risks

that might otherwise go unnoticed, and thus to predict disease
emergence in advance of outbreaks—an important goal for
stemming future zoonotic disease risks (6). For example, with
information on the parasites of different host species, effort
could focus on sampling individuals of more central species for
viruses with higher mutation rates—such as RNA viruses—that
have greater potential for spillover to humans and other wild-
life. It is important to emphasize that this approach focuses on
all parasites and pathogens, regardless of whether they occur in
humans; simply having the ecological network is what matters,

rather than details on parasites identified as “emerging” or
shared with humans. By demonstrating that ecological network
characteristics from primates also predict the presence of EIDs
in humans, our results validate the use of similar network
approaches for predicting future disease emergence in other
animal groups that are important sources of EIDs, such as
ungulates, rodents, bats, and carnivores.
In conclusion, we provide an approach based on network

theory to detect the probability of EID transmission from wild-
life to humans. Centrality could therefore become a useful tool
for allocating resources to prevent future emerging diseases.

Materials and Methods
Detailed methods, R scripts, and dataset are in SI Appendix, SI Materials and
Methods and Dataset S1.

Network Centrality. We used five centrality metrics: strength and Opsahl
degree assess the importance of a node according to its reachability within
a network, the former only considering the total number of parasites shared
with other primates, and the latter including not only the number of shared
parasites but also the number of sharing primates (14, 24). Eigenvector cen-
trality is a variant of degree in which it is assumed that a given node affects all
of the neighboring nodes simultaneously (14). Any node is more central un-
der this perspective when it is connected to many highly connected nodes
(14). Betweenness is the number of shortest paths between two nodes that
pass through a node of interest, and it describes the importance of a node as
an intermediary between different parts of the network (12). Closeness is the
inverse sum of the shortest distances to all other nodes from a focal node and
describes how close a given node is from the rest of the nodes in the network.
Betweenness and closeness define the flow pathways and have been shown
to be important in the spread of infectious agents (14).

Comparative Analyses. PGLS (26) methods were used to test the relationship
between centrality and (i) primate traits (body mass, geographic range size,
population density, group size, parasite richness, and diet), (ii) similarity be-
tween primate and human parasite community, and (iii) number of EIDs.
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Group size (log Ind) −0.031 ± 0.060 0.51 0.612
Geographic range size (log km2) 0.109 ± 0.051 2.13 0.035
Diet
Faunivore vs. folivore −0.033 ± 0.254 0.13 0.897
Faunivore vs. frugivore −0.091 ± 0.241 0.38 0.707

All variables were standardized before analysis. The R2 of the model was
0.526, whereas the phylogenetic signal of the residuals of the model (λ) was
estimated to be 0.
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