
iological
sychiatry:

elebrating
0 Years
Archival Report

B
P
C
5

Genome-wide Burden of Rare Short Deletions Is
Enriched in Major Depressive Disorder in
Four Cohorts

Xianglong Zhang, Abdel Abdellaoui, James Rucker, Simone de Jong, James B. Potash,
Myrna M. Weissman, Jianxin Shi, James A. Knowles, Carlos Pato, Michele Pato, Janet Sobell,
Johannes H. Smit, Jouke-Jan Hottenga, Eco J.C. de Geus, Cathryn M. Lewis,
Henriette N. Buttenschøn, Nick Craddock, Ian Jones, Lisa Jones, Peter McGuffin, Ole Mors,
Michael J. Owen, Martin Preisig, Marcella Rietschel, John P. Rice, Margarita Rivera,
Rudolf Uher, Pablo V. Gejman, Alan R. Sanders, Dorret Boomsma, Brenda W.J.H. Penninx,
Gerome Breen, and Douglas F. Levinson
ISS
ABSTRACT
BACKGROUND: Major depressive disorder (MDD) is moderately heritable, with a high prevalence and a presumed
high heterogeneity. Copy number variants (CNVs) could contribute to the heritable component of risk, but the two
previous genome-wide association studies of rare CNVs did not report significant findings.
METHODS: In this meta-analysis of four cohorts (5780 patients and 6626 control subjects), we analyzed the
association of MDD to 1) genome-wide burden of rare deletions and duplications, partitioned by length (,100 kb
or .100 kb) and other characteristics, and 2) individual rare exonic CNVs and CNV regions.
RESULTS: Patients with MDD carried significantly more short deletions than control subjects (p = .0059) but not
long deletions or short or long duplications. The confidence interval for long deletions overlapped with that for
short deletions, but long deletions were 70% less frequent genome-wide, reducing the power to detect increased
burden. The increased burden of short deletions was primarily in intergenic regions. Short deletions in cases were
also modestly enriched for high-confidence enhancer regions. No individual CNV achieved thresholds for
suggestive or significant association after genome-wide correction. p values , .01 were observed for 15q11.2
duplications (TUBGCP5, CYFIP1, NIPA1, and NIPA2), deletions in or near PRKN or MSR1, and exonic
duplications of ATG5.
CONCLUSIONS: The increased burden of short deletions in patients with MDD suggests that rare CNVs increase the
risk of MDD by disrupting regulatory regions. Results for longer deletions were less clear, but no large effects were
observed for long multigenic CNVs (as seen in schizophrenia and autism). Further studies with larger sample sizes are
warranted.

Keywords: Copy number variation, Genetics, Genome-wide association study, Major depressive disorder, Meta-
analysis, Neuroscience
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Major depressive disorder (MDD) is a common psychiatric
disorder with a lifetime prevalence of 10% to 20% (1). It was
the third leading cause of global disability in 2015 (2). Herita-
bility is approximately 37%, lower than that of several other
psychiatric disorders (3). The genome-wide contribution of
common single nucleotide polymorphisms (SNPs) to MDD risk
is approximately 20% (4). Consistent with the moderate heri-
tability and high population prevalence, it has required more
than 100,000 MDD cases to detect large numbers of genome-
wide significant SNP associations, e.g., 15 loci in 121,380
cases plus 338,101 control subjects (5) and 44 loci in a partially
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overlapping sample (135,458 cases plus 344,901 control
subjects) (6).

Rare copy number variants (CNVs) could be contributing
to the unexplained portion of genetic risk and provide infor-
mation about disease mechanisms. Two previous MDD
studies of longer CNVs reported no significant genome-wide
burden in patients with MDD (7,8). Here, to achieve a larger
sample size, we performed a meta-analysis of the association
of MDD to rare CNVs in 5780 patients and 6626 control
subjects from four cohorts. A significant increase of rare,
shorter deletions (,100,000 base pairs) was observed in
shed by Elsevier Inc. This is an open access article under the
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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patients with MDD, and this was driven by CNVs in intergenic
regions.
METHODS AND MATERIALS

Samples

We studied four European ancestry cohorts as shown in
Table 1. All participants gave signed informed consent under
protocols approved by the relevant institutional review boards.

RADIANT Cohort. The RADIANT cohort (7) included pa-
tients from three studies of recurrent MDD and two control
subject cohorts (458 control subjects who were screened for
lifetime absence of psychiatric disorder and 2699 control
subjects from phase 2 of the National Blood Service Wellcome
Trust Case Control Consortium subcohort). Patients were
interviewed with the Schedules for Clinical Assessment in
Neuropsychiatry (9) and diagnosed using ICD-10 or DSM-IV
criteria. Exclusion criteria were any history or family history of
schizophrenia or bipolar disorder or any history of mood dis-
order secondary to alcohol/substance misuse or of mood-
incongruent psychosis (7).

Netherlands Study of Depression and Anxiety/
Netherlands Twin Register. Patients with MDD and
control subjects were drawn from the Netherlands Twin Reg-
ister (NTR) (10) and the Netherlands Study of Depression and
Anxiety (NESDA) (11). Cases had DSM-IV MDD diagnoses as
assessed with the Composite Interview Diagnostic Instrument
(12).

Genetics of Recurrent Early-Onset Depression.
Patients with MDD and control subjects were drawn from the
Genetics of Recurrent Early-Onset Depression (GenRED)
cohort (13,14). Patients had a consensus DSM-IV MDD diag-
nosis based on a Diagnostic Interview for Genetic Studies
interview and other information, with recurrence or chronicity
(an episode lasting $3 years), onset before 31 years of age,
one or more siblings or parents with recurrent MDD and onset
before 41 years of age, MDD independent of substance
dependence, no bipolar, schizoaffective disorder or schizo-
phrenia diagnosis, and no parent or sibling with suspected
bipolar disorder I. The control subjects (n = 1345) from the
Molecular Genetics of Schizophrenia cohort (15) denied (by
online screen) ever meeting DSM-IV MDD gate criteria (no
Table 1. Cohorts and Sample Sizes Before and After Quality Co

Cohort

Pre–Quality Control Sample Size

Patients With MDD
(Male/Female)

Control Subje
(Male/Fema

RADIANT 3087 (908/2179) 3157 (1522/16

NESDA/NTR 1637 (509/1128) 2030 (765/126

GenRED I 1089 (319/770) 1345 (784/561

GenRED II 831 (144/687) 944 (418/526

Total 6644 (1880/4764) 7476 (3489/39

GenRED, Genetics of Recurrent Early-Onset Depression; MDD, major
Anxiety; NTR, Netherlands Twin Register.
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2-week period of depressed mood or anhedonia most of the
day, nearly every day), whereas the published GenRED
genome-wide association study (GWAS) (13) included control
subjects who never met full MDD criteria by online screen (16).

GenRED II. Patients with MDD were from the second
GenRED GWAS wave (same criteria as GenRED). Control
subjects were drawn from the Genomic Psychiatry Cohort (17),
Depression Genes and Networks (18), and the Mayo Clinic (19).
Control subjects were drawn from the Genomic Psychiatry
Cohort (17) (screened for lifetime depression with a self-report
questionnaire), Depression Genes and Networks (18) (screened
with a Structured Clinical Interview for DSM-IV), and the Mayo
Clinic (19) (screened based on diagnoses in the electronic
medical record over an extended period).

Genotyping

Patients with MDD in the RADIANT cohort and screened
control subjects were genotyped with the HumanHap 610-
Quad beadchip (Illumina, Inc., San Diego, CA), and the un-
screened National Blood Service samples were genotyped
with Illumina Infinium 1M beadchips (hg18 for both) (7). The
NTR/NESDA (20) and GenRED cohorts were genotyped with
the Affymetrix Human Genome-Wide SNP 6.0 Array (Affyme-
trix, Santa Clara, CA) (hg18) (14), and GenRED II patients and
control subjects were genotyped with the Illumina Omni1-
Quad beadchip (hg19) (21).

Selection of CNV Calling Algorithms

CNVs were called with PennCNV (22), QuantiSNP (23) and
iPattern (24) in the RADIANT dataset (using 562,329 probes
common to the two platforms), with Birdsuite (25) and
PennCNV (22) in the NTR/NESDA dataset, with Birdsuite (25) in
the GenRED dataset, and with QuantiSNP (23) and PennCNV
(22) in the GenRED II dataset. There is no consensus “optimal”
calling algorithm for each platform. Various authors use a
single calling method (8,26), agreement between two methods
(20,27), or more complex approaches (28,29).

We conducted a preliminary analysis of CNV call concor-
dance for duplicate genotypes for 115 Affymetrix 6.0 samples
and 20 Illumina Human610-Quad samples. For Affymetrix, we
compared CNVision (28), QuantiSNP (23), PennCNV (22), and
Birdsuite (25) and each pair of algorithms, plus the addition of
CNVision’s pCNV parameter (estimating the probability of a
true CNV, based on per-SNP variability of log R ratio [LRR] and
the number of SNPs consistent with a CNV based on B allele
ntrol Filtering

Post–Quality Control Sample Size

cts
le)

Patients With MDD
(Male/Female)

Control Subjects
(Male/Female)

35) 2460 (724/1736) 2587 (1240/1347)

5) 1568 (488/1080) 1913 (719/1194)

) 941 (271/670) 1264 (743/521)

) 811 (139/672) 862 (384/478)

87) 5780 (1622/4158) 6626 (3086/3540)

depressive disorder; NESDA, Netherlands Study of Depression and
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frequency [BAF]). For Illumina we compared all algorithms
(except Birdsuite) and pairs plus the addition of pCNV. We also
conducted the analyses for short (,100 kb) and long (.100 kb)
CNVs separately.

For Affymetrix, Birdsuite had the highest concordance rate
(deletions and duplications), whereas combining it with any
other method slightly increased concordance but excluded
.40% of calls (Supplemental Table S1). We therefore used
Birdsuite alone for Affymetrix data. For Illumina data, Quan-
tiSNP alone had the best concordance for deletions
(Supplemental Table S2). For duplications, concordance was
highest for QuantiSNP alone; calls made by both PennCNV
and QuantiSNP showed improved concordance but excluded
.30% of calls. We used QuantiSNP for primary analyses, plus
a secondary “narrow” QuantiSNP 1 PennCNV analysis. For
both platforms, concordance was similar for shorter and longer
CNVs (Supplemental Tables S3–S6).

Quality Control of Samples and CNV Calls

Exclusion criteria for samples were applied to each cohort
separately. For NTR/NESDA (20) and GenRED (14), exclusions
were applied to samples retained by the original studies, using
the previous Birdsuite calls: 1) probe intensity variances .4
SDs above the cohort mean; 2) total number or length of de-
letions or duplications .3 SDs above the mean; 3) any chro-
mosome with number or length of deletions or duplications .7
SDs above the mean; and 4) only autosomal CNVs were called.
For Illumina data (RADIANT and GenRED II cohorts), we re-
called CNVs with QuantiSNP and PennCNV from raw LRR
and BAF data. Exclusion criteria for unfiltered calls were 1)
genotype call rate,99%; 2).5% of SNPs with LRR,20.5 or
. 0.5; 3) .1% of SNPs with LRR , 21; 4) BAF drift . 0.01; 5)
LRR SD . 0.28; 6) waviness factor , 20.05 or . 0.05; or 7)
total CNV number or length .3 SDs above the cohort mean
(deletions or duplications).

For both platforms, we removed CNVs with fewer than 10
probes and of Birdsuite calls with a logarithm of odds score
,10 (duplications) or ,6 (deletions) and QuantiSNP calls with
a maximum log(Bayes factor) ,10. We then merged adjacent
deletions (copy numbers 0 or 1) or adjacent duplications (copy
numbers 3 or 4) if the number of probes separating them was
,30% of probes in the merged region (iterating through each
chromosome until all eligible segments were merged, using an
in-house script). We removed CNVs with $50% overlap with
centromeres, telomeres, segmental duplications, or immuno-
globulin genes, or length ,10 kb (too few probes to call reli-
ably) or .4 Mb [in previous work (30), CNVs .4 Mb were
disproportionately detected in DNA from lymphoblastic cell
lines], or with a frequency of .1% in any of four large-sample
cohorts included in the Database of Genomic Variants (31–34),
or with a frequency of .1% (based on 50% overlap) in any of
our control cohorts.

Statistical Analysis Overview

All analyses were conducted for post–quality control (QC)
deletions and duplications using PLINK and R software.
Genomic locations with hg18 coordinates were converted to
hg19 (University of California Santa Cruz LiftOver tool). We first
determined (as described below) that effects of cohort and sex
Biological Psyc
had to be controlled appropriately. We chose primary analyses
that directly compute an odds ratio (OR) and were equivalent to
meta-analysis: logistic regression with sex and cohort cova-
riates (for burden tests) or Cochrane-Mantel-Haenszel (CMH)
tests stratified for sex and cohort (for single CNVs), plus meta-
analysis and/or permutation tests to check results. We tested
two main hypotheses, correcting for multiple tests within each
hypothesis.

Our first hypothesis was that the global burden of rare CNVs
is greater in patients with MDD than in control subjects. The
four primary analyses were for deletions and duplications, each
subdivided by size (,100 kb, .100 kb); the threshold of sig-
nificance was p , .0125 (.05/4).

Our second hypothesis was that patients with MDD are
more likely to carry specific CNVs. Primary analyses tested
association by 1) gene (CNVs impacting exon[s] of the gene)
and 2) CNV region defined by pools of overlapping CNVs
(PLINK). We established thresholds for significant suggestive
association as described below (30). Genic tests considered
only exonic CNVs because of the stronger mechanistic hy-
pothesis and because exonic and “genic” CNVs were largely
overlapping (Supplemental Table S7)—93.2% (deletions) and
99.4% (duplications) of long genic CNVs and 62.6% and
83.6% of short genic CNVs were exonic.

Effects of Cohort and Sex

We evaluated two potential confounding variables: cohort and
sex (the female proportion was higher in patients with MDD
and was variable across cohorts). Multiple linear regressions
were performed for total rare deletions or duplications per
subject or summed length (Supplemental Table S8), with case-
control status, cohort, and sex as independent variables. There
were significant effects for cohort (deletions and duplications)
and sex (deletions).

Genome-wide burden analyses were thus performed for
short and long deletions and duplications, using logistic
regression with sex and cohort as covariates to test for case-
control difference. Secondary analyses considered intergenic
and genic CNVs, separate analyses of exonic and intronic-only
CNVs, singletons, CNVs .500 kb and .1000 kb, and short
deletions by 10-kb length bins (10–20, 20–30, etc.). Results
were checked against logistic regression for each cohort (with
sex as a covariate) followed by meta-analysis of the beta co-
efficients and standard errors [R function “metagen” (35)], and
permutation tests stratified for cohort and sex (randomly
swapping case-control status within the same sex and cohort
100,000 times using the PLINK “–within” option).

Down-sampled Analysis

As a check on the effects of uneven numbers of patients/
control subjects and males/females per cohort, we repeated
burden analyses using a down-sampled dataset: 1622 male
and female patients and control subjects (6488 total) drawn
from each cohort proportional to its size (Supplemental
Table S9).

Analyses of Single CNVs

We performed one-sided CMH tests (stratified by sex and
cohort) of a case excess of exonic CNVs impacting each
hiatry June 15, 2019; 85:1065–1073 www.sobp.org/journal 1067
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RefSeq gene and of CNVs in each “CNV region,” and we
checked results with a stratified permutation tests (results were
almost identical). To define regions, we used the PLINK
“–segment-group” command to identify 994 CNV “pools” of
overlapping post-QC CNVs (from all cohorts) and termed the
union a CNV region.

For any CNV with nominally increased case frequency (CMH
p , .01), we carried out additional filtering because calling
artifacts often produce “significant” results for rare events. We
visualized regional LRR and BAF plots for all carriers and
a threefold number of noncarriers and superimposed on LRR a
plot of estimated probe-by-probe copy number using a
different algorithm (36). We also plotted all CNVs in the region.
We excluded CNVs for which the probewise algorithm showed
no copy number change. After excluding genes/regions where
most calls were considered artifacts or were the edges of a
common CNV region, we recomputed the CMH tests. We
computed a proportion test across the four cohorts for each
gene/region and excluded those with significant heterogeneity
(p , 3.53 3 1025 to correct for multiple tests, see below).
Supplemental Table S10 lists the inspected regions and rea-
sons for all exclusions.

Additional exploratory analyses (permutation tests) consid-
ered each transcript (http://genome.ucsc.edu/), Encyclopedia
of DNA Elements regulatory region, Roadmap Project putative
enhancer, promoter and dyadic region, and in aggregate for
lists of CNVs with reported associations to psychiatric disor-
ders (29,37) or developmental delay (32).

We used a previously described method (30) to estimate
thresholds for significant association (expected by chance
once in 20 genome-wide studies) and suggestive association
(expected once per study). For all 994 CNV regions, the 329
deletion regions intersected with 487 genes, and 665 dupli-
cation regions intersected with 1475 genes (a total of 1962
genic tests). However, tests of genes within a region are
correlated, and each region contained 4.64 genes on average.
The 1962 genic tests represented 423 independent tests
(w1962/4.64). We corrected for 1417 tests (994 regions and
423 genes)—a conservative estimate, because some regions
were partially overlapping, and many genes were in more than
one region, resulting in a p value threshold for significant as-
sociation of 3.53 3 1025 (.05/1417) and for suggestive asso-
ciation of 7.06 3 1024 (1.0/1417).

Power Analysis

Power analyses were conducted for detection of specific
CNVs (Supplemental Figure S1). For the ranges of allele fre-
quencies and genotypic relative risks that were observed in
this study, power was good to excellent to detect associations
at p = .01, but the detection of suggestive or significant as-
sociation would have required larger relative risks than were
observed here.

Enrichment Analysis of Functional Pathways

To detect gene sets associated with MDD, we downloaded
pathways from the Kyoto Encyclopedia of Genes and Ge-
nomes (http://rest.kegg.jp/list/pathway) and Gene Ontology
(http://geneontology.org/page/download-annotations). Gene-
set enrichment methods (38) were used to test for the
1068 Biological Psychiatry June 15, 2019; 85:1065–1073 www.sobp.o
enrichment of CNVs (separately for all or exonic CNVs) in all
the genes of each pathway relative to all genic CNVs using
“–cnv-enrichment-test” in PLINK. Permutation tests of
enrichment in cases were also performed by adding “–mperm
10000” in PLINK, with batch and sex as covariates. A set of
schizophrenia-associated genes (39) was also tested.

We also evaluated whether case CNVs were enriched in
high-confidence DNaseI regions (2log10 p $ 10) from the
Encyclopedia of DNA Elements (40) or the Roadmap Epi-
genomics Project (41) (https://personal.broadinstitute.org/
meuleman/reg2map/HoneyBadger2_release/). Separately for
promoter, enhancer, and dyadic regions, we analyzed all tis-
sues together (i.e., whether more case short deletions inter-
sected with at least one high-confidence regulatory sequence
from any tissue) and then each tissue separately (counting
high-confidence sequences for that tissue). For intergenic
short deletions, averaged across tissues, the proportion of
CNVs that overlap high-confidence regulatory regions was
1.3% for promoter regions, 2.0% for dyadic regions, and
14.9% for enhancer regions.
RESULTS

Of 14,429 samples, 12,406 passed QC (5780 patients with
MDD and 6626 control subjects) (Table 1). The total numbers
of rare deletion and duplication calls are shown in
Supplemental Table S11.

Genome-wide Burden

Cases had more CNVs per subject for rare, short (,100 kb)
deletions (p = .00592, OR = 1.0483), driven by intergenic de-
letions (p = .00714, OR = 1.0716) (Table 2 and by cohort in
Supplemental Table S12). Similar results were observed by the
primary logistic regression tests (Supplemental Table S13),
meta-analysis of cohort-specific logistic regressions
(Supplemental Table S14), stratified permutation tests
(Supplemental Table S7), and the down-sampled dataset
(Supplemental Table S9). Short deletions across the 10- to
100-kb range contributed to the case-control difference
(Supplemental Table S15 and Supplemental Figures S2–S3).
No significant differences were observed for duplications or
long deletions, but the OR for long deletions was positive
(1.03), the confidence interval overlapped with that for short
deletions (Table 2), and a secondary analysis of all rare de-
letions was significant (OR = 1.044; 95% confidence interval =
1.013–1.075; p = .0046) (Supplemental Table S16). No signif-
icant effect was observed for singleton or very long (.500 kb,
.1000 kb) deletions or duplications. There was no evidence of
strong heterogeneity by cohort for short deletions (Cochran’s
Q test; p = .31) or short intergenic deletions (p = .14)
(Supplemental Table S14 and Supplemental Table S12 and
Supplemental Figure S4 for results by cohort). The excess of
short deletions in cases became more significant when CNVs
with frequency .1% in each cohort separately were excluded
(rather than .1% in any cohort) (Supplemental Table S17) or
when QuantiSNP 1 PennCNV calls were required for Illumina
data (Supplemental Table S18). Burden results did not change
after excluding nominally significant CNV regions that failed
manual checks (Supplemental Table S19).
rg/journal
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Table 2. Genome-wide Burden Analyses of Long and Short Deletions and Duplications (CNVs/Subject)

CNV Type

CNVs/Subject

OR (95% CI) p ValuePatients With MDD Control Subjects
Deletions

.100 kb—All 0.324 0.318 1.0296 (0.9658–1.0975) 3.71 3 1021

Intergenic 0.134 0.138 0.9881 (0.8956–1.0899) 8.11 3 1021

Genic 0.191 0.181 1.0606 (0.9754–1.1531) 1.68 3 1021

Exonic 0.175 0.168 1.0521 (0.9646–1.1475) 2.51 3 1021

Intronic 0.015 0.012 1.1672 (0.8591–1.5876) 3.23 3 1021

,100 kb—All 1.015 0.978 1.0483 (1.0139–1.0843) 5.92 3 1023a

Intergenic 0.506 0.483 1.0716 (1.0190–1.1270) 7.14 3 1023a

Genic 0.509 0.495 1.0343 (0.9877–1.0842) 1.56 3 1021

Exonic 0.330 0.310 1.0552 (0.9965–1.1192) 6.95 3 1022

Intronic 0.179 0.185 0.9952 (0.9149–1.0825) 9.11 3 1021

Duplications

.100 kb—All 0.496 0.476 1.0268 (0.9837–1.0725) 2.29 3 1021

Intergenic 0.087 0.079 1.0912 (0.9654–1.2333) 1.62 3 1021

Genic 0.409 0.397 1.0187 (0.9723–1.0677) 4.37 3 1021

Exonic 0.406 0.395 1.0166 (0.9702–1.0657) 4.89 3 1021

Intronic 0.004 0.002 1.5254 (0.7880–3.0095) 2.13 3 1021

,100 kb—All 0.670 0.702 0.9850 (0.9512–1.0194) 3.90 3 1021

Intergenic 0.252 0.266 0.9788 (0.9166–1.0449) 5.21 3 1021

Genic 0.418 0.436 0.9845 (0.9410–1.0296) 4.96 3 1021

Exonic 0.345 0.365 0.9730 (0.9253–1.0225) 2.83 3 1021

Intronic 0.073 0.072 1.0586 (0.9285–1.2066) 3.94 3 1021

For rare CNVs (carried by ,1% of control subjects in each cohort), we defined four primary case-control tests of CNV subsets: deletions and
duplications, and within each type, long (.100 kb) and short (,100 kb). For each subset, the case-control difference in CNVs per subject was
tested by logistic regression, stratified for cohort and sex (Bonferroni-corrected threshold of significance p = .05/4, or .0125). Further exploration
then considered genomic location: only intergenic, genic (exonic and/or intronic impact), exonic (subset of genic), and only intronic (subset of
genic). See Supplemental Table S8 for complete results.

CI, confidence interval; CNV, copy number variant; MDD, major depressive disorder; OR, odds ratio.
aSignificant result.
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We considered two possible within-cohort confounding
factors: DNA source and genotyping platforms. In GenRED II,
there were two DNA sources: blood (137 patients and all control
subjects) or lymphoblastic cell lines (674 patients)
(Supplemental Table S20). CNV burden did not significantly
differ between blood and lymphoblastoid cell line case DNAs for
any category, with a trend for more long deletions in lympho-
blastoid cell line DNA (Supplemental Table S21). RADIANT CNV
calls used probes common to Illumina 610-Quad (assayed in
patients and screened control subjects) and Illumina 1M
(unscreened control subjects). Burden results were similar for
patients versus screened or unscreened control subjects,
except that patients had more short deletions than screened
control subjects (assayed with the same array) (Supplemental
Table S22). Thus, neither factor accounted for the main finding.

Exonic CNVs and CNV Regions

After all QC, no gene or region met the criteria for significant or
suggestive association (Supplemental Table S10). Results with
p , .01 are shown in Table 3. These represent four indepen-
dent loci. Duplications in 15q11.2 achieved p = .00076 (OR =
3.88). These duplications are reciprocal to a well-known
deletion region (see Discussion), consistently impacting four
genes. Less consistent results are observed in surrounding
genes in segmental duplication regions (Supplemental
Biological Psyc
Table S10). Exonic deletions in MSR1 achieve p = .0019
(OR = 1.96); the region test includes several intronic deletions,
with a similar result (p = .00075; OR = 2.05). A CNV region
containing exonic and intronic deletions in PRKN (formerly
PARK2) produced p = .00097 (OR = 1.92); the exonic test for
PRKN had p . .01. Finally, there were six duplications, all in
patients with MDD, in 6q21 (p = .0059; OR = N), including five
exonic duplications in ATG5 that overlapped with one up-
stream duplication. LRR/BAF plots of CNVs shown in Table 3
are provided in Supplemental Figure S5.

Pathway Enrichment Analysis

After correction for multiple testing, no Kyoto Encyclopedia of
Genes and Genomes or Gene Ontology pathway was enriched
with short deletions in patients with MDD.

Regulatory Regions

Enhancer regions were modestly enriched in patients with
MDD for all tissues combined as defined above (p = .024), and
in 5 of 127 specific tissues (p , .05) (Supplemental Table S23).

Known Loci Associated With Psychiatric Disorders
or Developmental Delay

Permutation tests did not demonstrate case enrichment of
CNVs in loci associated with psychiatric disorders
hiatry June 15, 2019; 85:1065–1073 www.sobp.org/journal 1069
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Table 3. Copy Number Variant Genes and Regionsa

Gene or Region Chromosome Start End

All CMH Test RAD GR2 GR1 Neth

AnnotationCa Co OR p Value Ca Co Ca Co Ca Co Ca Co
Genes (Exonic)

Deletion

MSR1 8 15,965,386 16,050,300 55 32 1.96 1.9 3 1023 23 10 6 3 15 10 11 9

Duplication

TUBGCP5 15 22,833,394 22,873,891 24 7 3.88 7.6 3 1024 7 3 11 0 2 1 4 3 15q11.2 (reciprocal to
well-known
deletion region)

CYFIP1 15 22,892,648 23,003,603

NIPA2 15 23,004,683 23,034,427

NIPA1 15 23,043,278 23,086,843

Regions (Genic and/or Intergenic)

Deletion

6q26 6 162,136,159 163,489,668 65 40 1.92 9.7 3 1024 33 17 10 11 9 5 13 7 PRKN

8p22 8 15,817,196 16,092,656 59 33 2.05 7.5 3 1024 24 10 18 11 6 3 11 9 MSR1

Duplication

6q21 6 106,549,398 107,026,323 6 0 Inf 5.9 3 1023 2 0 1 0 0 0 3 0 ATG5

15q11.2 15 22,652,330 23,309,294 24 7 3.88 7.6 3 1024 7 3 2 1 11 0 4 3 TUBGCP5, CYFIP1,
NIPA1, and NIPA2

Shown are the numbers of cases (patients with major depressive disorder) (out of 5780) and of control subjects (out of 6626) carrying each CNV
with post–quality control p, .01. Start and end are genomic positions in base pairs (build hg19) either for the gene for which one or more exons was
impacted by each CNV or for the region within which CNVs were counted.

Ca, cases; CMH, Cochrane-Mantel-Haenszel; CNV, copy number variant; Co, control subjects; GR1, Genetics of Recurrent Early-Onset
Depression (genotyped with Affymetrix); GR2, Genetics of Recurrent Early-Onset Depression II (genotyped with Illumina); Neth, Netherlands
Study of Depression and Anxiety and Netherlands Twin Register (genotyped with Affymetrix); OR, CMH odds ratio; Inf, infinite; RAD, RADIANT
(genotyped with Illumina).

ap , .01 case-control difference.
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(Supplemental Table S24) or developmental delay
(Supplemental Table S25). There was no overlap between the
CNVs reported in Table 3 and significant MDDGWAS loci (6,42).

DISCUSSION

This is the largest genome-wide study to date of the asso-
ciation of MDD with rare CNVs. An excess of long CNVs
(.100 kb) was initially reported in an analysis of the RADIANT
cohort that included additional controls (43), but a subse-
quent reanalysis (without the extra controls and with stricter
QC, producing a substantial reduction in number of CNVs per
subject similar to that reported here) detected no significant
excess (7). Another study of longer CNVs in 452 patients with
treatment-resistant depression and 811 control subjects also
reported no significant differences (8). For schizophrenia,
evidence for association of several long CNVs with large ef-
fects on risk could be detected with samples comparable in
size to RADIANT (44). There were no such findings for single
CNVs in the present, larger study. It appears that long,
multigenic CNVs are less likely to have large effects on the
risk of MDD.

Global Burden of Short Deletions

We observed enrichment of short deletions (,100 kb) in pa-
tients with MDD, and particularly intergenic deletions. This
suggests that the effect on MDD risk is due to the deletion of
regulatory elements, consistent with the (modest) enrichment
of high-confidence enhancer regions in short deletions in pa-
tients with MDD. This is consistent with the extensive analyses
1070 Biological Psychiatry June 15, 2019; 85:1065–1073 www.sobp.o
of the Psychiatric Genomics Consortium’s meta-analysis of
depression GWAS data (6) that detected 44 significant asso-
ciations primarily in nonexonic SNPs, including several in
genes that are involved with extensive regulatory networks
(RBFOX1, RBFOX2, RBFOX3, and CELF4), as well as genome-
wide enrichment of highly conserved regions, open chromatin
in human brain and an epigenetic mark of active enhancers
(H3K4me1).

One might expect an increased burden of longer CNVs as
well, because they contain more genes and regulatory ele-
ments. We analyzed short and long deletions separately
because longer CNVs have been more frequently implicated in
disease risk. Similar ORs were observed for burden of short
and of long deletions in patients with MDD, and their confi-
dence intervals overlapped, but we had less power to detect
an excess of long deletions because they were 70% less
frequent than short deletions. Thus, an increased burden of
longer deletions might be observed in larger meta-analyses.
We also suspect that the ascertainment methods of most
MDD studies are biased against individuals with long multi-
genic CNVs, whose carriers are at higher risk of disorders such
as schizophrenia, autism, and intellectual disability. Individuals
with these phenotypes have an increased risk of depression
(45,46), but they are often excluded from MDD cohorts and are
often not specifically diagnosed with, or treated for,
depression—resulting in exclusion even from registry-based
cohorts. Thus, both short and long rare deletions could
impact the risk of MDD, but the current results are significant
only for shorter deletions (10–100 kb), and larger cohorts will
be needed to resolve the issue.
rg/journal
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Individual Genes and Regions

No significant or suggestive associations were detected for
individual exonic CNVs or for CNV regions, after conservative
correction for genome-wide testing. Larger datasets will be
needed to identify true positive findings. Nominal association
was observed in several regions (p , .01 but not achieving
suggestive or significant thresholds). The first region was
15q11.2 duplications encompassing the small, nonimprinted
BP1/BP2 segment of the Prader-Willi/Angelman region. De-
letions of this segment are weakly associated with risk of
schizophrenia (29,37) and have been reported to be associated
with dyslexia and dyscalculia (with deletions and duplications
associated with reductions or increases, respectively, in the
size and activity of the left fusiform gyrus) (47). Second, de-
letions in exons of MSR1 (or all deletions in that region) have
been implicated in atherosclerosis, Alzheimer’s disease, and
host defense. Third, deletions in 6q26 impact introns or exons
of PRKN, where recessive mutations cause early-onset Par-
kinson’s disease (type 2), but heterozygous variants are not
associated with Parkinson’s disease (48), although Parkinson’s
disease is associated with increased depressive symptoms
(49). The final region included duplications in exons of, or up-
stream sequence near, ATG5, which has multiple immune
functions, including negative regulation of the type I interferon
production pathway—this is of note because reduced white
blood cell expression of interferon I response genes was re-
ported (18) but not replicated (50) in studies of MDD.

Limitations

The sample size is larger than previous CNV studies of MDD but
remains underpowered. Combining CNV cohorts presents chal-
lenges including differences in clinicalmethods (inclusion criteria,
ascertainment, and assessments) and genotyping (platforms that
differ in genome coverage and signal to noise ratio). Also, the
present cohorts are not ideal for testing whether the long, multi-
genic “neuropsychiatric” CNVs are also predisposing for
depression: the psychiatric and neurological features of these
CNVs may be considered exclusion criteria from MDD studies;
and the associated cognitive impairments reduce the probability
of being recruited into MDD cohorts because individual carriers
are less likely to volunteer or to be treated in the targeted clinical
settings. On the other hand, the cohorts are broadly representa-
tive of the current concept of clinically significant MDD.

In conclusion, we found significant evidence for an
increased global burden of shorter rare deletions that was
mainly driven by intergenic deletions in patients with MDD from
four cohorts. The evidence regarding longer deletions was
inconclusive: They were not significantly increased in patients
with MDD, but the confidence intervals overlapped with the
case-control ORs for shorter and longer deletions, and there
was less power to detect a difference because longer deletions
are less frequent. Overall, the results suggest that the effects of
CNVs on regulatory elements, primarily in intergenic regions,
play a role in predisposition to MDD.
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