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Abstract Using the method of covariant symbols we com-
pute the divergent part of the effective action of the Proca field
with non-minimal mass term. Specifically a quantum abelian
vector field with a non-derivative coupling to an external
tensor field in curved spacetime in four dimensions is con-
sidered. Relatively explicit expressions are obtained which
are manifestly local but non polynomial in the external fields.
Our result is shown to reproduce existing ones in all particular
cases considered. Internal consistency with Weyl invariance
is also verified.
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1 Introduction

Although models involving scalar fields are the most com-
monly considered in applications of relativistic gravity and
cosmology, e.g. for inflation or f (R) gravity, vector fields
also attract considerable interest [1–3]. As regards to intro-
ducing a persistent anisotropy after inflation, it has been
pointed out that minimally coupled vector fields would not
suffice so non-minimally coupled models have been consid-
ered [4]. In such non minimal models the vector field can be
coupled to a mass-like term Mμν(x) with a possibly local
dependence and a possibly non trivial tensor structure (see
Eq. (2.1)). Most of these studies are at the classical level
and it is only natural to investigate the effect of quantum
fluctuations. As it turns out, the evaluation of the quantum
fluctuations of vector fields with a non minimal coupling
is not entirely straightforward. For scalar or minimal vector
theories, the ultraviolet (UV) divergent part of the effective
action, �div, is local (hence a polynomial with respect to the
covariant derivatives) and also a polynomial in the external
fields. A notorious exception to this rule is the metric, due to
its coupling to the kinetic energy term in the action. Neverthe-
less, locality still requires that terms involving derivatives of
the metric are a polynomial in the curvature and derivatives of
it. At variance with this, for a generalized Proca field locality
is preserved but �div is no longer a polynomial in Mμν(x).1

The peculiar behavior is due to the kinetic energy term. As
is well-known, in a direct Lorentz covariant formulation, the

1 Unless, Mμν(x) = m2gμν with constantm. In this case �div is indeed
a polynomial in m2.
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kinetic-energy term of an abelian vector field displays U(1)

gauge invariance. This implies that the quantum fluctuations
are not efficiently quenched for all polarizations, resulting in
a propagator with a singular kernel. A mass term breaks such
gauge invariance and changes the number of propagating
degrees of freedom, but the leading (i.e., most UV divergent)
term of the action is still singular. The mass term introduces a
penalty to large amplitude fluctuations of the vector field, but
large wavenumbers are not suppressed for the longitudinal
polarization. When this issue is resolved, removing spurious
degrees of freedom, one finds that Mμν(x) behaves as an
additional metric field.

Early studies of non-minimally coupled vector fields were
undertaken in [5] at the classical level and in [6] at the quan-
tum level. The first explicit attempt to a calculation of �div

for the action in Eq. (2.1) have been addressed in [7] using
the local momentum approach [8]. To cope with the above
mentioned singular-kernel problem, the canonical quantiza-
tion scheme of Faddeev and Jackiw [9] was used. The results
in [7] are partial because only the ultrastatic case is consid-
ered in detail. It is correctly concluded that UV divergences
can not be removed by a local and polynomial (in Mμν)
counterterm Lagrangian. A new attempt was taken in [10].
Unlike the canonical quantization approach, manifest rela-
tivistic covariance was preserved by using the Stückelberg’s
method [11,12] to transform the action into one with exact
gauge symmetry. The gauge is then fixed, including the usual
compensating Faddeev–Popov term. The new action contains
now a vector field and a scalar field (plus a ghost field that is
completely decoupled from the other fields). The approach
of [10] was to diagonalize the vector–scalar action using a
non-local kernel. Unfortunately, as noted in [13], the detailed
implementation of this step is questionable, and the result-
ing divergent part of the effective action turned out to be
non local. A complete and impeccable calculation of �div

has been carried out in [13], where also the various types of
generalized Proca fields are classified. The calculation there,
besides using Stückelberg’s method, exploits the Weyl invari-
ance of the action (see Sect. 2). In this way the problem is
transformed into one where the external fields are two met-
ric fields and a heat kernel approach is then applied. The
final result is expressed in terms of the two metric fields (and
their corresponding connection and curvature structures). It
is fully local, although not polynomial in Mμν(x), and sev-
eral cross-checks are satisfied.

In this work, we also carry out a calculation of the func-
tional �div[gμν, Mμν] for the action in Eq. (2.1), starting
from the Stückelberg formulation introduced in [10]. The
difference between our calculation and that in [13] is that we
use throughout the original metric gμν , with the exception of
a term for which a different metric is clearly superior, and in
any case just one metric is present in each single term of the
final result. Another difference is that, instead of the heat ker-

nel, we use the method of covariant symbols, which seems
quite appropriate for this kind of problems. The method was
introduced in [14] for flat spacetime and extended to curved
spacetime in [15], and also to finite temperature in [16]. It has
been applied to fermions [17–20] and to obtain a strict deriva-
tive expansion of the heat kernel in curved spacetime [21].
The method of covariant symbols is related to the method
of symbols (of pseudodifferential operators) as described in
[22,23], where the shift ∇μ → ∇μ + pμ is applied and
pμ represents the momentum of the particle running in the
quantum loop. However, in the method of covariant symbols
results are manifestly covariant (i.e., the covariant deriva-
tive appears only in the form [∇μ, ]) and in this sense it is
closer to the momentum space approach of [8]. Indeed, pμ is
introduced in such a way that any pseudodifferential opera-
tor constructed out of ∇μ and other multiplicative operators
is mapped to a covariant operator which is multiplicative
with respect to ∇μ (although it may contain derivatives with
respect to pμ). This guarantees that all the expressions are
local throughout the calculation and the UV divergence is
controlled by the integration over the loop momentum pμ.
Moreover, the map is an algebra homomorphism, hence the
covariant symbol of any operator is immediately obtained
from the covariant symbols of its building blocks (e.g., ∇μ

and Mμν). Our final result avoids the use of a bimetric for-
mulation yet it agrees with previous results in the literature
and in particular it correctly reproduces those in [13].

The paper is organized as follows. In Sect. 2 we discuss the
formulation of the problem to make the kernel a regular one
at the price of introducing the Stückelberg scalar field. The
expansion organizing the calculation is spelled out, and the
Weyl symmetry of the problem is noted. In Sect. 3 we present
the calculation of the terms which are elementary. Also there
we summarize the method of covariant symbols, which is
already applied in that section for some of the terms. In
Sect. 4 the remaining terms are computed through a system-
atic use of the method of covariant symbols. Rather explicit
expressions are obtained involving only the original metric.
The number of terms has been minimized using integration
by parts. Some elliptic integrals are left implicit, as more
detailed expressions would not be helpful. Several checks of
the result are done in Sect. 5, considering particular cases or
expansions and the validity of Weyl invariance of the final
expression. Our conclusions are presented in Sect. 6. Further
details regarding conventions, proving auxiliary results, or
summarizing covariant symbols properties are presented in
the appendices.

2 Formulation of the problem

The goal is to obtain the divergent part of the effective action,
�div, of an abelian vector field Aμ(x) in curved spacetime
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coupled to an external tensor field. The divergent part of the
effective action will be extracted using dimensional regular-
ization and Euclidean signature is used throughout.

The action is given by

S =
∫

d4x
√
g

(
1

4
FμνFμν + 1

2
Mμν AμAν

)
(2.1)

where

Fμν = ∇μAν − ∇ν Aμ. (2.2)

The connection is the Levi-Civita connection for the Rieman-
nian metric gμν , hence Fμν coincides with ∂μAν − ∂ν Aμ.
Unless otherwise stated gμν is used to raise, lower and con-
tract world indices. Mμν(x) is an abelian symmetric tensor
field which is assumed to be positive definite, so that the
Gaussian functional integration over Aμ(x) converges for
large amplitude fluctuations.

The kinetic term is gauge invariant, implying that fluc-
tuations with large wavenumbers are not suppressed for the
longitudinal polarization. To cope with this problem we fol-
low [10] and apply Stückelberg’s method. A new scalar field
ϕ is introduced and the field Bμ is defined through the change
of variables

Aμ = Bμ + 1

m
∇μϕ. (2.3)

The mass m is arbitrary and is introduced so that ϕ has the
standard dimensions. Since it can be reabsorbed in the field
and its value has no effect on the final result (as is readily
verified) we set m = 1 from now on. In the new variables the
action takes the form

S=
∫

d4x
√
g

(
1

4
FμνFμν + 1

2
MμνBμBν + MμνBμ∇νϕ

+ Mμν∇μϕ∇νϕ

)
(2.4)

and Fμν = ∇μBν − ∇νBμ. The whole action is now gauge
invariant (namely, under Bμ → Bμ + ∂μ�, ϕ → ϕ − �)
since Aμ is. The next step is to fix the gauge. A convenient
choice is obtained by adding the term

Sgf =
∫

d4x
√
g

1

2
(∇μBμ)2 (2.5)

as well as the compensating Faddeev–Popov ghost term

Sgh =
∫

d4x
√
g∇μω∗∇μω (2.6)

where ω(x) is a scalar complex fermionic field.
The total action Stot = S + Sgf + Sgh can be expressed as

Stot = Sgh +
∫

d4x
√
g

1

2
φ† K̂φ (2.7)

with

φ =
(
Bμ

ϕ

)
, K̂ =

(
F̂μν Ĥμ

Ĥ†μ Ĝ

)
. (2.8)

The differential operators F̂ , Ĥ and Ĝ are given by

F̂μν = −gμν� + Rμν + Mμν, Ĝ = −∇μM
μν∇ν,

Ĥμ = Mμν∇ν, Ĥ†μ = −∇νM
μν. (2.9)

where � ≡ ∇μ∇μ and Rμν is Ricci’s tensor. This tensor
is generated from 1

4F
2
μν + 1

2 (∇μBμ)2, using integration by

parts to give − 1
2 B

μ�Bμ − 1
2 Bμ[∇μ,∇ν]Bν up to boundary

terms. The operator F̂ acts on the space of vectors, while Ĝ
acts on the space of scalars.

Functional integration over Bμ, ϕ and ω provides the
effective action

� = �K + �gh, �K = 1

2
Tr log K̂ ,

�gh = −Tr0 log(−�). (2.10)

The subindex zero in �gh indicates to take the functional trace
in the space of scalars.

In order to compute �K we split K̂ as

K̂ = K̂D+ K̂ A, K̂D =
(
F̂ 0
0 Ĝ

)
, K̂ A =

(
0 Ĥ
Ĥ† 0

)
.

(2.11)

This allows to make the expansion

�K =
∞∑
n=0

�K ,n, �K ,0 = 1

2
Tr log K̂D,

�K ,n = (−1)n+1

2n
Tr((K̂−1

D K̂A)n) (n > 0). (2.12)

In this expansion all terms with odd n vanish since K̂ A has
to appear an even number of times to have a non null con-
tribution to the trace. In addition, terms with n > 4 are UV
convergent, so only �K ,n for n = 0, 2, 4 have a contribution
to �div:

�div
K = �div

K ,0 + �div
K ,2 + �div

K ,4. (2.13)

The zeroth term can be further expanded as

�K ,0 =�F+�G , �F = 1

2
Tr1 log F̂, �G = 1

2
Tr0 log Ĝ.

(2.14)

Before finishing this section, let us note theWeyl symmetry
present in the action, namely S is invariant under the local
rescaling

gμν(x) → g	
μν(x) = 	2(x) gμν(x),

Mμν(x) → (M	)μν(x) = 	−4(x) Mμν(x). (2.15)

This symmetry can be secured in the final result by using
Weyl-invariant combinations, for instance
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(g	
μν, (M

	)μν) = (ĝμν, g̃
μν) with 	 = (det(Mα

β))1/8.

(2.16)

This choice corresponds to the prescription det ĝμν =
det g̃μν , where g̃μν stands for the inverse matrix of g̃μν . This
is the approach adopted in [13]. Here we take the alterna-
tive route of using directly the original pair of external fields
(gμν, Mμν) and Weyl invariance will provide a check of the
calculation. An exception is taken in the case of �G since
there the advantages of using g̃μν are overwhelming.

3 Elementary contributions to �div

3.1 �gh

The value of Tr0 log(−�) is a standard result [24] that can be
obtained in many ways. In terms of heat kernel coefficients
a well-known relation is

Tr log(−�)
∣∣
div = 1

(4π)2

1

ε

∫
d4x

√
g tr(b2(x)) (3.1)

where

d = 4 + 2ε (3.2)

is the dimension parameter in dimensional regularization.2

The explicit form of the second Schwinger–DeWitt coeffi-
cient is (see e.g. [21])

b2 = 1

12
Z2

μν + 1

72
R2 − 1

180
R2

μν + 1

180
R2

μναβ. (3.3)

(See Appendix A for definitions of the symbols and con-
ventions used in this work.) This expression of b2 holds for
any tensor space. In the particular case of the scalar space
Zμν := [∇μ,∇ν] vanishes, and tr0(1) = 1, hence

tr0(b2) = 1

180
G + 1

60
R2

μν + 1

120
R2, (3.4)

where, following [13], we have expressed the result using the
topological Gauss–Bonnet term

G = R2 − 4R2
μν + R2

μναβ. (3.5)

The final result for the ghost contribution is therefore

�div
gh = 1

32π2ε

∫
d4x

√
g

(
− 1

90
G − 1

30
R2

μν − 1

60
R2

)
. (3.6)

2 All our calculations are consistent with the results in [13], up to an
overall minus sign. This should indicate that d = 4 − 2ε is being used
in that reference.

3.2 �G

The term �G can be identified with the effective action cor-
responding to the action

SG =
∫

d4x
√
g

1

2
Mμν∇μϕ∇νϕ. (3.7)

To deal with this term one approach is that of [10] where
Mμν is directly used as an alternative (contravariant) metric.
However, simpler expressions are obtained by using as new
metric g̃μν defined through the condition [13,25]
√
g Mμν = √

g̃ g̃μν, (3.8)

hence g̃μν is the inverse of g̃μν = Mμν/
√

det(Mλ
σ ). In this

way SG takes the standard form

SG =
∫

d4x
√
g̃

1

2
g̃μν∇̃μϕ∇̃νϕ. (3.9)

This immediately implies that

�G = 1

2
T̃r0 log(−�̃) (3.10)

and in turn

�div
G = 1

32π2ε

∫
d4x

√
g̃

(
1

180
G̃ + 1

60
R̃2

μν + 1

120
R̃2

)
,

(3.11)

and of course, g̃μν is used everywhere in this expression
instead of gμν .

As noted in [13], the combination
√
g̃ G̃ can be replaced

with
√
g G , since its integral is a topological invariant.

Another observation is that this expression is invariant under
a global rescaling of the metric. Since g̃μν picks up a fac-
tor 1/m2 when the mass parameter m is not set to unity, the
invariance property checks that the value of m is not relevant
here.

We emphasize that a single metric (and its derived struc-
tures) will be used in any single contribution to the effective
action. Only g̃μν appears in �div

G while only gμν appears in
our formulas for all the remaining terms of �div.

3.3 �F (part 1)

The expression for �F in (2.14) also follows from the second
heat-kernel coefficient for the operator F̂μν and could be
borrowed directly from the results in the literature, however
we will evaluate it here in order to introduce the technique
of covariant symbols to be exploited in the computation of
�K ,2 and �K ,4.

Let us split F̂μν into two terms as

F̂μν = −gμν� + Yμν, Yμν = Rμν + Mμν (3.12)

and apply an expansion in powers of Yμν
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�F = 1

2
Tr1 log(−gμν� + Yμν)

= 1

2
Tr1 log(−�) −

∞∑
n=1

1

2n
Tr1((�−1Yμ

ν)
n)

:=
∞∑
n=0

�F,n .

(3.13)

The UV divergent part of this series finishes at n = 2 since
terms n ≥ 3 are already UV convergent:

�div
F = �div

F,0 + �div
F,1 + �div

F,2. (3.14)

For �div
F,0 (3.1) applies (with Tr1 and tr1) as well as (3.3).

There the term with Zμν no longer vanishes, instead (using
(A1))

tr1(Z
2
μν) = −R2

μναβ. (3.15)

Together with tr1(1) = 4, this yields the result

�div
F,0 = 1

32π2ε

∫
d4x

√
g

(
− 11

180
G − 4

15
R2

μν + 7

60
R2

)
.

(3.16)

In order to compute the remaining terms �div
F,1 and �div

F,2
we will apply the method of covariant symbols.

3.4 Aside: covariant symbols

For an operator Ô = O(Y,∇μ) constructed with one or more
multiplicative operatorsY (x) and the covariant derivative ∇μ

(which may include all kind of connections, gauge or other)
its covariant symbol is defined as

O := e− 1
2 {∇μ,∂μ}e−ξα pα Ôeξβ pβ e

1
2 {∇ν ,∂ν }∣∣

ξμ=0. (3.17)

Here {, } denotes the anticommutator, ξμ are the Riemann
coordinates with origin at the point x and corresponding to
the connection in ∇μ, although we will only consider the
Levi-Civita connection here. In addition

∂μ := ∂

∂pμ

(3.18)

and pμ is a momentum variable to be used as integration
variable. For convenience, in order to avoid a proliferation
of factors i , we use a purely imaginary pμ, hence pμ = ikμ

and kμ (real) is the actual integration variable (still we use
ddp as notation). Of course, the operator Ô itself is assumed
not to depend on pμ or ∂μ.

The covariant symbols were introduced in [14] for flat
spacetime and extended to curved spacetime in [15]. The
relevant properties of the covariant symbols are (see [15] for
details):

1. O is a covariant multiplicative operator with respect to x ,
although contains derivatives with respect to pμ. In addi-

tion O† = (O)†, hence when O is hermitian its covariant
symbol is also hermitian.

2. The map Ô → O is an algebra homomorphism, since it
is defined from a similarity transformation. This implies
that

f (O1, . . . ,On) = f (O1, . . . ,On), (3.19)

and in particular O = O(Y ,∇μ). Note also that gμν =
gμν for the Levi-Civita connection, hence (gμν Aν) =
gμν Aν , etc.

3. The diagonal matrix elements can be rewritten as

〈x |Ô|x〉 = 1√
g(x)

∫
ddp

(2π)d
O(x, p), (3.20)

where it is understood that all ∂μ at the rightmost position
vanish (and also at the leftmost position, from integration
by parts). Therefore, the relation

Tr(Ô) =
∫

d4x
√
g(x) tr(〈x |Ô|x〉) (3.21)

implies

Tr(Ô) =
∫

d4x ddp

(2π)d
tr(O(x, p)). (3.22)

Equations (3.20) and (3.22) are key relations in the
covariant symbol technique, allowing to compute diago-
nal matrix elements of operators or functional traces as
those appearing in the effective action.

For short we will introduce the notations

〈 f 〉x ≡
∫

d4x
√
g f, 〈 f 〉p ≡ 1√

g

∫
ddp

(2π)d
f (3.23)

as well as 〈 f 〉x,p ≡ 〈〈 f 〉p〉x , so that

〈x |Ô|x〉 =
〈
O

〉
p
, Tr(Ô) =

〈
tr(O)

〉
x,p

. (3.24)

The explicit form of the covariant symbols for basic opera-
tors has been obtained in [15] in a covariant derivative expan-
sion up to two derivatives for a general connection and to four
derivatives when the Levi-Civita connection in the world sec-
tor is selected (but still arbitrary with respect to gauge or
internal indices). The following results are useful

Y = Y − Yα∂α + 1

2!Yαβ∂α∂β − 1

3!Yαβγ ∂α∂β∂γ + · · ·
(3.25)

Here Y is any operator that is multiplicative with respect
to x , i.e., not containing “free” ∇μ (all derivatives appear
in the form [∇μ, ]) and not containing “free” Zμ1...μn (see
Appendix A for notational conventions). Y may have world
indices and we have used the convention of adding new
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indices to the left to indicate covariant derivatives. So if e.g.
Y = Aα , Yμν would be Aμνα ≡ [∇μ, [∇ν, Aα]]. Further-
more

∇μ = pμ + 1

2
Zμα∂α + 1

6
Rμα∂α + 1

6
Rμαλβ p

λ∂α∂β + · · ·
(3.26)

� = pμ pμ + 1

6
R + Zλα p

λ∂α − 1

3
Rλα p

λ∂α

+1

3
Rλασβ p

λ pσ ∂α∂β + · · · (3.27)

Fuller expressions can be found in Appendix B and in [15].
The expansions just presented can be organized by the

number of covariant derivatives so that, for instance Zμν ,
Rμναβ ,Rμν andR count as second order, gμν as zeroth order,
etc. Alternatively one can grade a term counting the number
Np of pμ minus the number of ∂μ in that term. Hence the
expansions for Y , ∇μ and � start at orders Np = 0, 1, 2 and
have been made explicit through orders Np = −3,−1, and 0,
respectively. With this convention one can write, for instance,

Y = (Y )0 + (Y )−1 + (Y )−2 + (Y )−3 + O(p−4) (3.28)

with

(Y )−n = (−1)n

n! Yα1...αn∂
α1 · · · ∂αn . (3.29)

Np is an additive index related to the degree of UV divergence
of a term.

Within the covariant symbols technique there are no free
∇μ as the covariant symbols are multiplicative, however,
there are Zμν or more generally Zμ1...μn . These quantities
are multiplicative with respect to x but act on world indices,
hence they do not commute with pμ and ∂μ, instead

[Zμ1...μn , pα] = Rμ1...μnαλ p
λ,

[Zμ1...μn , ∂α] = Rμ1...μnαλ∂
λ. (3.30)

An often convenient tool to deal with the momentum inte-
gral in 〈 f 〉p is to introduce a tetrad field eμ

a (x) to make a
change of variables from pμ to ka :

gμν = δabe
μ
a e

ν
b, δab = eaμe

μ
b , det (eaμ) = √

g,

pμ = ikae
a
μ. (3.31)

In this way, if f (p, X) is an expression tensorially con-
structed out of pμ and tensors X (x) (the operators ∂μ are
assumed to be no longer present),

〈 f (p, X)〉p= 1√
g

∫
dd p

(2π)d
f (p, X)=

∫
ddk

(2π)d
f (k, X, e),

(3.32)

where f (k, X, e) is tensorially constructed out of X and eaμ,
and the scalars ka , checking that 〈 f 〉p is indeed a tensor.
Upon integration over ka the result does not depend on the
concrete choice of vierbein field.

Another related observation (not discussed in [15]) refers
to derivatives of pμ. In an expression of the type 〈 f (p, X)〉p
where f no longer contains ∂μ and is constructed entirely
with pμ and other world tensors X , the derivative

∇μ〈 f (p, X)〉p (3.33)

is obtained by applying ∇μ only to X (the other tensors in
f ) and not to pμ. So, for instance

∇μ

〈
pνF(pα pβM

αβ)
〉
p = 〈

pν pα pβMμ
αβF ′〉

p . (3.34)

This observation is useful if one wants to apply integration
by parts (with respect to ∇μ) in an expression of the type
〈 f 〉x,p.

The statement would seem rather trivial as pμ is an integra-
tion variable. On the other hand, since pμ does not commute
with Zμν = [∇μ,∇ν], it follows that pμ does not commute
with ∇μ either. Nevertheless the statement holds. This fol-
lows from (3.32): the covariant derivative acts on X and eaμ,
but for any given point one can choose the tetrad field so that
∇μeaν vanishes at that point, so the correct result is obtained
by applying the derivative only to the tensor fields X , and
this holds at all points. A more elaborated proof is presented
in Appendix C.

3.5 �F (part 2)

We are now in a position to compute �div
F,1 and �div

F,2 using the
method of covariant symbols.

To compute the UV divergent part of

�F,1 = −1

2
Tr1(�−1Yμ

ν), (3.35)

we use (3.24) to transform it into

�F,1 = −1

2

〈
tr1

(
�−1Yμ

ν

)〉
x,p

. (3.36)

The expansions in (3.25) for Yμ
ν and in (3.27) for � apply:

Yμν = (Yμν)0 + (Yμν)−1 + (Yμν)−2 + O(p−3),

� = (�)2 + (�)0 + (�)−1 + O(p−2),
(3.37)

and hence

�−1 = (�)−1
2 − (�)−1

2 (�)0(�)−1
2 + O(p−5). (3.38)

One can then expand the product �−1Yμ
ν . Clearly all terms

with odd degree Np vanish within 〈 〉p due to parity. Also
terms with Np < −4 are UV convergent. In fact within
dimensional regularization only the terms with Np = −4
can have a non null contribution. That is3

�div
F,1 = −1

2

〈
tr1

(
(�−1Yμ

ν)−4

)〉
x,p

(3.39)

3 Strictly speaking the right-hand side of (3.39) produces �(−ε) =
−1/ε + O(1). The UV part is defined as the pole term.
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with

(�−1Yμν)−4 = (�)−1
2 (Yμν)−2 − (�)−1

2 (�)0(�)−1
2 (Yμν)0

= −Ng
1

2!Yαβμν∂
α∂β − Ng(�)0 NgYμν.

(3.40)

Here we have introduced the quantity

Ng := (−gμν pμ pν)
−1 (3.41)

which is positive definite. A further simplification occurs
because terms of the type 〈X∂μ〉p, as well as 〈∂μX〉p vanish
identically, hence the first term in (�−1Yμν)−4 drops off:

�div
F,1 = 1

2

〈
tr1

(
Ng(�)0 NgY

μ
ν

)〉
x,p . (3.42)

The form of (�)0 can be read off from (3.27), namely,

(�)0 = 1

6
R + Zλα p

λ∂α − 1

3
Rλα p

λ∂α

+1

3
Rλασβ p

λ pσ ∂α∂β. (3.43)

The method here is to move the ∂μ to the right or to the left,
to exploit the properties 0 = 〈X∂μ〉p = 〈∂μX〉p. This can
be conveniently done using relations of the type

[∂α, Ng] = 2pαN 2
g ,

[∂α, [∂β, Ng]] = 2gαβN 2
g + 8pα pβN 3

g , (3.44)

as well as standard angular averages of the type
〈
pμ pνN

3
g

〉
p

= −1

4
gμν

〈
N 2
g

〉
p
. (3.45)

These manipulations produce

�div
F,1 = 1

12

〈
RYμ

μN
2
g

〉
x,p

. (3.46)

The quantity 〈N 2
g 〉p is UV divergent and can be reduced to

a standard flat-space form using a vierbein field, as previously
discussed around (3.31). Hence

〈N 2
g 〉p = 1√

g

∫
dd p

(2π)d

1

(−p2
μ)2 =

∫
ddk

(2π)d

1

(k2)2

= �(−ε)

(4π)2 = − 1

(4π)2ε
+ O(1). (3.47)

Here we have simplified the calculation anticipating the result
for the UV divergent part. A more rigorous treatment would
use a denominator (−p2

μ+m2)withm2 > 0, to avoid infrared
divergences. The contribution from m2 goes into the O(1)

terms, as it should since the effect of m2 is subleading in the
UV region. This justifies the prescription of taking directly
the terms of order p−4 to isolate the UV divergent contribu-
tions. It is worth noticing that 〈N 2

g 〉p correctly goes to +∞
as d → 4 from d < 4, or equivalently ε → 0−. This checks
that the sign of our calculations is the correct one.

Hence

�div
F,1 = 1

32π2ε

〈
−1

6
RYμ

μ

〉
x
. (3.48)

The remaining term is also readily computed:

�F,2 = −1

4

〈
tr1

(
(�−1

Yμ
ν)

2
)〉

x,p
, (3.49)

and selecting the terms of order p−4

�div
F,2 = −1

4
〈N 2

gY
2
μν〉x,p = 1

32π2ε

〈
1

2
Y 2

μν

〉
x
. (3.50)

In summary, for �F one obtains

�div
F = 1

32π2ε

〈
− 11

180
G − 4

15
R2

μν + 7

60
R2

− 1

6
RYμ

μ + 1

2
Y 2

μν

〉
x
, (3.51)

and in terms of Mμν , using Yμν = Rμν + Mμν ,

�div
F = 1

32π2ε

∫
d4x

√
g

(
− 11

180
G + 7

30
R2

μν − 1

20
R2

− 1

6
RMμ

μ + RμνM
μν + 1

2
M2

μν

)
. (3.52)

This result reproduces that in Eq. (26) of [13] and agrees with
previous literature [26,27]. This completes the calculation of
�div
K ,0.
For convenience we also make explicit the combined result

of �div
gh and �div

F :

�div
gh+F = 1

32π2ε

∫
d4x

√
g

(
− 13

180
G + 1

5
R2

μν − 1

15
R2

− 1

6
RMμ

μ + RμνM
μν + 1

2
M2

μν

)
. (3.53)

4 Remaining contributions to �div

As shown in Sect. 2 the divergent part of the effective action
can be split as

�div = �div
gh + �div

F + �div
G + �div

K ,2 + �div
K ,4. (4.1)

The computation of the last two terms will be undertaken
here.

The term �div
K ,2 is defined in Eq. (2.12) as

�K ,2 = −1

4
Tr((K̂−1

D K̂A)2). (4.2)

Expanding in terms of the matrices K̂−1
D and K̂ A, and exploit-

ing the cyclic property of the trace, which is justified for the
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UV divergent component, this expression can be brought to
the form

�K ,2 = −1

2
Tr(Ĝ−1 Ĥ† F̂−1 Ĥ), (4.3)

where we have chosen to use an operator acting on the space
of scalars. The method of covariant symbols then yields

�K ,2 = −1

2

〈
tr0

(
G−1 H†μF−1

μν H ν
)〉

x,p
, (4.4)

and for the UV divergent part

�div
K ,2 = −1

2

〈
tr0

(
G−1 H†μF−1

μν H ν
)

−4

〉
x,p

, (4.5)

where the subindex −4 indicates to retain only the terms of
order p−4. The method to select those terms is to use the
known expansions of the covariant symbols for the basic
blocks ∇μ, �, Mμν , etc, to obtain

Fμν = (Fμν)2 + (Fμν)0 + O(p−1),

G = (G)2 + (G)1 + (G)0 + O(p−1),

Hμ = (Hμ)1 + (Hμ)0 + (Hμ)−1 + O(p−2).

(4.6)

Furthermore

(Fμν)2 = −pα p
αgμν = gμνN−1

g ,

(G)2 = −pμ pνM
μν ≡ N−1

M .
(4.7)

The quantity Ng was defined in (3.41) while NM has been
newly defined here and is also positive. This gives

F−1
μν = (F−1

μν )−2 + (F−1
μν )−4 + O(p−5),

G−1 = (G−1)−2 + (G−1)−3 + (G−1)−4 + O(p−5),
(4.8)

with

(F−1
μν )−2 = gμνNg

(F−1
μν )−4 = −Ng(Fμν)0 Ng,

(G−1)−2 = NM

(G−1)−3 = −NM (G)1NM

(G−1)−4 = −NM (G)0 NM + NM (G)1NM (G)1NM . (4.9)

Substitution of these expressions in Eq. (4.5) selects seven
terms of the type (G−1)l(H†)m(F−1)n(H)p with (l,m, n, p)
taking values (−4, 1,−2, 1), (−3, 1,−2, 0), (−3, 0,−2, 1),
(−2,−1,−2, 1), (−2, 0,−2, 0), (−2, 1,−4, 1), and
(−2, 1,−2,−1). The last term is actually vanishing since
(Hμ)−1 is of the form X∂ν .

For �K ,4 one has similarly

�K ,4 = −1

4
Tr((Ĝ−1 Ĥ† F̂−1 Ĥ)2). (4.10)

In this case there is just one term of O(p−4), namely,

�div
K ,4 =−1

2

〈
tr0

((
(G−1)−2(H†)1(F−1)−2(H)1

)2
)〉

x,p
.

(4.11)

The calculation proceeds4 by carrying out the deriva-
tives ∂μ, either to the right, or to the left when this gives
a lower number of terms. Next the operators Zμ1...μm are
also moved to the right or the left to exploit the proper-
ties tr0(X Zμ1...μm ) = tr0(Zμ1...μm X) = 0. This produces
an expression involving only pμ inside momentum integrals
with powers of Ng and NM , and other tensors constructed
with Mμν and its derivatives and the Riemann tensor and its
derivatives.

Integration by parts can be applied both with respect to
xμ and with respect to pμ in order to reduce the number
of terms in the final expression. We have chosen to remove
terms having Mμν with more than one covariant derivative.
Likewise the identities

∂μNn
g = 2nNn+1

g pμ, ∂μNn
M = 2nNn+1

M Mμν pν, (4.12)

have been applied in order to bring the expression to one
involving only a few independent momentum integrals. Such
procedure yields the following result5

�div
K ,2+4 = 1

32π2ε

〈
I 1,1T 1,1 + I 1,2

μν T
1,2
μν

+ I 1,3
μναβT

1,3
μναβ + I 3,2

μναβρσ T
3,2
μναβρσ

〉
x . (4.13)

The tensors T n,m
μ1...μk

take the following form

T 1,1 = −1

8
MμμνMααν − 1

8
MμναMνμα + 1

8
MμνMμαMνα

+ 1

12
MμνMαβ Rμανβ − 1

24
MμνMμνR, (4.14)

T 1,2
μν = − 1

12
MμαMανβMβρρ − 2

3
MμαMανβMρρβ

+ 1

4
MμαMαββMρρν

− 1

3
MμαMαβρMβνρ − 1

96
MααMβμνMβρρ

− 1

24
MααMβμνMρρβ

− 1

48
MααMβμρMβνρ + 1

6
MααMβμρMρνβ

4 The manipulations have been carried out using code in Mathematica
written by the authors.
5 Of course there is some ambiguity in writing the result due to inte-
gration by parts. The result presented has 32 terms grouped into four
structures as regards to momentum integrals. Shorter expressions, still
with four structures, could exist. There are shorter expressions, namely
with 26 terms, but involving a larger number of different momentum
integrals.
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+ 1

3
MαβMαμνMρρβ

− 1

4
MαβMαμρMβνρ + 1

8
MαβMαρρMβμν

+ 1

8
MμαMναMβρMβρ − 1

8
MμαMαβMνβMρρ

+ 1

4
MμαMαβMβρMνρ

+ 1

12
MμαMναMβρRβρ − 1

12
MμαMαβMνβR,

(4.15)

T 1,3
μναβ = +1

2
MμρMνρMσαλMλβσ − MμρMνσ MραλMσβλ

− 2

3
MμρMνσ MραλMλβσ

+1

2
MμρMνσ MρλλMσαβ − 1

24
MμρMσσ MλνρMλαβ

+ 2

3
MμρMσλMρνσ Mλαβ

−1

6
MμρMσλMσνρMλαβ + 1

24
MρρMσλMσμνMλαβ

− 1

12
Mρσ MρλMσμνMλαβ, (4.16)

T 3,2
μναβρσ = −1

3
MμλMλναMβρσ + 1

12
MλλMμναMβρσ .

(4.17)

On the other hand the integrals I n,m
μ1...μk

are defined from
the relation〈
Nn
g N

m
M pμ1 · · · pμk

〉
p

= 1

32π2ε
I n,m
μ1...μk

. (4.18)

In our case k = 2(n + m) − 4 ≥ 0 and the I n,m
μ1...μk

are UV
finite.

The integrals I n,m
μ1...μk

can be represented in several ways
and are subject to relations among them. However, these
elliptic integrals do not admit a simple closed form. A
straightforward way to extract the UV finite factor is by using
4-spherical coordinates, with radial coordinate r = N−1/2

g .
In this case

I n,m
μ1...μ2n+2m−4

= (−1)2n+2m+1

π2

∫
d3	k̂

k̂μ1 · · · k̂μ2n+2m−4

(k̂μk̂νMμν)m
,

(4.19)

with k̂2
a = 1, k̂μ = k̂aeaμ and gμν = δabeaμe

b
ν . Some

simplification is obtained by going to the local frame in which
Mμ

ν(x) is diagonal. In this case the relevant integrals become

Î n,m
a1...a2n

=
∫

d3	k̂

k̂a1 · · · k̂a2n

(
∑

a Mak̂2
a)

m
, (4.20)

where Ma are the eigenvalues of Mμ
ν . All these integrals

follow from applying derivatives with respect to the Ma to
the generating integral

Î (z) =
∫

d3	k̂ (z −
∑
a

Mak̂
2
a)

−1. (4.21)

Another explicit expression, closer to that in [13], is
derived in Appendix D, namely,

I n,m
μ1...μ2n+2m−4

= (−2)3−n−m

�(n)�(m)

∫ ∞

0
dt

tm−1

√
det((Mt )μν)

×[(M−1
t )n+m−2]μ1...μ2n+2m−4 . (4.22)

Here we have defined

(Mt )
μν = gμν + tMμν, (4.23)

(M−1
t )μν denotes the inverse matrix of (Mt )

μν and
[(M−1

t )n]μ1...μ2n stands for the symmetrized product of n
factors (M−1

t )μν (hence a total of (n − 1)!! terms). E.g.

[M−1
t ]μν = (M−1

t )μν,

[(M−1
t )2]μναβ = (M−1

t )μν(M
−1
t )αβ + (M−1

t )μα(M−1
t )νβ

+ (M−1
t )μβ(M−1

t )να. (4.24)

Equation (4.22) assumes n,m ≥ 1. The cases m = 0 and
n = 0 can be worked out separately, or obtained from the
same formulas with the replacements, respectively,

1

�(m)
→ tδ(t),

1

�(n)
→ 1

t
δ(1/t), (4.25)

and in both cases the Dirac deltas have their support at 0+.
This prescription yields, for instance, I 2,0 = −2, in agree-
ment with Eq. (3.47).

5 Cross-checks of the calculation

5.1 Terms with zero and four derivatives

The effective action can be decomposed as a sum of terms
classified by the number of covariant derivatives. In particular
�div can be decomposed as

�div = �div(4) + �div(2) + �div(0), (5.1)

into terms with 4, 2 and 0 covariant derivatives. Such classi-
fication is intrinsic since it corresponds to the response under
dilatations. Therefore each term �div(n) is well-defined and
should coincide among different calculations. In our calcu-
lation �div(4) only gets contributions from �gh, �G and �F ,
while �div(2) and �div(0) only get contributions from �F and
�K ,2+4.

For the two simplest cases of zero and four covariant
derivatives we have checked that our results reproduce those
in [13].
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Specifically, for four-derivative terms we find

�div(4) = 1

32π2ε

〈
− 1

15
G + χ

(
1

60
R̃2

μν + 1

120
R̃2

)

+ 1

5
R2

μν − 1

15
R2

〉
x
, (5.2)

where

χ = √
det(Mμν) det(gμν). (5.3)

The result in [13] is expressed in terms of

ĝμν = χ1/2gμν, g̃μν = χ−1Mμν, (5.4)

and can be written as

�
div(4)
RS = 1

32π2ε

〈
− 1

15
G + χ

(
1

60
R̃2

μν + 1

120
R̃2

+ 1

5
R̂2

μν − 1

15
R̂2

)〉
x
, (5.5)

noting that det(ĝ) = det(g̃) = χ2 det(g). The two cal-
culations coincide because under a Weyl transformation
gμν → 	2gμν , the combination R2

μν − 1
3R

2 transforms into

	−4(R2
μν − 1

3R
2) up to a total derivative.

Regarding the term involving no covariant derivatives, the
result in [13] can be written as

�
div(0)
RS = 1

32π2ε

〈1

4
tr(M2) + χ1/2 Iμν

(2,1)

(
−1

4
(M2)μν

+ 1

8
Mμν tr(M)

)〉
x
. (5.6)

The identity

ĝμν + ug̃μν = uχgμα(Mt )
αβ(M−1)βν, t = 1

uχ1/2 , (5.7)

implies the relation

Iμν

(2,1) = −2χ−1/2gμα I 2,1
αβ Mβν, (5.8)

and hence

�
div(0)
RS = 1

32π2ε

〈
− 1

8
I 2,0tr(M2) + I 2,1

μν

(
−1

4
(M3)μν

+ 1

8
(M2)μν tr(M)

)〉
x
. (5.9)

This is to be compared with our result, which receives
contributions from �F and �K ,2+4:

�div(0) = 1

32π2ε

〈
−1

4
I 2,0tr(M2) + 1

8
I 1,1tr(M3)

+ I 1,2
μν

(
1

8
(M2)μν tr(M2)

− 1

8
(M3)μν tr(M) + 1

4
(M4)μν

)〉
x
. (5.10)

The two expressions coincide, as follows from the integration-
by-parts identity

I 1,2
μν (Mn)μν = −I 2,1

μν (Mn−1)μν − 1

2
I 1,1tr(Mn−1), (5.11)

as well as Mμν I n,m
μνα1...αk

= −I n,m−1
α1,...αk

.

5.2 c-Number Mμν

A c-number Mμν refers to the case

Mμν = X2gμν. (5.12)

As noted in [13] the corresponding effective action can
be obtained through a Weyl transformation from the case
Mμν = gμν . The divergent part of the latter has been com-
puted in [26,28].

As a check of our results we particularize them to the c-
number case. The general expressions for �div

F and �div
K ,2+4

become

�div
F = 1

32π2ε

〈
− 11

180
G + 7

30
R2

μν − 1

20
R2 + 1

3
RX2

+ 2X4
〉
x

�div
K ,2+4 = 1

32π2ε

〈
1

6
RX2 − 1

2
X4 + 3X2

μ

〉
x

(5.13)

The form of �div
gh is unchanged. On the other hand, �div

G

can be worked out using the relation g̃μν = X2gμν which is a
Weyl transformation. The expansion of the various curvatures
(and the determinant) of g̃μν in terms of those of gμν produces
the result

�div
G = 1

32π2ε

〈
1

180
G + 1

60
R2

μν + 1

120
R2

〉
x

+ δ�div
G ,

(5.14)

with

δ�div
G = 1

32π2ε

〈
1

15

(
2
XμXν

X2 − Xμν

X

)
Rμν

− 1

15

(
2
Xμμ

X
+ 1

2

X2
μ

X2

)
R + 1

15

X2
μν

X2 + 13

30

X2
μμ

X2

− 4

15

XμνXμXν

X3 + 1

15

XμμX2
ν

X3 + 3

15

(X2
μ)2

X4

〉

x

.

(5.15)

As it turns out this expression can be much simplified through
integration by parts and Bianchi identities, namely,

δ�div
G = 1

32π2ε

〈
−1

6

Xμμ

X
R + 1

2

X2
μμ

X2

〉

x

. (5.16)
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After collecting the various contributions one obtains

�div = 1

32π2ε

〈
− 1

15
G + 13

60
R2

μν − 7

120
R2

+ 1

2
RX2 + 3

2
X4 + 3X2

μ − 1

6

Xμμ

X
R + 1

2

X2
μμ

X2

〉

x

,

(5.17)

in agreement with the result quoted in [13]. Actually, it would
have been sufficient to verify just the terms with two covariant
derivatives, as it has already been shown the coincidence
between the two calculations for terms with zero or four
derivatives for arbitrary configurations (gμν, Mμν).

5.3 Perturbative expansion

Here we discuss the perturbative expansion of our result for
�div, using the form

Mμν = m2gμν + Yμν. (5.18)

Terms up to second order in powers of Yμν are displayed. We
consider only those terms with at most two covariant deriva-
tives. These are the most interesting ones to check the result
as the calculation of �K ,2+4 is the most laborious one. Terms
with four derivatives have already been shown to coincide
with results in the literature.

Specifically, from �F and �div
K ,2+4 we obtain

�div
F = 1

32π2ε

〈
2m4 + 1

3
m2R + m2Yμμ

−1

6
YμμR + YμνRμν + 1

2
YμνYμν + O(∇4)

+O(Y 3)
〉
x
, (5.19)

�div
K ,2+4 = 1

32π2ε

〈
− 1

2
m4 + 1

6
m2R − 1

4
m2Yμμ

+ 1

12
YμμR− 1

6
YμνRμν + 1

16
YμμYνν − 3

8
YμνYμν

+ 1

m2

( 1

12
YμμνYναα + 1

48
YμννYμαα

− 1

24
YμναYμνα + 1

4
YμναYνμα + 1

12
YμμYναRνα

− 1

48
YμμYννR

+ 1

24
YμνYμνR − 1

6
YμνYαβ Rμανβ

)

+O(∇4) + O(Y 3)
〉
x
. (5.20)

The total �div
F + �div

K ,2+4 can be shown to coincide with the
result obtained in [13] after using integration by parts there
to remove Yμν with two covariant derivatives.

5.4 Weyl invariance

As noted at the end of Sect. 2 all pairs of external fields in
the orbit (	2gμν,	

−4Mμν) have the same effective action,
and such invariance must be present in �div. Because g̃μν is
already Weyl invariant, �div

G is also invariant. So we consider
the remaining terms.

Since Weyl transformations form a group, it is sufficient
to consider the infinitesimal case, namely, 	(x) = 1 +ω(x)
and O(ω2) is neglected. The infinitesimal variations of the
building blocks are readily obtained:

δgμν = 2gμνω, δMμν = −4Mμνω,

δR = −2Rω − 6ωμμ, δRμν = −2ωμν − gμνωαα,

δCμν
α

β = 0 (Weyl tensor),

δNg = 2Ngω, δNM = 4NMω,

δMμ
αβ = −4Mμ

αβω − 2Mαβωμ − Mμ
βωα − Mα

μωβ

+ gα
μM

σβωσ + gμ
βMασ ωσ . (5.21)

The terms with ω without derivatives correspond to a
global transformation. The invariance of the full expression
in the global case is easily checked as it is almost trivial from
dimensional counting. Hence the variations contain only ω

with derivatives. From integration by parts with respect to x
they can be brought to the a form proportional to ωμ. This
procedure gives

δ�div
gh = 1

32π2ε

〈
−1

3
Rμωμ

〉
x
,

δ�div
F = 1

32π2ε

〈(
1

3
Rμ + 2Yννμ

)
ωμ

〉
x
,

δ�div
K ,2+4 = 1

32π2ε

〈(−2Yννμ + Oμ

)
ωμ

〉
x .

(5.22)

The quantity Oμ involves integrals of the type I n,m
μ1...μ2n+2m−4

and can be shown to vanish identically using integration by
parts in momentum space.6 Hence δ�div = 0 is verified.

6 Summary and conclusions

We have carried out a complete calculation of the UV diver-
gent part of the action in Eq. (2.1) within dimensional regu-
larization. The full result is

�div = �div
G + �div

gh+F + �div
K ,2+4, (6.1)

where �div
G is given in Eq. (3.11), �div

gh+F in Eq. (3.53), and

�div
K ,2+4 in Eq. (4.13). We have made use of the method of

covariant symbols, instead of the heat-kernel, and avoided

6 In this case the relations (4.12) were not sufficient and the relation
∂μ log NM = 2NMMμν pν was required.
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the use of expressions involving two metric fields in the same
term, with the aim of obtaining relatively explicit formulas.
Nevertheless the result is involved and this cannot be avoided
in any calculation. Our results are fully consistent with those
in [13]. Some of our terms are more explicit while those
in [13] are more structured (relying on a compact bimetric
setting), hence both calculation can be regarded as comple-
mentary.

It is noteworthy that the technique used here could have
been applied also to the action after making the change
(Weyl transformation) from (gμν, Mμν) to (ĝμν, g̃μν). The
result would have been precisely the same as the one we
have already obtained, albeit with (ĝμν, g̃μν) playing the
role of (gμν, Mμν). However, proceeding in this way we
would have missed Weyl invariance as a check of the cal-
culation, since any functional of (ĝμν, g̃μν) is Weyl invari-
ant by construction. This also puts the paradox that (our
version of the) functional �div[ĝμν, g̃μν] is constrained by
Weyl invariance, even if the latter is automatically fulfilled.
The resolution of the paradox is that a simpler expression
can be achieved in terms of the transformed fields using
that the two metrics have the same volume element, i.e.,
det(ĝ) = det(g̃). Namely, rearranging the derivatives of g̃μν

to form the corresponding (difference) connection δ�λ
μν

and exploiting the property δ�λ
μλ = 0 as done in [13].

Instead of doing this we have chosen to use the original fields
(gμν, Mμν).

Because the method of covariant symbols works for any
gauge or internal index connections, there is no problem of
principle to extend this kind of calculations to other cases
involving fermions or non abelian vector fields, in the latter
case provided the singular kernel problem is suitably dealt
with.
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Appendix A: Conventions

1. Riemann tensor

Rμ
ναβ denotes the Riemann tensor, Rμν = Rλ

μλν the Ricci
tensor and R = gμνRμν the scalar curvature. Furthermore
our convention for the Riemann tensor is such that

[∇μ,∇ν]Aα = +Rμν
α

λA
λ. (A1)

2. Covariant derivatives

By default indices are raised, lowered and contracted with
gμν . (An exception occurs for expressions with tilde in
Sect. 3.2 for the computation of �G .) The covariant deriva-
tive uses the Levi-Civita connection corresponding to gμν ,
up to the same exception just noted. Covariant derivatives
are indicated by adding indices to the left. Hence for instance
Aμνλ denotes ∇μ∇ν Aλ (meaning [∇μ, [∇ν, Aλ]]), Rλμναβ =
∇λRμναβ , Rλμν = ∇λRμν , Rλ = ∇λR, etc.

3. The operator Zμν

The curvature bundle is defined as

Zμν = [∇μ,∇ν]. (A2)

It is an antihermitian multiplicative operator with respect to
x which acts on world indices. For instance,

[Zμν, A
α

β ] = Rμν
α

λA
λ
β − Rμν

λ
β A

α
λ. (A3)

Correspondingly Zμν commutes with world scalars. Higher
rank tensors are defined recursively as

Zαμ1...μn = [∇α, Zμ1...μn ] − 1

2
{∇λ, Rμ1...μn

λ
α}. (A4)

The second term in this expression is an exception to our
previous to-the-left-indices derivative convention. Such extra
term is required to make Zμ1...μn a multiplicative operator.
These operators fulfill relations analogous to (A3), e.g.

[Zμ1...μn , A
α] = Rμ1...μn

α
λA

λ. (A5)

This and similar previous equations assume that Aα has no
other indices besides the world index α, otherwise new terms
appear at the right-hand side. Eq. (A4) is unchanged.

4. Momentum variables

For convenience we use pμ = ikμ where kμ are real but∫
dd p is used to denote

∫
ddk as no confusion should arise.
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Appendix B: Some results for covariant symbols

Here we quote expressions for ∇μ, � and Zμν up to and
including four covariant derivatives. The expression for a
multiplicative operator Y not acting on world indices is that
in Eq. (3.29). The formulas apply for ∇μ having an arbitrary
connection in gauge or other internal labels, and the Levi-
Civita connection for world indices. Of course, � coincides
with gμν∇μ ∇ν , and Zμν = [∇μ,∇ν]. All indices are con-
tracted with the metric gμν and for clarity we put all world
indices as covariant ones, except those in ∂μ. The covariant
symbols have been split asO = ∑

n(O)n where the subindex
n in (O)n indicates the value of Np of the component, i.e.,
the number of pμ minus the number of ∂μ. The components
can be equally well be classified by the number of covariant
derivatives they contain.

(∇μ)1 = pμ,

(∇μ)0 = 0

(∇μ)−1 = −1

4
{Zνμ, ∂ν} + 1

12
{[Zνμ, pα], ∂ν∂α},

(∇μ)−2 =+1

6
{Zναμ, ∂ν∂α}− 1

24
{[Zναμ, pβ ], ∂ν∂α∂β},

(∇μ)−3 = − 1

16
{Zναβμ, ∂ν∂α∂β}

+ 1

80
{[Zναβμ, pρ], ∂ν∂α∂β∂ρ}

+ 1

48
{Zνα, [Zβμ, ∂α]∂ν∂β}

− 7

720
{[Zνα, pβ ], [Zρμ, ∂α]∂ν∂β∂ρ}. (B1)

(�)2 = pμ pμ,

(�)1 = 0,

(�)0 = +1

2
{Zμν, pμ∂ν} − 1

3
[[Zμν, pμ], ∂ν]

−1

6
{[Zμν, pα]pμ, ∂ν∂α},

(�)−1 = +1

6
{Zμνα, {pα, ∂μ∂ν}} + 2

3
[Zμμν, ∂

ν]

− 1

12
{[Zμαν, pβ ]pν, ∂

μ∂α∂β},

(�)−2 = − 1

16
{Zμναβ, {pβ, ∂μ∂ν∂α}}

+ 1

40
{[Zμναβ, pρ]pβ, ∂μ∂ν∂α∂ρ}

− 1

16
{Zμν, {[Zμα, pβ ], ∂ν∂α∂β}}

+1

8
{Zμν Zμα, ∂ν∂α}

+ 1

30
{[Zμν, pα][Zμβ, pρ], ∂ν∂α∂β∂ρ}

+ 1

60
[Zμν, ∂

ν][Zμα, ∂α]

+ 2

45
[Zμν, ∂

α][Zμα, ∂ν]+ 2

45
[Zμν, ∂

α][Zμν, ∂
α]

+1

3
[Zμανα, ∂ν]∂μ − 1

60
[Zμνμα, ∂α]∂ν

+ 1

40
[Zμμνα, ∂α]∂ν. (B2)

(Zμν)0 = Zμν,

(Zμν)−1 = −1

2
{Zαμν, ∂

α},

(Zμν)−2 = +1

4
{Zαβμν, ∂

α∂β}. (B3)

These expressions are written so that hermiticity is man-
ifest (namely, pμ, ∇μ, and Zμ1...μk are antihermitian while
∂μ, and � are hermitian). Expanded expressions with sym-
bols R, Z , p, ∂ ordered from left to right can be found in
[15].

AppendixC:Derivatives ofmomentumintegratedexpres-
sions

Here we present an alternative proof of the statement noted
at the end of Sect. 3.4, namely, if f (p, X) is tensorially con-
structed out of pμ and tensors X (and f no longer contains
free ∂μ), the covariant derivative of 〈 f (p, X)〉p follows from
applying the derivative only to the tensors X and not to pμ.
The proof relies on the choice of the Levi-Civita connec-
tion in the covariant derivative, corresponding to the metric
gμν which also appears in the definition of 〈 f 〉p through the
factor 1/

√
g in (3.23).

Clearly it is sufficient to prove the statement just for the
case when the integrand f (p, X) is a scalar. Otherwise, say
the integrand is of the form fμν(p, X) and tensorially con-
structed out of pμ and X . Then one can construct a scalar
h = Cμν(x) fμν , with a generic tensor Cμν , and it is clear
that the statement would hold for 〈 fμν〉p if and only if it does
for 〈h〉p.

For simplicity we consider just the following case

I (x) = 1√
g(x)

∫
dd p

(2π)d
f (pα pβB

αβ(x)) (C1)

as it is sufficiently general to illustrate the arguments
involved. A (first order) infinitesimal shift xμ → xμ + εμ,
will produce a change I → I + εμ∇μ I . Similarly in the
integrand,

Bαβ(x + ε) = Bαβ + εμ∂μB
αβ

= Bαβ + εμ(∇μB
αβ − �α

μλB
λβ − �

β
μλB

αλ).

(C2)

Contraction with pα pβ then gives

pα pβB
αβ(x + ε) = p′

α p
′
β(Bαβ + εμ∇μB

αβ) (C3)
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with

p′
ν ≡ pν − εμ�λ

μν pλ (C4)

where terms O(ε2) are neglected everywhere. Changing the
integration variables from pμ → p′

μ gives a Jacobian

ddp = ddp′(1 + εμ�λ
μλ) = ddp′(1 + εμ∂μ log

√
g). (C5)

This factor exactly cancels with that produced by the shift
xμ → xμ + εμ in 1/

√
g(x). In summary,

∇μ〈pα pβB
αβ〉p = 〈pα pβ∇μB

αβ〉p (C6)

as advertised.

Appendix D: Momentum integrals

Let us justify Eq. (4.22). The momentum integrals are

Ĩ n,m
μ1...μk

= 1√
g

∫
dd p

(2π)d
Nn
g N

m
M pμ1 · · · pμk (D1)

with k = 2n + 2m − 4. Using a Schwinger representation
for the propagators

Ĩ n,m
μ1...μk

= 1√
g

∫ ∞

0
du

∫ ∞

0
dv

un−1

�(n)

vm−1

�(m)

×
∫

dd p

(2π)d
e−u(N−1

g +m2
0)e−v(N−1

M +m2
0) pμ1 · · · pμk .

(D2)

To avoid trivial infrared divergences we have introduced a
massm0 > 0. This does not modify the UV divergence. Next
we rescale pμ → pμ/

√
u, and make a change of variables

from v to t = v/u. This gives

Ĩ n,m
μ1...μk

= 1√
g

∫ ∞

0
dt

tm−1

�(n)�(m)

∫ ∞

0
du

e−u(1+t)m2
0

u1+ε

×
∫

dd p

(2π)d
e−N−1

g −t N−1
M pμ1 · · · pμk . (D3)

Upon integration over u to yield the UV pole and setting
d → 4 in the remaining terms:

Ĩ n,m
μ1...μk

= �(−ε)√
g

∫ ∞

0
dt

tm−1

�(n)�(m)

×
∫

d4 p

(2π)4 e
−N−1

g −t N−1
M pμ1 · · · pμk . (D4)

The momentum integral is now standard after Wick’s theo-
rem, with exponential factor exp(pμ pν(gμν + tMμν)). The
factor 1/

√
det(gμν) combines with 1/

√
det((Mt )μν) to yield

the result quoted in Eq. (4.22). Alternatively, one can use a
tetrad to integrate over ka instead of −i pμ, with the same
effect.
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