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Abstract 

The numeric computation procedure for the solution of the equation of motion of a single-

degree-of-freedom (SDOF) system subjected to any type of ground acceleration is exhaustively 

presented.  The followed numeric approach is the Linear Acceleration Method, i.e. Newmark’s 

Method with   
 

 
 and   

 

 
. The approach allows considering any time of multilinear elasto-

plastic behavior. It also allows computing the Complete Hysteretic Curve of the SDOF system. 
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1. Problem statement 

Let us consider a single-degree-of-freedom (SDOF) system with some kind of elasto-plastic 

behavior,     , constant mass  , and viscous damping coefficient  , subjected to ground 

acceleration  ̈    , Fig. 1, the corresponding equation of motion is given by dynamic 

equilibrium, Eq. (1): 

   ̈      ̇          ̈     (1) 

 

Fig. 1. SDOF system usually employed in earthquake engineering. 

Eq. (1) can be numerically solved employing the linear acceleration method (LAM), i.e. 

Newmark’s method with   
 

 
 and   

 

 
 [1]. Although the method is originally employed to 

compute the response of the SDOF under the action of an earthquake,  ̈    , it can be also used 

to perform a “snap-back” analysis, as done by Hernández-Montes et al. [2], in which an initial 

displacement is imposed and the SDOF system is freely released afterwards. 

In what follows, it is assumed that the system’s hysteretic model      is composed by some 

linear       algebraic functions or branches, so that any of them is characterized by a particular 

stiffness,  , Fig. 2. The values of the different variables involved in the problem, i.e. 

displacement, velocity, acceleration, spring force, etc. relative to time    will be referred to with 

the subscript   henceforth. 

 

Fig. 2. Some common multi-linear hysteretic models employed in earthquake engineering. 
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2. Fundamentals of the Linear Acceleration Method 

Let us consider the difference between the results of Eq. (1) when it is considered in two very 

close instants of time    and   , so that,         , assuming that    and    correspond to 

the same branch of the      model, i.e.      : 

  [ ̈   ̈ ]   [ ̇   ̇ ]   [     ]    [ ̈  
  ̈  

] (2) 

If the difference  ̈   ̈  is rewritten as   ̈, and doing the same for velocity, displacement and 

ground acceleration, Eq. (2) remains: 

     ̈     ̇          ̈  (3) 

Given the mass of the system,  , if its natural circular frequency is written as a function of the 

stiffness   ,   √   , and its viscous damping coefficient is written as a function of the 

damping ratio  ,       , then Eq. (3) can be rewritten as: 

    ̈       ̇          ̈  (4) 

Now, let us focus on the system’s acceleration evolution between time instants A and B,    ̈. As 

A and B are very close,   ̈ can be considered linear, Fig. 3. Therefore, the system’s acceleration 

in a time   between A and B, i.e.        , can be written as: 

   ̈     ̈  
  ̈

  
  (5) 

Therefore, to get the velocity and displacement of the system at that time   Eq. (5) needs to be 

integrated so that: 

  ̇     ̇   ̈   
  ̈

  
 
  

 
 (6) 

           ̇    ̈ 
  

 
 

  ̈

  

  

 
 (7) 

 

Fig. 3. Linear approximation of the system’s acceleration between two very close instants of time. 
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Evaluating Eqs. (6) and (7) for      and expressing the results as increments, i.e   ̇ and   , 

remains: 

   ̇  ( ̈   
  ̈

 
)   (8) 

      ̇    (
 ̈ 

 
 

  ̈

 
)     (9) 

If, now, Eqs. (8) and (9) are introduced in Eq. (4), the increment of acceleration   ̈ remains: 

    ̈   
 (   ̈    ̈        ̇             )

               (10) 

Therefore, if the values of displacement and velocity at instant A,    and  ̇ , are known, Eq. (1) 

can be rearranged to yield the acceleration at that instant  ̈ : 

  ̈   ( ̈  
          ̇ ) (11) 

Finally, knowing   ,  ̇  and  ̈ , these values can be introduced in Eq. (10) and, after this, the 

increments in velocity   ̇ and displacement    can be obtained by means of Eqs. (8) and (9). 

These operations can be repeated to compute the system’s time histories for displacement, 

velocity and acceleration. 

3. Numerical algorithm for the equation of motion resolution. 

The input for the approach are the assumed constant mass   and fraction of critical damping   

of the SDOF system, the hysteretic model with known basic rules to compute    in terms of  , 

the time sampling frequency, 1           Hz, time when simulation stops,     , and initial 

conditions of the system,           and  ̇   ̇     . If the system is to be subjected to 

the action of an earthquake, the samples of ground acceleration need to be presented in a list  ̈  

so that they have been sampled at the frequency 1           Hz. Given that the sampling time 

step for earthquake records is usually 0.02 s, taking time steps           like that ensure 

stability and low computational errors [3]. The obtained output will consist on system’s 

displacement, velocity, acceleration, spring force and damping force for each time   . 

The followed algorithm is presented as a flowchart in Fig. 4. In a first iteration (   ), the 

branch of the      model is set, providing the stiffness current branch,   , and restoring force, 

   
, of the system. Knowing   , the natural circular frequency    √     and the initial 

damping force, Eq. (12), can be also computed. 

           ̇  (12) 
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Fig. 4. General flowchart representing the algorithm to compute the response of a SDOF with elasto-plastic behavior. 

Therefore, given the system in a particular branch of the      model (i.e.    is fixed) each   

iteration starts knowing the corresponding values of time   , relative displacement and velocity, 

   and  ̇ , restoring force    
 and damping force     so that the relative acceleration  ̈  can be 

computed by means of Eq. (1). The values of      and  ̇    are then computed by LAM 

according to: 
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  ̈   
 (   ̈  

   ̈          ̇      
         

  )

             
   

 

  ̇   ̈       ̈
   

 

    ̇      ̈ 
   

 

 
   ̈

   
 

 

 (13) 

so that: 

 
 ̇     ̇    ̇
          

 (14) 

Eq. (13) is similar to Eqs. (8) to (10). The only differences are that in Eqs. (8) to (10)    is 

assumed to be constant whereas in Eq. (13) the value of     can be           or a lower value 

(            ) due to a change of branch in the      model. 

Knowing   , the next restoring force is computed as: 

      
    

      (15) 

Finally in this iteration  , next step time      is set and damping force       is calculated 

similarly as done in Eq. (12). After this, a new iteration is performed. 

However, after LAM and      
 computations some checks need to be done. Firstly, it is 

necessary to verify if any condition to change the branch of the      model has been met, Fig. 

5. If so, the computed value      should lie on the next branch,    
   , instead of remaining on 

the current one,    
   . Block 1, Fig. 6, computes the value of displacement and time interval to 

get to the point of intersection of both branches,    
    and    

   . In this block, knowing 

   
    and    

   , the displacement for branch change (BC)     can be determined by solving: 

    
         

      (16) 

 

Fig. 5. Condition to branch change in the      model activating computations in block 1.  

Then, using the LAM equations (Eq. (13)), i.e. introducing the value of   ̈ within the equation 
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         ̇       ̈ 
    

 

 
 

   ̈  

    
   

   ̈           ̇       
          

 

 (               
   

 )
    

  (17) 

 
Fig. 6. Block 1 employed to compute displacement and time at which branch in the      model is switched. 

If the SDOF is subjected to an earthquake signal, it must be noticed that ground acceleration 

increment   ̈  
  ̈    

  ̈  
 employed in the computation of   ̈ needs to be proportional to 

   , so that  ̈  
 has been sampled at    and  ̈    

 at     . As Eq. (17) is employed to compute a 

time interval          , then the used increment of ground acceleration needs to be 

proportional and   ̈  

    

   
 is introduced instead of the original   ̈  

, Fig. 7. After      is 

determined, further computations need to be done by means of block 3 prior to coming back to 

the general flowchart. 

 

Fig. 7. Correspondence between time intervals and ground acceleration increments to be employed in LAM and 

computation of new value of  ̈  to be introduced in  ̈ . 

If after LAM computations within the general flowchart no condition to switch the branch of the 

     model has been fulfilled, another check prior to a new iteration is needed to know 
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Sign( ̇   )≠Sign( ̇ ). Therefore, the computed value      after LAM is wrong again because 
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different branch of the      model must be adopted for further computations, Fig. 8.  
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Fig. 8. Computations made in block 2: time interval      after    to make velocity  ̇      is sought. 

Block 2, Fig. 9, computes the interval of time after    at which displacement reversal (DR) 

occurs. Therefore, employing LAM equations (Eq. (13)), i.e. introducing the value of   ̈ within 

the equation   ̇     ̇ , block 2 computes the interval of time      that makes 

velocity  ̇     : 

    ̇   ̈      
     ̈ 

    
   

   ̈           ̇       
          

   

 (               
   

 )
     (18) 

 

Fig. 9. Block 2 employed to calculate time that makes velocity zero and at which displacement reversal occurs.  

Right after block 1 or 2, block 3 is employed to compute the valid values of      and  ̇    

needed for the next iteration. In block 1 or 2, a new interval of time    to perform the LAM 

computations has been determined. Therefore, block 3 makes use of LAM equations, Eq. (13), 

with this new    taking into account that the increment of ground acceleration   ̈  
 (if present) 

employed to calculate   ̈ needs to be proportional to that time interval, as explained before, Fig. 

7. Consequently, a new sample of ground acceleration needs to be introduced in the list  ̈  
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 and the original  ̈    
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. Hence, the new value introduced in  ̈  is: 
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  ̈    
  ̈  

   ̈  

  

   
 (19) 

Once LAM is performed in block 3, the next iteration values     ,  ̇   ,      
,       and 

            are computed. Finally, the values of the stiffness and natural circular frequency 

to be employed in the following iterations,    and    respectively, are actualized according to 

the new branch of the      driving the process. A new iteration in the general flowchart can 

be now performed. 

 

Fig. 10. Block 3 used to recompute the valid values of next iteration variables with the modified time interval    

computed in block 1 or 2. 

The above explained approach has been implemented in a Mathematica® notebook that can be 

downloaded from http://hdl.handle.net/10396/18478 or requested to the corresponding author 

(jcarbonell@uco.es). It allows to plot the Complete Hysteretic Curve of the system by plotting 

together the    and  ̇ histories against  . 
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