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A B S T R A C T

Ocean export production is a key constituent in the global carbon cycle impacting climate. Past ocean export
production is commonly estimated by means of barite and Barium proxies. However, the precise mechanisms
underlying barite precipitation in the undersaturated marine water column are not fully understood. Here we
present a detailed mineralogical and crystallographic analysis of barite from size-fractionated particulate ma-
terial collected using multiple unit large volume in-situ filtration systems in the North Atlantic and the Southern
Ocean. Our data suggest that marine barite forms from an initial amorphous phosphorus-rich phase that binds
Ba, which evolves into barite crystals whereby phosphate groups are substituted by sulfate. Scanning electron
microscopy observations also show the association of barite particles with organic matter aggregates and with
extracellular polymeric substances (EPS). These results are consistent with experimental work showing that in
bacterial biofilms Ba binds to phosphate groups in both cells and EPS, which promotes locally high con-
centrations of Ba leading to saturated microenvironments favoring barite precipitation. These results strongly
suggest a similar precipitation mechanism in the ocean, which is consistent with the close link between bacterial
production and abundance of Ba-rich particulates in the water column. We argue that EPS play a major role in
mediating barite formation in the undersaturated oceanic water column; specifically, increased productivity and
organic matter degradation in the mesopelagic zone would entail more extensive EPS production, thereby
promoting Ba bioaccumulation and appropriate microenvironments for barite precipitation. This observation
contributes toward better understanding of Ba proxies and their utility for reconstructing past ocean export
productivity.

This article is part of a special issue entitled: “Cycles of trace elements and isotopes in the ocean – GEOT-
RACES and beyond” - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.

1. Introduction

The biogeochemistry of barium has intrigued geochemists for dec-
ades because of its nutrient-like distribution in seawater and its pre-
cipitation as barite in the water column despite widespread under-
saturation conditions (Monnin et al., 1999). To explain this apparent

contradiction, it has been suggested that barite precipitates in barite-
supersaturated microenvironments generated by the biological de-
gradation of sinking organic matter. Since the early sixties (e.g., Chow
and Goldberg, 1960) a vast literature on Ba has provided evidence for a
link between barite formation in the ocean and biological activity.
Dehairs et al. (1980) and Bishop (1988) proposed that decomposition of
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organic matter debris might provide the appropriate microenvironment
for barite precipitation. Subsequent studies in the Southern ocean
(Dehairs et al., 1991; Stroobants et al., 1991) also demonstrated barite
precipitation in saturated microenvironments within bio-aggregates.
Nevertheless, despite decades of research, the precise mechanism for
the precipitation of Ba as barite in undersaturated conditions is still
unknown. Although a clear association to organic matter production
and carbon fluxes to depth has been widely demonstrated (e.g., Dehairs
et al., 1980; Dymond et al., 1992; Paytan et al., 1996; Griffith and

Paytan, 2012), and broadly supported by Ba isotopes studies (Horner
et al., 2015; Cao et al., 2016; Bates et al., 2017; Bridgestock et al.,
2018), the exact mechanisms for nucleation and crystallization are not
fully understood. This is of major importance since barium fluxes to the
deep ocean and barite accumulation in sediments have been widely
used as a proxy to reconstruct past ocean export productivity (Paytan
et al., 1996; Paytan and Griffith, 2007), which in turn has implications
for reconstructions of the marine carbon cycle and global climate.

A possible link between barite formation and microbial activity has
also been suggested based on the correlation between the abundance of
bacteria and barite in the ocean water column. Specifically, it has been
shown that higher mesopelagic particulate Ba correlates with greater
bacterial production, suggesting a potential relationship (Dehairs et al.,
2008; Jacquet et al., 2011; Planchon et al., 2013). The capability of
certain marine bacteria to mediate barite precipitation under experi-
mental conditions has also been demonstrated, which suggested that
bacteria play a role in mediating barite precipitation in natural en-
vironments (González-Muñoz et al., 2003, 2012; Torres-Crespo et al.,
2015). However, the specific association between Ba and organic
matter in such microenvironments remain poorly understood.
Ganeshram et al. (2003) also demonstrated using mesocosm phyto-
plankton decay experiments that barite crystals precipitate within
particle-associated microenvironments supplied with additional barium
ions derived from heterotrophic remineralization of organic matter.
Most recently, Horner et al. (2017) presented evidence of pelagic barite
formation at extreme barite undersaturation (in Lake Superior), further
supporting the notion that barite precipitation occurs in protected mi-
croenvironments.

Traditionally most of the laboratory research on biogenic or biolo-
gically mediated mineral precipitation has focused on carbonates and
iron minerals, and not microbial precipitation of sulfates. An initial
experimental approach to explore bacterial barite precipitation served
to demonstrate that a soil bacterium, with a well-known biominer-
alization capability in culture experiments (Myxococcus xanthus), could
mediate the precipitation of barite (González-Muñoz et al., 2003).
Tazaki et al. (1997), Glamoclija et al. (2004), Sanchez-Moral et al.
(2004) and Senko et al. (2004) also reported barite precipitation in
natural settings in which bacteria have played a role either in oxidizing
sulfur compounds to generate sulfate or in providing biofilms in which
precipitation occurs. Similarly, in a warm sulfur spring in Canada,
Bonny and Jones (2008) reported barite crystals that nucleated on
microbial cell surfaces and in microbial EPS. Follow-up experiments
with marine bacteria demonstrated that several marine strains have the
capability to precipitate barite under laboratory conditions (González-
Muñoz et al., 2012). Stevens et al. (2015) have demonstrated the pre-
cipitation of barite on filaments of sulfide-oxidizing bacteria in marine
cold seep, and Widanagamage et al. (2015) have also shown the pre-
cipitation of barite in microbial biomass in modern continental en-
vironments. Nonetheless, the experimental cultures as well as settings
in which the bacterial metabolism is responsible for providing the ne-
cessary sulfur for barite precipitation (as in the above studies) are not
analogous to the ocean environment where sulfate is abundant and
present in excess relative to Ba.

In general, there are two means to precipitate barite in natural
settings: adding sulfate to a Ba-rich fluid, or by adding Ba to a sulfate-
rich fluid (e.g., Hanor, 2000). Since seawater contains abundant sulfate
compared to barium, the latter scenario is significantly more likely to
control barite precipitation in the ocean. Indeed, emerging results from
laboratory (e.g., Martinez-Ruiz et al., 2018) and the aforementioned
field studies suggest that bacteria—and in particular, bacterial bio-
films—appear to play an important role in creating local elevations in
Ba concentration that can subsequently interact with (ambient) sulfate

Fig. 1. Location map showing the two sampled sites at the North Atlantic and
the Southern Ocean.

Table 1
Analyzed samples at the North Atlantic and the Southern Ocean sites.

Samples Depth (m) Location

North Atlantic 39 28.620 N
64 50.820 E

R 412 193
R 404 227
R 430 326

Southern Ocean 50 23.993 S
10 48.009W

GCM 93 25
GCM 94 59
GCM 95 109
GCM 96 159
GCM 97 300
GCM 98 500
GCM 99 750
GCM 100 1000
GCM 101 1020
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to promote barite nucleation. However, the exact mechanism(s) by
which barium is concentrated during pelagic barite precipitation re-
main to be identified.

Here we present new mineralogical and crystallographic data from
natural barite particles from the oceanic water column (upper 1000m)
in order to shed light on mechanisms for barite nucleation and crys-
tallization, and to constrain the link between bacterial activity, Ba
bioaccumulation, and barite precipitation in the ocean water column.

2. Material and methods

Size-fractionated particulate material was collected using multiple
unit large volume in-situ filtration system (MULVFS; Bishop et al.,
1985) and battery-operated McLane in-situ pumps (LV-WTS)
(Rosengard et al., 2015). Samples were collected during two expedi-
tions: one in the North Atlantic, during R/V Knorr cruise 98 (WCR 82H
in September 1982), and in the Southern Ocean (Atlantic Sector), at
Station 92 of MV1101 (February 2011; Balch et al., 2016) (Fig. 1,
Table 1). From both expeditions, quartz fiber filters (Whatman QMA)
representing the 1–51 μm size fraction (from the upper 326 and 1020m
respectively) were examined under scanning electron microscopy
(SEM) and high-resolution transmission electron microscopy (HRTEM).
Particulate Ba concentrations were also determined on the 1–51 μm size

fraction but on acid-cleaned PES (polyethersulfone) membrane filters
(Pall Gelman ‘Supor’), deployed at the same time as the quartz-fiber
flters (see Bishop et al., 2012). Sample depths and locations are pro-
vided in Table 1.

Selected filter pieces were coated with carbon for observation under
the SEM using an AURIGA FIB- FESEM Carl Zeiss SMT microscope
equipped with an energy dispersive X-ray (EDX) detector system
(Centre for Scientific Instrumentation, University of Granada). For
HRTEM, filter pieces were grounded in an agate mortar and then dis-
persed in ethanol by sonication for approximately 3min. Particulate
matter from the samples were then collected and deposited on carbon-
film-coated copper grids for the observation in a FEI TITAN G2 60–300
microscope with a high brightness electron gun (X-FEG) operated at
300 kV and equipped with a Cs image corrector CEOS (Centre for
Scientific Instrumentation, University of Granada). For analytical elec-
tron microscopy (AEM), a SUPER-X silicon-drift windowless EDX de-
tector was also used. Digital X-ray maps and selected area electron
diffraction (SAED) patterns were collected on barite particles.

Dissolved and particulate Ba distributions were determined in the
upper 1000m of the water column at St. 92 (Southern Ocean). In situ-
deployed filters were processed using the protocol described in Bishop
and Wood (2008), whereby subsamples of the PES membrane were
leached in 0.6M HCl overnight (~16 h) at 60 °C in acid-cleaned PTFE
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Fig. 2. SEM photographs showing representative examples of barite particles from the North Atlantic sector obtained in backscattered electron (BSE) mode at 30 kV:
a, sample R404 (227m depth); b, sample R430 (326m depth); c-d-e-f, sample R 412 (193m depth); g and h, correspond to the SEM-EDX spectra obtained from the
spot marked with an arrow in BSE images d and f respectively. The vertical scale is enlarged to show the relative intensities of S and Ba peaks since large Si peaks are
obtained due to the quartz filter substrate. Ba is consistently identified by lines Ba-LA, LB1, LB3, LB2 and LG1 (from left to right) in EDX spectra.
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vials. Concentrations of Ba and phosphorus were determined using a
ThermoFinnigan ELEMENT II ICP-MS as per Horner et al. (2017), with
quantification achieved via comparison of blank- and indium-normal-
ized sample ion beam intensities to those of reference standards of
known Ba and P concentrations. Seawater samples were collected using
nine 5-L Niskin-X bottles (General Oceanics) suspended at nine depths
from Kevlar line. Samples were filtered using acid-washed Acropak-200
filter capsules, collected into acid-washed 250-mL wide mouth Nalgene
HDPE bottles, and acidified to 0.024M HCl (pH 1.7) using concentrated
HCl (Fisher Optima). Dissolved Ba concentrations were determined by
diluting aliquots of the acidified seawater samples by a factor of 25 into
0.32M HNO3 (double distilled; Savillex Teflon still) and analyzed by
direct injection into an ELEMENT 2 HR-ICP-MS (medium resolution).
Concentrations were quantified by external standards (High Purity
Standards, South Carolina) after normalizing by the measured Sr-88
signal (medium resolution) and assuming a constant seawater Sr con-
centration of 92.8 mM. Seawater Sr was used as the internal standard,
rather than Ba isotope dilution, since samples needed to be preserved
for subsequent Ba stable isotope ratio determinations. Barium blanks
were determined to be less than 0.05 nM (or less than 2% of the mea-
sured Ba concentrations), and dissolved Ba concentrations in triplicate
measurements of consensus reference materials GEOTRACES GSP and

SAFe D1 were determined to be 35.2 ± 0.54 nM and 96.3 ± 0.52 nM,
respectively.

3. Results

Barite particles were observed in all analyzed filters. The observed
crystal morphologies are rounded or elliptical and sizes usually range
from 200 nm to 2 μm. These morphologies are similar to those reported
in previous studies of barite from the water column and to ellipsoidal
barite grains from marine sediments (Dehairs et al., 1980; Stroobants
et al., 1991; Bertram and Cowen, 1997; Gingele and Dahmke, 1994;
Griffith and Paytan, 2012). Figs. 2 and 3 show water column barite
particles from the two studied regions, the North Atlantic and the
Southern Ocean. Barite is mostly observed in microenvironments rich in
biogenic debris often forming aggregates within these microenviron-
ments, which associate with EPS like material (Figs. 3 and 4). EDX
analyses provide the composition of these barite grains and show that in
some cases the grains contain appreciable amounts of P. The aggregates
in which the barite is seen have also been analyzed and they also
contain P. In general, bigger grains that correspond to more evolved
stages are composed of purer Ba-sulfate, while smaller grains, that
likely correspond to initial stages of formation, are richer in P (Fig. 3).
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Fig. 3. SEM photographs showing representative examples of barite particles from the Southern Ocean (sample GCM 100, 1000m depth) obtained in backscattered
electron (BSE) mode at 30 kV: a–c, photograph and two selected SEM-EDX spectra (analyzed spot marked with an arrow in BSE image). As indicated in Fig. 2, the
vertical scale is enlarged to show the relative intensities of S and Ba peaks since large Si peaks are obtained due to the quartz filter substrate. The variable P content in
barite particles is shown in the respective spectra; d–f show other examples of barite occurrence and composition of selected particles (indicated in d and e) is given in
the corresponding spectra (g and h).
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Certain grains Sr is also detected (Fig. 2). The exact composition has
been determined by HRTEM. A whole range of compositions from P-
rich grains to barite crystals has been recognized (Figs. 5 and 6). EDX
maps and spectra also show that the distribution of Ba, P, and S in the
precipitates is not homogeneous with domains richer in P (Fig. 5). Ba-
phosphate particles have been observed in which S rich domains are
also observed (Fig. 6). A wide range of degrees of crystallinity has also
been recognized. The P-rich precipitates are mostly amorphous or very
poorly crystallized (Fig. 7), as evidenced by HRTEM and SAED images.
In contrast, barite precipitates are crystalline and SAED images evi-
dence the d-spaces of barite crystals. These barite crystals also show a
more homogeneous composition (Fig. 8) with lower P content and a
regular distribution of S and Ba.

The samples from North Atlantic sector were also analyzed by SEM
at UC Berkeley shortly after collection in 1982, and these images show
what seems to be coccus bacteria associated with barite (Fig. 9).

Dissolved and particulate data from the Southern Ocean (Fig. 10)
show features consistent with those of published from other regions.
Specifically, the particulate data show a maximum in particulate P of ≈
34 nM at the base of the Ez (euphotic zone, 59m at St. 92; Rosengard
et al., 2015), which sharply decreases to values ≈1 nM throughout
much of the mesopelagic. Conversely, pBa is generally low (≈318 pM)
at the base of the Ez, increasing to a maximum of ≈519 pM near the top

of the mesopelagic, before decreasing gently to values ≈277 pM by
1000m. Despite the increasing-then-decreasing nature of the pBa pro-
file (Fig. 10), the resultant pBa:pP of bulk particulate matter mono-
tonically increases throughout the profile.

4. Discussion

The nature and characteristics of barite particles from the ocean
water column can shed light into the mechanisms leading to saturation
and precipitation of barite in microenvironments within sinking parti-
culate matter. We detect a range of particle sizes, compositions and
crystallinity ranging from amorphous, small Ba-P associations to
slightly larger crystalline barite particles. Strontium was also observed
in some of the particles.

Stroobants et al. (1991) showed that in the first 10–20m of the
water column in the Southern Ocean barite particles appear in bioag-
gregates as amorphous entities without a clear crystalline habit while at
greater depths the particles have typical crystalline habits which likely
reflects progression toward pure barite crystals. The morphology of
suspended barite and that from sediments has also been studied in
previous works (e.g., Dehairs et al., 1980; Stroobants et al., 1991;
Bertram and Cowen, 1997; Gingele and Dahmke, 1994; Griffith and
Paytan, 2012) and differences have been reported. While suspended
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barite is observed mostly as sub-micron ellipsoidal crystals, barite
crystals found in sediments are generally bigger and mostly euhedral,
having well defined crystal habits. Differences in morphology have also
been related to Sr content in barite precipitates. Bertram and Cowen
(1997) suggested a correlation with crystal shape since elongated
hexagonal crystals do not usually contain detectable Sr while ellipsoidal
crystals contain more Sr. Part of the Sr may be lost with exposure to
undersaturated seawater due to the higher solubility of Sr rich barite
(Rushdi et al., 2000; van Beek et al., 2003). Similar trends in Sr in-
corporation into barite have also been previously reported by Bishop
(1988). Collectively, this variability represents various stages in the
process of barite formation in the water column and the transformation
to the crystals found in marine sediments.

4.1. Microbial mediation

In some natural settings microbes have been shown to mediating
barite formation, either via oxidizing sulfur compounds (to generate
sulfate) or providing biofilms for bioaccumulation of Ba (promoting
barite nucleation; e.g., Tazaki et al., 1997; Glamoclija et al., 2004,
Sanchez-Moral et al., 2004, Senko et al., 2004; Bonny and Jones, 2008;
Stevens et al., 2015; Widanagamage et al., 2015; Singer et al., 2016).
Moreover, laboratory experiments performed with isolates of sulfide-

oxidizing bacteria demonstrated that under low sulfate conditions, the
sulfate generated by the sulfide-oxidizing bacteria fosters rapid barite
precipitation localized to the cell biomass. Similarly, in experiments
where sulfate was not present in the culture medium (to avoid in-
organic precipitation; González-Muñoz et al., 2003, 2012), bacterial
metabolism was responsible for sulfate production. This study strongly
suggests that bacterial biofilms and EPS production in the ocean could
account for barite formation in marine microenvironments. The bac-
terial biomass would contribute to concentrating barium thus providing
the necessary binding sites for barite formation. In fact, the capability of
bacterial biomass to accumulate metals has been broadly demonstrated
(e.g., Kuyucak and Volesky, 1988; Kikuchi and Tanaka, 2012). Bacteria
have the capability to immobilize diverse metals such as U (e.g.,
Merroun and Selenska-Pobell, 2008), and it has also been demonstrated
that some marine bacteria (Idiomarina sp. PR58-8) are highly metal-
tolerant, for instance are able to synthesize silver nanoparticles (e. g.,
Sheshadri et al., 2012). In the case of Ba, it was also demonstrated that
a soil bacterium, M. xanthus, has the capability to bioadsorb Ba on both
the cell membranes and on the EPS produced by this bacterium
(Merroun, 1999).

Our results from the above observations of natural barite pre-
cipitates collected in the water column further support this hypothesis,
particularly our observations of barite forming: within EPS (Fig. 4), in

Fig. 5. High Angle Annular Dark Field (HAADF) STEM image (a) and corresponding EDX maps showing the distribution of P (b) and Ba plus P (c) in a barite particle
from sample R 412 (193m depth, North Atlantic) and representative spectra indicated in the HAADF image, 5.xps (d) and 2.xps (e). Note the difference in P and Sr
content within the same nanosize particle. Sr is clearly identified since the Si from the quartz filter substrate is not overlapping the Sr peak as occurring in SEM EDX
spectra.
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close association with organic matter aggregates (Figs. 2 and 3), and in
presence of barite-mineralized coccus bacteria (Fig. 9), as direct evi-
dence in support of this mechanism. Evidence of barite abundance
linked to enhanced bacterial activity in the ocean further reinforces this
hypothesis. Dehairs et al. (2008) investigated particulate Ba content in
the North Pacific and demonstrated that the vertical distribution of
particulate non-lithogenic Ba in the water column is positively corre-
lated with bacterial production. In the Australian sector of the Southern
Ocean Jacquet et al. (2011) also observed that increasing content of
mesopelagic particulate Ba was correlated with higher bacterial ac-
tivity. Similarly, Planchon et al. (2013) have also shown that mesope-
lagic particulate Ba distribution reflects bacterial degradation of or-
ganic matter and is related to oxygen consumption and bacterial carbon
respiration in the Atlantic sector of the Southern Ocean.

The relation between Ba and biological processes in the water
column is also manifested in the distribution of particulate and dis-
solved Ba in the water column (Fig. 10). At station 92 the sub-surface
maxima in particulate Ba illustrates the uptake of Ba from the dissolved
phase into particulate barite. The particulate P at this station —a proxy
for total particulate organic matter—is also highest near the surface and
decreases with depth throughout the water column along a power-law

trajectory (e.g., Martin et al., 1987; Rosengard et al., 2015). This pat-
tern reflects an intense remineralization of organic matter in the upper
water column. The reduction in particulate P is often found to occur
around the same depths at which particulate Ba increases; indeed, the
sharpest drop in particulate P is coincident with the sharpest increase in
particulate Ba (between 59⟶ 109m). This is also consistent with the
nutrient-like profile observed for dissolved [Ba], whereby most dis-
solved Ba removal occurs below the euphotic zone, but before the
supply of particulate organic matter has completely attenuated (top few
hundred meters). Thus the resultant dissolved profile is similar to most
other nutrients in that [Ba] exhibits the lowest concentration at or near
the surface. Similar trends in dissolved and particulate Ba are observed
throughout the ocean water column and have been used to support the
link between organic matter oxidation and barite abundance at meso-
pelagic depths (e.g., Dehairs et al., 1997; Jacquet et al., 2004; Horner
et al., 2015; Pyle et al., 2018).

Based on our observations and previous data we conclude that
barite precipitation in the ocean water column is mediated by Ba en-
richment by bacterial activity in microenvironments of sinking organic
aggregates where bacteria abundantly produce exopolymers.

Fig. 6. High Angle Annular Dark Field (HAADF) STEM image (a) and corresponding EDX maps showing the distribution of Ba and P (b), and Ba, S and P (c) in a
particle with Ba phosphate composition (Southern Ocean sample GCM 94, 59m depth). The spectra indicated in the HAADF image (a) also show the significant P
enrichment: 2.xps (d) and 1.xps (e).
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4.2. Amorphous and crystalline precipitates

Experimental work has shown that Ba enrichment in bacterial cells
and EPS occurs by binding to phosphate groups in the bacterial biomass
(González-Muñoz et al., 2012; Martinez-Ruiz et al., 2018). Indeed, the
binding to phosphate is a common process in microbial mineral pre-
cipitation. This mechanism has been shown for Ba bioabsorption by soil
bacteria (Merroun, 1999) and has also been demonstrated in barite
precipitation in culture experiments (González-Muñoz et al., 2003,
2012; Torres-Crespo et al., 2015). In general, the ability of polypho-
sphates to chelate metal ions has been broadly verified. It has been
proposed that the intracellular chelation of heavy metals by polypho-
sphate can serve to decrease heavy metal toxicity, which improves
cellular tolerance to metals (Keasling and Hupf, 1996; Merroun and
Selenska-Pobell, 2008). Phospholipids likely act as nucleation sites to
incorporate Ba, as has also been shown for other metals such as U
(Morcillo et al., 2014). Importantly, a P-rich precursor has been de-
scribed in the microbial precipitation of other minerals in culture ex-
periments, for instance the nucleation of an amorphous phosphate
phase has been recognized in microbial aragonite precipitation
(Rivadeneyra et al., 2010) and also reported for bacterial biominer-
alization of apatite and iron oxides both in laboratory experiments and
in the geological record (e.g. Sanchez-Navas and Martin-Algarra, 2001;

Miot et al., 2009). Though phosphate and sulfate groups have different
ionic radii, with the phosphate group being larger, the substitution of
sulfate and phosphate groups for one other is a common process in
nature as are solid solutions between phosphate and sulfate minerals
(e.g., Rinaudo et al., 1994; Secco et al., 2015). Interestingly, the for-
mation of Ba phosphate phases has been described in bio-cements
formed by microbially-induced mineralization in experimental condi-
tions. In loose sand particles, such minerals play a role in the binding
between loose sand particles and the bio-cement (Qian et al., 2018).
Our observations from natural barite demonstrate that the phosphate
groups are the precursor ligand for Ba that is eventually substituted by
sulfate. Both the composition and the crystallinity of natural barites
support this mechanism for precipitation through an amorphous P-rich
precursor. As revealed by HRTEM a Ba-phosphate link is initially
formed that eventually evolves to barite. This P-rich phase is mostly
amorphous at the initial stages of crystallization and is suggested to be
the phase binding Ba though the strong attractive interactions of Ba and
sulfate lead to a more stable mineral phase as barite. Barite crystals are
clearly identified by distinctive d-spaces (Figs. 7 and 8).

4.3. Role of exopolymers in barite precipitation

In high productivity regions, where high organic matter degradation

a b c

fed

Fig. 7. Selected area electron diffraction (SAED) images obtained by HRTEM showing the diverse degree of crystallinity in barite particles: a shows amorphous
precipitates, while b and c show well-crystallized barite, the characteristic d-spaces of are clearly observed: 3.45 Å (210) and 4.34 Å (011) (c). d corresponds to a High
Angle Annular Dark Field (HAADF) STEM image (sample GCM 94, 59m depth) and e shows a lattice-fringe image were d-spaces characteristic of barite are indicated:
3.45 Å (210) and 3.10 Å (211). In both cases as ten unit cells have been measured, the d-spaces in Å correspond to the indicated nm values. The corresponding
spectrum (f) indicated in image in the STEM image (d) shows the barite composition.
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involves higher bacterial activity, extensive EPS production would also
be expected. Such a link would also be consistent with the observed
relationship between export productivity, bacterial activity, and barite
formation in the ocean. Our observations strongly support the role of
EPS in barite precipitation. The association with barite can correspond
to soluble EPS and to cell-bound EPS, which form as a mucilaginous
matrix in which cells are also embedded (e.g., Pannard et al., 2016).
These cell-bounded EPS are a component of the widely studied
-Transparent Exopolymer Particles- (TEP) in aquatic ecosystems
(Passow and Alldredge, 1995). In general, the attachment of microbes
to TEP surfaces and to each other provides higher environmental sta-
bility in comparison to free-living (non-attached) cells. Much progress
has been made during the last few decades in the understanding of the
occurrence of microorganisms in biofilm state in the ocean water
column and its impact on ocean processes (e.g., Decho and Gutierrez,
2017). Nonetheless, the role of exopolymers in barite precipitation in
the ocean was not explored. More is known about the role of EPS in
carbonate precipitation since bacterial mats are well-known for their
association with the biogeochemical precipitation of calcite and ara-
gonite (e.g. Braissant et al., 2003, 2007, 2009). It has also been de-
monstrated that living cells are not always required for microbially
mediated carbonates formation, but carbonates can precipitate in the

EPS without the presence of bacteria (Bontognali et al., 2014). This
opens an exciting field of research to investigate the potential role of
TEP in the ocean water column as substances for bioaccumulation of
metals in general and specifically for barite nucleation and growth. TEP
occurs in the water column suspended in colloidal form, and is probably
formed by the aggregation of smaller EPS molecules (Engel et al.,
2004). The abundance of TEP drastically increases during periods of
phytoplankton blooms, which further supports the link between export
production and barite formation in seawater.

5. Conclusions

Observations from suspended marine particulate matter from the
North Atlantic and the Southern Ocean show the formation of barite
through an initial amorphous phase, rich in P, to which Ba binds and
ripens to barite crystals once the phosphate groups are substituted by
sulfate. Mineralogical and crystallographic features of these precipitates
have provided new insights into this formation process: i) the evolution
from Ba-phosphate to Ba-sulfate (i.e., barite) is evidenced by the com-
positional range identified; ii) the Ba-phosphate precursor is amor-
phous, and it evolves to crystalline barite; iii) barite itself in association
with EPS and organic rich aggregates, which further support the role of

e f h

i j k l

a b c d

i j

g

Fig. 8. High Angle Annular Dark Field (HAADF) STEM image (a), and selected area electron diffraction (SAED) image (b) showing the crystallinity of a representative
barite particle from sample GCM 94, 59m depth. Lattice-fringe images (c and d) show d-spaces characteristic of barite: 3.10 Å (211), 2.17 Å (022), and 3.57 Å (002);
as ten unit cells have been measured, the d-spaces in Å correspond to the indicated nm values. EDX maps (e–h) show the distribution of Ba, S, and P, and profiles (i–j)
show element abundance across the particle, also evidenced by EDX spectra (k–l), the analyzed areas are indicated in the image included in the right spectrum (l):
1.xps (k) and 2.xps (l).
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biofilms as Ba-concentrating agents. These micro-scale processes sup-
port observed empirical linkages between organic matter degradation,
bacterial production, and barite formation. Hence, several lines of
evidence support that barite formation mechanisms include Ba bioac-
cumulation on microbial biofilms, and particularly in EPS, offering a
link between bacterial activity and marine barite formation and accu-
mulation in the open ocean.
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