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Abstract: Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and
transplantation. The preexisting nutritional status related to the gut microbial profile might contribute
to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection
are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined.
However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic
steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity
system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration
after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional
status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated
effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and
the suitability of these interventions as potential therapeutic strategies in hepatic resection and
transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in
the translational liver surgery.

Keywords: ischemia-reperfusion injury; nutritional status; supplemented nutrition; gut microbiota;
partial hepatectomy; liver transplantation

1. Introduction

Anischemic period is commonly required during hepatectomy or transplantation to avoid possible
bleeding or blood transfusions. However, reduction of blood flow damages the liver and impairs
liver regeneration [1]. Although ischemia-reperfusion (I/R) injury is commonly associated with poor
post-operative results after liver surgery [2], no effective strategies are currently available to resolve
this clinical problem. The mechanisms responsible for I/R injury are extremely complex, different
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depending on the liver type (steatotic versus non-steatotic), and involve a wide range of different
cells and pro-inflammatory mediators [1-6]. Warm ischemia is associated with hepatic resections, and
warm and cold ischemia is associated with liver transplantation (LT). The type of ischemia must be
distinguished due to existing debate about the specific pathophysiological mechanisms of each surgical
procedure. Other factors to be characterized in I/R injury are the percentage and duration of hepatic
ischemia applied and the presence of regeneration (associated with hepatic resections) [7,8]. Steatotic
livers have been demonstrated to be less tolerant of I/R injury than non-steatotic livers; therefore, the
presence of fatty infiltration in the liver is associated with poor outcome following surgery [9-12].
Steatotic LT shows increased rates of graft failure compared with the post-operative outcomes of
non-steatotic LT [9,13,14]. Similarly, complication rates following resection are two-three-fold higher in
patients with hepatic steatosis [10,15]. Given the increasing prevalence of steatosis, and consequently
the increase in the number of steatotic livers subjected to surgical conditions [16], the development of
protective strategies in liver surgery are required.

Recent advances suggest new concerns about the pathophysiology of hepatic I/R injury. Preexisting
nutritional status might affect the post-operative metabolism, liver function, inflammation, and
regenerative capacity [17,18]. Starvation exacerbates warm ischemic injury due to the amount of
glycogen stored in the liver [19-22]. Adenosine-5’-triphosphate (ATP) depletion during ischemia
induces an acceleration of glycolysis [23]. Although glycolysis is essential for cell survival, its effects
may also be detrimental due to lactate accumulation [23]. Overnutrition and specific diet factors
are crucial for the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD) or
nonalcoholic steatohepatitis [24]. Although there have been a wide variety of experimental studies on
factors and nutritional substrates supporting or inhibiting liver regeneration after resection, a limited
number of clinical studies have been addressed [25]. The intestinal microbiota is important to regulate
liver functions [26,27] and is crucial in the pathogenesis of NAFLD [28-30]. Dietary components,
host-intrinsic factors of the gastrointestinal tract affect microbial composition [27,31]. The activation of
innate immunity and inflammation caused by gut-derived microbial compounds can exacerbate I/R
injury or impair regeneration after liver resections.

The aim of the present review was to summarize the current knowledge from 2014 to 2019 about
the effect of starvation, nutritional interventions, and gut microbiota alterations on morbidity and
mortality in both experimental and clinical studies of liver surgery. A clear distinction between warm
and cold I/R injury (associated with liver resections and LT, respectively) is discussed. The complicated
differentiation on experimental models using steatotic and non-steatotic livers is addressed to elucidate
the mechanisms responsible of liver I/R injury and for the establishment of new targets and protective
strategies. The different results regarding the potential benefits of starvation, nutritional diets, and gut
microbiota alterations in different studies (experimental, translational, and clinical studies) in hepatic
surgery are discussed. All of this might be useful for the design of appropriate experimental models
and treatments in clinical liver surgery.

2. Starvation Effects on I/R Injury Associated with Liver Surgery

Experimental studies have shown that liver I/R injury is influenced by different nutrients. For
instance, protein restriction improved hepatic I/R injury by up-regulating hydrogen sulfide [32].
The supplementation of vitamins C and E in the diet protected against hepatic I/R injury. This
effect was exerted by the up-regulation of antioxidant enzymes as well as the down-regulation of
cell adhesion molecules [33]. However, although these experimental studies have demonstrated
some beneficial effects of pre-operative diet restriction/fasting in liver I/R injury, the underlying
mechanisms remain to be clarified. Other findings are contradictory [34-36]. Experimental studies
have shown that fasting exacerbates normothermic ischemic injury [19-22]. Therefore, to support
the clinical translation of starvation, the mechanisms behind the fasting-induced protection against
I/R injury need to be elucidated [37]. Nil per os (NPO) status in patients undergoing hepatectomy
to avoid potential problems, potentially associated with the general anesthesia, may be associated
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with immunomodulation risks to patients [38,39]. The NPO-associated fasting induces inflammatory
responses in surgery [40]. The fasting state results in hyperglycemia, post-surgical infections, and
increased length of stay [41—44]. Similarly, in clinical transplantation, donor starvation because the
prolonged hospitalization or lack of an appropriate nutritional support would favor hepatic damage
and primary nonfunction [45].

2.1. Studies of Short-Term Starvation (12-24 h)

The most recent preclinical studies investigating the effects of short-term starvation (12-24 h) on
experimental models of normothermic I/R injury are summarized in Table 1. Twelve hours’ fasting
protected against apoptosis and necrosis associated with I/R injury [46]. Higher levels of serum
B-hydroxybutyric acid (BHB) and, consequently, forkhead box protein O1 (FOXO1) over-expression
were detected following the 12 h fast, thereby increasing antioxidant mechanisms including heme
oxygenase 1 (HO-1) and autophagy activity. BHB inhibited the nucleotide oligomerization domain-like
receptor family, pyrin domain containing 3 (NLRP3) inflammasome activity, the high-mobility group box
1 (HMGBI1) release, and nuclear factor k-light-chain-enhancer of activated B cells (NF-«B) activation [46].
In an ex vivo perfused rat liver model based on 60 min of ischemia and 60 min of reperfusion, the
authors reported that starvation for 18 h fails to provide protection against liver I/R injury. The benefits
of feeding were explained, at least partially, by increased energy metabolism (availability of energetic
substrates) such as glycogen and high ATP levels [47]. These contradictory results [46,47] could be
explained by the use of different experimental models of I/R (in vivo and ex vivo, respectively).

Table 1. Starvation approach in the setting of ischemia-reperfusion (I/R) injury in studies from 2014

to 2019.
Starvation Time Model Specie Main Therapeutic Effects
Short-term: V\;Is;hgsn I:in Mice | Liver injury, inflammation, apoptosis
12h RT:0,1,3, 6,12 h [46] T BHB, FOXO1 and HO-1
Ex vivo Ischemia . .. . . .
Short-term: - 1 Liver injury, inflammation, apoptosis
18h WIT: 60 min Rats | Energetic substrates (ATP, glycogen)
RT: 60 min [47] g 1 81ycos
Ischem1a. . | Liver injury, inflammation, HMGB1
WIT: 60 min Mice T Sirtl activity, autopha:
RT: 6 h [37] ¥, autophagy
Ischemia | Liver injury, inflammation, caspase-3
Short-term: WIT: 90 min Mice 1 Sirtl activity, autophagy, anti-apoptotic
24h RT: 6 h [48] proteins
Ischemia | Liver injury, inflammation, oxidative
WIT: 60 min Humans stress
RT: 6 h [49] T Nrf2, HO-1 and Nqol
Ischemia
WIT: 60 min Mice 1T Liver injury, inflammation, HMGB1
Long-term: RT: 6 h [37]
2-3days Ischemia | Liver injury, inflammation, caspase-3
WIT: 90 min Mice 7T Sirtl activity, autophagy, anti-apoptotic
RT: 6 h [48] proteins
Lone-term: Ischemia
3_7g davs ) WIT: 30 min Mice | Liver injury
¥ RT: 24 h [50]

Note: ATP, adenosine triphosphate; BHB, 3-hydroxybutyric acid; FOXO1, forkhead box protein O1; h, hour; HMGB1,
high-mobility group box 1; HO-1, heme oxigenase 1; min, minute; NF-«B, nuclear factor kappa-light-chain-enhancer
of activated B cells; Nqol, NAD(P)H quinone dehydrogenase 1; Nrf2, nuclear factor erythroid-derived 2-related
factor 2; RT, reperfusion time; Sirt1, sirtuin 1; and WIT, warm ischemia time.

Short-term fasting for 24 h protected against hepatic I/R injury by regulating the response of innate
immune cells [37]. Authors have shown that such benefits might be explained by the reduction in the
circulating HMGBI levels, which induces changes in sirtuin 1 (Sirtl) and autophagy, resulting in the
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anti-inflammatory regulation of short-term fasting [37]. In contrast with the results obtained in the ex
vivo perfused rat liver model after 18 h fasting [47], the authors failed to find a correlation between
the energy parameters, such as hepatic glycogen stores and fasting-induced protection. Altogether
this suggests the relevance of using in vivo I/R models that simulate the clinical conditions as much
as possible.

Qin et al. showed that starvation for 24 h inhibited hepatic I/R damage [48]. The authors suggested
that starvation had anti-apoptotic effects in I/R by increasing the expression of anti-apoptotic protein
such as B-cell lymphoma (BCL)-2/BCL-xl/phospho-protein kinase B (P-Akt) and decreased caspase-3
activity [48]. Similar to Rickenbacher et al. [37], the authors also concluded that starvation induced
autophagy in the liver via the Sirt]l pathway [48]. Therefore, the results obtained in preclinical studies
of fasting for 24 h suggest that starvation reduces cell death during hepatic I/R. Fasting-activated Sirtl
induced autophagy and promoted anti-apoptosis [48].

In the clinical context, liver resection is usually carried out under vascular occlusion to regulate
bleeding [51]. Regeneration affects the mechanisms responsible of I/R injury, and I/R negatively affects
liver regeneration. Thus, the beneficial effects of starvation reported to date might not be extrapolated
to surgical conditions requiring partial hepatectomy (PH) under I/R.

To the best of our knowledge, only Zhan et al. [49] recently analyzed the effects of short-term
fasting on PH under I/R in humans (Table 1). Thus, in a prospective, single-blinded, randomized study
of 30 patients per group, 24 h fasting reduced damage, inflammation, and oxidative stress through
regulation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), HO-1, and NAD(P)H quinone
dehydrogenase 1 (Nqol) signaling pathways [49]. However, postsurgical complications of control and
fasting groups were similar [49]. Further clinical studies are required to confirm the benefits of 24 h of
fasting in PH.

2.2. Studies of Long-Term Starvation (Two to Seven Days)

In addition to the investigations on the effects of short-term fasting for 24 h, Rickenbacher et
al. [37] and Qin et al. [48] studied the effects of long-term starvation for two and three days (Table 1).
Rickenbacher et al. showed that fasting for 24 h, but not two or three days, can reduce I/R injury via
the Sirtl-mediated down-regulation of HMGBI in circulation [37]. However, Qin et al. [48] found
even more protective effects against I/R injury at two and three days of fasting than 24 h of fasting in
mice. The reasons for these different findings may be related to the different experimental model used,
such as duration of ischemia (60 min versus 90 min of ischemia). Three days of fasting or one week of
preoperative protein/energy restriction decreased transaminases and hemorrhagic necrosis after 30
min of ischemia [50].

Further experimental investigations and clinical trials are needed to determine the effects of
starvation and the exact fasting duration (one, two, or three days) to produce the greatest advantages in
patients. Long-term diet restriction (more than 24 h) may be difficult to apply for human preoperative
management. Experimental models that reproduce the clinical conditions might be useful for the
implementation of protective treatments in clinical conditions in the short-term [52]. The studies
mentioned above have been reported in non-steatotic livers. The prevalence of obesity ranges from
24% to 45% of the population; therefore, increases in the number of steatotic livers subjected to liver
surgery are expected. Steatotic livers show poor regenerative response and increased vulnerability to
I/R injury, and the mechanisms involved in the I/R pathology and protective strategies are different
depending on the type of the liver (presence or absence of steatosis) submitted to surgery. Thus, future
research in experimental models of PH with I/R and LT are required to understand the underlying
mechanisms of starvation, especially in sub-optimal livers in order to ameliorate the viability of livers
subjected to surgery and reduce consequently the post-operative problems.



Nutrients 2020, 12, 284 5o0f 24

3. Nutritional Support by Nutraceuticals and Functional Foods on Liver Surgery under Hepatic
Ischemia-Reperfusion

The preoperative nutritional state considerably affects postoperative metabolism, organ function,
and inflammatory responses [17], and nutritional status affects the liver regenerative capacity [18].
Therefore, the basal alimentary condition of the patient plays an important role in predicting
postoperative complications. Patients with end-stage liver diseases who undergo LT usually present
with malnutrition, which directly impacts the deterioration of the patient’s clinical condition, affecting
post-transplantation survival [24]. The post-transplantation survival is even more relevant in the case
of liver steatosis (the main feature of NAFLD) as these organs show high vulnerability to I/R injury
and regenerative failure in comparison with non-steatotic livers [53].

As mentioned above, coinciding with the progressive adoption of the Western lifestyle and
changes in nutritional habits, many studies have evidenced the increased incidence and prevalence of
NAFLD and other related disorders [54]. Also, malnutrition induces dysbiosis with translocation of
bacteria- and/or pathogen-derived components from the gut to the liver [55].

Conversely, several dietary components significantly benefit health [56], presenting antioxidant
or anti-inflammatory properties as well as contributing to modifying the gut microbiome [18]. As a
result, the re-establishment and maintenance of the correct nutritional status by these nutraceuticals
and functional foods before, during, and/or after surgery could lead to improvements in complications
related to I/R injury, representing a potential approach alone or in combination with other therapies to
improve patient outcomes. Eventually, strategies based on nutrition support could become a major
adjunct to the conventional management of I/R injury.

Combination of different nutrition tools like anthropometry, and body composition analysis, have
been reported to formulate a composite score for malnutrition assessment [57]. The goals of nutritional
therapy are mainly focused on improving protein malnutrition and regulate nutrient deficiencies.
Studies to address I/R injury complications by dietary supplementation and functional foods in liver
surgery covering 2014 to 2019 are summarized in Table 2.

3.1. Plant-Derived Supplements and Other Food Additives

Three studies focusing on nutrition support based on plant-derived supplements and other
food additives were reported from 2014 to 2019 [58-60]. All of them targeted oxidative stress and
inflammatory responses related to I/R injury in murine models. The more remarkable findings were
strengths of the antioxidant defense systems and anti-inflammatory properties after the intervention.
For instance, ankaflavin, a traditional food additive used in Eastern Asia and China, significantly
decreased the proliferation of Kupffer cells and the protein expression of inflammatory cytokines
(tumor necrosis factor « (TNF-«), interleukin (IL)-6, and IL-1$) and reduced apoptosis and liver
steatosis in high-fat-diet-fed mice [58].

A similar plant-derived strategy tested the potential benefits of apocynin (4-hydroxy-
3-methoxyacetophenone) in rats under I/R injury. In this case, a single dose of apocynin 30 min
before surgery induced the production of superoxide dismutase (SOD), reduced lipid peroxidation,
and decreased glutathione (GSH) limiting the cellular stress triggered by ischemia [59]. Also,
Korean red ginseng extract, which contains ginsenosides, phenolic compounds, polysaccharides,
and polyacetylenes, showed a chemopreventive effect through antioxidant, apoptotic, and anti-cell
proliferation in various cancers. In concordance with these findings, a study conducted in rats in which
hepatic cancer had previously been induced, supplementation starting two weeks before surgery and
eight weeks after PH revealed chemopreventive effects by prevention of oxidative stress and regulation
of redox-enzymes [60]. The potential limitation of all these studies is related to the limited specificity
of the different plant-derived supplements and additives. The relevance of the changes on oxidative
stress, TNF-«, IL-6, and/or IL-13 induced by such treatment requires further investigation. Studies
aimed at evaluating if such benefits can be extrapolated in steatotic liver undergoing surgery might
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be of clinical and scientific relevance. The potential toxicity and side effects of these components,

dependent on the concentrations, required to confer protection should be investigated.

Table 2. Studies to address hepatic I/R injury by dietary supplementation and functional foods.

Drug Administration Model Specie Main Therapeutic Effects
Ankaflavin (food Gavage (orally) 0.624 mg/kg daily for 1 Ischemlja/ fatty liver ) | Liver injury, steatosis, oxldatlve.stress,
additive) [58] week WIT: 60 min Mice apoptosis, inflammatory cytokines
: RT:3h (TNF-g, IL-6, IL-1B)
Apocynin (organic . . Ischemia sa b
compoumd ity PPl 20 ks 0min Wit e e oo
vanillin) [59] gery RT: 60 min
Korean red ginseng Orally PH Rats | Lipid pezfg;jﬁ:g};:ty;&j;mme Pas0
0, o, 0, 3 . S ©
extract [60] 0.5%, 1%, or 2% for 10 weeks RT: 7 weeks TAntioxidant levels (tGSH, GST, GPx),
IR | Liver injury, necrosis, inflammatory
Antioxidative Ischemia cytokines (IL-6, CXCL1), MDA, cell
nutrient-rich enteral diet Orally . . N .
. o WIT: 60 min Mice adhesion molecules, neutrophils and
(Polyphenols, Vitamin C ad libitum for 7 days RT:6h hage infiltrati
and E) [33] : macrophage infiltration
o T Antioxidant levels (SOD1, SOD2)
Dexpanthenol (analogue  Intraperitoneally 500 mg/kg during the Ischemla. ! Oxldatlve_stress (MPO), histologic
of provitamin B5) [61] ischemic period WIT: 60 min Rats tissue damage
P > P RT: 60 min 1 Antioxidant levels (SOD, tGSH)
Ischemia
Intravenous WIT: 3 x 15 min pringle | Inflammatory cytokines (IL-1p, TL-8,
Vitamin C [62] venou maneuver with 5 min between Swine TNF-a), procoagulant response (PAI-1,
50-200 mg/kg after surgery . .
occlusion tissue factor)
RT:4h
Ischemia | Liver injury, mfslti:;?aticn, oxidative
Rosa mosqueta oil [63] Orally 0.4 mL/g/day for 21 days WIT: 60 min Rats 1 alinolenic acid, EPA and DHA fatty
RT:20 h .
acids levels
Gavage (orally) Ischemia | Liver injury, antioxidant levels (CAT,
Tilapia fish oil [17] 0.4% bod 8¢ ot y3 N WIT: 30 min Rats SOD, GPx), tissue TBARS, histological
/0 body welght for 5 weeks RT:1,12,and 24 h tissue damage
| Liver injury, total bilirubin
SRR Gavage (orally) PH . 7T Proliferation, AMPK activation,
Fish ofl [64] 12 mL/kg daily RT:1,2,3, and 5 days Mice liver-to-body weight ratio, tight
junction, and BSEP protein expression
Gavage (orally) 10% in 1 mL/100g of .
L-arginine [65] solution 15 min before surgery and 24 h PH Rats ! Alkalm_e phosphata_se
. RT:24h,72h, and 7 days No effect in regeneration
until date of death
B . Gavage (orally) 1 mL/100g body weight PH T Regeneration, albumin
L-glutamine [66] 6 h and 15 min before surgery RT:24h,72h, and 7 days Rats No effect in liver function
Omega-3 fatty acids PH | Inflammatory cellular infiltrate
[67] Orally 10 mg/kg/day for 28 days RT: 7 days Rats No effect in regeneration
Gavage (orally)
. o ! PH | GGT
Omega-3 fatty acids [18] 1 mL/100g (10% v/v) 15 min and 24 h RT: 24 h, 72 h, and 7 days Rats No effect in regeneration
before surgery
Immunonutrients (EPA, | Inflammatory response (IL-6),
arginine, and nucleotides) Orally PH Humans infection, severe complications
[68] 1000 kcal/day for 5 days before surgery RT:1,3,7,and 14 days T Resolving E1
. Orally
aI;n ;::::eoglnlg I:EET:O(EE:S/) 3 x 237 mL 1020 keal, 54 g protein, 12.6 PH Humans No benefits
8 . [69] g arginine, 1.3 g nucleotides, 3.3 g RT:1,3,5,7,10, and 30 days
EPA/day x 5 days before surgery
Immunomodulating diet Intravenous LDLT
. . - y CIT: 132 + 100 min Humans | Incidence of bacteremia
enriched with HWP [70] 20 mL/h 24 h after surgery RT:0,1,2, 3, and 4 weeks
. T | Liver injury, inflammatory cytokines
Hydrolyzed whey Orally Ischemia, steato.tlc liver (TNF-q, IL-6), iNOS, oxidative stress
. o . WIT: 30 min Rats N
peptide (HWP) [71] 4 mL every 6 h after reperfusion RT: 6and 12 h (UCP-2), necrosis
: 7 Survival
Intravenous PH + I/R, steatotic liver | Liver injury, TGF-$
Lipid emulsion [72] 5mL 4 h after surger WIT: 60 min Rats T Regeneration (HGF, cyclin A and E),
8ery RT: 12,24, and 48 h IL-6, ATP, phospholipid levels
Orally
- 1000 mg valine, 2000 mg leucine, 1000 PH 1 Lactate levels
BCAA[73] mg isoleucine in 500 mL until 2 h before RT: 0 day Humans No effect in morbidity rates
surgery
Orally . .
e PH T Functional regeneration
BCAA [74] .4 & BCAA granules with: 9?’2 mg RT: 1-2 weeks until 1, 3, and 6 Humans No effect in infectious, nutritional and
L-isoleuciene, 1904 mg L-leucine, 1144 . .
months immunologic status

mg L-valine twice daily for 6 months

Note: AMPK, AMP-activated protein kinase; ATP, adenosine triphosphate; BCAA, branched chain amino acids; BSEP,
bile salt export pump; CAT, catalase; CXCL1, chemokine ligand 1; DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid; GGT, gamma glutamyltransferase; GPx, glutathione peroxidase; GST, glutathione s-transferases; HGF, hepatic
growth factor; HWP, hydrolyzed whey peptide; I/R, ischemia reperfusion; IL, interleukin; iNOS, nitric oxide
synthase; LDLT, living donor liver transplantation; mg, milligram; min, minutes; MPO, myeloperoxidase; PH,
partial hepatectomy; PAI-1, plasminogen activation inhibitor-1; RT, reperfusion time; S1P, sphingosine-1-phosphate;
SOD, superoxide dismutase, TBARS, thiobarbituric acid reactive substances; TGF-3, tumor growth factor 3; tGSH,
total glutathione; TNF-«, tumor necrosis factor o; UCP2, uncoupling protein 2; and WIT, warm ischemia time.
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3.2. Vitamins

Various vitamins deficiencies have been reported in receptors submitted to LT. Folate deficiency is
caused by a decreased intake and absorption, dysregulation in renal excretion and limited hepatic
storage. Folate and B12 supplementation is crucial to protect liver against alcoholic hepatitis [75].
Hypovitaminosis A is associated with impairment in immune function and increased risk of fibrosis,
which are risk factors in liver surgery [76]. An anti-oxidative nutrient-rich enteral ordinary diet
enhanced with vitamins C and E and supplemented with polyphenols (a combination of catechin and
proanthocyanidin) for seven days before ischemic insult in mice was able to mitigate liver I/R injury,
improving antioxidant and inflammatory parameters that reduced hepatocellular damage [33].

Dexpanthenol, also known as pro-vitamin B5, is oxidized to pantothenic acid (PA), which increases
GSH content, coenzyme A (Co A), and ATP synthesis, thus playing a crucial role against oxidative
stress and inflammation. In an experimental model of hepatic I/R in rats, a single dose of dexpanthenol
before I/R induced the suppression of oxidative stress and increased antioxidant levels [61]. In a swine
model of multiple injuries including I/R injury and hemorrhage, the authors observed a moderate
improvement in coagulation dysfunction after intravenous provision of high-dose vitamin C and a
reduction in proinflammatory/procoagulant response [62].

All these studies indicate the potential importance of vitamins in reducing the inflammation and
damage in surgical conditions of I/R. The usefulness of vitamins in the presence of steatosis and in
surgical conditions requiring ischemia and regeneration, such as liver resection or liver-related LT,
remains to be elucidated.

3.3. Fish and Rosa Mosqueta Oils

Based on the well-established protective components of rosa mosqueta oil (i.e., o-linolenic
acid (ALA) and tocopherols), Dossi et al. reported that rosa mosqueta oil supplementation before
the induction of I/R in rats increased liver ALA and its derived eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) fatty acid contents, with increases in «- and y-tocopherols, normalized
liver oxidative stress parameters, and ameliorated liver and serum inflammation indexes [63].

Fish-oil-supplemented diets have been shown to reduce I/R injury. In this sense, a study conducted
to identify the effect of tilapia fish oil, which is rich in unsaturated fatty acids, administrated to rats by
gavage during three weeks before I/R revealed that after ischemia and 1, 12, and 24 h of reperfusion,
antioxidant enzyme activities of catalase (CAT), SOD, and glutathione peroxidase (GPx) decreased in
the intervention group. Lipid peroxidation and liver damage decreased in this group [17]. Similarly,
daily oral supplementation for 12 days with fish oil, comprising 40% DHA and 40% EPA, induced
AMP-activated protein kinase (AMPK) activation and promoted the recovery of liver function during
PH [64]. The role of each component included in either rosa-mosqueta- or fish-oil-supplemented diets
on the mechanisms responsible for hepatic I/R remains unknown. The main mechanism involved in
the effects of such treatments on I/R damage remain to be elucidated. This is a potential problem due
to difficulties for the establishment of target signaling pathways in liver surgery. The effect of rosa
mosqueta and fish oil supplementation in steatotic liver undergoing PH under vascular occlusion as
well as in LT should be investigated.

3.4. Fatty Acids, Arginine, and Nucleotides

Polyunsaturated fatty acids (PUFAs) are fatty acids with two or more double bonds in their carbon
chain. PUFAs can be further categorized according to the location of the first double bond relative to the
terminal methyl group: Omega-3 and omega-6 and are characterized by the presence of a double bond
three and six atoms away from the methyl terminus, respectively [77]. Long-chain PUFAs (LC-PUFAs),
particularly omega-3 LC-PUFAs EPA and DHA, are associated with beneficial health effects [78].
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In experimental and clinical studies performed in animals and humans, fatty acids, arginine, and
nucleotides have shown the ability to modulate immune and inflammatory responses [18,69]. These
nutrients, among others, have been labeled as pharmaconutrients [18].

Supplementation with amino acids, such as arginine, affects urea genesis, gluconeogenesis, and
protein synthesis. Diets enriched with these amino acids increases the hepatic catabolism functions [79].
Enteral immunonutrition with arginine reduces the risk of infections in patients submitted to major
operations [80]. The supplementation with L-arginine diet in rats hepatectomized was unable to
confirm benefits in liver regeneration [65]. Conversely, a similar study using supplementation of
L-glutamine in the diet of rats after PH revealed an increase in the amount of albumin and beneficial
effects for liver regeneration [66]. Glutamine favors liver regeneration [66].

Omega-3 fatty acids affect the production of pro-inflammatory mediators, such as growth factors,
chemokines, and matrix proteases, showing anti-inflammatory and immunomodulatory effects due to
their rapid incorporation into cell membranes [67,68]. However, their effect on regeneration in livers
undergoing resection has not been widely reported. Two studies evaluated whether omega-3 fatty
acids protect against regeneration failure in PH in rats. Neither long-term supplementation before
surgery [67] nor a preoperative supplementation plus the same dose every 24 h during the seven days
post-surgery [18] showed any influence on the liver regeneration.

Concerning EPA, a study conducted in patients who underwent major hepatobiliary resection
reported that preoperative immunonutrition decreased inflammation and protected against
post-surgery infections and complications [68]. However, these benefits cannot be exclusively
attributed to EPA because the oral supplementation was also enriched with arginine and nucleotides.
A similar approach but with controversial results was conducted by Russell et al. Indeed, any benefit
of preoperative immunonutrition was reported with arginine and n-3 fatty acids [69]. In a retrospective
study reported by Kamo et al., liver recipients suffering from infection after LT were submitted to
enteral immunonutrition enriched with nucleotides, arginine and omega-3 fatty acids, and hydrolyzed
whey peptide (HWP) (an immunonutritional liquid). The main finding was a lower incidence of
bacteremia in the intervention group compared with the control group [70].

For steatotic livers, Nii et al. tested the effects of HWP on hepatic I/R injury in rats with steatotic livers
administered immediately after reperfusion and every six hours thereafter. This treatment ameliorated
liver damage, improving function, histology, and survival following I/R [71]. In conditions of PH under
I/R, a lipid emulsion comprising 52% linoleic acid, 22% oleic acid, 3% palmitic acid, 8% linolenic acid,
4% stearic acid, 1% other fatty acids, 8.184 g/L egg phospholipids, and 15 g/L glycerine infused in rats
immediately after surgery for four hours protected against damage and regenerative failure [72].

3.5. Branched-Chain Amino Acid

A branched-chain amino acid (BCAA) is an amino acid with an aliphatic side-chain with a branch.
BCAAs promote protein synthesis and glucose metabolism and are involved in fatty acid oxidation [81].
BCAAs favor liver regeneration, nutrition status, and hepatic encephalopathy. BCAAs have the ability
to reduce oxidative stress and liver inflammation as well as lactate production [73].

A randomized controlled trial conducted in patients submitted to hepatectomy showed that
supplementation with BCAAs administered two times a day for six months after surgery improved
liver functionality and regenerative capacity [74]. Similarly, in patients submitted to liver resection, the
preoperative BCAA supplementation decreased blood lactate, which is exacerbated by surgical stress
patients [73].

3.6. Probiotics

Probiotics are cultures of single or multiple microbes that can regulate the properties of the existing
gut microbiota. Probiotics can promote anti-inflammatory effects in gut, thereby preventing bacterial
translocation and endotoxin generation [82] and are involved in the synthesis of antimicrobial agents
that inhibit the invasion of pathogenic bacteria [83]. Probiotics might regulate the immune system,
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inhibiting the release of cytokines like TNF-« [84] and inducing the release of anti-inflammatory
cytokines like IL-10 and tumor growth factor 3 (TGF-3) [85].

Current evidence has indicated the advantages resulting from the use of probiotics to prevent the
infections after LT, as well as to improve the circulatory diseases associated with cirrhosis, hepatic
encephalopathy, and Child-Pugh class [86,87]. The improvement in the neutrophil phagocytic capacity
induced by probiotics regulated the infections, preventing bacterial translocation. These effects resulted
in the restoration of the immune system [88-90].

In addition to the different types of nutritional support, the routes of administration should be
considered. Oral intake is the first line therapy used to treat malnutrition and decrease the complications
(hepatic encephalopathy, infections, and ascites among others) in liver diseases. However, the impact
on survival remain to be elucidated [91,92]. It has been described that an increased dietary intake by
oral nutrition improved liver function and lowered mortality compared with the enteral and parenteral
nutrition [93,94]. Hasse et al. [95] demonstrated early enteral feeding beneficial effects like improved
nitrogen balance and fewer viral infections associated with LT. Parenteral nutrition might be used
as a second line approach in those who cannot be fed adequately by the oral or enteral route for
instance in patients with unprotected airways and advanced hepatic encephalopathy [96,97]. All
these data are not conclusive for selecting the most appropriate administration route of nutritional
support. In a comparison between parenteral and early enteral nutrition, both strategies were equally
effective to the maintenance of nutritional state [97]. The European Society for Parenteral and Enteral
Nutrition (ESPEN) guidelines for organ transplantation recommend enteral nutrition or oral nutritional
supplementation to improve nutritional status and liver function [93,98-101]. Enteral nutrition reduces
the incidence of viral and bacterial infections. For enteral nutrition, the ESPEN guidelines recommend
the use of more concentrated high-energy formulas in patients with ascites and BCAA-enriched
formulas in hepatic encephalopathy patients [95].

4. Gut Microbiota and Hepatic Ischemia Reperfusion in Liver Surgery

The gut microbiota is crucial to the effects of diet, drugs, and disease [102]. The microorganisms
that exist within the gastrointestinal ecosystem are termed gut microbiota, playing an essential role
in the stimulation of immune response [103], the maintenance of intestinal barrier integrity [104],
modulation of host—cell proliferation and vascularization [105,106], and regulation of neurological [107]
and endocrine [108] functions. The human gut microbiota provides an energy source [109], is involved
in the synthesis of vitamins and neurotransmitters [110], metabolizes bile salts [111], and eliminates
toxins [112].

Disequilibrium in the microbiota composition, commonly referred to as dysbiosis, may lead to
several diseases [113,114]. The gut and liver (the gut-liver axis) (Figure 1) communicate bidirectionally
through the biliary tract, the portal vein, and the systemic circulation [115]. The translocation of
bacterial products from the intestine to the liver induces inflammation in different cell types, such
as Kupffer cells and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on
hepatocytes [116]. Bacterial translocation and fungal cell wall components are increased in experimental
models of ethanol-induced liver disease [117].

Alterations in gut microbiota are important for determining the occurrence and progression of
alcoholic liver disease (ALD) [118-120], NAFLD [121,122], nonalcoholic steatohepatitis (NASH) [123,124],
cirrhosis [125,126], and hepatocellular carcinoma (HCC) [127]. Fecal microbiota transplantation could
induce hepatitis B virus e-antigen (HBeAg) clearance in patients with persistent positive HBeAg, even
after long-term antiviral treatment [128]. Ferrere et al. [129] observed that ALD in mice were reduced by
fecal transplantation from alcohol-fed mice resistant to ALD or with prebiotics.

Evidence points to the involvement of the gut microbiota in the pathogenesis of NAFLD [130,131].
Cogger et al. showed that liver sinusoidal endothelial cells (LSECs) fenestrae are inversely and
positively correlated with the gut abundance of Bacteroidetes and Firmicutes, respectively [132]. The
gut microbiota also has an emerging role in NASH as a source of inflammatory stimuli [130,133].
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Increased intestinal permeability and elevated plasma lipopolysaccharide (LPS) [134,135] observed in
NASH may also contribute to LSECs’ pro-inflammatory function [136].

Gut microbiota shifts the influence of hepatic metabolism through regulation of hepatic gene
expression without direct contact with the liver [137,138].
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hepatic I/R injury and how some of these have been altered in the liver by changes in the gut microbiota.
ALD, alcoholic liver disease; ATP, adenosine triphosphate; Cyt ¢, cytochrome ¢; EC, endothelial cell; ET,
endothelin; HCC, hepatocellular carcinoma; ICAM, intracellular cell adhesion molecule; IL, interleukin;
INF, interferon; KC, Kupffer cell; LTB4, leucotriene B4; NAFLD, nonalcoholic fatty liver disease; NASH,
nonalcoholic steatohepatitis; NO, nitric oxide; PAF, platelet activating factor; ROS, reactive oxygen
species; SC, stellate cell; TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule; and
X/XOD, xanthine/xanthine oxidase.

As a result, ischemia produced during liver surgery (i.e., LT or liver resection) is expected to alter
the microbiota profile, potentially affecting inflammation, the immune response, and even regeneration.
The gut-liver axis is widely implicated in the pathogenesis of liver diseases such as NAFLD, NASH,
HCC, and acute liver failure [139]. The gut microbiota may also contribute to the generation of
memory alloreactive T cells. T cells were reported to be important in transplant rejection and many
experimental and clinical studies have shown that the intestinal microbiota is altered after allogeneic
transplantation [140].

In the context of I/R injury, hepatic steatosis is a key factor to consider due to negative influences
on patients” outcomes [141]. Gut microbiota fundamentally influences processes such as lipogenesis,
which is affected by the absorption of monosaccharides in the intestinal lumen by the microbiota [142],
and bile acids, since they are able to de-conjugate them and turning them into secondary bile acids,
which are capable of interacting with a nuclear receptor of the farnesoid receptor X [143]. Changes in
gut microbiota promote the development of NAFLD since affect inflammation, insulin resistance, bile
acids, and choline metabolism. The Western diet is associated with intestinal microbial dysbiosis [144]
and the development and prevalence of NAFLD [145]. I/R injury is a common cause of rejection when
grafts are sourced from NAFLD donors; the prevalence of the problem is increasing [141].

The gut microbiota alterations in NAFLD patients remain to be characterized [114]. Several
reviews have highlighted studies focused on strategies to prevent and target gut microbiota (probiotics,
prebiotics, diet or fecal microbiota transplantation, among others) in NAFLD [114,115,140,146]. Others
have addressed the management of nutrition in patients with end-stage liver disease undergoing
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LT [146,147]. However, studies evaluating changes in gut microbial populations and diversity caused
by hepatic I/R and their consequences in liver function and regeneration are limited. From 2014 to 2019,
authors only examined the effect of therapeutic approaches on intestinal microbiota and hepatic injury
and such strategies were mainly based in the use of antibiotics. Despite this, the effects of antibiotics
on hepatic damage being caused by regulation of the intestinal microbiota remain to be clarified. None
of these studies aimed to improve damage induced by I/R in steatotic livers.

Intestinal microbial characterization and alteration in early phase and subsequent intestinal barrier
dysfunction during acute rejection after LT have been reported [148-153]. Due to the high sensitivity
of microbial changes during acute rejection after LT, intestinal microbial variation has been suggested
to predict acute rejection in the early phase after LT [148]. Therefore, gut microbial profiles have been
suggested as predictive injury biomarkers in LT [153].

Gut microbiota might affect immune mediators such as IL-6 and regulate liver regeneration.
Following the administration of antibiotics (Table 3), the number of CD1d-dependent natural killer T
(NKT) cells was reduced after partial hepatectomy (PH) [154]. NKT cells and activated Kupffer cells
produced high levels of interferon-y (IFNy) and IL-12. Thus, antibiotic administration after PH could
negatively affect regenerative response [154]. It has been reported that PH resulted in an upregulation
of more than 6000 bacterial genes, some of them involved in regeneration and was also accompanied
by changes in the gut microbiota (e.g., an increase in Bacteroidetes and Rikenellaceae, and decreases in
Clostridiales, Lachnospiraceae, and Ruminococcaceae) [155,156].

Table 3. Therapeutic strategies in modulation of gut microbiota in liver surgery from 2014 to 2019.

Drug Administration Model Specie Main Therapeutic Effects
Ampicillin, neomycin Orally
sulfate, metronidazole and 1g/L amplCllthI, neomycin sulfate, PH Mice | Liver regeneration
vancomycin [154] metronidazole, and T IFNy, IL-12
‘ Y h 500 mg/L vancomycin for 4 weeks
LT
. Gavage CIT: Not indicated | Liver injury, necrosis,
Gentamicin [157] 2 mL daily for 3 weeks RT: 1 week and 2 Rats inflammation
weeks
Orall LT | Liver injury, infl, "
Rifaximin [158] 550 fwi ‘ria ly for 28 d CIT: 440 min Humans 1;/er ﬁllury,ﬂlg a;nmaflon,
mg twice daily for ays RT: not indicated early allograft dysfunction
Gavage LT | Liver injury, inflammation,
Amoxicillin [159] CIT:18 h Mice CHOP, mTORC1 activity
50 mg/mL for 10 days before LT RT: 6 h T PGE2, EP4, autophagy
. . Orally | Liver injury, inflammation,
NeomyC{nf grythromycm 1 g neomycin, erythromycin 4X and L,T . CHOP, early allograft
and ampicillin-sulbactam icilli b bef CIT: not indicated Humans dvsfuncti
[159] 3 g ampicillin-sulbactam before or on RT: not indicated ysfunction
- day of LT . T EP4, LC3B, autophagy
Intragastrically LT
Cyclosporine A [160] 2 mg/kg twice daily for 28 days after ~ CIT: not indicated Rats | Liver injury, inflammation
LT RT: 28 days
Subcutaneously, IT
Tacrolimus [161] 10,05, 0r 0.1 m?'/kg every 12hfor7 CIT: not indicated Rats | Liver injury
days and intragastrically RT: 30 davs
once daily for 8-29 days after LT : Y
Gavage
Retinoic acid [162] 25 ug/g body weight 48 h before PH Mice T Liver regeneration, FGF21
surgery
Orally | Infectious complications,
- 2 g/day LP, LA-11, and BL-88, total of PH septicemia, plasma endotoxin,
Probiotics [163] 2.6 x 10'* CFU daily for 6 days before RT: 10 days Humans serum zonulin concentration
surgery and 10 days after surgery 7T Liver barrier
. . . - Ischemia P .
Time-restricted feeding Food restriction: 8-10 h/day, 12 weeks WIT: 60 min Mice 1 Liver injury, inflammation,
[164] before surgery RT: 6‘ 12241 oxidative stress, apoptosis

Note: BL-88, Bifido-bacterium longum 88; CFU, colony forming units; CHOP, CCAAT/enhancer-binding protein
homologous protein; CIT, cold ischemia time; EP, prostaglandin E2 receptor; FGF21, fibroblast growth factor 21;
IFNY, interferon-gamma, IL, interleukin; LA-11, Lactobaciullus acidophilus 11; LC3B, Light Chain 3 isoform B; LP,
Lactobacillus plantarum; LT, liver transplantation; mTORC1, mammalian target of rapamycin complex 1; PGE2,
prostaglandin E2; PH, partial hepatectomy; RT, reperfusion time; and WIT, warm ischemia time.

The administration of antibiotics reduces hepatic injury in rats submitted to LT with acute
rejection, but the microvilli of the ileum epithelial cells were destroyed, inducing alterations in
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microbiota [157]. Further studies are required for a more understanding of the immunity interactions
between gut microbiota and the rejection after LT [157]. Two retrospective studies support the notion
that antibiotics (rifaximin, neomycin, erythromycin, and ampicillin-sulbactam) administration prior
to LT reduce infections associated with LT, thus reducing the liver injury, inflammation, and early
allograft dysfunction [158,159]. However, further randomized controlled clinical trials are required to
elucidate the exact mechanisms of action of such antibiotics, their target signaling pathways, and the
optimal duration of treatment. Further experiments in animal LT models will be required to elucidate
the specific molecular signaling pathways through which antibiotics may exert their actions, as well as
to investigate whether the protection on hepatic damage induced by the treatment with antibiotics is
exerted throughout changes in the gut microbiome.

Survival outcomes after LT have constantly improved using upgraded immunosuppressive
agents [165]. However, the inadequate or excessive immunosuppression is associated with a higher risk
of rejection, higher incidence of infection, drug toxicity, and increased mortality [166-170]. Experimental
studies in rats have investigated the effect of immunosuppressive agents on the intestinal microbiota in
LT. The results showed that cyclosporine A ameliorated hepatic injury and partially restore the intestinal
microbiota after LT [160]. An optimal dosage of tacrolimus (FK506) induced normal graft function, and
stable gut microbiota after LT in rats. This resulted in increased probiotics, including Faecalibacterium
prausnitzii and Bifidobacterium spp. and decreased pathogenic endotoxin-producing bacteria, such as
the Bacteroides—Prevotella group and Enterobacteriaceae. Thus, the use of the gut microbiota might be a
novel strategy for the assessment of the dosage of immunosuppressive medications and its effects in
receptors submitted to LT [161].

Retinoic acid, naturally present in the gastrointestinal tract, has a relevant effect in regulating lipid
homeostasis [171,172] and can facilitate PH-induced liver regeneration [173,174]. Given the intimate
relationship between gut-derived signaling and liver regeneration, authors hypothesized that retinoic
acid may regulate gut microbiota thereby promoting liver regeneration [162]. Retinoic-acid-accelerated
liver regeneration was associated with a reduction in the ratio of Firmicutes to Bacteroidetes. Retinoic
acid had benefits on lipid circulation and regulated the FGF21-LKB1-AMPK pathway, which promoted
energy metabolism and consequently the regenerative process in the liver [162]. Further studies will
be required to elucidate the interaction between the modulation of microbiota and the improvement
in proliferation induced by the retinoic acid. This will allow the development of clinical therapeutic
strategies to promote liver regeneration.

In line with the results described above, the evidence suggests that probiotics play an important
role in the stability of the intestinal microbiological environment and regulate intestinal microbiota.
A double-center and double-blind randomized clinical trial conducted in colorectal liver metastases
patients showed that the incidence of infectious complications after preoperative and postoperative
supplementation with probiotics decreased blood Escherichia coli, Staphylococcus aureusm, and
Aeruginosin populations, improved intestinal barrier function, and reduced postoperative infection
rate [163].

As time-restricted feeding (TRF) is a promising intervention against the worldwide trend of
obesity and other metabolic diseases [175], a study conducted in mice investigated whether alteration
in gut microbiota caused by TRF could alleviate hepatic I/R injury [164]. The results confirmed the
adverse effect of I/R on the gut microbial population. However, TRF prior to surgery reduced the
damage, oxidative stress, and inflammatory biomarkers associated with I/R, likely due to intestinal
increases in Firmicutes phylum, Clostridia and Bacilli classes, Clostridiales and Lactobacillales orders,
and Lachnospiraceae and Ruminococcaceae families, which could be hallmarks of a healthy gut [164].

5. Future Perspectives and Conclusions

The temporary occlusion of hepatic inflow is commonly used during liver resection or LT, creating
an unsolved problem in clinical practice associated with post-operative morbidity and mortality.
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Experimental studies have shown that liver I/R injury is influenced by various nutrients, suggesting
the importance of dietary control for preventing I/R injury.

Today, starvation is not a feasible strategy in clinical practice. Future clinical and preclinical studies
on PH with I/R and LT are required to understand the underlying mechanisms of starvation to increase
the quality of livers subjected to surgery and reduce the post-operative disorders. Controversial results
have been reported in experimental models of starvation under I/R conditions [37,48], which might be
explained by the use of different times of ischemia (60 or 90 min). The literature draws upon research
data that support the duration of ischemia differentially affects hepatic I/R injury [176-178]. This is
of clinical interest since, in clinical practice, the timing of ischemia dependent on the complications
associated with surgery cannot be predicted, whereas the effects resulting from starvation are dependent
on the duration of ischemia and the duration of starvation. In clinical practice, long-term diet restriction
of more than 24 h is difficult to apply for preoperative management in LT. Liver donors are often
kept in the intensive care unit for periods no longer than six hours after diagnosis of brain death.
The time frame between the declaration of brain death and organ procurement provides a shorter
window for the starvation intervention. The effects of starvation on steatotic livers undergoing surgery
should be evaluated since the mechanisms responsible for I/R and consequently the useful therapeutic
strategies in clinical practice might be different in steatotic and non-steatotic livers submitted to surgery.
The number of steatotic livers submitted to surgery is expected to increase, though steatotic livers
show regenerative failure responses and reduced tolerance to I/R injury compared with non-steatotic
livers. Therefore, research in experimental models of PH with I/R and LT that closely reproduce the
clinical conditions is required to understand the underlying mechanisms of starvation, especially in
sub-optimal livers.

To summarize, several nutrients and dietary supplements have antioxidant or anti-inflammatory
properties and contribute to modifying the gut microbiome. These properties might warrant
investigations using them as potential strategies to counteract I/R injury complications and promote
regeneration from a nutritional point of view. The diagnosis of nutritional status and its re-establishment
and maintenance, as well as providing adequate nutritional support during all phases of the surgery,
could be considered the first step to formulating adequate I/R injury therapy. From our view, studies
using this approach are insufficient, with only 20 studies from 2014 to 2019, with considerable variability
in models, time, and administration. This suggests that the effects of such approaches on hepatic I/R
injury are specific for each surgical procedure (for instance, warm ischemia associated with hepatic
resections versus LT, times of ischemia, and type of treatment: Short or prolonged fasting).

Most studies based on nutrients and dietary supplements reported benefits on liver function and
oxidative stress parameters, but we did not find many studies aimed to improve liver regeneration (six
of 20) and only three reported improvements in this parameter. As steatotic grafts show increased
vulnerability to I/R when they are transplanted and pre-existing steatosis is related with impairment of
liver regeneration following PH [53,141], more than the only three studies performed in steatotic liver
seems to be warranted. We only found one study reporting the use of probiotics as a strategy. As a
dysbiotic microbiota induces the translocation of several bacterial components into the portal vein and
favors the activation of innate immunity and inflammation [114], modulation of gut microbiota from a
nutritional point of view is mandatory for evaluating and modifying alterations associated with I/R
injury and, in consequence, further studies in this area are needed.

In our view, a strategy more appropriate for clinical practice is the re-establishment and
maintenance of the correct nutrient deficiencies using nutraceuticals and functional foods before,
during, and/or after surgery, dependent on the patient’s requirements. In hepatic resections, this
strategy is suitable for the treatment of patients before during or after surgery, whereas in the case of
LT, this strategy was only possible after LT with considerable difficulties during liver surgery.

For us, the use of plant-derived supplements, fish, and rosa mosqueta oils show limitations
and are inadvisable due their limited specificity and the potential toxicity and side effects of these
components. Vitamins, branched-chain amino acid, fatty acids, arginine, and nucleotides can be
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administered in clinical practice only if deficiencies exist in the patients. Thus, exhaustive studies
in patients are required since, for instance, hypervitaminosis is associated with toxic effects. Given
the limited studies on the effect of administering vitamins in surgery, conclusions about their efficacy
cannot be drawn. Before the administration of fatty acid, the deficiencies in specific types of fatty acid
in the patient must be determined. In some cases, for instance EPA supplementation, benefits have been
reported but whether the potential benefits are exclusively attributed to EPA is unknown because oral
supplementation was also enriched with arginine and nucleotides. Only through exhaustive studies of
the patient’s deficiencies can we select the most effective treatment for the patient. Unfortunately, these
studies are not performed routinely in clinical practice since, in many cases, surgery is performed an
emergency situation but the techniques that evaluate such components are complex, time consuming,
and expensive.

Although I/R is known to have detrimental effects on the gut microbial population, studies
reporting interventions targeting gut microbiota in the I/R setting are limited. A more accurate
characterization of the gut microbiome and host responses using different liver surgery models,
stages of liver disease, and larger cohorts of patients is required. A comprehensive understanding
of the intestine microbiota’s role during hepatic surgery is lacking. Maintaining the stability and/or
restauration of the intestinal microbiological environment could be a safe and sustainable tool for
mitigating I/R injury, which could even effect regeneration. Although regulation of the gut microbiota
has been primarily achieved through the use of probiotics, as well as through dietary intervention,
studies recently reported using mainly antibiotics and mostly focused on avoiding graft rejection
and infectious complications post-surgery [148,158,159,163]. Further investigations are required to
elucidate whether personalized and precision medicine approaches based on gut microbiota are
necessary dependent on the type of surgical procedure. Dose, frequency, and route of modulation of
gut microbiota should be addressed.

Probiotics supplementation requires special consideration. This is associated with the regulation
of infections by altering gut microbiota and improvements in inflammation and immunological
problems associated with liver surgery. Of clinical interest, gut microbial profiles have been suggested
as predictive injury biomarkers in LT. However, before the application of probiotics, an exhaustive
examination of the alterations in the intestinal microbiota must be performed for the administration
of specific probiotics that counteract such deficiencies in the patients. An alternative to the use of
probiotics would be the administration of antibiotics. However, the specificity and the appropriate
dose must be determined to prevent harmful effects to ileum epithelial cells and the mucosal barrier.
Rapid techniques that routinely evaluate intestinal microflora would be necessary if the aim is to
establish probiotics as a useful strategy in clinical of liver surgery, especially in LT. Consequently,
nutritional support must be personalized based on the patient’s deficiencies. To date, I/R injury is
a common complication for patients undergoing liver surgery and its relationship with changes in
the gut microbiota is not totally understood. The understanding of such changes and mechanisms
involved could help with restoring unhealthy microbial diversity and the richness of species, providing
a potential therapeutic tool for treating I/R damage.
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Abbreviations

AKT Protein kinase B

ALA a-linolenic acid

ALD Alcoholic liver disease

AMPK AMP-activated protein kinase

ATP Adenosine triphosphate

BCAA Branched-chain amino acid

BCL B-cell lymphoma

BHB B-hydroxybutyric acid

CAT Catalase

Co A Coenzyme A

DHA Docosahexaenoic acid

EPA Eicosapentaenoic acid

ESPEN European Society for Parenteral and Enteral Nutrition
FOXO1 Forkhead box protein O1

GSH Glutathione

HBeAg Hepatitis B virus e-antigen

HCC Hepatocellular carcinoma

HMGB1 High mobility group box 1

HO-1 Heme oxygenase 1

HWP Hydrolyzed whey peptide

I/R Ischemia-reperfusion

IFNy Interferon-gamma

IL Interleukin

LC-PUFAs Long-chain PUFAs

LSEC Liver sinusoidal endothelial cells

LT Liver transplantation

NAFLD Nonalcoholic fatty liver disease

NASH Nonalcoholic steatohepatitis

NF-xB Nuclear factor kappa-light-chain-enhancer of activated B cells
NKT Natural killer T

NLRP3 Nucleotide oligomerization domain-like receptor family, pyrin domain containing protein 3
NPO Nil per os

Nqol NAD(P)H quinone dehydrogenase 1

Nrf2 Nuclear factor erythroid-derived 2-related factor 2
PA Pantothenic acid

PH Partial hepatectomy

PUFAs Polyunsaturated fatty acids

Sirtl Sirtuin 1

SOD Superoxide dismutase

TGF-p Tumor growth factor beta

TNF-o Tumor necrosis factor alpha

TRF Time restricted feeding
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