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Abstract: The Levi-Civita connection and the k-th generalized Tanaka-Webster connection are defined
on a real hypersurface M in a non-flat complex space form. For any nonnull constant k and any
vector field X tangent to M the k-th Cho operator F(k)

X is defined and is related to both connections.
If X belongs to the maximal holomorphic distribution D on M, the corresponding operator does
not depend on k and is denoted by FX and called Cho operator. In this paper, real hypersurfaces
in non-flat space forms such that FXS = SFX, where S denotes the Ricci tensor of M and a further
condition is satisfied, are classified.

Keywords: k-th generalized Tanaka-Webster connection; k-th Cho operator; real hypersurface;
Ricci tensor; non-flat complex space form

1. Introduction

An n-dimensional Kähler manifold with constant holomorphic sectional curvature c called
complex space form. Depending on the value of the holomorphic sectional curvature, a complete and
simply connected complex space form can be analytically isometric to a complex projective space CPn

if c > 0, to a complex Euclidean space Cn if c = 0, or to a complex hyperbolic space CHn if c < 0.
In case of CPn c is considered 4 and in case of CHn c is equal to −4. The term non-flat complex space
forms and the symbol Mn(c), n ≥ 2, is used to describe the complex projective and complex hyperbolic
spaces, when it is not necessary to distinguish them.

We consider M to be a connected real hypersurface of Mn(c) without boundary. We denote ∇ the
Levi-Civita connection on M and J the complex structure of Mn(c). Next we consider a locally defined
unit normal vector field N on the real hypersurface and we denote by ξ = −JN, which is the structure
vector field on M and it is tangent to M. The real hypersurface is a Hopf hypersurface, if the structure
vector field is an eigenvector of the shape operator A of the real hypersurface. Then the corresponding
eigenvalue is denoted by α = g(Aξ, ξ). Furthermore, the Kähler structure of non-flat complex space
induces on M an almost contact metric structure (φ, ξ, η, g), where φ is the tangent component of J
and η is an one-form given by η(X) = g(X, ξ) for any X tangent to M.

In [1–4], Takagi classified homogeneous real hypersurfaces in complex projective space into
6 types. Among them there are the following

• type (A1) real hypersurfaces that are geodesic hyperspheres of radius r, 0 < r < π
2 ,

• type (A2) real hypersurfaces that are tubes of radius r, 0 < r < π
2 , over totally geodesic complex

projective spaces CPk, 0 < k < n− 1 (type (A1), (A2) are called type (A) real hypersurfaces),
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• type (B) real hypersurfaces that are tubes of radius r, 0 < r < π
4 , over the complex quadric.

The above are Hopf hypersurfaces whose principal curvatures are constant. In case of complex
hyperbolic space, real hypersurfaces with constant principal curvatures were studied by Montiel in [5]
and by Berndt in [6]. In this case the real hypersurfaces are divided into two types:

• type (A) real hypersurfaces which are either a horosphere in CHn, or a geodesic hypersphere or
a tube over a totally geodesic complex hyperbolic hyperplane CHn−1, or a tube over a totally
geodesic CHk (1 ≤ k ≤ n− 2),

• type (B) real hypersurfaces which are tubes of radius r > 0 over totally real hyperbolic space RHn.

The above real hypersurfaces are homogeneous and Hopf.
Ruled real hypersurfaces are another important class of real hypersurfaces in Mn(c). They are

constructed in the following way: we consider a regular curve γ in a non-flat complex space form and
X a tangent vector field. Then at each point of the curve there is a unique hyperplane of Mn(c) cutting
the curve in a way to be orthogonal to both X and JX. Then, the union of all these hyperplanes form
the ruled hypersurface. The previous description is equivalent to the fact that on ruled hypersurfaces
in Mn(c) the maximal holomorphic distribution D of M at any point, which includes all the vectors
orthogonal to ξ, is integrable and it has as integrable manifold Mn−1(c), i.e g(AD,D) = 0. An example
of a ruled real hypersurface in CPn is given by Kimura in [7]: Let Cn+1 be an n + 1-dimensional
complex Euclidean space with the canonical coordinates (z0, z1, ..., zn) and S2n+1 a unit sphere in
Cn+1 with center at the origin. S2n+1 is principal fibre bundle over CPn with structure group S1 and
projection map Π. Let M′ the real hypersurface in S2n+1 given by

M′ = {z = (reit cos(θ), reit sin(θ), (1− r2)
1
2 z2, ..., (1− r2)

1
2 zn ∈ Cn+1;

n

∑
j=2
|zj|2 = 1, 0 < r < 1, 0 ≤ t < 2π and 0 ≤ θ < 2π}.

Then M = Π(M′) is a minimal, ruled and no complete real hypersurface in CPn. (see also [8]).
The Jacobi operator RX with respect to a unit vector field X is defined by RX = R(·, X)X, where

R is the curvature tensor field on M, which is a self-adjoint endomorphism of the tangent space. It is
connected to Jacobi vector fields, which are solutions of the Jacobi equation ∇γ̇(∇γ̇Y) + R(Y, γ̇)γ̇ = 0
along a geodesic γ in M. The Jacobi operator with respect to the structure vector field ξ, Rξ , is called
the structure Jacobi operator on M.

Let R denote the Riemannian curvature tensor of M. Then the Ricci tensor is defined by

SX =
2n−1

∑
i=1

REi (X) =
2n−1

∑
i=1

R(X, Ei)Ei,

where {Ei}i=1,...,2n−1 is an orthonormal basis of TM, for any X tangent to M. Many problems of
classification of real hypersurfaces in non-flat complex space forms are related to their Ricci tensor.

In [9] is proved that real hypersurfaces in Mn(c), n ≥ 3, do not admit parallel Ricci tensor
(i.e., ∇XS = 0, for any vector field X tangent to M). In [10] the previous result is also proved for three
dimensional real hypersurfaces.

As a consequence real hypersurfaces satisfying weaker conditions than the parallelism of S are
studied. First, we mention the classification of Hopf hypersurfaces in non-flat complex space forms
with constant mean curvature and ξ-parallel Ricci tensor provided by Kimura and Maeda in [11].
Next, Maeda in [12], gives the classification of Hopf hypersurfaces in CPn, n ≥ 3, with Aξ = 2cot(2r)ξ
when the focal map φr has constant rank on M, satisfying ∇ξ S = 0, obtaining particular cases of the
homogeneous real hypersurfaces in Takagi’s list and two kinds of non-homogeneous hypersurfaces.
In [13] Suh classified Hopf hypersurfaces in Mn(c), n ≥ 2, whose Ricci tensor is η-parallel, that is,
g((∇XS)Y, Z) = 0, for any X, Y, Z ∈ D, obtaining real hypersurfaces either of type (A) or of type (B).
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More results on the study of real hypersurfaces in non-flat complex spaces forms in terms of their Ricci
tensor are included in Section 6 of [14].

The canonical affine connection defined on a non-degenerate, pseudo-Hermitian CR-manifold
is called Tanaka-Webster connection (see [15,16]). The generalized Tanaka-Webster connection is a
generalization of the previous connection for contact metric manifolds defined by Tanno in [17] and
given by

∇̂XY = ∇XY + (∇Xη)(Y)ξ − η(Y)∇Xξ − η(X)φY.

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster connection,
Cho defined the k-th generalized Tanaka-Webster connection ∇̂(k) for real hypersurfaces M in Mn(c)
given by

∇̂(k)
X Y = ∇XY + g(φAX, Y)ξ − η(Y)φAX− kη(X)φY

for any X, Y tangent to M where k is a nonnull real number (see [18,19]). Then the following
relations hold

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA + Aφ = 2kφ, the k-th
generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

The difference of the Levi-Civita connection and the k-th generalized Tanaka-Webster connection
results in a tensor field of type (1,2) given by F(k)(X, Y) = g(φAX, Y)ξ− η(Y)φAX− kη(X)φY, for any
X, Y tangent to M (see [20] Proposition 7.10, pages 234–235). This tensor is called the k-th Cho tensor
on the real hypersurface M. Associated to it, for any X tangent to M and any nonnull real number
k the tensor field of type (1,1) F(k)

X , given by F(k)
X Y = F(k)(X, Y) for any Y ∈ TM can be considered.

This operator is named the k-th Cho operator corresponding to X and is given by

F(k)
X Y = g(φAX, Y)ξ − η(Y)φAX− kη(X)φY. (1)

The torsion of the connection ∇̂(k) is given by T̂(k)(X, Y) = F(k)
X Y− F(k)

Y X for any X, Y tangent to
M. Notice that if X ∈ D, the corresponding k-th Cho operator does not depend on k and is called Cho
operator and is simply denoted by FX .

Let T be a tensor field of type (1, 1) on M and X a vector field tangent to M. Then it is easy
to see that ∇XT = ∇̂(k)

X T if and only if TF(k)
X = F(k)

X T. That means that the eigenspaces of T are

preserved by F(k)
X . In [21] we studied the problem of commutativity of Cho operators and shape

operator, obtaining that the unique real hypersurfaces in CPm, m ≥ 3, such that FX A = AFX for any
X ∈ D are locally congruent to ruled real hypersurfaces. Similar results were obtained in the case of
structure Jacobi operator of real hypersurfaces in Mn(c), n ≥ 2, (see [22,23]).

In this paper we study real hypersurfaces M in Mn(c) whose Cho operators commute with the
Ricci tensor, i.e.,

FXS = SFX , X ∈ D. (2)

The geometrical meaning is that any eigenspace of the Ricci tensor S is preserved by FX . First we
prove the following Theorem 1.

Theorem 1. There do not exist Hopf hypersurfaces in Mn(c), n ≥ 2, whose Ricci tensor satisfies relation (2).

Next we study real hypersurfaces in Mn(c), n ≥ 2, which in addition satisfy the relation h =

g(Aξ, ξ), where h = Trace(A) and we obtain the following result (Theorem 2).
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Theorem 2. Let M be a real hypersurface in Mn(c), n ≥ 2, such that h = g(Aξ, ξ). Then FXS = SFX for any
X ∈ D if and only if M is locally congruent to a ruled real hypersurface.

As a direct consequence of the above Theorem we have Corollary 1.

Corollary 1. There do not exist real hypersurfaces M in Mn(c), n ≥ 2, such that F(k)
X S = SF(k)

X for any X
tangent to M and some nonnull real number k, if h = g(Aξ, ξ).

This paper is organized as follows: In Section 2 basic results concerning real hypersurfaces in
Mn(c), n ≥ 2, are stated. In Section 3 the proof of Theorem 1 is provided. In Section 4 the proof of
Theorem 2 and Corollary are given. At the end of the Section an open problem is stated.

2. Preliminaries

In this paper all manifolds, vector fields, etc., will be considered of class C∞ unless otherwise stated.
We denote M a connected real hypersurface in a non-flat complex space form, without boundary and
N a locally defined unit normal vector field on it. The Levi-Civita connection of the real hypersurface
is denoted by ∇ and (J, g) is the Kählerian structure of ambient space.

For any vector field X tangent to M we write JX = φX + η(X)N and −JN = ξ. Then (φ, ξ, η, g)
is an almost contact metric structure on M (see [24]). That is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y)

for any tangent vectors X, Y to M. From the above expressions we obtain

φξ = 0, η(X) = g(X, ξ).

The complex structure J is parallel and this results in

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ and ∇Xξ = φAX (3)

for any X, Y tangent to M and A being the shape operator of the immersion. The ambient space has
holomorphic sectional curvature c. Thus, the equations of Gauss and Codazzi are respectively given by

R(X, Y)Z = c
4 [g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY
−2g(φX, Y)φZ] + g(AY, Z)AX− g(AX, Z)AY,

and

(∇X A)Y− (∇Y A)X =
c
4
[η(X)φY− η(Y)φX− 2g(φX, Y)ξ],

for any X, Y, Z tangent to M, with R being the curvature tensor of M. The (maximal) holomorphic
distribution D on M (if n ≥ 2) is defined at any P ∈ M by D(P) = {X ∈ TP M|g(X, ξ) = 0}.

The above formulas imply that the Ricci tensor on the real hypersurface M is given by

SX =
c
4
[(2n + 1)X− 3η(X)ξ] + hAX− A2X (4)

for any X tangent to M, where h = Trace(A).
In the sequel we need the following result which is owed to Maeda [25] in case of CPn, n ≥ 2,

and is owed to Montiel [5] in case of CHn, n ≥ 2 (also Corollary 2.3 in [14]).
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Theorem 3. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
(i) α, which is the principal curvature of the Hopf hypersurface in the direction of ξ, is constant.
(ii) If W is a vector field which belongs to D such that AW = λW, then

(λ− α

2
)AφW = (

λα

2
+

c
4
)φW.

(iii) If the vector field W satisfies AW = λW and AφW = νφW then

λν =
α

2
(λ + ν) +

c
4

. (5)

Remark 1. In case of real hypersurfaces of dimension greater than two the third case of Theorem 3 occurs when
α2 + c 6= 0, since in this case relation λ 6= α

2 holds.

3. Proof of Theorem 1

Let M be a Hopf hypersurface in Mn(c), n ≥ 2, with Aξ = αξ and whose Ricci tensor satisfies
relation (2). Relation (2) taking into account relation (1) is written as

g(φAX, SY)ξ − η(SY)φAX = g(φAX, Y)Sξ − η(Y)SφAX. (6)

We consider the following two cases:
Case I: α2 + c 6= 0.
In this case relations of Theorem 3 and Remark 1 hold. Taking W ∈ D such that AW = λW then

AφW = νφW. Relation (4) due to the previous relations implies

Sξ = [ c
2 (n− 1) + α(h− α)]ξ, SW = [ c

4 (2n + 1) + λ(h− λ)]W and
SφW = [ c

4 (2n + 1) + ν(h− ν)]φW.
(7)

Relation (6) for Y = ξ implies

SφAX = [
c
2
(n− 1) + hα− α2]φAX, for any X ∈ D.

The above relation for X = W and X = φW taking into account relation (7) yields respectively

λ[
3c
4

+ h(ν− α)− (ν2 − α2)] = 0 ν[
3c
4

+ h(λ− α)− (λ2 − α2)] = 0. (8)

If 3c
4 + h(ν − α) − (ν2 − α2) 6= 0 then the first of (8) implies λ = 0 and relation (5) results in

2αν + c = 0. So we conclude that M has at most three different constant eigenvalues. So M is locally
congruent to a real hypersurface of type (B) (see [14]). Substitution of the eigenvalues of these real
hypersurfaces in λ = 0 leads to a contradiction.

Therefore, on M we have 3c
4 + h(ν− α)− (ν2 − α2) = 0. Following similar steps as in the above

case we conclude that the second relation of (8) implies 3c
4 + h(λ− α)− (λ2− α2) = 0. Combination of

the last two relation yields
(ν− λ)(h− ν− λ) = 0.

Suppose that ν 6= λ then h = λ + ν and relation 3c
4 = (ν2 − α2)− h(ν− α) because of (5) results

in λν = 5c
4 + α2. Substitution of the latter in (5) implies α(λ + ν) = 2(α2 + c). So λ + ν and λν are

constant. Thus, λ, ν are constant and the real hypersurface has at most three different eigenvalues.
So it is locally congruent to a real hypersurface of type (B). Substitution of the eigenvalues of these real
hypersurfaces in λν = 5c

4 + α2 leads to a contradiction.
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Therefore, on M relation λ = ν holds and this implies that M is locally congruent to a real
hypersurface of type (A). So relation (5) becomes

λ2 = αλ +
c
4

.

Furthermore, we have h = α + (2n− 2)λ. Relation 3c
4 = (λ2− α2)− h(λ− α) because of the latter

results in c = 0, which is impossible.
Case II: α2 + c = 0.
This case occurs when the ambient space is the complex hyperbolic space CHn, n ≥ 2. So we have

that c = −4 and α2 = 4. Take a unit vector field W ∈ D such that AW = λW, then AφW = νφW.
First, we suppose that λ 6= α

2 . Then relation (5) owing to α2 − 4 = 0 yields ν = α
2 and the real

hypersurface has three distinct eigenvalues α, λ and ν = α
2 . If p is the multiplicity of λ and q is the

multiplicity of ν we have that h = α + pλ + qν.
Relation (7) holds. The inner product of the first of relation (7) with ξ implies η(Sξ) = c

2 (n− 1) +
hα− α2. Moreover, relation (6) for X = W and Y = ξ due to relation (7), η(Sξ) = c

2 (n− 1) + hα− α2,
ν = α

2 and α2 = 4 results in hλ = 0.
Suppose that λ 6= 0 then h = 0. Moreover, relation (6) for X = φW and Y = ξ because of the

relation (7) and all the above relations yields λ = − α
2 . Thus, M has three constant principal curvatures.

So M is locally congruent to a real hypersurface of type (B). Substitution of the eigenvalues of such
real hypersurface in λ = − α

2 leads to a contradiction.
So λ = 0. Furthermore, relation (6) for X = φW and Y = ξ because of relation (7) and all the

above relations yields h = α
4 . The latter due to h = α + pλ + qν, leads to a contradiction.

Therefore, we conclude that λ = α
2 will be the only eigenvalue for all vectors in D. In this case

the real hypersurface is a horosphere. In the same way as in the previous case we obtain η(Sξ) =
c
2 (n− 1) + hα− α2. Moreover, relation (6) for X = W and Y = ξ due to (7), η(Sξ) = c

2 (n− 1) + hα− α2,
λ = α

2 and α2 = 4 yields h = 0. In this case we have h = (2n− 1)α, so α = 0 which is impossible and
this completes the proof of the Theorem.

4. Proof of Theorem 2

In order to prove Theorem 2 the steps below are followed:

• As a consequence of Theorem 1 we conclude Proposition 1.

Proposition 1. There do not exist Hopf hypersurfaces in Mn(c), with h = g(Aξ, ξ) and whose Ricci
tensor satisfies relation (2).

• Next we study non-Hopf hypersurfaces satisfying the above conditions and the shape operator
on U and φU orthogonal to ξ is characterized (see Lemma 1). In case of three dimensional real
hypersurfaces Lemma 1 leads to the conclusion that the real hypersurface is a ruled one.

• We go on with the study of real hypersurfaces of dimension greater than three. In this case it
is proved that the eigenvalues of the shape operator on DU , which consist of the vector fields
orthogonal to {ξ, U, φU}, can be:
either all are equal to zero,
or zero and two non-zero λ1 and λ2. It is proved that this case can not occur.
Therefore, the only case that occurs is the first one and this leads to the conclusion that M is a
ruled real hypersurface.

We are now focused on the study of non-Hopf real hypersurfaces satisfying relation (2) and
h = g(Aξ, ξ). In this case also relation (6) holds. First, the scalar product of relation (6) for Y ∈ D with
Y yields

η(SY)g(φAX, Y) = 0, for any X, Y ∈ D. (9)
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Suppose that g(φAX, Y) = 0 for any X, Y ∈ D. Then M is a ruled hypersurface.
Next we examine the case of η(SY) = 0, for any Y ∈ D. The previous relation implies Sξ = µξ,

for a certain function µ on M. Since M is a non-Hopf real hypersurface we locally have

Aξ = αξ + βU,

where we denote by α = g(Aξ, ξ), U is a unit vector field in D, α and β are functions on M with β 6= 0.
Furthermore, we denote by DU the orthogonal complementary distribution in D to the one spanned by
U and φU (this holds in case of real hypersurfaces with dimension greater than 3).

Lemma 1. Let M be a real hypersurface in Mn(c), n ≥ 2, whose Ricci tensor satisfies relation (2) and h = α.
Then the shape operator A of M satisfies the relation

AU = βξ AφU = 0. (10)

Proof of Lemma 1. Relation (6) for Y = ξ implies η(Sξ)φAX = SφAX, for any X ∈ D. As Sξ = µξ =
c
4 (2n− 2)ξ + αAξ − A2ξ = [ c

4 (2n− 2)]ξ − βAU, its scalar product with a vector field Z, orthogonal to
ξ and U, gives βg(AU, Z) = 0. Moreover, the scalar product with U yields βg(AU, U) = 0 from our
hypothesis. This implies

AU = βξ.

The scalar product of (6) with U yields η(SY)g(AφU, X) = η(Y)g(AφSU, X). Taking Y = ξ

it becomes

η(Sξ)g(AφU, X) = g(AφSU, X) (11)

for any X ∈ D. Since SU = ( c
4 (2n + 1)− β2)U and η(Sξ) = c

4 (2n− 2)− β2, from (11) we have

AφU = 0.

From now on we suppose that the dimension of the real hypersurface is greater than 3.
From Lemma 1 we know now that DU is A-invariant. Take now a unit Y ∈ DU such that AY = λY.
From (6) we get λ(g(φY, SZ)ξ − η(SZ)φY) = λ(g(φY, Z)Sξ − η(Z)SφY), for any Z tangent to M.
Therefore either λ = 0, or, if λ 6= 0, taking Z = ξ, we have SφY = η(Sξ)φY.

Now if AY = 0 for any Y ∈ DU we obtain a ruled real hypersurface.
Let us suppose that AY = 0. Then SY = c

4 (2n + 1)Y. For any X ∈ D it follows
c
4 (2n + 1)g(φAX, Y)ξ = g(φAX, Y)Sξ. Therefore, for any X ∈ D, [ c

4 (2n + 1)− η(Sξ)]g(φAX, Y) = 0.
As c

4 (2n + 1)− η(Sξ) = 3c
4 + β2 6= 0, we obtain AφY = 0. If we denote by T0 the distribution in DU

corresponding to the eigenvalue 0, we have that T0 is φ-invariant. Thus the complementary distribution
of T0 in DU is also φ-invariant.

Let {E1, ...E2p} be an orthonormal basis of eigenvectors in the complementary distribution.
Then relation SφY = η(Sξ)φY implies for any i = 1, ..., 2p SφEi = η(Sξ)φEi. As {φE1, ..., φE2p}
is also an orthonormal basis of the distribution, we obtain that for any X ∈ DU such that AX 6= 0,
SX = η(Sξ)X. If X is an eigenvector with eigenvalue λ 6= 0, it follows SX = [ c

4 (2n+ 1) + αλ− λ2]X =

[ c
4 (2n− 2)− β2]X. This yields

3c
4

+ λ(α− λ) + β2 = 0. (12)
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Relation (12) implies that the unique possible nonnull eigenvalues in DU are λ1 = α
2 +√

( α
2 )

2 + 3c
4 + β2 and λ2 = α

2 −
√
( α

2 )
2 + 3c

4 + β2. If λ2 does not appear, as h = α and if p is the
multiplicity of λ1 relation h = α results in

α = α + p

(
α

2
+

√
(

α

2
)2 +

3c
4

+ β2

)
. (13)

Similarly, if λ1 does not appear and q is the multiplicity of λ2

α = α + q

(
α

2
−
√
(

α

2
)2 +

3c
4

+ β2

)
. (14)

Combining relations (13) and (14) yields α
2 = ±

√
( α

2 )
2 + 3c

4 + β2, and this results in

( α
2 )

2 = ( α
2 )

2 + 3c
4 + β2. In case the ambient space is CPn the previous relation is impossible. In case

the ambient space is CHn the previous relation implies β2 = − 3c
4 and since c = −4 we obtain

λ1 = α
2 +

√
( α

2 )
2 = α and λ2 = α

2 −
√
( α

2 )
2 = 0. Thus pα = 0. Therefore, either p = 0 and M is ruled

or α = 0, which implies h = 0. So M is ruled and minimal.
From now on we suppose that both of the eigenvalues λ1 and λ2 do appear as eigenvalues in DU .

Furthermore, suppose that there exists Y ∈ DU such that AY = AφY = 0. From the Codazzi equation
(∇Y A)ξ − (∇ξ A)Y = − c

4 φY. Developing it we get Y(α)ξ + Y(β)U + β∇YU + A∇ξY = − c
4 φY.

Its scalar product with ξ yields

Y(α) + βg(∇ξY, U) = 0 (15)

and its scalar product with U gives

Y(β) = 0. (16)

Let Z ∈ DU such that AZ = λZ (where either λ = λ1 or λ = λ2). As above, (∇Z A)ξ −
(∇ξ A)Z = − c

4 φZ implies Z(α)ξ + αφAZ + Z(β)U + β∇ZU − AφAZ− (ξ)(λ)Z− λ∇ξ Z + A∇ξ Z =

− c
4 φZ. Its scalar product with ξ implies

Z(α) + βg(∇ξ Z, U) = 0 (17)

and its scalar product with U yields

Z(β)− λg(∇ξ Z, U) = 0. (18)

From (17) and (18) we have
λZ(α) + βZ(β) = 0. (19)

Moreover, (∇Z A)U − (∇U A)Z = 0 yields Z(β)ξ + βφAZ − A∇ZU − U(λ)Z − λ∇UZ +

A∇UZ = 0. Taking its scalar product with ξ we obtain

Z(β) + βg(∇UZ, U) = 0 (20)

and its scalar product with U gives
λg(∇UZ, U) = 0. (21)

As λ 6= 0, from (20) and (21) we have Z(β) = 0 and from (19)

Z(α) = Z(β) = 0. (22)



Mathematics 2020, 8, 642 9 of 12

On the other hand, (∇ξ A)U − (∇U A)ξ = c
4 φU implies ξ(β)ξ + βφAξ − A∇ξU − U(α)ξ −

U(β)U − β∇UU = c
4 φU. Its scalar product with ξ yields ξ(β)−U(α) = 0 and the scalar product with

U implies U(β) = 0. Therefore

ξ(β) = U(α) U(β) = 0. (23)

Analogously, developing (∇ξ A)φU − (∇φU A)ξ = − c
4 U and taking its scalar product with ξ,

respectively with U, we obtain

(φU)(α) = αβ− βg(∇ξφU, U) (24)

and

(φU)(β) = β2 +
c
4

. (25)

Let p be the multiplicity of λ1 and q the multiplicity of λ2. As h = α we have (p + q) α
2 + (p−

q)
√
( α

2 )
2 + β2 + 3c

4 = 0. As U(β) = 0, differentiating the latter with respect to U we get ( p+q
2 +

p−q

4
√
( α

2 )
2+β2+ 3c

4

α)U(α) = 0. If we suppose U(α) 6= 0, then we have 2(p + q)
√
( α

2 )
2 + β2 + 3c

4 = (q− p)α.

This yields ((p + q)2 − (q− p)2)α2 + (p + q)2(4β2 + 3c) = 0. Taking the derivative of this expression
in the direction of U we get 2α((p + q)2 − (q− p)2)U(α) = 0, and as we are supposing U(α) 6= 0 the
fact that (p + q)2 − (q− p)2 = 4pq 6= 0 yields α = 0. This contradicts U(α) 6= 0, and we have proved
that U(α) = 0. So the first of (23) yields

U(α) = ξ(β) = 0. (26)

Following similar steps it is proved that ξ(α) = 0.
Relations (16), (22), (23) and (26) result in

grad(β) = (β2 +
c
4
)φU. (27)

As g(∇X grad(β), Y) = g(∇Ygrad(β), X) for any X, Y tangent to M, we have X(β2 + c
4 )g(φU, Y)+

(β2 + c
4 )g(∇XφU, Y) = Y(β2 + c

4 )g(φU, X) + (β2 + c
4 )g(∇YφU, X), for any X, Y tangent to M.

Taking X = ξ we obtain (β2 + c
4 )[g(∇ξ φU, Y) + g(U, AY)] = 0 for any Y tangent to M.

Suppose that g(∇ξ φU, Y) + g(U, AY) 6= 0 then the above relation implies β2 + c
4 = 0, This case

occurs when the ambient space is the complex hyperbolic space. So we have that the nonnull

eigenvalues in DU are λ1 = α
2 +

√
( α

2 )
2 + c

2 and λ2 = α
2 −

√
( α

2 )
2 + c

2 with multiplicity p and q

respectively. Since, h = α we obtain 4pq( α
2 )

2 = c
2 (q− p)2, which is a contradiction, since c < 0.

So on M, we have g(∇ξ φU, Y) = −g(U, AY) for any Y tangent to M. If Y = U it follows
g(∇ξ φU, U) = 0 and from (24)

(φU)(α) = αβ. (28)

Moreover, from the above relation we also know that g(∇ξ φU, φY) = −g(U, AφY) for any Y
tangent to M. If Y ∈ DU satisfies AY = AφY = 0, this and (3) yield g(∇ξU, Y) = 0 and from (15)
we get

Y(α) = 0. (29)

From Equations (22), (25), (26), (28) and (29) we assure

grad(α) = αβφU. (30)
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Recall that (p + q) α
2 + (p− q)

√
( α

2 )
2 + β2 + 3c

4 = 0. Taking its derivative in the direction of φU

and bearing in mind (27) and (28) we obtain p+q
2 αβ+ p−q

2
√
( α

2 )
2+β2+ 3c

4

( 1
2 α2β+ 2β(β2 + c

4 )) = 0. From this

we arrive to

((p + q)2 − (q− p)2)
α4

4
+ (p + q)2α2(

3c
4

+ β2) = (q− p)2(β2 +
c
4
)(2α2 + 4β2 + c). (31)

Derivating (31) in the direction of φUand bearing in mind (27) and (28) we obtain

((p + q)2 − (q− p)2)α4 + 2(p + q)2α2(2β2 + c) = 4(q− p)2(β2 +
c
4
)(2α2 + 4β2 + c). (32)

From (31) and (32) it follows c(p + q)2α2 = 0. This yields α = 0.
Relation (31) gives

4(q− p)2(β2 +
c
4
)2 = 0.

Suppose that p 6= q then the above relation implies β2 + c
4 = 0. This case occurs when the ambient

space is complex hyperbolic space and the nonnull eigenvalues in DU are λ1 =
√

c
2 and λ2 = −

√
c
2 ,

which is a contradiction, since c < 0.
Therefore, on M we have p = q and DU can be written as follows

DU = T0
⊕

T√
β2+ 3c

4

⊕
T
−
√

β2+ 3c
4

,

and the last two eigenspaces have the same dimension.
Let {Z1, ..., Zp} an orthonormal basis of T√

β2+ 3c
4

. Take i, j ∈ {1, ..., p}, i 6= j (we suppose that

p ≥ 2). The Codazzi equation yields (∇Zi A)Zj − (∇Zj A)Zi = − c
2 g(φZi, Zj)ξ. As β is constant along

the directions in T√
β2+ 3c

4
we obtain

√
β2 +

3c
4
∇Zi Zj − A∇Zi Zj −

√
β2 +

3c
4
∇Zj Zi + A∇Zj Zi = −

c
2

g(φZi, Zj)ξ.

Its scalar product with ξ yields

βg([Zj, Zi], U) =
c
2
(β2 +

c
2
)g(φZi, Zj) (33)

and its scalar product with U implies

g([Zj, Zi], U) =
c
2

βg(φZi, Zj). (34)

From (33) and (34) we obtain g(φZi, Zj) = 0. This means that for any Z ∈ T√
β2+ 3c

4
, φZ ∈

T
−
√

β2+ 3c
4

. Call λ =
√

β2 + 3c
4 . Take Z ∈ Tλ. The Codazzi equation yields −λ∇ZφZ − A∇ZφZ −

λ∇φZZ + A∇φZZ = − c
2 ξ. Its scalar product with ξ yields

βg(∇φZZ, U)− βg(∇ZφZ, U) = − c
2
(β2 + c) (35)

and its scalar product with U, bearing in mind that λ 6= 0, gives

g(∇φZZ, U) + g(∇ZφZ, U) = 0. (36)
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From (35) and (36) we obtain

g(∇ZφZ, U) = −g(∇φZZ, U) =
β2 + c

β
. (37)

On the other hand (∇φU A)φZ − (∇φZ A)φU = 0. This yields −(φU)(λ)φZ − λ∇φUφZ −
A∇φUφZ + A∇φZφU = 0. Its scalar product with φZ yields −(φU)(λ) − λg(∇φZφU, φZ) = 0.
From (3) g(∇φZφU, φZ) = g(∇φZU, Z). Bearing in mind the value of λ, from (37) it follows

β2(β2 + c) + (β2 + 3c
4 )(β2 + c) = 0. That is, β4 + 5c

2 β2 + 3c2

4 = 0. Thus β is constant and this results in
grad(β) = 0. So relation (27) implies β2 + c

4 = 0, which occurs in case the ambient space is CHn. In this
case, substitution of the last one in β4 + 5c

2 β2 + 3c2

4 = 0 implies c = 0, which is impossible. This means
that our non Hopf real hypersurfaces must be ruled and this completes the proof of Theorem 2.

In order to prove the Corollary, suppose that M is a ruled real hypersurface such that for some
nonnull k, F(k)

ξ SY = SF(k)
ξ Y for any Y tangent to M. The previous relation because of F(k)

X Y =

g(φAX, Y)ξ − η(Y)φAX− kη(X)φY becomes

g(φAξ, SY)ξ − η(SY)φAξ − kφSY = g(φAξ, Y)Sξ − η(Y)SφAξ − kSφY (38)

for any Y tangent to M.
The shape operator of a ruled real hypersurface M is given by

Aξ = αξ + βU, AU = βξ and AY = 0, for any Y orthogonal to {ξ, U}. (39)

The Ricci tensor (4) for X = ξ, X = U and X = Y, where Y is any orthogonal vector to {ξ, U},
because of h = g(Aξ, ξ) = α and relation (39) becomes respectively

Sξ = (
c
2
(n− 1)− β2)ξ, SU =

c
4
(2n + 1)U − β2ξ and SY =

c
4
(2n + 1)Y. (40)

Relation (38) for Y = U bearing in mind the first of relation (39) and the second of relation (40)
leads to β = 0, which is a contradiction since M is ruled and this completes the proof of the Corollary.

5. Discussion

If in our Theorem we suppose h 6= g(Aξ, ξ), it is easy to see that β2 = g(Aξ, ξ)(h− g(Aξ, ξ))− 3
for a non Hopf real hypersurface. This might produce a new kind of real hypersurfaces.

Conjecture (open problem): Such real hypersurfaces in complex space forms do not exist.
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