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Abstract: Software technologies play an increasingly significant role in industrial environments,
especially for the adoption of Industrial Internet of Things (IIoT). In this context, the application of
mechanisms for the auto-configuration of industrial systems may be relevant for reducing human
errors and costs in terms of time and money, improving the maintenance and the quality control.
OPC UA (OLE for Process Control Unified Architecture) systems are usually integrated into an
industrial system to provide a standard way for setting a secure and reliable data exchange between
industrial devices of multiple vendors and software systems. In this paper, a novel mechanism for
the auto-configuration of OPC UA systems is proposed from an initial setup of industrial devices
interconnected to a basic Ethernet network. The auto-configuration of the OPC UA is self-managed
over the TCP/IP protocol. This mechanism allows automating the configuration process of the OPC
UA server automatically from the programmable logic controller (PLC) devices connected to a basic
Ethernet network. Once the PLC devices are identified, they exchange information directly with OPC
using a Modbus protocol over the same Ethernet network. To test the feasibility of this approach,
a case study is prepared and evaluated.

Keywords: auto-configuration; IIoT; OPC UA

1. Introduction

Nowadays the industrial systems must evolve in order to satisfy the continuous requirements
that customers and the market need. In these specific environments, the software plays an increasingly
significant role. Consequently, the application of a methodology for the software development process
can become critical to fulfill these requirements. However, the adoption of software development
methods is still quite slow in the industry [1].

The arrival of new hardware devices and software systems may present a higher degree of
difficulty in integrating them into the industrial ecosystem in contrast to other application domains,
such as IT or consumer electronics. Correspondingly, the support for introducing new software
paradigms or devices are limited or simply non-existent. Therefore, the adoption of them requires
great efforts to integrate, deploy, and execute in the industrial environment.

The rise of novel paradigms such as Industry 4.0 [2,3], IIoT (Industrial Internet of Things) [4,5] or
Smart Factory [6,7] have further accentuated the need to achieve these strict requirements with new
features such as interoperability, collaboration among systems, or the digitalization of a full industrial
process [8]. In order to cope with the new challenges and software demands, it is necessary to work on
the development of new paradigms and techniques that facilitate a better and productive evolution of
industrial systems.
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Therefore, industrial systems must continue to maintain a high level of reliability, safety, and
security in order to enhance the production processes for large time periods. Any system failure or
modification to the current production system can lead to costly production interruptions, which
are time-consuming and have to be carried out manually. In both circumstances, the application of
mechanisms based on the automatic reconfiguration of the systems without a manual intervention can
reduce the efforts and time to make the system productive again [8].

Traditionally the reconfiguration or auto-configuration mechanisms (ACMs) in industrial systems
have been focused mainly on the automatic detection of field devices such as sensors and actuators
by a programmable logic controller (PLC) on a specific fieldbus (e.g., Ethernet and Profinet) [9–12].
The fieldbuses used in the industry have also evolved from serial communication interfaces (e.g.,
Profibus) to the current Real Time Ethernet (RTE) interfaces, taking Ethernet as the base communication
technology (e.g., Profinet and EtherCAT) [13].

Some works propose the use of lower layer of TCP/IP protocols for the auto-configuration of
industrial devices into the RTE network. For instance, Imtiaz et al. [14] propose an approach for the
auto-configuration of industrial devices in the RTE network with the application of an auto-assignment
of MAC-Addresses combined with a Link Layer Discovery Protocol (LLDP) at Layer-2, which discovers
the device location in network topology by sending LLDP messages.

In contrast, in [15], the auto-configuration between industrial devices is achieved by the
introduction of an ad-hoc channel that co-exists with RTE channels. The ad-hoc channel allows
the automatic identification of an industrial device using a discovery mechanism WS-Discovery based
on Service-Oriented Architecture (SOA) implemented in DPWS (Device Profiles for Web Service). Once
the information of the industrial device is achieved, that industrial device can be connected to RTE
channels automatically in order to exchange information. In a similar way, Durkop et al. [9] substitute
WS-Discovery with OPC UA (OLE for Process Control Unified Architecture) as a discovery mechanism
to identify industrial devices in the network.

All of the above auto-configuration proposals come to make effective the “Plug and Produce”
(PnP) [16]. “Plug-and-Produce” is equivalent to the “plug-and-play” term usually employed in IT
systems to specify devices that can simply be connected to the system and turned on, and will work
without any human intervention. PnP is the key that will drive the smart-factory of tomorrow, where
machines, production lines, and storage systems will collaborate within a network composed of
cyber-physical systems (CPSs) [12]. In this way, these systems will be able to collaborate among them
and perform tasks such as exchanging information, triggering actions, or controlling one another.
Furthermore, Hammestringl et al. [12] carried out an analysis of the current industrial environments in
order to establish the requirements that an architecture for industrial system should have to allow for
automating the integration of PnP heterogenous field devices into PLCs in a unified manner.

Depending on the selected ACM mechanism, features such as flexibility, scalability, adaptability,
and interoperability of the system can be enhanced [17]. The flexibility gives us the ability to add and
remove devices from the network without manual configuration of them, regardless of the device
vendor. The scalability provides the possibility to plug one or more devices without compromising
the normal operation and quality of the system. The adaptability affords the capability to provide
additional functionality to the system by connecting the device without manual configuration. Finally,
the interoperability provides the ability to plug the device without any restriction as long as the
interfaces to other systems are satisfied.

In this work, we have extended the PnP application beyond the industrial controllers, specifically
between the PLCs and the software systems in charge of monitoring data processes. Generally, these
software systems are managed by a SCADA (Supervisory Control and Data Acquisition) system or an
OPC (Ole for Process Control) system, indistinctly; only OPC systems are considered from now on.

OPC systems, and specifically the last release OPC UA, plays an important role in current industry
environments, and more specifically to give support to next IIoT environments [18,19]. Basically,
they provide a standard way for setting secure and reliable data exchange between industrial devices



Electronics 2019, 8, 600 3 of 17

of multiple vendors and software systems. This give us an interface or gateway that allows us to
interact directly with PLC devices but outside of the stringent fieldbuses and field devices [20,21].
In fact, OPC UA can be considered the backbone protocol for the harmonization of different industrial
automation networks and systems [19].

Once the PLC device is deployed and executed, the OPC UA system is connected to PLC using
a standard Ethernet-based network by configuring the network address of the PLC and setting data
variables that are mapped to the corresponding addresses on the same variables in the PLC device.

This process is usually not automated and therefore requires a greater or lesser effort depending
on the number of variables to be configured. In fact, any interruption of the industrial process due
to a modification of the controller, both the controller and the OPC UA system should necessarily
be reconfigured manually. In these cases, it is necessary (i) to stop the installation, (ii) to reconfigure
manually the PLC with the characteristics of the new device, (iii) to generate the new network address
in the PLC, (iv) to restart the PLC, (v) to reconfigure the OPC UA with the new IP address of the PLC
device if it has been replaced, (vi) to reassign the data variables of OPC UA with process variables of
the PLC, and, finally, (vii) to restart OPC UA.

In this paper, a new auto-configuration mechanism for OPC systems based on the OPC UA
standard is proposed. This mechanism allows automating the configuration process of the OPC UA
server automatically from the PLC devices connected to a basic Ethernet network. Once the PLC
devices are identified, they exchange information directly with OPC using a Modbus protocol over the
same Ethernet network.

The main advantages of the proposed auto-configuration mechanism are as follows:

• The process information managed by the industrial device can be consulted directly on the
OPC UA server, without having to carry out any configuration or parametrization task on the
server itself.

• The OPC system and PLC devices can share the same Ethernet network with other industrial
systems such as SCADA or MES (Manufacturing Executing System), among others. However, the
communication between PLC devices and OPC are set independently using a Modbus TCP/IP
protocol that coexists with the TCP/IP protocol.

• The proposed auto-configuration mechanism can reduce the effort and time required to configure
OPC systems, especially when the number of variables is high. Furthermore, the number of errors
made in the manual configuration can also be reduced.

Section 2 presents the involved technologies required to perform the auto-configuration
mechanism proposed in this paper. Section 3 details the proposed auto-configuration mechanism as
well as the architecture of industrial systems. A study case is shown based on the proposal and some
results are discussed in Section 4. Finally, Section 5 contains the conclusions and suggests future work.

2. Background

2.1. Auto-Configuration in Industrial Environments

In general, the auto-configuration mechanisms allow the automatic configuration of devices,
software systems, or communication protocols without manual intervention or with little
human intervention within the context of a particular ecosystem. A concept closely related to
auto-configuration is “plug-and-play” or its corresponding “plug-and-produce” in the industry [8,22].
This term is used to denote the ability of a device or system to connect, turn on, and immediately go to
work by itself without any help, that is, an auto-configuring device. A PnP device or system has to be
able to apply an auto-configuration mechanism in order to be available to work with other devices
or systems.

In the IT domain, the PnP is a widespread paradigm in many technologies (e.g., USB and
uPnP) applied to simplify the identification and interconnection of devices in home and office
networking environments [23]. The PnP is also widely used at the application level to identify
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autonomous self-contained components, known as services, accessible to other services or applications
by the public exposition of a contract or an API (Application Programming Interface) by means of
Service-Oriented Architecture (SOA) or Resource-Oriented Architecture (ROA) [10,24,25]. In this
context, the auto-configuration in service-oriented platforms is focused mainly on the application of
a discovery mechanism that helps the identification of any service that has been previously registered
in a Service Directory [26]. In addition, the presence of a service composition mechanism provides a
list of discoverable services that each service must know before using them [27].

Some attempts to apply SOA at Device-Level in Industrial Automation were proposed in the
context of the European project SIRENA [28] by the implementation of web services (e.g., DPWS) [10,29].
In this case, a decentralized discovery approach based on WS-Discovery (Web Services Dynamic
Discovery) is used to find out the available devices by sending broadcast announcements over the
Ethernet network [30,31]. An RTE network is then initialized to interconnect all discovered devices
with the PLC.

Durkop et al. [11] proposes a similar discovery approach substituting the Service Directory
by an OPC UA server. OPC UA then provides the meta-information of field devices required by
the PLC before connecting them. According to [9], the auto-configuration process consists of the
following stages:

• Discovery: Every new device must be discovered.
• Exchange of meta-information: The attributes of the new device must be detected and share with

all other devices.
• Configuration: The system must be configured in accordance with the discovered devices and

their features.

In a similar way to the above cases, the same procedure was applied to set the auto-configuration
process for OPC-UA systems instead of configuring heterogeneous field devices into a PLC.

2.2. The OPC Systems and OPC UA

The OPC (OLE for Process Control) systems appeared in 1995 as an interoperable standard
method for the secure and reliable exchange of data from industrial devices of multiple vendors as
data sources to any client software application. In fact, OPC systems are platform-independent and
provide a standard way of accessing data of industrial processes, avoiding the inconsistencies that
specific drivers from different vendors can add to their own developments [32].

The last standard, OPC UA (OLE for Process Control, Unified Architecture), released in 2006,
changes significantly with respect to classic OPC. It keeps providing a reliable and secure standard
method for accessing information from process variables of industrial devices, improving considerably
both transport mechanisms and data modeling [33].

The access to OPC UA system is solved by a secure client-server architecture based on independent
service-oriented platform and a publish/subscribe mechanism. The transport layer defines optimized
mechanisms for transmitting and receiving data between OPC UA systems. The first version of
OPC UA defines a binary mechanism based on the TCP protocol achieving high performance in
intranet-based communications. In addition, other mechanisms are possible based on web services or
HTTP/XML, providing access transparently to firewalls (Figure 1).

On the other hand, the data modeling provides a common framework to create a richer
structured information model of the process information managed by industrial devices, facilitating
the representation of complex data types hierarchically. This information model is stored in the address
space of OPC UA server that can be exposed in a structured way to any OPC UA client such as an HMI.
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Figure 1. An OPC UA server can manage the information models for each industrial device.

2.3. Modbus

The Modbus [34] is an industrial communication protocol at the application layer that follows
a master–slave topology in order to perform the communication between devices. Only one device,
the master, can initiate request–response messages called queries to other devices (slaves) by sending
a query to an individual slave or sending a broadcast query to all slaves. In contrast, slaves respond by
supplying the requested data to the master, or by taking the action requested in the query. Usually,
the slaves devices are peripheral devices (e.g., valve, measuring device, or I/O cards), while the master
device is a PLC device or controller.

The communication in Modbus is set at the application layer, defining a set of rules for organizing
and interpreting data, independently of the underlying physical layer. It is then possible to use Modbus
over serial protocols (e.g., RS-485) or TCP/IP protocols on Ethernet. In any case, the message structure
is always the same. A request contains the slave address, a function code, the data address of the first
register requested, the number of requested registers, and the CRC, while the response is composed of
the slave address, the function code, the number of data to be retrieved, the data, and the CRC. In the
case of Modbus TCP/IP, the slave address is identified by an IP address. Some of the common Modbus
function codes are as follows:

• FC1—read discrete output coils.
• FC2—read discrete input contacts.
• FC3—read analog output holding registers.
• FC4—read analog input registers.
• FC5—write single discrete output coil.
• FC6—write single analog output holding register.
• FC15—write multiple discrete output coils.
• FC16—write multiple analog output holding registers.
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3. The Autoconfiguration of OPC UA

In this approach, a novel method is presented for auto-configuring the OPC UA server directly
from the industrial PLCs connected to the system with a PnP perspective in order to provide an IIoT
compatible system.

Traditionally, the implementations of OPC UA server provide drivers from multiple vendors to
simplify the connection with industrial PLCs using a TCP/IP protocol in basic Ethernet. However, OPC
UA does not know the addressing of process variables that industrial devices are handling. A human
operator must configure manually the OPC UA server, defining the mapping of these process variables
with the elements of the OPC UA information model. This procedure can involve great effort when
thousands of process signals provided by industrial devices have to be configured. Accordingly, any
change in the process variables of PLCs implies a full revision of the OPC information model in order to
find and modify the mapping between PLCs and the OPC UA server. Therefore, the auto-configuration
mechanism proposed in this paper attempts to automate the execution, configuration, and deployment
of the OPC UA server without any manual intervention whenever necessary.

The auto-configuration of the OPC UA server is self-managed directly over the industrial PLCs
connected to the OPC UA server using a basic Ethernet that can also be shared by other industrial
software systems (e.g., OPC UA clients, HMI, SCADA, and MES). Firstly, the OPC-UA server has
to scan the TCP/IP network in order to discover the IP address of possible new PLCs connected
to the network. It obtains information of these PLCs as well as their process variables. This allows
for building its information model in a specific OPC UA address space and configures after the
corresponding mapping between elements of its information model with the addresses of the process
variables in the PLCs. Once the OPC UA is configured, the OPC UA server actives the Modbus TCP/IP
channel in order to enable the transmission of Modbus messages to the PLCs and maintain the two
synchronized systems: the OPC UA server and the PLCs.

Figure 2 shows the components that form the architecture of an industrial system prepared for
the application of the auto-configuration mechanism of the OPC UA server. The OPC UA server
operates as a TCP/IP client in TCP/IP mode when it has to discover new PLC devices into the network.
In contrast, the OPC UA acts as a Modbus master when it operates in Modbus mode. In this case,
it polls periodically the Modbus slaves located in the network in order to synchronize the information
model of the OPC UA server with the process variables of Modbus slaves. On the other hand, OPC
UA clients (e.g., SCADA) can connect to the OPC UA server using TCP/IP when they have to monitor
the process data of industrial devices through the information model of OPC UA.

The novel mechanism for auto-configuration of OPC UA is composed of three stages. Figure 3
shows the message exchange flow between the industrial controller and the OPC UA server:

• Device Discovering. In this stage, the OPC UA server scans the network using the TCP/IP protocol
for searching the available industrial PLCs or devices by sending “Hello” multicast messages
periodically. When a PLC device captures one of these messages, it responds to the OPC UA
server returning its current IP address (the default port of Modbus is 502). With this information,
the OPC UA server can register that recognized device as a potential candidate. The IP address
is necessary to establish the subsequent TCP/IP and Modbus TCP/IP communications in the
following stages.

• Exchange of meta-information. In the second stage, OPC UA sends a query to the registered PLC
in order to obtain information about the process variables that the OPC system can read on the
detected PLC. Formally, this information is composed of a variable set of blocks of data units
(BDUs) that begin with a START word and end with an END word:

START BDU0 ... BDUn END. (1)

The elements in this structure are separated by a \n. Each BDU includes a block of process
variables always of the same data unit that can be inspected/stored in the PLC device. A BDU is
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composed of three fields: datatype, offset, and datanumber. The datatype identifies the four basic
data types recognized in Modbus: discrete output coils (1), discrete input contacts (2), analog
output holding registers (3), and analog input registers (4). Second, the offset is the relative
addressing with respect to a specific base address (depending on this case of the data type).
Finally, the datanumber is the number of data that can be read or written of the same data type.
For example, the BDU “4:300:10” specifies a block of 10 input registers that is located on the offset
300 of the base data address of input registers (0x30000, defined by Modbus).

Figure 2. Architecture of the industrial system for the auto-configuration of OPC UA.

An example of the information returned by the PLC device is shown next:

“START\n1:0:8\n2:100:8\n3:200:10\n4:300:10\nEND\n" (2)

that includes 8 process data of output coils and input contacts, and 10 output holding registers
and input registers at different offsets.

Finally, the OPC UA server sends a “bye” message indicating to the device that the TCP/IP
communication channel can now be closed. At this point, the communication between the device
and the OPC UA server is carried out using the Modbus protocol.

• Configuration of the device in OPC UA server. The information received from the PLC device must
be built into the address space of the OPC UA server. The configuration is done in two steps:

– Building of the information model in the OPC UA address space. With the information of the
process variables of the PLC device and the type of those variables, the OPC UA server
automatically generates one or more elements (in nodes) of the information model in its
address space in order to expose the data of the process variables to any OPC UA client.
This process takes advantage of the information model offered by the UA standard that
provides rules for the creation of simple data types (e.g., integers, and float and string) or
complex data types, such as objects with their attributes and methods [10]. The information
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model generated by the OPC UA server is stored into an XML file according to the schemas
defined by the OPC Foundation [33]. The objects are structured by the name of the PLC
plus the IP address. Next, an example of a float process variable is specified with the
corresponding address.

<ObjectType SymbolicName="OpcUa : PLC01\_192 . 1 6 8 . 3 0 . 5 "
BaseType ="OpcUa : BaseObjectType ">
<Children >

<Property SymbolicName="OpcUa : Address "
DataType="OpcUa : S t r i n g " />
<Var iable SymbolicName="OpcUa : value "
DataType="OpcUa : F l o a t " />

</Children >
</ObjectType >

– Mapping between PLC and OPC UA: Once the information model is built in an OPC UA
address space, the correspondence between these elements and the process variables of the
PLC is then configured. The configuration basically consists of setting the mapping between
the address of each process variable and the corresponding element in the information model
in the OPC UA address space as well as setting the read/write property of each element.
This mapping between PLC and OPC UA is also stored in an XML document in order to
reconfigure the OPC UA server when the server is going down.

Figure 3. Message exchange between the OPC UA server and an industrial device during the
auto-configuration of OPC UA server in TCP/IP mode and the subsequent periodic requests/responses
in Modbus mode.
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After the auto-configuration mechanism of the OPC UA server is finished, OPC UA server actives
the communication driver of the Modbus protocol as a Modbus master in order to send periodically
Modbus request–response messages for synchronizing the information model of OPC UA with the
process variables of the PLC. Depending on the read/write property of each element in the information
model of OPC UA, a request–response message is sent to update the process variables of the PLC or to
retrieve the value of the process variables and consequently, in the last case, update the information
model. Each Modbus request and response is built according to this standard. For instance, a request
for reading input registers includes the function code FC4, the starting data address and the number of
registers requested, while the response includes the same function code, the number of bytes read, and
the contents of the read data addresses. Figure 4 shows a schematic of the process followed to send a
request–response message to PLC.

Figure 4. Schematic of the information exchange between the PLC device and OPC UA server once the
auto-configuration of OPC UA is finished.

4. Case Study

In order to test the proposed auto-configuration method, we prepared an industrial ecosystem
in the lab. The ecosystem is composed of two industrial controllers (an M-DUINO PLC [35] and
an Arduino One [36]), a switch, a desktop PC computer with an OPC UA server, and an OPC UA
client running in another PC computer connected all of them to an isolated basic Ethernet network.
The architecture of all the involved components in this case study can be seen in Figure 5, while a view
of the physical devices used in the lab is shown in Figure 6.
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Figure 5. Architecture of the system prepared for the case study that includes the OPC UA server,
the OPC UA client, the M-DUINO PLC and the Arduino ONE.

Figure 6. A view of the hardware devices managed in the case study.

4.1. Hardware

Two controllers were used for the preparation of the case study: an M-DUINO PLC and an
Arduino ONE. The M-DUINO PLC from Industrial Shields [35] meets the specifications of an industrial
controller, although it is programmable with a “processing” programming language such as the
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Arduino microcontroller family. The second one is not an industrial device, but it is introduced into the
architecture to verify that the auto-configuration method works with several devices of the Arduino
microcontroller family at the same time. Next, a summary of the main characteristics of the hardware
used for the case study is described:

• M-DUINO PLC Arduino Ethernet 42 I/Os Analog/Digital PLUS [35]: This industrial PLC based on
Arduino has 26 inputs: 12 analog inputs and 14 isolated digital inputs. The analog inputs can be
switchable by software in 12 analog inputs (0–10 Vdc) or 12 digital input (5–24 Vdc). In addition,
it has 16 isolated digital output; 6 of them are configurable as PWM output by software, and 6 of
them are configurable as analog output by switch. Regarding connectivity, it has 1 ethernet port,
3 TTL ports, 1 RS-232 port, and 1 Hall/Full Duplex RS-485 port; it supports TCP/IP and RTU
Modbus protocols.

• Arduino ONE [36]: The standard Arduino One includes by default 16 digital input/output (5 Vdc)
and 4 analog input (5 Vdc). In addition an Ethernet Shield was installed for this controller to
provide TCP/IP connectivity.

• OPC UA Server: The OPC UA server was deployed on a computer PC with an i5-4570
microprocessor at 3.20 GHZ with 8Gb RAM, and 1 GByte Ethernet, on which a Windows 10
(64 bits) operating system is running.

• OPC UA Client: The OPC UA client was deployed on another PC with an i5-3320M microprocessor
at 2.60 GHZ with 4Gb RAM, 1 GByte Ethernet, with Windows 10 (64 bits).

4.2. Software

The implementation of each component of the industrial system was carried out to verify the
behavior of the auto-configuration mechanism of the OPC UA server. A description of the libraries
and the implemented software are summarized next for each hardware component:

• M-DUINO PLC Arduino and Arduino One. Both devices are implemented by the same
programming language using the standard Arduino development framework v.1.8.5. Some
Arduino standard libraries such as Ethernet, SPI, and w5100 and the Modbus TCP/IP library in
C++ [37] were used to program the device controller. The program switches between a TCP/IP
server and Modbus TCP/IP slave along its life cycle. In TCP/IP mode, the device controller is
ready to respond when a hello multicast message is received, providing the required information
to the OPC UA server during the auto-configuration of the OPC UA server. In Modbus TCP/IP
mode, the device became a Modbus slave, responding to any request performed by the OPC UA
server as a Modbus master.

• OPC UA server. The OPC UA server was implemented completely in Java integrating three
components: the OPC-UA server stack, the Modbus and TCP/IP communication stacks, and the
OPC UA server manager. The OPC-UA server stack is provided by the OPC Foundation to
implement the structure of the UA server, the support for data modeling, and the transport
mechanism for providing a secure communication from OPC UA clients. The TCP/IP stack is
used to scan the network at the first two stages of the OPC UA auto-configuration in order to find
the PLC devices. Finally, an intuitive graphic user interface was developed for the OPC UA server
manager that provides the ability to inspect the data and status of each element of the information
model available on the OPC UA server. Although by default the OPC UA server attempts to
find, register, and bind to PLCs automatically, a manual configuration was also possible. Figure 7
shows a screenshot of the program deployed on the OPC UA server.

• OPC UA client. A commercial OPC UA client, Prosys OPC UA Client [38], was also used to test
the accessing to the OPC UA server. The OPC UA client can see the process data by browsing
through the nodes of the OPC UA address space. Depending on the (reading/writing) property
of each node, the process data can be readable and writable. Figure 8 shows a screenshot of the
OPC UA client.
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Figure 7. A screenshot of the graphic program in Java deployed on the OPC UA server for this work
that shows a panel with the configuration of two PLC devices.

In order to carry out the experiments, an initial deployment of the systems and devices was
considered. The M-Duino PLC Arduino device was configured with 40 process variables in order to
cover the 42 input/output available in the device, that is, 10 coils, 10 contacts, 10 analog inputs, and
10 analog outputs. In Modbus TCP/IP, it transmits data of the configured process variables each time
a Modbus request is received from the OPC UA server. Similarly, the second device—the Arduino
One—was configured with the same number of process variables.

The process variables provides data at the runtime of the sensor/actuator connected to the
corresponding input/output. Some data of the process variables were generated by simulation.
For example, some analog inputs were generated from an initial value of 50.0, incrementing 0.1 each
time the process variable was read. When the process variable achieved a value of 100.0, it was reset
again to the initial value of 50.0. On the other hand, some digital inputs (contacts) were simulated
applying the negation of the actual value (HIGH or true) in each reading.

The OPC UA server was deployed and executed before devices in all experiments in order to
control when the auto-configuration process was taken. In TCP/IP mode, the time interval of device
discovery can be configured by the operator (by default this value was 1000 ms) or can be executed
manually by the operator when a new PLC device is connected to the network. In Modbus TCP/IP
mode, the scan rate can be configured to determine when the Modbus request–response messages are
sent to PLC devices; in our case, it is set to 300 ms.

To verify that the auto-configuration mechanism of OPC UA is working properly, three
different scenarios are presented in which the network traffic has been analyzed during the
auto-configuration process.

Scenario 1: In this case, the OPC UA server is deployed and executed before the M-DUINO
device. Afterwards, the M-DUINO device was executed. An analysis of the network traffic was
carried out during this process. Figure 8 shows the network traffic obtained by the auto-configuration
mechanism plus the transmissions of Modbus request–response messages.

In this graph, the Y-axis represents packets per minute and the X-axis the time in seconds. As we
can see in Figure 9, the small isolated peaks found at the beginning of the graph are consequence of the
periodic scanning of the network caused by OPC UA server for looking for a possible industrial device.
When a PLC device was connected to the network, an increase in the packet traffic was then achieved.
The first highest peak was obtained when the PLC device was detected and the second highest peak
when the device information was sent to OPC UA server. After that, the packet traffic was constant
because of the data exchange in Modbus, with some periodic peaks.
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Figure 8. A screenshot of the Prosys OPC UA client accessing the information model of OPC UA.

Scenario 2: In this case, the OPC UA server was also started before the industrial devices.
Subsequently, two industrial devices were connected sequentially in order to study how it affects
network traffic. Finally, the disconnection and reconnection of one of these industrial devices was
tested over a time interval. Figure 10 shows the network traffic obtained in this case.

Figure 9. The graph includes the network traffic generated between the M-DUINO and the OPC
UA server.
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Figure 10. The graph includes the network traffic generated between two devices (M-DUINO and
Arduino ONE) and the OPC UA server.

Similar to Scenario 1, an increase in the network traffic was obtained when the first industrial
device was discovered by the OPC UA server. When the second device was connected to the network,
a twofold increase in the network traffic was achieved with a similar pattern. The peaks in this
region were higher compared with Scenario 1 because peaks might have occurred with respect to
both industrial devices. The disconnection and reconnection of the second industrial device supposed
a reduction of the network traffic by half, followed by a twofold increase in the network traffic as
expected. In this case, we can observe that the initial peak in the reconnection of the second device did
not appear as the first time, because the OPC UA server already knew the device information.

Scenario 3: In this third scenario, the OPC UA was started again before both industrial devices
were connected to the network. However, in this case, unlike Scenario 2, both devices were executed at
the same time. Figure 11 shows the behavior of the network traffic achieved in this case.

Figure 11. The graph includes the network traffic generated between two devices (M-DUINO and
Arduino ONE) and the OPC UA sever connected at the same time.

The results obtained of the network traffic in the third scenario are clearly coherent with respect
to the previous results; that is, the increase in the network traffic depends directly on the number of
the connected industrial devices discovered by the OPC UA server. However, we can observe some
fluctuations in the traffic network at the initial stages of the auto-configuration of the OPC UA server,
probably because the OPC UA server must share communication with both devices at the same time.
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5. Conclusions and Future Works

The introduction of auto-configuration mechanisms in industrial environments without any
human intervention is crucial for facilitating the development, deployment, and maintenance of any
industrial system and, consequently, satisfying the increasing demands of Industry 4.0.

Although these mechanisms were applied mainly for industrial devices such as PLCs or RTU,
we need to extend them to software systems that are part of the industrial ecosystem. Therefore,
the extension to the rest of industrial software systems (not only on industrial automation) will
contribute to establishing better support for current and future industry installations and will make
the IIoT effective such as [39,40].

In this paper, the focus is on OPC UA systems that enable a secure data exchange between
industrial devices and the software systems. The method proposed allows the automatic configuration
and deployment of an OPC UA server only from the information provided by industrial devices.
This gives OPC UA servers the ability to become first-class PnP systems and therefore improves the
flexibility, adaptability, and scalability of the industrial system.

An OPC UA server with auto-configuration mechanism does not have to stop when a failure or
production interruption is found. Thus, the operators can modify or substitute the faulty industrial
devices or controller in production and the OPC UA server will automatically reconnect to the new
ones by itself.

Hence, an OPC UA server can be adapted more easily to the modifications performed at the field
layer, reducing the human errors derived from the system parametrization and the time needed to make
the system operational. Consequently, this also reduces the costs of maintenance and deployment.
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