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Abstract: Carbon–Ti nanocomposites were prepared by a controlled two-step method using
microcrystalline cellulose as a raw material. The synthesis procedure involves the solubilization of
cellulose by an acid treatment (H3PO4 or HNO3) and the impregnation with the Ti precursor followed
of a carbonization step at 500 or 800 ◦C. The type of acid treatment leads to a different functionalization
of cellulose with phosphorus- or oxygen-containing surface groups, which are able to control the
load, dispersion and crystalline phase of Ti during the composite preparation. Thus, phosphorus
functionalities lead to amorphous carbon–Ti composites at 500 ◦C, while TiP2O7 crystals are formed
when prepared at 800 ◦C. On the contrary, oxygenated groups induce the formation of TiO2 rutile at
an unusually low temperature (500 ◦C), while an increase of carbonization temperature promotes a
progressive crystal growth. The removal of Orange G (OG) azo dye in aqueous solution, as target
pollutant, was used to determine the adsorptive and photocatalytic efficiencies, with all composites
being more active than the benchmark TiO2 material (Degussa P25). Carbon–Ti nanocomposites with
a developed micro-mesoporosity, reduced band gap and TiO2 rutile phase were the most active in the
photodegradation of OG under ultraviolet irradiation.

Keywords: cellulose decrystallization; phosphorus functionalities; carbon–Ti nanocomposites; TiP2O7
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1. Introduction

The occurrence of organic contaminants at very low levels in different water sources, including
drinking water, has emerged as a global concern. Azo dyes represent about 70% of the synthetic
chemical dyes and possess a relatively stable chemical structure [1], composed by aromatic rings,
which confer them with carcinogenic and mutagenic properties [2]. Thus, effluents containing this
contaminant need to be treated by advanced oxidation processes (AOPs), because conventional
treatments used in municipal wastewater treatment plants (MWWTPs) are not completely efficient for
their removal. Heterogeneous photocatalysis has been demonstrated to be effective in the removal of
pollutants from air [3] and water [4] in recent years. Most of studies are based on titanium dioxide
(TiO2) because of its relatively low price and toxicity and its high stability and recyclability [5,6].
However, its practical application is severely compromised by the low quantum yield and the poor
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light-harvesting ability as consequence of its wide band gap (i.e., 3.2 or 3.0 eV for anatase or rutile
phases, respectively) [7].

Different alternatives have been proposed to modify the band gap of TiO2, either with metals (Al,
Gd, Zr, W, Ag) [8,9] or nonmetallic (S, N, P) dopants [10,11]. The recombination of photo-generated
charges can be enhanced by reduction of the TiO2 particle size through the synthesis procedure [12].
One of the most interesting strategies is the development of TiO2 composites with carbon materials,
due to favoring a better dispersion of TiO2 nanoparticles, reducing the TiO2 particle size, acting as
photosensitizers and enhancing the light absorption and pollutant adsorption [13,14]. In this way,
different types or carbon materials, from classical activated carbons [15], to nanocarbons, including
xerogels, nanotubes, fullerenes or graphene derivatives, have been employed to develop efficient
photocatalysts due to their excellent electronic, optical and porous properties [4,16,17].

On the other hand, suitable synthetic methods and cheap, recyclable and environmentally friendly
precursors, like biopolymers, should be considered for the development of TiO2 composites [18–20].
In this context, cellulose is the cheapest and the most abundant renewable material obtained directly
from biomass. However, most of studies deal with the immobilization of TiO2 particles on cellulose
substrates, such as fabrics or fibers [21,22], and a few works were published about cellulose–TiO2

composites for water treatment [23–27]. Yet, to the best of our knowledge, the role of chemical
functionalities of cellulose on the properties and photocatalytic performance of carbon–Ti composites
has not been explored.

The aim of this work is to develop carbon–Ti composites looking for the synergism between
phases using cheap, abundant and sustainable microcrystalline cellulose (MCC) raw material
to increase the photo-response and adsorption capacity. The synthesis procedure, in particular
the acid pretreatment of cellulose, the subsequent heteroatom-doping and the physicochemical
transformations during carbonization, was optimized for the sake of improving the carbon–Ti
interactions. Carbon–Ti composites were obtained by a two-step method using MCC as a carbon
precursor and structure-directing agent. The synthesis procedure involves the previous MCC solution
by an acid treatment with H3PO4 or HNO3 and the impregnation with the Ti precursor followed
by a thermal treatment. Results showed that during the acid treatment, the cellulose chains are
functionalized with phosphorus- or oxygen-containing surface groups, which are able to control
the Ti loading and dispersion during impregnation and stabilize different Ti phases and structures
during carbonization. The adsorptive and photocatalytic behaviors of the materials for the removal
of Orange G (OG) in aqueous solution were studied and correlated with the chemical, physical and
crystalline transformations achieved for each composite depending on the acid pretreatment and
carbonization temperature.

2. Materials and Methods

2.1. Chemicals

Microcrystalline cellulose (MCC) and titanium (IV) isopropoxide (TTIP) were purchased from
Merck (Darmstadt, Germany), while o-phosphoric acid (85% w/w), nitric acid (70% w/w) and heptane
were acquired from VWR chemicals (Leuven, Belgium). Orange G (OG, C16H10N2Na2O7S2), also
known as Acid Orange 10, was obtained from Acros Organics (Geel, Belgium).

2.2. Synthesis of Carbon–Ti Composites

An aqueous suspension of MCC (200 g·L−1) was prepared and stirred for 15 min at 50 ◦C, and
then 10 mL of concentrated acid, i.e., 15.6 M HNO3 or 14.8 M H3PO4, was added dropwise and left
overnight. The Ti impregnation of the MCC solution was carried out by dropping a heptane solution
of TTIP (cellulose–TiO2 mass ratio = 1:6). The suspension formed was aged at 60 ◦C for 24 h, and
then the solid was filtered, washed with DI water and acetone, dried at 120 ◦C in an oven and finally
carbonized in a tubular furnace at 500 or 800 ◦C in N2 flow (100 cm3

·min−1). The carbon–Ti composites
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were labeled as CXTiY, where “X” corresponds to the acid used, i.e., “P” or “N” for H3PO4 or HNO3,
respectively, “Ti” indicates the presence of Ti phase and “Y” the carbonization temperature, i.e., “1” or
“2” for 500 or 800 ◦C, respectively. For instance, the CNTi2 sample is a carbon–Ti composite prepared
with cellulose treated with HNO3 and carbonized at 800 ◦C. Additionally, pure carbon materials, i.e.,
CN1, CN2, CP1 and CP2 samples, were also prepared as reference following a similar procedure but
not adding any amount of Ti precursor.

2.3. Characterization Techniques

The morphology of materials was analyzed by scanning (AURIGA (FIB-FESEM) microscope,
Carl Zeiss SMT, Oberkochen, Germany) and transmission electron microscope (HAADF FEI TITAN
G2, Oberkochen, Germany). Textural characterization was carried out by physical adsorption
of N2 at −196 ◦C using a Quantachrome Autosorb-1 equipment. The BET method and the
Dubinin–Radushkevich equation were applied to determine the apparent surface area (SBET) and
the micropore volume (W0), respectively. The microporous surface (Smicro) and the mean micropore
width (L0) were estimated from the Stoeckli equation [28,29], while the mesopore volume (Vmeso) was
calculated by applying the BJH method [30]. Prior to the N2 adsorption measurements, the samples
were outgassed overnight under a dynamic vacuum of 10−6 mbar at 120 ◦C.

The carbonization step and TiO2 content of composites was determined by thermogravimetric
(TG) analysis under N2 or air flow at 5 ◦C·min−1 using a Mettler-Toledo TGA/DSC1 thermal balance
(Mettler-Toledo International Inc., Greifensee, Switzerland). The crystallographic phase of materials
was determined by X-ray diffraction (XRD) using a Bruker D8 Advance X-ray diffractometer (Cu
Kα radiation, λ = 1.541 Å, BRUKER, Rivas-Vaciamadrid, Spain). X-ray photoelectron spectroscopy
(XPS) spectra of C1s, O1s, N1s, P2p and Ti2p regions were obtained on a Kratos Axis Ultra-DLD X-ray
photoelectron spectrometer (Kratos Analytical Ltd., Kyoto, Japan), and ultraviolet–visible (UV/Vis)
diffuse reflectance spectra (DRUV) were obtained using a double-beam UV/Vis spectrophotometer
(CARY 5E from VARIAN, Markham, Canada) [31]. The pHPZC values were determined following
a previously published methodology [17] and correspond to the equilibrium pH for 100 mg of the
material dispersed in 5 mL of water (at 25 ◦C).

2.4. Photocatalytic Tests

The adsorption and photocatalytic behaviours of carbon–Ti composites were evaluated for the
degradation of 10 mg·L−1 (2.21 × 10−5 mol·L−1) OG at room temperature under UV irradiation.
The batch experiments were carried out using a glass cylindrical reactor with 800 mL of OG solution,
using a load catalyst of 1.0 g·L−1 and a low-pressure mercury vapor lamp (TNN 15/32, 15 W, λ = 254 nm,
HNG-Germany). Samples at different reaction times were withdrawn and centrifugated to separate
the catalyst particles before analysis. Prior to photocatalytic tests, all materials were saturated with
the OG solution in dark to remove the adsorptive contribution from the evolution of the total OG
concentration. After dark phase, the initial OG concentration (C0) was adjusted again to 10 mg·L−1,
and then a UV lamp was turned on, this time being considered t = 0. The concentration of OG was
monitored by a UV/Vis spectrophotometer (5625 Unicam Ltd., Cambridge, UK).

3. Results and Discussion

3.1. Materials Characterization

Carbon–Ti composites were prepared after carbonization of cellulose samples impregnated with
the Ti precursor. A MCC solution was first prepared by an acid treatment (i.e., HNO3 or H3PO4) to
facilitate the impregnation and dispersion of the Ti phase. The carbonization processes of raw MCC
(commercial) and acid-treated celluloses (CN and CP) were simulated by TG analysis under N2 flow
and used as reference processes, pointing out the strong changes on the thermal stability of cellulose
after HNO3 or H3PO4 pretreatments. The thermal decomposition of the raw cellulose (MCC) occurs
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in a single step at around 340 ◦C (Figure 1a), in agreement with that previously reported [32] and
indicating the absence of both hemicellulose and lignin. The theoretical total carbon content is 44 wt. %,
taking into account the chemical composition of cellulose (C6H10O5)n. However, the yield of carbon
residue after pyrolysis is significantly lower (around 17 wt. %) because the depolymerization of the
cellulose molecular structure takes place during heating and evolves carbon oxides (CO and CO2) from
intermediate aldehydes and carboxylic acids, consequently decreasing the yield of carbon residues [33].
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Figure 1. (a) Thermogravimetric (TG) profiles under N2 flow for microcrystalline cellulose (MCC) and
acid-treated cellulose samples before (solid lines) and after Ti impregnation (dash lines); (b) Differential
thermogravimetric (DTG) profiles under N2 flow for MCC, CN and CP.

The thermal decomposition of acid-treated cellulose presents significant differences regarding
the original MCC. After the HNO3 treatment, the CN sample decomposes mainly in one step, like
MCC, but at a lower temperature (Figure 1a). This lower thermal stability is associated with the
incorporation of new oxygen chemical functionalities, in particular carboxylic acid groups. Dehydration
processes of adjacent carboxylic acid groups and/or the decomposition of these groups into CO2 occurs
at temperatures below 300 ◦C [34]. Nevertheless, after this main decomposition step, a slow and
continuous weight loss also occurs with increasing temperature, indicating the decomposition of
additional oxygenated surface groups that typically evolve as CO (phenol, carbonyl or quinone) [34].
After the H3PO4 treatment, carbonization takes place clearly in two steps placed at around 200 and
700 ◦C. The first decomposition step may be also due to dehydration and decomposition of derivative
groups of carboxylic acids and anhydrides, but the decomposition temperature range (from around 150
to 500 ◦C) is narrower in CP than in MCC or CN samples, indicating a more heterogeneous distribution
of surface groups. The second carbonization step is associated with the reduction of phosphate
groups by the organic cellulose, which increases the cellulose gasification in this temperature range.
Chemical activation of H3PO4-impregnated lignocellulosic materials [35,36] is a classical method for the
preparation of activated carbons, with the activation temperature depending on the nature of the raw
biopolymer [37]. In the case of the CP sample, the weight loss associated with the activation process
occurs at 700 ◦C, while, as an example, coconut activation has been reported between 400–450 ◦C [35]

Acid-treated cellulose samples showed an obvious yield of solid residue that was markedly greater
after their impregnation with the Ti precursor (Figure 1a). The significant change in the TG profiles
of carbon–Ti composites (CNTi and CPTi) regarding their corresponding supports (CN and CP) is
noteworthy, denoting the formation of new bonds between the cellulose supports and the Ti precursor.
At low temperature (below 200 ◦C), the weight loss in the CNTi sample even increases regarding
CN by decomposition of organic precursors, but after that the slope of the curve strongly decreases;
there is not a significant weight loss from around 600 ◦C, showing the thermal stabilization of the
cellulose oxygenated surface groups by interaction with the Ti phases. The cellulose–Ti interactions
are also observed for the CPTi sample. In this case, the first decomposition step remains more or less
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unchanged, but the second decomposition step is not observed, therefore indicating that the phosphate
groups are not reduced by the organic cellulose phase during the thermal treatments and thus are also
clearly stabilized by reactions with the Ti phase.

The inorganic content in the composites was also determined by TG, in this case by burning a
small portion of each sample in air flow. Although both samples were prepared using a constant
cellulose:TiO2 ratio of 1:6 by weight, the residue percentage was 63 and 74 wt. % for CNTi and CPTi,
respectively. Thus, the highest residue content determined for CPTi is favored by the presence of
phosphorus functionalities. The surface chemical nature and composition of Ti-impregnated cellulose
and its carbon derivatives were analyzed by measurements of pHPZC and XPS (Table 1). The influence
of acid treatments on pHPZC of the carbon–Ti composites is noteworthy, as CPTi samples are strongly
acidic materials, while the surface chemistry for CNTi samples is close to neutrality. The highest oxygen
content detected on the surface of the CPTi sample regarding the CNTi sample, together with the high
phosphorus content, suggests the presence of phosphate groups. However, the Ti content of CPTi is
lower than in CNTi despite the highest solid residue detected by TG, therefore indicating a different Ti
distribution in the surface than in the sample bulk. During carbonization, CPTi composites undergo
stronger changes than CNTi samples, increasing the carbon content and decreasing the oxygen and Ti
contents (Table 1). The low N content detected in CNTi (Table 1) was removed after carbonization
(CNTi2) and should not influence its catalytic performance.

Table 1. Surface composition of Ti-impregnated cellulose and its carbon derivatives determined by
X-ray photoelectron spectroscopy (XPS) and measurements of pHPZC.

Sample pHPZC
(±0.2)

Atomic Content (±0.1 wt. %)

C O N P Ti

CPTi n.d. 8.5 47.3 - 26.8 17.4
CPTi1 2.7 22.0 42.7 - 21.9 13.4
CPTi2 2.8 27.3 36.4 - 22.8 13.5
CNTi n.d. 18.7 36.2 1.2 - 43.9

CNTi2 6.5 16.4 35.4 - - 48.2

n.d. = not determined.

The XPS results also show the interactions between the chemical groups of cellulose and the Ti
phase, as well the transformations performed during carbonization. The XPS spectra of C1s, O1s and
Ti2p regions for the Ti-impregnated samples before (CPTi and CNTi) and after carbonization at different
temperatures (CPTi1, CPTi2 and CNTi2) are collected in Figure 2. In general, the deconvolution of the
C1s region shows a main contribution at 284.6 eV associated to C–C bonds and other smaller peaks
at higher binding energies (BE) due to the occurrence of oxygenated surface groups, i.e., C–O, C=O
or carboxyl groups (Figure 2a,d) [36,38]. These small components are more significative in cellulose
treated with HNO3 (CNTi) than in CPTi. After carbonization, the peaks due to oxygen-containing
groups are maintained in CPTi1 and CPTi2 samples, while a strong decrease is observed for CNTi2
because of the weak thermal stability of carboxylic acid groups introduced by HNO3 compared to the
phosphate groups detected for CPTi samples.

The O1s spectrum was deconvoluted in two components located at ~531.5 and ~533.1 eV,
corresponding to double-bonded oxygen (e.g., carbonyl and carboxyl groups) and single-bonded
oxygen (e.g., alcohol groups), respectively (Figure 2b,e) [39]. Moreover, Ti–O and Ti–OH bonds should
contribute to both first and second peaks, respectively [40]. All these contributions also decrease after
carbonization, mainly for the case of CNTi2, as observed for the C1s spectrum. The analysis of the P2p
spectrum also allows to point out the interaction of Ti phases with the phosphorus-containing groups
incorporated during the cellulose treatment. The P2p region can be deconvoluted in only a peak at
~133.4 eV for CPTi, while a second peak is found at ~134.7 eV after carbonization (Figure S1 of the
Supplementary Materials). In general, the peaks placed at ca. 134 eV and 135 eV are usually due to
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phosphorus linked to carbon (C–PO3) and to pentavalent tetracoordinated phosphorus in phosphates
or polyphosphates (C–O–PO3), respectively [41]. Therefore, H3PO4 treatments incorporate oxygen-
and phosphorus-containing functionalities, while only oxygenated groups are detected for samples
treated by HNO3.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 18 
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Regarding the Ti2p region (Figure 2c,f), only a peak at 459.4 eV corresponding to Ti4+ is detected
on the Ti-impregnated samples (CNTi and CPTi) and on the carbonized composites at low temperature
(e.g., CPTi1). However, the spectra of both CNTi2 and CPTi2 are wider and shifted to lower BE values,
showing the presence of a mixture of Ti4+ and Ti3+ and denoting the influence of the carbonization
temperature on the nature of the Ti phase. Despite the certain reduction observed, the difference in
BE between Ti 2p3/2 and Ti 2p1/2 components is always maintained at 5.7 eV, in agreement with TiO2

results previously reported [42].
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The analysis of the XRD patterns also pointed out the different transformations of the samples as a
function of the carbonization temperature in the composites (Figure 3) and, consequently, the different
metal–support interactions. Thus, the absence of XRD peaks is observed for CPTi carbonized at 500 ◦C
(CPTi1), while XRD patterns denoting a total transformation to the rutile phase can be detected in the
case of CNTi1. In previous works [43,44], the carbon phase was reported to prevent both the sintering
and phase transformation of the inorganic oxides in carbon/oxide composites, including TiO2, SiO2 or
Al2O3/C. In this case, the phosphate groups on the cellulose support should avoid the crystal growth
during carbonization at low temperatures. However, the formation of rutile at 500 ◦C observed for
CNTi1 was not expected, taking into account that the transformation of the anatase phase to rutile
normally occurs at 750 ◦C, although it can be induced at lower temperatures in some cases, such as by
doping with metals like V5+ [45]. By increasing the carbonization temperature up to 800 ◦C, an increase
of the rutile crystallinity is observed in CNTi2 compared to CNT1, as denoted by the narrower and more
intense diffraction peaks. Therefore, XRD patterns for CNTi1 and CNTi2 samples clearly showed the
presence of only rutile (JCPDS Card No. 21-1276) peaks placed at 2θ values of ~27◦, ~36◦, ~41◦, ~44◦,
~54◦, ~56◦ and ~61◦, which correspond to crystal planes of (110), (101), (200), (111), (210), (211), (220),
(002) and (310) [46]. At this carbonization temperature, the CPTi2 XRD pattern showed the formation
of a crystalline phase that does not correspond to any TiO2 phase, but it was indexed as cubic TiP2O7

with the space group Pa3 and 3 × 3 × 3 superstructure (JCPDS No. 38-1468) [47,48]. The formation of
TiP2O7 nanocrystals is only obtained at temperatures higher than 1000 ◦C [49]; thereby, it should be
favored by the phosphorus surface groups on the functionalized cellulose. These results are also in
agreement with the TG and XPS results, which suggested the stabilization of the phosphate groups by
interaction (reaction) with the Ti species with increasing temperature. In summary, the functionalities
incorporated during cellulose solubilization determine the Ti phase formed in the corresponding
composites. The oxygenated surface groups, namely carboxylic acid species, generated on the cellulose
chains by HNO3 treatments induce the formation of rutile at low temperature, while the phosphorus
groups generated by H3PO4 treatments avoid the formation of crystalline Ti phases when treated at
low temperatures and the formation of TiP2O7 nanocrystals with increasing this parameter, but the
reaction occurs at lower temperatures than those typically reported.
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Figure 3. X-ray diffraction (XRD) patterns of the carbon–Ti composites (R = rutile, P = TiP2O7).

The chemical and crystalline transformations previously indicated are simultaneously
accompanied by a marked change in the morphology of the samples, mainly for the CPTi carbonized
derivatives. Thus, the CPTi sample carbonized at low temperature (500 ◦C) presents an opened
structure composed of grouping sheets leading to a solid with flaky aspect (Figure 4a). When the
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composite is carbonized at 800 ◦C (CPTi2, Figure 4b), the structure becomes more compact, showing a
granular aspect that corresponds to the formation of the TiP2O7 crystalline phase, according to XRD
results. The morphology of CNTi1 is formed by round-shaped particles overlapping and forming an
opened structure (Figure 4c). These particles should correspond to rutile crystals identified by XRD
(Figure 3). The composite carbonized at 800 ◦C (CNTi2) also presents a denser surface than CNTi1 by
sintering, and the crystallites now show sharp edges on clearly cubic structures due to the mentioned
crystal growth (Figure 4d).
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Figure 4. Scanning electron microscopy (SEM) images of the carbon–Ti composites prepared by
cellulose treatment with phosphoric acid (a,b), or nitric acid (c,d).

The energy dispersive X-ray (EDX) spectrum corroborates the presence of C–O–P–Ti in the CPTi
composite (Figure 5a). High resolution transmission electron microscopy (HRTEM) micrographs of
CPTi1 (Figure 5b) shows the formation of ultrathin carbon layers, in which a homogeneous distribution
of Ti is deposited throughout the composite, as confirmed by mapping (Figure 5c). After carbonization
at 800 ◦C, the formation of needle-shaped structures, more or less aggregated, are also observed,
together with the large carbon flakes previously described (Figure 5d,e). These flat and transparent
carbon structures were also previously observed after sulfuric acid hydrolysis and carbonization of
Eucalyptus kraft pulp [50]. Filaments, aggregates of films, can be developed depending on the thermal
treatments of cellulose nanocrystals, although the mechanism of formation of these nanostructures is still
unclear. It seems to be related with the H-bonding interactions in each media and the transformations
during carbonization.



Nanomaterials 2020, 10, 729 9 of 17
Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 18 

 

 

Figure 5. High resolution transmission electron microscopy (HRTEM) characterization of CPTi 
composites: (a) energy dispersive X-ray (EDX) analysis, (b,d,e) micrographs and (c) Ti-mapping. 

The different morphologies observed for the carbon–Ti composites influence their porosity, 
which was analyzed by N2 adsorption–desorption isotherms (Figure 6). The shape of the isotherms 
already points out the different porosity of the samples. When comparing the isotherms of pure 
carbon samples (Figure 6a) and their corresponding composites (Figure 6b), a different porous texture 

(a) CPTi1 

(b) CPTi1 

200 nm 

(c) CPTi1 

200 nm 

200 nm 

(d) CPTi2 

200 nm 

(e) CPTi2 

Figure 5. High resolution transmission electron microscopy (HRTEM) characterization of CPTi
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The different morphologies observed for the carbon–Ti composites influence their porosity, which
was analyzed by N2 adsorption–desorption isotherms (Figure 6). The shape of the isotherms already
points out the different porosity of the samples. When comparing the isotherms of pure carbon
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samples (Figure 6a) and their corresponding composites (Figure 6b), a different porous texture due to
the interactions and transformations between phases is clearly visible. Thus, the porosity of the CP
sample carbonized at 500 ◦C (i.e., CP1) is quite poor (i.e., SBET = 17 m2

·g−1), while CP2, carbonized
at 800 ◦C, presents a high surface area (i.e., SBET = 552 m2

·g−1), associated to the microporosity
developed during the activation processes by the reduction of the phosphate groups at ~700 ◦C, as
previously observed by TG. In fact, CP2 is mainly microporous, as denoted by its type-I adsorption
isotherm (Figure 6a). On contrary, the CN1 sample, pretreated in nitric acid and carbonized at low
temperature, showed a higher porosity than CP1 (i.e., SBET = 226 vs. 17 m2

·g−1, respectively), due to
the evolution of low-stability oxygenated surface groups. However, the porosity and surface area
of CN samples decrease after increasing carbonization temperature with a progressive micropore
widening (L0, Table 1). CN1 and CN2 samples showed type-II adsorption isotherms.
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carbon–Ti composites.

After Ti precursor impregnation, both CNTi1 and CNTi2 showed type-IV adsorption isotherms
characteristic of micro-mesoporous materials, while mainly type-II isotherms were obtained for both
CPTi1 and CPTi2. These samples showed a similar microporosity (W0, Table 2) and surface area (Smicro,
Table 2), in contrast to the previous nonimpregnated samples (e.g., CP1 and CP2), which corroborates
that the interaction of the carbon with the Ti phase avoids the reduction of the phosphate groups.
Nevertheless, a certain delay in the desorption branch of both CPTi1 and CPTi2 samples also denotes
a hysteresis cycle associated to N2 condensation. In all composites, the shape of the isotherm is
maintained while increasing the carbonization temperature, but the total porosity and BET surface
areas increase (Table 2). These increases are due to a larger weight loss and, on the other hand, to the
progressive sintering and crystal growth of the Ti phase (Figures 4 and 5) leading to narrow pores
where N2 condensates during the porosity filling. CNTi derivative samples mainly present a developed
micropore structure that strongly favors high surface area values compared to those for the CPTi
ones. In addition, CNTi2 presented the largest development of porosity, with sintering favoring the
formation of mesopores (Vmeso, Table 2) from macropores or interparticle voids present in the sample
obtained at lower carbonization temperature. Porosity, namely mesoporosity (Vmeso), is favored in
the carbon–Ti composites in regard to their pure carbon materials, an evolution directly related to the
transformations of the Ti phase being established.
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Table 2. Textural characteristics of the carbon–Ti composites.

Sample SBET
(±5 m2

·g−1)
Smicro

(±5 m2
·g−1)

L0
(±0.1 nm)

W0
(±0.01 cm3

·g−1)
Vmeso

(±0.01 cm3
·g−1)

CP1 17 20 2.2 0.01 0.02
CP2 552 624 1.5 0.22 0.07
CN1 226 253 1.5 0.09 0.06
CN2 115 122 1.7 0.04 0.06

CPTi1 28 35 1.4 0.01 0.27
CPTi2 30 48 1.8 0.02 0.35
CNTi1 124 141 1.6 0.05 0.13
CNTi2 319 360 1.5 0.13 0.34

The optical properties of the carbon–Ti composites were analyzed using UV/Vis diffuse reflectance
(DRUV) spectroscopy. All reflectance spectra (Figure 7a) recorded were converted to equivalent
absorption Kubelka–Munk (K-M) units (Figure 7b) and the band gap (Eg) was determined from the
plots of (F(R) × hν)n vs. E by extrapolating the slope to a = 0 according to the procedure previously
reported [4,51,52]. The band gap for all composites synthesized from cellulose decreased in regard to the
value determined for P25, which was used as reference material (Figure 7b). CNTi samples, with rutile
as active phase, presented Eg values at ~2.4 eV regardless of the carbonization temperature; this value
of band gap was significantly lower than 3.0 eV, corresponding to the pure rutile phase. Analogously,
the strong influence of the carbonization temperature on the crystalline and morphological properties
previously discussed for CPTi composites does not produce a significant change in the profile of their
corresponding spectra; consequently, similar band gap values, at ~3.0 eV, are obtained (Figure 7b) for
CPTi1 and CPTi2. However, these values are also significantly smaller than the band gap of 3.5 eV
reported in the bibliography for the TiP2O7 phase [52]. Thus, a clear influence of the functionalized
cellulose on the semiconductor properties of both series of composites is evidenced. On the other
hand, the carbonization temperature did not markedly influence the band gap values of the carbon–Ti
composites, despite presenting different physicochemical properties. Different effects can contribute to
the similar band gap values observed. For instance, with increasing carbonization temperature, the
formation of Ti3+ species were pointed out by XPS, which can contribute to the bad gap narrowing.
However, this also progressively increases the crystal size of the composites, which evidently favors
the electron–hole recombination. Otherwise, the low band gaps determined for all composites should
significantly improve their photocatalytic efficiency compared to the pure TiO2 materials, such as P25.Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 18 

 

 
Figure 7. (a) UV/Vis diffuse reflectance spectra (DRUV) of P25 and different carbon–Ti composites. 
(b) Plot of transformed Kubelka–Munk units as a function of the energy of light (inset: determination 
of the band gap). 

3.2. Removal of Orange G (OG) Azo Dye 

The adsorptive and photocatalytic performance of the carbon–Ti composites was analyzed for 
the removal of OG, a textile dye typically present in industrial wastewater and used as target 
molecule, following the procedure described in our previous works with other semiconductors [4,53]. 
Firstly, all samples were saturated for 4 h using a concentrated OG solution in dark experiments, 
which allows to analyze the interactions of pollutants with the sample surface but also avoids the 
contribution of the adsorption process on the OG removal during the subsequent photocatalytic 
degradation experiment. The initial adsorption kinetic curves for pure carbon materials and the 
corresponding composites are shown in Figure 8a,b, respectively. 

  

 
Figure 8. Removal of Orange G (OG) from water solution by (a) adsorption using pure carbon 
materials and (b) adsorption and (c) photocatalysis using carbon–Ti composites. 

(a) (b) 

Figure 7. (a) UV/Vis diffuse reflectance spectra (DRUV) of P25 and different carbon–Ti composites.
(b) Plot of transformed Kubelka–Munk units as a function of the energy of light (inset: determination
of the band gap).



Nanomaterials 2020, 10, 729 12 of 17

3.2. Removal of Orange G (OG) Azo Dye

The adsorptive and photocatalytic performance of the carbon–Ti composites was analyzed for the
removal of OG, a textile dye typically present in industrial wastewater and used as target molecule,
following the procedure described in our previous works with other semiconductors [4,53]. Firstly, all
samples were saturated for 4 h using a concentrated OG solution in dark experiments, which allows to
analyze the interactions of pollutants with the sample surface but also avoids the contribution of the
adsorption process on the OG removal during the subsequent photocatalytic degradation experiment.
The initial adsorption kinetic curves for pure carbon materials and the corresponding composites are
shown in Figure 8a,b, respectively.
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The analysis of OG-adsorptive performance of the pure carbon materials allowed a direct
relationship between the OG removal and the micropore volume (W0, Table 2) of the samples to be
established. The high micropore development in CP2 allows the complete removal of OG in solution in
only 25 min, while CP1 (with the lowest W0) leads to the worst adsorptive behavior (Figure 8a). In the
case of CN materials, the OG-adsorption capacity decreases as carbonization temperature increases
due to a micropore destruction, probably by widening (Table 2). For the case of composites, CPTi2
also showed a better performance than CPTi1, although the microporosity of both samples is quite
similar (Figure 8b). The increased microporosity with the carbonization temperature explains the
better OG-adsorptive performance of CNTi2 compared to CNTi1 (Figure 8b). In these composites, the
mesoporosity also increased with the carbonization temperature, which can favor the accessibility and
adsorptive performance of the samples. The fast adsorption processes of the CPTi2 composite could be
favored by chemical interactions of the carbon surface with the dye in solution. The beneficial effect on
the dye adsorption of phosphate doping in Ti structures was previously reported [29,54] as due to the
modification of the electrostatic interactions. Nevertheless, the best final performance of CNTi samples
confirms the importance of a developed porosity in the interactions with the pollutant.
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Once the carbon–Ti composites were saturated with the OG solution, the photocatalytic
performance of the composites was studied (Figure 8c), with the best efficiency being observed
for the CNTi1 sample. In the CNTi composite series, the catalytic activity decreases with increasing
carbonization temperature, despite the higher porosity and similar band gap values of CNTi2. A similar
influence of the carbonization temperature on the catalytic activity can be described for CPTi1 and CPTi2
composites. However, all carbon–Ti composites present a better performance than the reference TiO2

photocatalyst (P25), reaching total OG removal in 40–60 min. The activity order follows the sequence
CNTi > CPTi > P25, in agreement with the evolution of the band gap values. This fact should be
associated with the increasing crystallinity of the rutile or TiP2O7 phases and confirms the importance
of the particle size in the interaction with the support and the electron–hole recombination processes.
The reaction pathway for the photodegradation of the azo-dye acid Orange 7 in TiO2 suspensions was
studied by Stylidi et al. [55], reporting that the mineralization to CO2 occurs with the formation of
aromatic and aliphatic acids as intermediates. In previous works [4,53], we have pointed out that the
photocatalytic experiments carried out using C–Ti or C–Zr composites produce the mineralization
of the dye to CO2. In the current work, a similar behavior was observed; no intermediates were
expected in solution after reaction, because the TOC analysis of the samples decreased in accordance
with the OG removal. However, the study of the reaction mechanism should be better investigated in
future works considering the stability of the most active photocatalysts during consecutive reaction
cycles. The best photocatalytic performance of the CNTi1 sample seems to be related to an adequate
porous texture, the narrow band gap associated to the rutile phase in combination with the carbon
support and an intermediate particle size. In the case of the CPTi1 composite, the low surface area
can be compensated by the favorable role of phosphate groups on the adsorption and a very small
particle size (not detectable by XRD). Therefore, this study demonstrates the possibility to enhance
the photocatalytic activity of TiO2 by preparing composites from biopolymers, like cellulose, through
an easy procedure, highlighting the importance of the cellulose pretreatment conditions on the final
properties and catalytic performance. Even so, the developed photocatalysts presented a good activity
compared to other materials reported in literature (Table 3).

Table 3. Removal of OG obtained by photocatalysis using different TiO2-based materials.

Material OG Concentration Irradiation Source Removal (%) Reference

TiO2
(Degussa P25)

84.2 µM,
2.5 g/L catalyst

UV high-pressure
mercury lamp

100%,
120 min [56]

Sn(IV)/TiO2/AC 110.5 µM,
12.5 g/L catalyst

UV high-pressure
mercury light

99.1%,
60 min [57]

TiO2 (99% anatase)
on glass plates 66.3 µM UV lamp

(λ = 365 nm)
100%,

130 min [58]

Au–TiO2 25 µM UV low-pressure
mercury lamp

100%,
60 min [59]

10%CNT–TiO2
110.5 µM,

1 g/L catalyst
Metal halide lamp +

cut-off filter (λ > 400 nm)
100%,

120 min [60]

CX–TiO2
55.3 µM,

1 g/L catalyst Vis TeptoLux 2.0 lamp 90%,
400 min [4]

g-C3N4–TiO2 200 µM, 0.5 g/L Simulated solar light
(Xe Lamp)

82%,
10 min [61]

rGO–TiO2 10 µM Microwave irradiation 88%,
20 min [62]

CNTi1 22 µM, 1.0 g/L UV low-pressure
mercury lamp

99%,
40 min This work

CPTi1 22 µM, 1.0 g/L UV low-pressure
mercury lamp

100%,
40 min This work

TiO2
(Degussa P25) 22 µM, 1.0 g/L UV low-pressure

mercury lamp
79%,

40 min This work

AC = activated carbon; CNT = carbon nanotubes; CX = carbon xerogel; rGO = reduced graphene oxide.
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4. Conclusions

Cheap and sustainable carbon–Ti composites with improved adsorptive and photocatalytic
performances were obtained using cellulose as raw material. The oxygen- and phosphorus-containing
surface groups generated on the cellulose chains during the acid solubilization of the microcrystalline
structure determine the interactions with the Ti precursor during impregnation and the transformations
of both cellulose and Ti phases during thermal treatments. Thus, the chemical nature and
physicochemical properties of the active phases can be fitted by adjusting the surface chemistry
and carbonization temperature.

Phosphorus functionalities, phosphate groups in particular, avoid crystal growth when composites
are carbonized at low temperature (500 ◦C), while oxygen functionalities favor the transformation
of anatase nanocrystals into rutile phase. With increased carbonization temperature (800 ◦C), Ti
precursors react with the phosphate surface groups, forming TiP2O7 nanocrystals; sintering is also
favored, and Ti+4 is partially reduced to Ti+3. These interactions with the carbon phase produce a
significant narrowing of the band gap regarding rutile or TiP2O7 pure phases. The combination of a
developed porosity and surface area, a narrow band gap and small crystal size favor the dye adsorption
and prevent the electron–hole recombination, consequently enhancing the dye mineralization in all
carbon–Ti composites compared to that of the commercial P25.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/4/729/s1:
Figure S1: High-resolution XPS spectra of the P2p region for Ti-impregnated cellulose derivatives and their
corresponding carbonized composites.
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