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ABSTRACT: A simple limonene-derived P(V)-based reagent for the modular, scalable, and stereospecific synthesis of 
chiral phosphines and methyl-phosphonate oligonucleotide (MPO) building blocks is presented.  Built on a trans-
limonene oxide (TLO) core, this formally triply electrophilic reagent class displays starkly differing reactivity from the 
cis-limonene oxide derived reagents reported previously [dubbed phosphorus-sulfur incorporation reagents or Ψ (PSI) 
for short]. These new phosphorus-incorporation reagents (PI, abbreviated as Π) access distinctly different chemical space 
than Ψ. The P(V)-manifold disclosed herein permits the stereochemically controlled sequential addition of carbon-based 
nucleophiles (from one to three) to produce a variety of enantiopure C–P bearing building blocks. When three carbon 
nucleophiles are added, useful P-chiral phosphines can be accessed after stereospecific reduction. When a single methyl 
group is added, the remaining nucleophiles can be nucleosides thus opening the door to the first stereospecific access to 
MPO-based oligonucleotide building blocks. Although both enantiomers of Π are available, only one isomer is required 
as the order of nucleophile addition controls the absolute stereochemistry of the final product through a unique 
enantiodivergent design.

Introduction 
   The control of P-centered stereochemistry is an often 
encountered challenge that presents itself in a variety of 
areas.1 One important example stems from the emergence 
of anti-sense oligonucleotide (ASO) therapeutics, wherein 
precise control of P-stereogenic centers in a 
phosphorothioate linkage can impact efficacy and 
physical properties.2 Our laboratories recently described 
a method to precisely control the stereochemical outcome 
of such systems using a P(V)-based reagent built upon the 
natural product limonene (phosphorus-sulfur 
incorporation or Ψ for short).3 The advantage of such an 
approach is that, unlike classical phosphoramidite P(III)-
based reagents, Ψ-enabled ASO synthesis is redox-
economic and involves air and moisture tolerant building 
blocks.  
   Another P-based chiral linkage, which is receiving 
increasing attention due to their potential in therapeutics, 
are found in methyl-phosphonate oligonucleotides, or 
MPOs (Figure 1A).4 Such structures are touted as having 
superior stability as they are highly resistant to 
phosphodiesterase degradation.5 The absence of the non-
bridging oxygen atom makes the backbone charge-neutral 
and unable to H-bond. This can lead to either stabilizing 
or destabilizing effects when forming DNA-RNA 
duplexes.4a-c As with phosphorothioate-based ASOs, 
MPOs introduce chirality at phosphorus and as such, Sp 

and Rp isomers may have different binding affinities and 
biological activities.5b Indeed, one of the first ASO analogs 
employed an MPO linkage.6 To our knowledge, there are 
currently no methods to access MPOs with full 
stereocontrol and all known access points are severely 
underdeveloped.5, 7-8 Additionally, the preparation of 
MPO-based building blocks are wedded to a P(III)-based 
strategy that requires tedious separation of 
diastereomers.7 These limitations have surely hampered 
the wide exploration of such interesting linkages for 
modern therapeutic applications. 
   Within the seemingly unrelated realm of asymmetric 
synthesis, another class of P-chiral molecules attracted 
our attention. Specifically, phosphines that are have 
stereochemical information at phosphorus represent 
some of the most important ligands known (Figure 1B).9-

11 For example, DIPAMP was among the first chiral 
phosphines to be employed in asymmetric hydrogenation, 
serving as a reaction-critical ligand in the legendary L-
DOPA process and leading to a Nobel Prize.9 Since then, 
scores of useful ligand scaffolds have emerged such as 
DuanPhos10 and BIBOP11 to install new stereogenic 
carbon centers with near perfect control. Despite their 
great utility, a simple modular approach for the synthesis 
of P-chiral phosphines 
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Scheme 1. (A) Utility of MPO and limitations of its current 
synthetic protocols. (B) Precedents, synthetic challenges and 
current state-of the-art syntheses of P-chiral phosphines. (C) 
A divergent, Π reagent-based approach to address both 
challenges. 

remains an unmet challenge. The known routes to these 
molecules are often lengthy, non-redox economic [going 
from P(III) to P(V) and back to P(III)], require resolution 
or tedious separation of diastereomers, or are case-
specific in the approach lacking generality.9-11 The most 
practical routes currently known to such structures 
involve chiral auxiliaries and are outlined in Figure 1B. 
Jugé was the first to demonstrate that a chiral auxiliary 
approach was feasible using ephedrine.12 The scope of this 
approach is unfortunately limited, the e.r. is often 
inconsistent, and a P(III)/P(V)/P(III) redox cycle was 
employed. Corey developed a camphor-based chiral 
auxiliary which exhibited extremely high e.r. but with 

limited substrate scope (2 examples) and again, a 
P(III)/P(V)/P(III) redox cycle was employed.13 
Senanayake improved upon the Jugé approach by 
commencing with a P(V)-starting material (for phenyl-
substituted phosphines) and using a more reactive 
auxiliary.14 High yields and e.r. are observed across a 
range of substrates. However, the auxiliary requires a six-
step preparation.  
   The mission of this venture was therefore to design a 
simple approach to control P-based stereochemistry with 
application to these two completely different areas: 
oligonucleotide chemistry and asymmetric synthesis. This 
article traces the realization of this vision with the 
development, optimization, and application of an easily 
prepared reagent to enable modular and enantiodivergent 
access to the targets of these seemingly unrelated worlds 
with exquisite stereocontrol, MPO building blocks and 
phosphines (Scheme 1C). 

Stereospecific P–C Bond Synthesis: Reagent 
Development 
   Exploration of carbon nucleophiles addition into a P(V) 
reagent platform commenced with (–)-Ψ (2), that was 
used successfully for stereospecific phosphorothioate 
synthesis (Scheme 2A). In our prior work, the first 
nucleophile is oxygen-based (a nucleoside alcohol) and 
that “loading” step takes place rapidly and in high yield. 
The ensuing “coupling” step with a second nucleoside also 
proceeds with ease to afford a dinucleotide 
phosphorothioate with perfect stereocontrol. The 
analogous loading of carbon nucleophiles onto 2a using 
Grignard reagents such as PhMgBr proceeded within 15 
minutes to furnish adduct 3 in 50% yield (unoptimized). 
In contrast to the “coupling” step using O-based 
nucleophiles, the sequential addition of a second carbon-
based nucleophile to 3 resulted in an undesired P–O 
cleavage (using tBuLi as nucleophile delivers 4 in 76% 
yield). Such a result prevents further reactions from 
taking place and the desired immolation event (which 
cleaves the limonene derived backbone via a thiirane-
limonene adduct) cannot take place. The structure of 
dead-end adduct 4 was verified by X-ray crystallography. 
In an analogous fashion, 2 reacted readily with MeMgBr 
to afford potential MPO-precursor 5 in 45% yield. 
Subsequent attempts to react this adduct with 1-
adamantylmethanol (as a model for a nucleoside alcohol) 
were fruitless, providing only hydrolysis product 7. 
   It was reasoned that the regioisomeric Π reagent 
(phosphorus-incorporation, pi) based on trans-limonene 
oxide (TLO) might afford a different reactivity profile 
resulting in successful excision of the limonene auxiliary 
(Scheme 2B). As with 2a, the loading step of 1a with 
PhMgBr rapidly delivered adduct 8a in 64% yield. To our 
delight, coupling with either tBuLi or o-anisyllithium 
resulted in successful backbone immolation to deliver 9a 
in 80% yields and 10a in 82% yields, respectively. 
Presumably, the coupling reaction using TLO-derived Π 
proceeds via the desired P-S bond cleavage to permit 
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Scheme 2. A) Initial exploration with Ψ ended in undesired P-O bond cleavage. (B) Π gave desired P-S bond cleavage and 
subsequent limonene backbone immolation. Ad = 1-adamantyl. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

backbone expulsion. Anisyl-derived thiophosphinic acid 
10a could be methylated and its absolute structure 11a 
verified by X-ray crystallography. The same promising 
reactivity could be translated to the TLO-Me derivative 
12a with the addition of 1-adamantylmethanol delivering 
(Rp)-6 in 68% yield (after S-benzylation with BnBr, see 
SI). The explorations above laid the groundwork for 
application to both chiral phosphine and MPO synthesis 
as described in the sections below.  

Modular Assembly of Chiral Phosphines  
   With enantiomerically-pure thiophosphinic acids 
[R1R2P(O)SH] in hand, a search for the optimum leaving 
group to effect the final displacement reaction 
commenced (Table 1). Thus, the chlorophosphine sulfide 
(entry 1) was not active towards nucleophilic attack 
whereas chlorophosphine oxide (entry 2) reacted readily  

Table 1. Leaving group optimization for final displacement. 

but gave diminished e.r. Also, the preparation of such 
species in the presence of electron-rich aromatic rings is 
problematic (entry 3) due to chlorination of the arenes. In 
principle, thiophosphinic acid esters (the products of 
alkylation of the free SH) should function as competent 
leaving groups. 
   This prediction proved true (entries 4-6) though 
diminished e.r. values were observed (see SI for details). 
However, a simple leaving group exchange from 
thioalkoxy to methoxy (which preserved the 
stereochemical information) boosted the e.r. of the 
subsequent displacement to 98:2 while maintaining high 
reactivity (entry 7). Finally, attempts to install a more 
activated leaving group such as phenoxy (entry 8) resulted 
in racemization at the phosphorus center and thus the –
OMe group was chosen for all subsequent studies.  
   Table 2 illustrates the scope of modular phosphine 
synthesis enabled by the Π reagent (1) which takes place 
in an assembly line fashion: Loading (to install R1), 
coupling (to install R2), and displacement (leaving group 
installation followed by R3 installation). As confirmed by 
X-Ray crystallography, net stereoretention at P is 
observed during all of the steps in this sequence. For the 
loading step (Table 2A), a variety of groups are accessible 
such as those bearing methyl (12), aryl (8, 13, 14, 16, and 
17), biaryl (15), vinyl (18) and alkynyl (19) moieties. The 
coupling step is similarly versatile with the inclusion of 3° 
alkyl (22), aryl (11, 20, 21, and 25), heteroaryl (23) and 
alkynyl (24) groups. In the final displacement, methyl to 
3° alkyl (26-30), aryl (31-34), and ferrocenyl (35) could 
be installed. Since both (+)- and (–)-Π reagents are 
readily available all of these substrates could be prepared 
with any desired absolute configuration. For clarity, 
compounds originating from either (–)- or (+)-Π are 
denoted by suffixes a and b [a for (–) and b for (+)]. 
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Table 2. Scope of Π-based chiral phosphine / phosphine oxide synthesis. All structures and stereochemistry shown in the 
scope refer to the corresponding compounds derived from (–)-Π (i.e. with suffix a). See SI for detailed stereochemical analysis 
and reaction parameters.

If, however, only one reagent was in hand, simply 
changing the order of addition in this modular strategy 
could lead to either enantiomer of coupling or 
displacement products (vide infra). 
   Some notable substrates emerging from this route 
include 26, aka PAMPO, which is a precursor to 
important ligand scaffolds such as DiPAMP9a and 
JoshPhos15. Compounds 27 and 29, previously prepared 
through diastereomeric separation, are used in the 
enantioselective synthesis of allylic alcohols and phenyl 
sulfides.16 Racemic versions of ligands such as 36 
(Buchwald-type)17 have been prepared and the 
enantioselective variants hold promise as ligands in 
asymmetric synthesis. PHOX-type ligands18 such as 37 
have been widely used in palladium catalysis such as 
asymmetric allylic substitution. Previous preparations of 

such ligands used racemic phosphorus reagents and relied 
on existing stereocenters on the oxazoline backbone to 
achieve diastereo-induction thereby limiting access to all 
possible isomers. Ferrocenyl-containing ligand scaffolds 
such as 38 have been used in alkyne-aldehyde reductive 
couplings19 and have previously been prepared using 
Jugé’s method in 91:9 er prior to recrystallization 
(compared to 98:2 using current approach).  
   It is worth noting that there are many existing literature 
methods for the reduction of chiral phosphine oxides to 
phosphines in a stereospecific manner. Examples include 
the use of HSiCl3 (with or without Et3N),20 HSiCl3 with 
sacrificial PPh3,21 polymethylhydrosiloxane (PMHS) and 
Ti(OiPr)4,14 and MeOTf/Meerwein’s salt and NaBH4.22 To 
demonstrate this point, the combination of NaBH4 and 
Meerwein’s salt was enlisted to reduce PAMPO 26a to 
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PAMP 39a (equation 1). Indeed, the reaction proceeded 
smoothly in 60% yield and 96:4 e.r. 

 

A Solution to Stereospecific MPO Synthesis 
   The lessons learned during reagent development and 
phosphine synthesis were then applied to the 
development of the first stereocontrolled synthesis of 
MPO building blocks. As depicted in Scheme 3, a simple 
workflow was envisaged wherein a nucleoside could be 
loaded onto reagent 12 followed by coupling to another 
nucleoside. The success of this plan requires that both of 
these steps take place with high stereospecificity. It was 
already precedented that methylphosphonothioates, 
previously prepared through tedious separation of 
diastereomers, can be cleanly coupled with high 
stereocontrol to yield MPOs.22  
   Optimization of the loading step commenced using 5’-
DMTr-dT as a model substrate. In its fully optimized 
form, the loading step affords the product (Rp)-40 in 88% 
yield and >20:1 d.r. (Scheme 3). In this two-step process 
the nucleoside is first mixed with 2 equiv. of 12 and 3 
equiv. of DBU in THF for 12 h. After workup with a PBS 
buffer solution (see SI for details), residuals were re-
dissolved in THF and treated with MeI and Et3N. When a 
direct MeI 

 
Scheme 3. Typical workflow for Π-based MPO synthesis 
and reaction optimization. DMTr = dimethoxytrityl. 

quench is performed (i.e. without workup of the 1st step), 
methylation of the thymine nucleobase was observed 

(entry 5). The use of 1.3 equiv. of 12 instead of 2 equiv. 
(entry 2) resulted in lower yields, incomplete conversion, 
and difficult purification as free dT tends to co-elute with 
product. When MeCN is employed as solvent (entry 3) 
similar yields are observed but with diminished d.r. (7:1). 
A large excess of DBU (10 equiv., entry 4) accelerates 
reaction (full conversion of dT in 4 h) but leads to 
diminished d.r. (5:1). The two-step telescoped process is 
desirable over one involving intermediate purification 
(column after each step, entry 6) as losses during 
purification are observed due to the highly polar 
thiophosphonic acid. 
   With optimal conditions in hand, a full exploration of 
the reaction scope was carried out. Table 3A provides a 
map for understanding the stereochemical outcome of 
this MPO synthesis, with stereoretention at phosphorus 
occurring for the loading step and inversion for the 
coupling step (see SI). All four canonical DNA base pairs 
can be smoothly loaded as shown in Table 3B with dA, dT 
and dC proceeding in 72-90% yield and ≥ 20:1 dr and dG 
giving slightly diminished yields (46-59%) with ≥ 20:1 dr. 
In accord with Stec’s procedure,23 all coupling reactions 
proceed smoothly to afford the corresponding 
dinucleotides in 39-91% yields and excellent d.r. (all 
>20:1, Table 3C). No significant difference was observed 
between the reactivity of Sp and Rp isomers. Chimeric 
sequences bearing MPO and chiral phosphorothioates 
can also be prepared. As an example, Ψ activation of the 
dT-dT dimer was performed. Thus, after TBS 
deprotection of (Rp)-44, the 3’-OH of the dT-dT dimer 
was successfully loaded onto (+)-Ψ to afford activated 
dimer 60. With such dimers in hand, one can easily follow 
the published procedures of Ψ coupling to introduce 
methylphosphonate linkages, via solution phase or solid 
phase, into oligonucleotide sequences. This work 
therefore bridges an important gap in oligonucleotide 
synthesis as previous approaches are wedded to laborious 
diastereomer separation and handling of sensitive P(III)-
reagents.7-8 

Conclusion and Outlook 
   This study has resulted in the development of several 
important methods for the modular preparation of 
valuable chiral phosphines and building blocks for MPO 
synthesis. Building off of our initial disclosure in this area 
that used a cis-limonene oxide-derived reagent (Ψ) to 
access chiral phosphorothioate linkages, the critical 
observation was that the TLO-derived Π reagent enables 
reactivity not previously accessible. As with Ψ, the Π 
reagents are extremely inexpensive and trivial to prepare 
and carry the same benefit of redox economy and 
practicality in manipulating P(V) intermediates. The 
overall utility of limonene-based Ψ and Π reagents 
disclosed thus far is outlined in Scheme 4A. One salient 
feature of the disclosed protocol is that the choreography 
of nucleophile addition can control the enantiomer 
produced. This interesting example of enantiodivergent 
synthesis is shown in Scheme 4B. For example, using (–)-
Π, either enantiomer of thiophosphinic acid ester 11 can 
be procured simply by changing the order of nucleophile 
addition. Similarly, using MPO-precursor Π-reagent 12,   
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Table 3. A) Stereochemical map of Π-based MPO synthesis. B) Scope of loaded nucleoside methylphosphonothioates. C) 
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Scheme 4. (A) Painting the full picture for limonene-based Ψ and Π reagents. (B) Enantiodivergent nature of the Π-based 
chiral phosphine and MPO syntheses. Ar = o-anisyl. OR1 = 5’-DMTr-dT-3’-OH. OR2 = 5’-OH-dT-3’-TBS.

modifying the order of nucleoside addition gives precisely 
the opposite outcome. The product MPOs can be further 
activated for incorporation into oligonucleotides, a 
process facilitated by the stability of P(V) reagents. Thus, 
the Π-reagent platform clearly carries with it benefits 
from the standpoint of practicality and ideality in 
accessing difficult sectors of chemical space. In essence, 
the methodology presented herein serves as a formal 
surrogate for a chiral version of POCl3 that can undergo 
nucleophilic substitution in a controllable sequential 
fashion. Studies in this area continue and will be reported 
in due course. 
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