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Abstract

Modern survey methods may be subject to non-observable bias, from various sources.

Among online surveys, for example, selection bias is prevalent, due to the sampling mecha-

nism commonly used, whereby participants self-select from a subgroup whose characteris-

tics differ from those of the target population. Several techniques have been proposed to

tackle this issue. One such is Propensity Score Adjustment (PSA), which is widely used and

has been analysed in various studies. The usual method of estimating the propensity score

is logistic regression, which requires a reference probability sample in addition to the online

nonprobability sample. The predicted propensities can be used for reweighting using vari-

ous estimators. However, in the online survey context, there are alternatives that might out-

perform logistic regression regarding propensity estimation. The aim of the present study is

to determine the efficiency of some of these alternatives, involving Machine Learning (ML)

classification algorithms. PSA is applied in two simulation scenarios, representing situations

commonly found in online surveys, using logistic regression and ML models for propensity

estimation. The results obtained show that ML algorithms remove selection bias more effec-

tively than logistic regression when used for PSA, but that their efficacy depends largely on

the selection mechanism employed and the dimensionality of the data.

Introduction

One of the main drawbacks of online surveys is the selection bias [1] that may be introduced

in their use. This problem occurs when the population sample used differs from the non-

observed population in such a way that the sample results cannot be extrapolated to the full

population. In online surveys, samples are often drawn from volunteer participants, for rea-

sons of time and financial economy, making this population nonprobabilistic and therefore

unsuitable for the usual sampling methods employed for inference and estimation. Assuming

that some groups are more likely than others to participate, volunteer samples present an

inherent selection bias. Hence, determining optimum probabilistic sampling conditions in an
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online survey is not a trivial undertaking. As [2] state, probabilistic online frames can only be

used when the population of interest is narrow (the members of well-defined organizations);

evidently, if the target population is not properly defined a reliable sampling frame of internet

users may not be achieved. Internet access is often associated with sociodemographic variables

related to the variables of interest in a given study ([3]). For example, according to [4], the

internet penetration rate in Spain is above 90% of the population in all population groups aged

under 54 years; however, among persons aged 65 to 74 years, the penetration rate is only

43.7%. In consequence, the potentially covered population (as defined in [1]) is immediately

subjected to a selection bias, which cannot be completely excluded by the usual reweighting

methods ([5]; [6]).

In recent years, propensity score adjustment (PSA) has increasingly been used as a means

of correcting selection bias in online surveys. This method, first proposed by [7], was originally

intended to correct the bias introduced by factors associated with exposure (group allocation)

and outcome in the experimental design, and studies have demonstrated its effectiveness in

this regard ([8]; [9]). PSA, like most adjustment instruments in population sampling, is based

on the use of auxiliary information. However, in addition to the nonprobabilistic volunteer

sample, it also requires the availability of a probabilistic reference sample. This is usually

obtained from a survey focused on a different subject area. Accordingly, it does not measure

the present variable or variables of interest, but rather a set of covariates that have also been

recorded or the nonprobabilistic sample. The reference survey does not have to address the

same research questions, but it should be well conducted and avoid all sources of bias as much

as possible.

The efficacy of PSA at removing selection bias from online surveys has been discussed in

numerous studies. However, its performance depends on the covariates chosen. Moreover, the

use of PSA generally increases the sampling variability of the estimators with respect to the

unweighted case ([10]; [11]). Therefore, PSA weighting should be complemented with further

calibration adjustments using complementary variables to make estimates less biased ([11]; [12]).

Propensity scores in PSA are usually estimated using logistic regression models, where the

target variable is a binary indicator that takes 1 if an individual belongs to the nonprobabilistic

sample and 0 otherwise. This approach is equivalent to estimating the probability of an indi-

vidual volunteering to participate in a survey, given a specific set of covariates. Logistic regres-

sion provides estimates that are robust, i.e. they remain stable when new data are

incorporated, and simple to implement in most statistical packages. However, they also present

certain drawbacks that should be taken into account. Thus, in logistic modelling it is assumed

that the log-odds risks have a linear relationship with the covariates ([13]). In the online survey

context, this assumption could easily fail to hold, especially with larger samples and a greater

number of covariates.

Alternatives to logistic regression in PSA have appeared in parallel with the development of

machine learning (ML) classification algorithms. A vast and still-increasing number of ML

approaches provide the raw probabilities of occurrence of a given class, both black-box and

interpretable, the application of which in PSA has mainly been studied with respect to experi-

mental design. Research into interpretable algorithms for PSA has focused on classification

and regression trees (CART) ([14]), concluding that these decision trees provide less biased

effect estimates, even under conditions of non-additivity and non-linearity ([15]; [16]). In this

respect, [17] examined a special case of discriminant analysis, selecting the best classification

tree in terms of optimality.

Among the black-box alternatives that have been developed in the field of ML, neural net-

works and bagging/boosting algorithms have attracted much attention. Neural networks are

discussed in [18] as a potential replacement for logistic regression in PSA, but to our
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knowledge, they have only been successfully applied in [15]. In addition, bagging algorithms

such as Random Forest ([19]) and boosting algorithms such as the Gradient Boosting Machine

(GBM) ([20]) have been included in several studies. It has been suggested that the use of GBM

could provide more stable weights and greater bias reduction than is the case with logit models

([21]) and multinomial models ([22]), at the cost of a minimal increase in variance. Similarly,

the incorporation of Random Forest into PSA may also reduce the level of bias in the estimates

obtained, compared to logistic models ([16] [23]) and classification trees ([24]). GBM has been

successfully applied in real experiments with propensity scores ([25], [26], [27]). In this field,

too, [28] studied the performance of boosted CART (GBM), but found that the performance

of each algorithm was strongly dependent on the scenario. Finally, [29] analysed the efficiency

of propensity estimation, using Random Forests for matching, taking into account the exis-

tence of missing data from the predictors, and reported good results for group balancing.

An interesting case of black-box algorithms is described by [30]. These authors used the

Super Learner paradigm proposed by [31], and estimated propensity scores by choosing the

best algorithm, in terms of goodness-of-fit, from a set of ML classification algorithms, includ-

ing Bayesian Generalised Linear Models, Support Vector Machines, Multivariate Adaptative

Regression Splines and k-Nearest Neighbours, apart from those mentioned above. This study

showed that overall efficiency was dependent on the underlying covariate structure, but that

PSA, using the Super Learner strategy, presented good balancing properties.

In recent survey research, ML algorithms have been widely studied in the probability sam-

pling context ([32]; [33]; [34]; [35]; [36]). In nonprobability sampling, however, PSA has

mainly been used in nonresponse propensity adjustments. The PSA procedure for addressing

the question of nonresponse bias, which was first developed by [37], usually follows the same

steps as in dealing with selection bias, but some alternatives to logistic regression have been

proposed. Thus, [38] used local polynomial regression models to adjust nonresponse propen-

sity estimates, in a paper extending their previous work on propensity estimates via kernel

regression. Further details of this method are discussed by [39]. These models provide better

estimates of propensity, in terms of likelihood, and lower variance than is the case with logistic

regression models, provided that the polynomial degree is properly specified. Applications of

ML algorithms in PSA for nonresponse propensity have been studied for classification and

regression trees ([40]) and Random Forests ([41]); their ability to reduce nonresponse bias, in

comparison with logistic regression, depends on the covariates available and on the complexity

of the relationships. These techniques for modelling nonresponse propensity are also

addressed by [42].

In the present paper, the ML approach is extended to the question of reducing selection

bias, considering various online survey scenarios that are subject to selection bias and examin-

ing how PSA may reduce this bias, according to the algorithm used to compute the propensity

estimates. The study method and the ML methods used are described in detail, after which we

present a simulation study based on artificial and real-world data. The implications of these

results are then discussed, and in the final section we suggest related lines of work for future

research.

Propensity Score Adjustment (PSA) for volunteer online samples

The procedure to perform Propensity Score Adjustment for removing volunteer bias in online

surveys can be described as follows: let sv be a volunteer nonprobabilistic sample of size nvs,
self-selected from an online population Uv which is a subset of the total target population U,

and sr a reference probabilistic sample of size nrs selected from U under a sampling design (sd,
pd) with πi = ∑sr3i pd(sr) the first order inclusion probability for the i-th individual. Note that
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each element in both samples has a base weight associated, say dv
j , j = 1, . . ., nvs for the volun-

teer sample and dr
k, k = 1, . . ., nrs for the reference sample (usually, dr

k ¼ 1=pk). Covariates X

used to adjust the propensity scores have been measured on both samples, while the variable of

interest y has been measured only in the volunteer sample, and the probabilistic sample cannot

be directly used for its estimation as a result. Let z be a binary variable which measures whether

a participant of the complete sample s = sr [ sv belongs to sr or sv.

zi ¼

(
0 i 2 sr

1 i 2 sv
; i ¼ 1; . . . ; n; n ¼ nvs þ nrs ð1Þ

Let π(xi) be the propensity score for participant i conditional on his/her covariates’ value xi.

π(xi) reflects the probability of zi = 1 given the set of covariates X. The reference sample is

assumed to suffer from a small selection bias or no bias at all, and can be used to generate a

reliable estimate of the covariates’ distribution in the target population. This information

could be used to calculate which types of individuals are more or less prone to participate in an

online survey. The above-mentioned propensity scores, p̂ðxiÞ, are often estimated using a

logistic regression model which can be described as in Eq 2.

p̂ ðxiÞ ¼
1

e� ðgTxiÞ þ 1
ð2Þ

where γ is the vector of regression coefficients obtained in the modelling process. The original

online sample is reweighted using the propensity estimates to take into account the informa-

tion on selection bias provided by PSA. This procedure can be performed using weights for

either the Horvitz-Thompson or the Hajek estimators; the procedure for the Horvitz-Thomp-

son-type weights is described in [10] and [11] and can be summarised as follows. The com-

bined sample is sorted and then divided into C classes ([43] recommend the use of five classes)

according to each individual’s propensity score. An appropriate adjustment factor fc is

obtained using Eq 3

fc ¼

P
k2scr

dr
k=
P

k2sr
dr
k

P
j2scv

dv
j =
P

j2sv
dv
j

ð3Þ

where scr and scv are individuals from the reference sample and the volunteer sample respec-

tively, belonging to the c-th class. The new weights w for individuals in the volunteer sample

are then calculated as follows:

wj ¼ fcdv
j ¼

P
k2scr

dr
k=
P

k2sr
dr
k

P
j2scv

dv
j =
P

j2sv
dv
j

dv
j ð4Þ

Hajek-type weights can be calculated as described in [2] and according to Eq 5. In this case,

the weights adjust the volunteer sample to the population of the probabilistic sample, Ur, rather

than the complete population U.

wj ¼
1 � p̂ðxjÞ

p̂ðxjÞ
ð5Þ

According to [44], the difference between the two approaches to the final estimates depends

both on the discreteness of the support of the covariates and on the selection mechanism used

(i.e., whether or not it is related to the target variable).
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Machine learning classification algorithms for propensity score

estimation

As described above, various alternatives to logistic regression can be used in propensity score

estimation, leading to different formulas to obtain p̂ðxiÞ. In this section, we present some for-

mulas associated with the application of some algorithms commonly used in PSA literature,

together with other techniques frequently seen in data mining ([45]), namely decision trees,

Random Forests, GBM, k-Nearest Neighbours and Naïve Bayes.

Decision trees can be defined as a set of rules organised in a hierarchical structure, starting

from an initial node that represents the complete dataset. To predict a given individual, the data-

set is split into different subsets according to a rule based on an input predictor variable. Each

subset can also be split, successively, until a convergence criterion is met; then, the rule stops

increasing in complexity, and a terminal node is reached. Any input individual for the decision

tree will meet the criteria of a rule specified for it, and thus predicted according to data from the

individuals meeting the rule criteria. In our study, the algorithms used for tree building involve

C4.5, C5.0 ([46]) and CART ([14]). They differ in some aspects of tree building, such as the rule

pruning and complexity, but for brevity these questions are not addressed in the present paper.

This approach can be used to obtain the probabilities of the input individuals of a decision

tree belonging to any given class. In this context, these probabilities represent the individuals’

propensity to participate in an online survey, where z represents the binary target variable. Let

J1, . . ., Jk be the set of rules (terminal nodes) of a decision tree; each rule represents a multidi-

mensional range for each covariate, say: Ji = {X 2 Bi} where Bi 2 R
p, and where p is the number

of covariates. Let nðsJiv Þ and nðsJiÞ be the number of volunteer sample and combined sample

members, respectively, which meet the criteria of the ith terminal node. The formula for esti-

mating propensity scores for an individual i using decision trees is described in Eq 6.

p̂ ðxiÞ ¼

nðsJ1v Þ
nðsJ1Þ

i 2 s=xi 2 J1f g

. . . . . .

nðsJkv Þ
nðsJkÞ

i 2 s=xi 2 Jkf g

8
>>>>>><

>>>>>>:

ð6Þ

In the case of Random Forests, propensities are estimated by averaging the number of times

that an input individual is classified in the class representing the presence (often denoted as

“1”) through a set of m trees known as weak classifiers. Input variables for each tree are ran-

domly selected, in subsets of fixed size, from the available covariates. Therefore, the propensity

score estimation can be reformulated as in Eq 7.

p̂ ðxiÞ ¼

Pm
j¼1
�jðxiÞ

m
; �jðxiÞ ¼

1 fi 2 s=xi 2 Jprg

0 i 2 s=xi 2 Jabf g

(

ð7Þ

where Jab and Jpr represent the set of terminal nodes where individuals from the volunteer sam-

ple are minority and majority, respectively. In other words:

Jpr ¼ Jl; l ¼ 1; . . . ; k :
nðsJlv Þ
nðsJlÞ

� 0:5

� �

ð8Þ

Jab ¼ Jl; l ¼ 1; . . . ; k :
nðsJlv Þ
nðsJlÞ

< 0:5

� �

ð9Þ
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Note that in the cases where the volunteer and the reference sample are very unbalanced in

size, the propensity scores may be exactly zero or one for some individuals and in such cases

cannot be properly applied. In some studies, adjustments have been made in order to avoid

this situation; for instance, [41] applied a (1000 � x + 0.5)/1001 transformation to move the

propensities away from zero and one.

For k nearest neighbours, computing the propensity score estimates involves a distance

function d which measures the closeness of each data point to a given individual i using covari-

ates X. This distance allows the n − 1 individuals to be rearranged as x(1), . . ., x(n−1), where x(1)

and x(n−1) represent, respectively, the covariates of the closest and the furthest individual from

i according to d. As the target variable is binary, the propensity scores can be estimated with

the following formula:

p̂ ðxiÞ ¼

P
j2s=dðxi ;xjÞ�dðxi ;xðkÞÞ

zj
k

ð10Þ

Application of the formula shown in Eq 10 is equivalent to calculating the proportion of

individuals from the volunteer sample out of the k nearest neighbours to the individual i. The

number of neighbours k is arbitrary, meaning that k = 1 or even a small enough k will provide

probabilities of zero or one.

Estimation of the propensity scores using the Naïve Bayes algorithm is based on the Bayes

formula, derived from the observed probabilities of participants belonging to the volunteer

sample and the occurrence of a given vector for X, that is, the values of the covariates for a

given individual i.

p̂ ðxiÞ ¼
Pðzi ¼ 1ÞPðX ¼ xijzi ¼ 1Þ

PðX ¼ xiÞ
ð11Þ

If variables with very rare classes or presenting high cardinality are used as covariates, the

propensity estimates might present values significantly far from the real propensity.

Finally, when using a GBM algorithm ([19]), the formula for propensity score estimation has

the same structure as that used in logistic regression, but is based on a different parametrisation:

p̂ ðxiÞ ¼
1

e� wTJðxiÞ þ 1
ð12Þ

where J(xi) represents a matrix of terminal nodes of m decision trees (the number of trees used

is decided by the user but should be correlated with the sample size, as in Random Forests) and

w is a vector representing the weights of each tree. The development of trees in J(xi) is achieved

through an iterative process minimising of the specified loss function for a small sample of the

input dataset (which, in this context, is assumed to be the combined sample s) selected for test-

ing purposes.

Simulation study

Artificial data

To evaluate the performance of classification algorithms applied under different circumstances

for PSA, we conducted an experiment using a fictitious population of voters. This population

was used originally by [44], following an experiment by [5] to measure the efficiency of adjust-

ments in selection bias. For the present study, minor changes were made to the gender distri-

butions by age so that a proper Missing Completely At Random (MCAR) situation could be

simulated. This population and the experiment are detailed below.
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The fictitious population had a total size of N = 50,000 individuals. The study aim was to

estimate the fraction of votes obtained by each of three fictitious parties, Party 1, 2 and 3, in a

hypothetical election. Four sociodemographic variables—age, nationality, gender and educa-

tion—were measured in each sample and used as covariates for the PSA models.

• The age variable was determined by applying the following transformation of a simulated

Beta distribution: Age = 82x + 18, x* β(2, 3). The resulting age pyramid was similar to the

real-world case in Spain ([47]).

• In the study population, 15% were non-natives aged under 35 years, 10% were non-natives

aged 35 to 65 years, and 2.5% were non-natives aged over 65 years, which is similar to the

nationality distribution by ages in Spain ([48]).

• The probability of the individual being male or female was identical, for the whole popula-

tion, in contrast to the experiment performed by [44].

• Education was constrained to be dependent on the age strata (the same strata as for the

Nationality variable), in order to make it similar to the pattern of education levels among

Spanish adults ([49]).

• Of the individuals aged under 35 years, 35% had only primary education, 20% had second-

ary education and 45% had higher education.

• Of the individuals aged 35 to 65 years, 45% had only primary education, 25% had second-

ary education and 30% had higher education.

• Of the individuals aged over 65 years, 80% had only primary education, 10% had second-

ary education and 10% had higher education.

In addition, internet access was made dependent on age and nationality. Among non-

natives, internet access was available to 20% of those aged under 35 years, but only to 10% of

those aged 35 to 65 years and to 0% of those aged over 65 years. In contrast, for natives the cor-

responding values were 90%, 70% and 50% respectively.

The probabilities of a person voting for Party 1, 2 or 3 were considered in relation to the

above variables. Party 1 would attract the votes of 20% of the female population, but the men

would not vote for it at all. As internet access did not depend on gender, measuring the pro-

portions of the population who would vote for Party 1 could be considered an example of a

Missing Completely at Random (MCAR) selection mechanism. For Party 2, the voting proba-

bility increased in line with the voter’s age; among the population as a whole, nobody aged

under 35 years would vote for this party, while 40% of those aged 35 to 65 years would do so,

as would 60% of those over 65 years old. The above-mentioned relationship between age and

internet access means that the measurement of voting intentions for Party 2 is also subject to a

Missing At Random (MAR) selection mechanism. Finally, voting intentions for Party 3

depended on both age and internet access: thus, 10% of individuals with no internet access

(regardless of their age) would vote for this party, while among those with internet access, the

party would attract the votes of 60% of those under 35 years, 40% of those aged 35 to 65 years,

and 20% of those aged over 65 years. These relationships mean that the measurement of voting

intentions for Party 3 is subject to a Not Missing At Random (NMAR) selection mechanism,

as the target variable is in fact related to the selection variable.

The distribution of values for the population as a whole and for each of the subpopulations,

with and without access to internet, is shown in S1 Table. As expected, there is a slight diver-

gence in voting intentions for Party 2 between the population as a whole and those with inter-

net, and a strong divergence in this respect for Party 3. Persons with internet were more likely
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to have completed a course of higher education, were on average two years younger and were

five times less likely to be non-native. However, differences in gender were negligible, and so

voting intentions for Party 1 were barely affected.

To estimate voting percentages for each party, we selected a convenience sample from the

population with internet access, and a reference sample from the full population. The reference

sample was drawn by simple random sampling without replacement (SRSWOR), and three

different sampling schemes were tested to select the convenience sample:

1. SRSWOR from the whole internet population.

2. Sampling from the whole internet population with unequal self-selection probabilities,

obtained by the following formula:

pi ¼
1

1þ e� 1þ0:05�Agei
; i ¼ 1; 2; . . . ; 31; 881 ð13Þ

where Agei is the age of the i-th individual of the internet population.

3. Sampling from the whole internet population with unequal self-selection probabilities,

obtained by the following formula:

pi ¼
1

1þ e1� sinðAgei=20Þ
; i ¼ 1; 2; . . . ; 31; 881 ð14Þ

where Agei is the age of the i-th individual of the internet population.

The formulas for the inclusion probabilities in schemes 2 and 3 were tested to evaluate how

ML algorithms perform in comparison with logistic regression when the relationship between

the covariates and the selection probability (which we assume to be the self-selection probabil-

ity) can be modelled using the logit function, with either linear or nonlinear relationships. The

experiment was replicated varying the convenience sample size across nvs = 500, 750, 1,000,

2,000, 5,000, 7,500 and 10,000, and the size of the reference survey was established at 500 indi-

viduals for each replication. The replication results were obtained by averaging the bias and

calculating the MSE of the estimates in 500 simulations. The mean bias of each replication was

obtained according to Eq 15:

Biask ¼
P500

m¼1
p̂k
m

500
� pk ð15Þ

where p̂k
m is the proportion of voters for Party k estimated in the m-th simulation and pk is the

real proportion of voters for Party k. The MSE for the estimators in each replication was

obtained directly from the estimates, as in Eq 16:

MSEk ¼

P500

m¼1
ðp̂k

m � p̂�kÞ2

499
þ ðBiaskÞ

2 ð16Þ

where p̂�k is the mean of the estimates for the proportion of voters for Party k.

Real data

A set of real data was analysed to determine the usual patterns observed in real applications.

This real-data approach is commonly employed in studies of PSA ([10]; [11]; [12]).

The dataset used to simulate a pseudo-population was obtained from the microdata of the

2012 edition of the Life Conditions Survey (known by the Spanish acronym, ECV) ([50]). This

annual survey is conducted face-to-face by the Spanish Institute of Statistics, targeting the
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entire Spanish population aged 16 years or older. The primary unit considered is the house-

hold, and the secondary units are the members of the household. The variables considered

include income, poverty, equality, employment and household living conditions. In 2012,

12,714 households were surveyed, providing a sample population of 33,573 individuals. In this

study, the full sample had to be preprocessed before the simulation due to the considerable vol-

ume of missing data. After this filtering process, the size of the pseudo-population (that is, the

full filtered dataset) was N = 28,210, and 61 variables were identified as potential covariates for

the PSA models.

The convenience and reference samples were selected by SRSWOR from the volunteer

(internet) population and the full population, respectively. The identifying variable for volun-

teers and non-volunteers was the presence of a computer in the household. According to the

2012 Spanish Survey on Equipment and Use of Information and Communication Technolo-

gies in Households ([51]), 90.1% of persons who had a computer in their household also had

internet access, and 98.3% of those with internet access at home also had a computer. There-

fore, we believe it reasonable to assume that taking the presence of a computer in the house-

hold as the selection variable is a very good proxy of a variable measuring internet access in the

household. Two target variables were considered:

• The proportion of the population whose self-reported health was poor (those who responded

“poor” or “very poor” to the question regarding their general state of health.

• The proportion of the population living in a household with more than two members.

The experiment was replicated 500 times, varying the size of the convenience sample across

nvs = 500, 750, 1,000, 2,000, 5,000 while the reference sample size was maintained at nrs = 500,

and considering the following groups of covariates:

• Group 1: Nine covariates measuring region, size of home town/city, gender, marital status,

nationality, country of origin and education level (both achieved and currently studying).

• Group 2: All the covariates in Group 1 plus five health-related variables, namely chronic dis-

eases, presence of disability, and lack of access to medical and/or dentistry services (and rea-

sons for this lack).

• Group 3: All the covariates in Group 1 plus eleven poverty-related variables, namely delays

in bill payment, incidence of bills on the household economy, difficulty in living within

household income, ability to acquire certain household goods, possession of electrical appli-

ances, income needed to live without financial difficulty and calculated indicators of poverty

risk and material scarcity.

• Group 4: All 61 potential covariates. All of the above variables plus working conditions, care

provision, energy poverty and household conditions and expenditure.

The S1 Dataset includes the full dataset used to perform these analyses.

Algorithms and parameter tuning

The procedure in both simulations was the same: in each of the 500 simulations, convenience

and reference samples were selected, PSA was applied to reweight the convenience sample

using Hajek-type weights, and the population parameter was estimated using the convenience

sample with PSA. Measures of bias and MSE for each scenario, algorithm and nvs were esti-

mated as in ]18] and [14]. This procedure was implemented in the statistical software R ([52])

using the packages RWeka ([53]; [54]),C50 ([55]), rpart ([56]), randomForest ([57]), e1071
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([58]) abd gbm ([59]). Packages ggplot2 ([60]), xlsx ([61]), gridExtra ([62]) and RColorBrewer
([63]) were used to generate the figures illustrating the results.

Propensity scores were calculated in each case using logistic regression, C4.5, C5.0, CART,

k-nearest neighbors, Naïve Bayes, Random Forest, and GBM. For exploratory purposes, in the

artificial data simulation the parameter configuration of each algorithm was selected on a grid,

as follows:

• Decision trees (C4.5, C5.0 and CART) were applied taking 0.1, 0.25 and 0.5 as confidence

values for pruning, and 0.5%, 1% and 5% of the dataset as the minimum number of observa-

tions per node.

• K-Nearest Neighbours was applied taking k = 3, 5, 7, 9, 11, 13.

• Naïve Bayes was applied with a slight Laplace smoothing for the values 0, 1, 2, 5, 10.

• Random Forests were generated with 500 trees and 1, 2, 4 sampled variables for each tree.

• GBM was applied with interaction depths of 4, 6 and 8, and learning rates of 0.1, 0.01 and

0.001.

The impact of tuning parameters in PSA is still poorly understood, and optimality criteria

are lacking. In this context, goal of classification algorithms is not to achieve greater accuracy

but a higher likelihood for the propensity of volunteer participation in an online survey ([11]).

Parameter tuning was implemented for real data simulation. Thus, 10 times repeated 10-fold

cross-validation was performed for each scenario, algorithm and nvs using the caret package in

R ([64]), except for the CART algorithm, for which the cross-validation was coded separately,

as caret does not allow us to refine the minimum number of observations per node. Log-Loss

optimisation was used, as this metric bettter explains the deviation of estimated propensities

from real participation. The parameter grids were as described above, with the following excep-

tions: the sampled variables for the Random Forest trees were taken as
ffiffiffipp , p/2 and p, where p is

the number of covariates. In C5.0, we did not optimise the confidence value for pruning and

minimum number of observations in the nodes. The optimal values obtained for C4.5 were

used in C5.0, because the two algorithms are closely related and likely to behave in a similar

way. On the other hand, the trials, type of model (rule-based or tree-based) and winnowing

(feature selection) were tuned in C5.0. The results obtained are summarised in S2 Table.

Results

Artificial data

S3 and S4 Tables show the bias and MSE results, respectively, obtained from using PSA with

ML algorithms and SRSWOR from the internet population to build the convenience sample.

There are small differences in bias reduction between C4.5, C5.0 and CART, especially for

larger volunteer sample sizes. For Party 1, these algorithms outperform logistic regression only

when the volunteer sample size is small, converging to the unadjusted case for larger samples.

For Parties 2 and 3, the three algorithms are only better than unadjusted estimations when the

sample sizes are balanced, but they never improve on PSA estimates using logistic regression.

The MSE estimators with C4.5, C5.0 and CART also converge to the unadjusted case, which is

smaller than PSA with logistic regression for Party 1 but greater for Parties 2 and 3. The

parameter tuning of decision trees (with any algorithm: CART, C4.5 or C5.0) has no signifi-

cant effect on bias removal, although greater confidence in the pruning appears to be slightly

advantageous in the case of Parties 2 and 3 if the C4.5 algorithm is used and the sample sizes

are relatively balanced.
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The use of the k-NN classifier yields less biased estimates than that of baseline logistic

regression for all of the missing data mechanisms considered. Thus, PSA with k-NN provides

estimates that are less biased, on average, than the unadjusted estimates and the default-PSA

reweighted estimates for Party 3. For Party 2, reweighting with PSA using k-NN transforms

the bias in the opposite direction to the original bias; however, this bias is lower than that pro-

duced by the PSA estimates with logistic regression in absolute terms. For Party 1, k-NN pro-

vides less biased estimates than logistic regression but a low value for k; moreover, larger

sample sizes are required. When estimating the likelihood of an individual voting for Party 1

or 2, the estimator MSE is smaller when PSA is used with k-NN rather than logistic regression,

for larger numbers of neighbours and balanced sample sizes. When this is done for Party 3, the

MSE of PSA with k-NN is significantly lower than for PSA with logistic regression, although

large values of k are required for full efficiency.

Application of the Naïve Bayes classifier in PSA produces a substantially greater reduction

in bias than when PSA is performed with logistic regression, but only for the case of Party 2.

For the other two parties, Naïve Bayes does not outperform logistic regression in PSA in terms

of estimation bias except when samples are balanced and larger integers are used for Laplace

smoothing. In addition, the MSE of the estimators is smaller with Naïve Bayes when the sam-

ple sizes are balanced and Laplace smoothing uses larger integers. The improvement, however,

is rather limited.

Propensity estimation with the Random Forest algorithm is only advantageous in terms of

bias removal in the estimations for Party 3, in which case the Random Forests algorithm

achieves the highest bias reduction of all the classifiers reviewed. This is an important finding,

as this missing data mechanism is particularly troublesome and, moreover, is commonly

encountered in real data. The results for the MSE estimators under PSA with Random Forests

show that this value may be only half that obtained with PSA and logistic regression for Party

3. The number of candidate variables for tree growing provides better results, remaining low

for balanced sample sizes, but high for larger samples.

Finally, the efficiency of PSA reweighting with GBM is crucially dependent on the parame-

ter configuration employed. For all kinds of missing data mechanisms, PSA with GBM

removes bias more effectively when the learning rate is relatively low; thus, for Party 2, the bias

reduction is almost complete. The MSE of the estimators reveal that GBM for PSA is advanta-

geous for Parties 1 and 2 if parameter fitting is adequate (lower learning rates for Party 1,

higher ones for Party 2), and significantly advantageous for Party 3 when the learning rate is

high. The effects of interaction depth are mainly apparent with larger volunteer sample sizes,

and greater interaction depths provide estimations with lower levels of bias and MSE.

S5 and S6 Tables show the results obtained from using PSA with ML algorithms with unequal

selection probabilities in the internet population, following the logistic formula described in Eq

13 for convenience sampling, for bias and MSE, respectively. As in the previous scenario, bias

reduction with PSA using decision trees (C4.5, C5.0 or CART) converges to the unadjusted case

as the convenience sample size increases. The best results are provided by C4.5 trees, but these

are still much worse than those obtained with logistic regression. Regarding MSE, the lack of

variability produced by the inability of decision trees to grow in samples with a large fraction of

volunteer respondents leads them to have a smaller error than is the case with logistic regression

in the estimation of intentions to vote for Party 1, especially with CART. Parameter tuning has a

noticeable (albeit small) effect only when the samples are relatively balanced in size: with C4.5,

higher confidence in pruning leads to better results, while with CART the opposite is true.

Using the k-NN algorithm in PSA produces a greater bias reduction than that of logistic

regression for Parties 2 and 3, provided the number of neighbours, k, and the sample size are

sufficiently large. The increase in variability provoked by the use of this algorithm makes the
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MSE slightly higher than with logistic regression in the intention to vote for Party 2. However,

this is not the case regarding Party 3, where PSA with k-NN provides estimates with less error.

In the case of Naïve Bayes, and regardless of the Laplace smoothing used, the bias and MSE are

greater for Party 2 than with logistic regression, but these values are smaller for Party 3. Com-

paratively, Naïve Bayes in PSA provides estimates which produce a smaller error than either

logistic regression, decision trees or k-NN.

The bias removal provided by PSA with Random Forest is strongly dependent on the size of

the convenience sample and the number of variables sampled to create the trees. The bias for

Party 3 is close to zero when the convenience sample is around four times larger than the refer-

ence sample and only two variables are sampled. If four variables are sampled, the bias reduction

is greatest when the sample is 10 to 15 times greater. These results show that the Random Forest

algorithm again provides the best MSE results in estimating voting probabilities for Party 3.

The GBM algorithm applied in PSA for sampling with unequal selection probabilities pro-

duces a very similar situation to SRSWOR, except that efficiency decreases in line with the size

of the convenience sample size. When comparing the MSE in the voting estimation for Party 2

with that of k-NN and logistic regression, GBM is poorer with small sample sizes but better

with larger ones. Accordingly, GBM is the best option for estimating voting intentions for

Party 2 when a large convenience sample is available.

S7 and S8 Tables show the results for unequal selection probabilities in the internet popula-

tion following the logistic formula described in Eq 14 for convenience sampling, for bias and

MSE, respectively. The performance of all the algorithms, taking into account that the amount

of inherent bias is smaller, is very similar to the previous case. Among the differences observed,

it should be noted that bias reduction is worse with k-NN (especially in estimating voting

intentions for Party 2, for which this algorithm performs no better than logistic regression)

and that Naïve Bayes performs better for Party 2 but worse for Party 3.

S9 Table summarises the bias and MSE measures obtained for each algorithm and selection

mechanism, revealing certain characteristic patterns. For Party 1, while Naïve Bayes provides

the lowest mean bias and is the best adjustment more frequently than the other algorithms,

decision trees are better choices in terms of MSE, especially CART. For Party 2, bias reduction

is dominated by PSA with k-NN and GBM but the former is surpassed by GLM in terms of

MSE. Finally, Random Forest seems to be the best algorithm for PSA regarding voting inten-

tions for Party 3, both in terms of bias and MSE. In general, ML algorithms (except for deci-

sion trees) produce the largest reductions in bias and, in many cases too, the lowest MSE.

Real data

S10 Table show the results obtained for the bias present in estimating the fraction of the popu-

lation who perceive their health to be poor. The table rows show the estimations obtained after

PSA reweighting with the four covariate groups. These results clearly reflect the importance of

the variables regarding PSA efficiency; when only demographic variables are included, PSA

with Naïve Bayes provides the least biased estimates for all sample sizes, but also greater vari-

ance than the other methods and hence a larger MSE. In consequence, PSA with logistic

regression provides the smallest error term. The bias is smaller when variables related to the

outcome (health) or the exposure (poverty) are included in the models, with the former group

leading to greater reductions in bias and MSE, but in this respect the situation for algorithms

is unaffected. However, when all available covariates are used, PSA with Naïve Bayes appears

to produce high levels of bias, while PSA with logistic regression is almost unbiased for large

volunteer sample sizes, at the cost of high variance. As a result, MSE values are poor for PSA

with logistic regression, while decision trees (for small nvs) and bagging/boosting algorithms
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(for large nvs) have the smallest term of error. The estimation with the lowest MSE was

achieved using PSA with logistic regression together with demographic and health-related pre-

dictors, followed by PSA with GBM using all available predictors.

S11 Table shows the bias estimates for the fraction of households with more than two mem-

bers, after PSA reweighting. It is noticeable that PSA with Random Forest removes most of the

original bias as the volunteer sample size increases when only demographic variables are used,

to the point that the MSE of the estimates obtained by PSA with Random Forest with nvs is the

lowest of all those observed during the experiment. This pattern continues when health-related

variables are added, although the bias of the estimates increases. On the other hand, if small

volunteer samples are used, PSA with logistic regression provides the estimates with the small-

est error term, and this true for all sample sizes when poverty covariates are used. When all

covariates are included, a similar pattern is observed: thus, decision trees and GBM (with the

latter providing the second-lowest MSE of the experiment), are the best algorithms for PSA

when small and large sample sizes, respectively, are available.

Discussion

New technologies have had a profound impact on surveying techniques worldwide. This

impact is especially significant for social and political surveys, and most particularly for market

research surveys, where the speed increases and cost reductions achieved with new technolo-

gies have radically changed the ways in which data are compiled. While in many cases the pub-

lic sector continues to conduct interviews face-to-face and/or via telephone landlines, private

companies are using mobile phones, tablets and the web, as standalone or combined strategies,

thus obtaining data from volunteer participants. On the other hand, the results obtained with

such nonprobability surveys present various problematic issues, notably the absence of a sam-

ple design assigning weights to the sample units, the presence of frame coverage issues and the

risk of nonresponse bias. Although many statistical methods have been proposed to alleviate

the problems of noncoverage and nonresponse, the question of nonrandomness in the sample

is more complex and has not been thoroughly addressed.

In this respect, [65] reviewed existing inference methods to correct for selection bias in

nonprobability samples. These authors considered a situation where only a nonprobability

sample is available and compared a range of predictive inference methods (pseudo-design-

based and model-based) in a general framework. The conclusion drawn from this study was

that machine learning methods should be incorporated to address the problem of misrepre-

sentation in nonprobability samples.

The present study considers another class of methods that may be used to correct selection

bias in volunteer online surveys, which combine a nonprobability sample with a reference

sample in order to construct propensity models. Our analysis compares logistic regression and

ML classification algorithms for propensity estimation to determine the extent to which ML

may be considered a viable alternative. ML algorithms present certain advantages over logistic

regression; for example, they present greater flexibility, and do not require the analyst to spec-

ify a model with its interactions on nonlinear relationships, as ML is capable of capturing these

relationships in the data learning procedure. Our study considers situations with few and with

many covariates, for three different missing-data mechanisms influencing the selection pro-

cess, and for different parameter configurations in the classifiers. To our knowledge, the only

previous studies of the efficiency of classifier parameter tuning in PSA are those of [15] and

[16] for decision trees, and to a more limited extent than in the present case. In addition, [41]

alluded to some preliminary tests for Random Forest parameters, suggesting that optimum

parameter selection would improve the estimations achieved.
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The results we present show that most of the algorithms evaluated may provide a valid alter-

native to logistic regression in PSA if circumstances make the latter inappropriate. The C4.5

and C5.0 algorithms for decision trees are particularly useful when reference and volunteer

sample sizes are balanced and the variables are numerous. Decision trees can be considered as

variable selectors, as they automatically select subsets of optimal variables for classification,

which is advantageous when the dimensionality is high ([66]). However, they also increase

estimation variance when used for PSA, especially when there are significant nonlinear rela-

tionships between variables and the sample size is small ([16]; [28]).

The k-Nearest Neighbours (k-NN) algorithm is another useful alternative to logistic regres-

sion in PSA if the number of covariates available is low, especially with NMAR selection. How-

ever, as the dimensionality increases, k-NN becomes less efficient than other approaches. Its

behaviour in both low and high-dimensional contexts was studied by [67], who concluded that

higher dimensionality results in more concentrated distances, which makes k-NN less explica-

tive of the actual class of an individual.

Our evaluation of Naïve Bayes in PSA for controlling selection bias revealed the existence

of certain very clear patterns. When used with balanced sample sizes and few covariates, and

not presenting rare or infrequent values, this algorithm provides smaller MSE values. In any

other case, although PSA with Naïve Bayes behaves in an unstable way, simulations for NMAR

using real data show that MSE is also substantially reduced. Ideally, Naïve Bayes should be

employed with discrete input variables, as the probability computation performed by the algo-

rithm is based on cross-tabulations. In addition, Naïve Bayes assumes independence between

the variables, which may not be realistic in a high dimensional context due to the redundancy

and noise issues that often arise (see [66]).

The application of bagging and boosting algorithms produced interesting results. Random

Forest, which has been widely tested for PSA ([16]; [23]; [22]; [24]; [30]; [41]; [29]), achieved the

largest bias reduction when the selection mechanism was NMAR, both for simulated data

(under the condition of sample balancing) and with real data. However, its application presented

several drawbacks, especially the fact that it is very prone to overfit propensity estimates on the

data, as was apparent in the MSE of the Random Forest estimates with PSA, which tended to

decrease and stabilise as the volunteer sample size increased. This pattern of behaviour has been

reported previously by [24] for treatment effect estimates, and by [41], who observed an increase

in variance when Random Forests of classification trees were used. On the other hand, the

GBM, also referred to in the literature as boosted CART ([16]; [30]), provided weights that

resulted in more stable behaviour of the estimates, as has also been noted previously ([16]; [22]).

The GBM is efficient if the parameters are correctly tuned and the covariates are sufficiently dis-

criminant. In this respect, [21] proposed a default parameter configuration for the GBM with

low interaction depth and shrinkage. In the simulated data example described, better results

were obtained with greater interaction depths. On the other hand, the best results with artificial

data simulation were obtained when the learning rate was maximal; this parameter is related to

overfit, and therefore should not produce a different pattern of behaviour in other situations.

Nonetheless, further research is needed on the question of GBM parameter fitting. Finally, let us

note that PSA with GBM in the real data simulation provided the best results in terms of MSE,

for a large volunteer sample and when all available covariates were used.

Conclusion

Our study findings support the use of ML algorithms as an alternative to PSA for reducing or

eliminating selection bias in online surveys, although logistic regression is also shown to be a

robust, reliable technique for propensity estimation. The efficiency of ML algorithms is closely
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related to the type of data considered and therefore no single approach is optimum for every

case. We provide evidence with respect to MCAR, MAR and NMAR selection mechanisms,

and for situations of low or high dimensionality. When selection follows a MCAR scheme,

CART and GBM are the best alternatives, although the other ML algorithms tested, except

Random Forest, also improve upon the results obtained by PSA with logistic regression, espe-

cially as the volunteer sample size increases. With MAR or NMAR selection, logistic regression

generally provides good adjustments, especially when the dimensionality is low and the covari-

ates are not very discriminant. However, if more covariates are available, logistic regression

tends to destabilise and the MSE increases, despite its improved performance in bias removal;

in this case, GBM, k-NN, decision trees and Random Forests all represent good alternatives.

Random Forests provides good results when the data are MCAR, even if covariates are nonsig-

nificant, although more research is needed on the possible incidence of overfitting on the final

results obtained. The presence of balancing and overfitting issues suggests that data prepro-

cessing should be a key step in the estimation of propensity scores, as observed previously by

[17]. We recommend that further studies should consider the application of data preprocess-

ing techniques such as noise filtering, sample balancing or feature selection (see [68]) before

PSA application, and also take into account the effects of dimensionality when designing simu-

lation experiments or applications.

In general, our findings support the view given in [65] that ML methods can usefully be

used to remove selection bias when dealing with non-probability samples. Prior research has

shown that PSA successfully removes bias in some situations but at the cost of increasing the

variance of the estimates ([10]; [11]). The technique proposed by [11] and [12], applying a com-

bination of PSA and calibration, may represent a good alternative in such situations. The

behaviour of ML methods when both PSA and calibration are applied is currently under study.
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