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Abstract: The early-time evolution of the system generated in ultra-relativistic heavy

ion collisions is dominated by the presence of strong color fields known as Glasma fields.

These can be described following the classical approach embodied in the Color Glass Con-

densate effective theory, which approximates QCD in the high gluon density regime. In this

framework we perform an analytical first-principles calculation of the two-point correlator

of the divergence of the Chern-Simons current at proper time τ = 0+, which character-

izes the early fluctuations of axial charge density in the plane transverse to the collision

axis. This object plays a crucial role in the description of anomalous transport phenom-

ena such as the Chiral Magnetic Effect. We compare our results to those obtained under

the Glasma Graph approximation, which assumes gluon field correlators to obey Gaussian

statistics. While this approach proves to be equivalent to the exact calculation in the limit

of short transverse separations, important differences arise at larger distances, where our

expression displays a remarkably slower fall-off than the Glasma Graph result (1/r4 vs.

1/r8 power-law decay). This discrepancy emerges from the non-linear dynamics mapping

the Gaussianly-distributed color source densities onto the Glasma fields, encoded in the

classical Yang-Mills equations. Our results support the conclusions reached in a previous

work, where we found indications that the color screening of correlations in the transverse

plane occurs at relatively large distances.
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1 Introduction

High-energy heavy ion collisions (HICs from now on) generate a hot, chiral-symmetric

medium — the Quark Gluon Plasma (QGP) — where parity (P) and charge-parity (CP)-

violating fluctuations are expected to happen with relatively high probability due to the

chiral anomaly of QCD [1]. The anomalous term weights gauge field configurations ac-

cording to their associated value of the topological invariant known as winding number (or

topological charge):

Qw =
g2

16π2

∫
d4xTr

{
Fµν(x)F̃µν(x)

}
, (1.1)

where Fµν and F̃µν = 1
2ε
µνρσFρσ correspond respectively to the field strength tensor and

its dual. Qw labels degenerate (but topologically inequivalent) vacuum states separated

by potential barriers that greatly suppress the transition probability except at high tem-

peratures, such as the ones reached in the QGP phase (for a review of the topological

aspects of gauge field theories, see [2]). The tunneling transitions, mediated by localized

field configurations called sphalerons, induce a transformation of left- into right-handed

quarks (and viceversa) whose rate can be computed in the massless fermion limit as the

spatial integral of the chiral anomaly:

dN5

dt
=

∫
d3x ∂µj

µ
5 (x) = −g

2Nf

8π2

∫
d3xTr

{
Fµν(x)F̃µν(x)

}
=
g2Nf

2π2

∫
d3x ν̇(x), (1.2)

where N5 and jµ5 correspond respectively to the axial charge density and current, Nf is the

number of flavors and ν̇ is the divergence of the Chern-Simons current.

HICs thus provide an appropriate environment — the QGP — for the manifestation of

the non-trivial topological structure of QCD. Specifically, off-central HICs yield favourable
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conditions for the search of observable signs of such features. These collisions give rise

to large background electromagnetic fields, which in the presence of deconfined chirally-

imbalanced matter may induce a separation of positive and negative charges along the

direction of angular momentum [3]. This effect — known as the Chiral Magnetic Effect

(CME) — thus creates a preferential direction for the emission of charged particles that

would in turn translate into non-trivial azimuthal correlations in the hadronic spectrum.

The search for such signatures of this and other transport phenomena connected to the

chiral anomaly (generically called anomalous transport phenomena) has been carried at

the Relativistic Heavy-Ion Collider (RHIC) and at the Large Hadron Collider (LHC) [4].

Although these experiments have provided numerous measurements that are indeed com-

patible with said phenomena [5–9], the presence of large background effects (e.g. trans-

verse momentum [10] and local charge [11] conservation, which also give rise to intrinsic

back-to-back correlations; and final state interactions [12]) prevent from drawing definite

conclusions. Hence, there is a strong interest from the high-energy QCD community in re-

ducing this uncertainty. Significant advances have been achieved on the experimental side,

including the development of different detection techniques [13–16] and, most recently, the

implementation of an isobaric collision program at RHIC aimed at the isolation of CME

backgrounds [17]. Still, a thorough approach to this task demands for better theoretical

constraints on the dynamical origin of correlations between detected particles.

Non-trivial final state correlations in heavy ion experiments have been shown to re-

flect not only the collective dynamics of QGP, but also the event-by-event fluctuations

that characterize the initial phase of the collisions [18]. These early fluctuations (albeit

unrelated to the underlying topological structure of QCD) provide a natural source of topo-

logical charge that competes with sphaleron transitions. Although the latter are known

to dominate axial charge production in the QGP phase, throughout the pre-equilibrium

stage both mechanisms are likely to yield a significant contribution.1 It is thus essential to

understand and quantitatively constrain the influence of each source in the experimentally

observed correlations.

However, there is currently no consensus about either the origin or the practical descrip-

tion of early event-by-event fluctuations. Different prescriptions arise from a wide variety

of phenomenological models whose goal is to provide initial conditions for the quasi-ideal

relativistic hydrodynamical evolution of QGP. The numerical values of the physical quanti-

ties required as input by these models are constrained by agreement with data, sometimes

varying greatly from one model to another [18, 21]. Such discrepancy introduces a sig-

nificant amount of uncertainty in both the precision and physical interpretation of most

phenomenological studies of the expansion and cooling of QGP. This general issue is of par-

ticular importance for those hydrodynamical descriptions that mimic the effects induced

1It has been argued that in the early stage of the collision sphaleron transitions are suppressed due to

the boost invariance of the generated fields [19]. However, as the system evolves towards thermalization and

boost invariance wears down, they would be significantly enhanced [19, 20]. Whether or not event-by-event

fluctuations dominate over this or other mechanisms of axial charge production — like thermal fluctuations

of the field strength — is out of the scope of this paper. For more exhaustive discussions on this topic, the

reader is referred to the aforementioned studies.
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by the chiral anomaly [22–24] since event-by-event fluctuations are expected to contribute

a significant fraction of the initial axial charge densities. Therefore, a better theoretical

control of the early stages of the collision is essential to properly characterize the origin

and description of anomalous transport phenomena.

The Color Glass Condensate (CGC) effective theory (see e.g. [25, 26] for a review) is

arguably the most promising framework for the description of the early phase of HICs. CGC

describes the high density of small-x gluons carried by nuclei as strong color fields whose

dynamics obey the classical Yang-Mills equations. The classical approximation is founded

in the fact that for very large occupation numbers the quantum fluctuations represent

a negligible correction to the strong background field. This condition is at the base of

the McLerran-Venugopalan model (MV model from now on) [27–29], where nuclei are

represented by an ensemble of SU(Nc) color charges that act as sources of the classical fields.

The MV model thus assumes a separation of degrees of freedom that is performed at an

arbitrary light-cone momentum Λ+: particles with p+>Λ+ are taken as hard color charges

(which represent the valence quarks), and these generate the small-x dynamical modes

(the strong color fields), which satisfy p+<Λ+. CGC incorporates the means to compute

the quantum corrections to the MV model via the B-JIMWLK equations, which describe

the evolution of the theory with Λ+. This framework has been extensively applied in the

description of the early, non-equilibrium stage of HICs known as Glasma phase [30–33].

In a previous work [34] we provided a first-principles calculation quantifying the size

and extent of the transverse correlations of the energy-momentum tensor of Glasma at early

times (and in a subsequent paper [35] the results of said work were applied in the description

of anisotropic flow harmonic coefficients to excellent agreement with data measured at both

RHIC and LHC). In this follow-up paper we extend the classical treatment to the divergence

of the Chern-Simons current:

ν̇(τ = 0+, x⊥) ≡ ν̇0(x⊥) = Tr{E(τ = 0+, x⊥)B(τ = 0+, x⊥)}, (1.3)

where Ei = −F 0i and Bk = 1
2ε
ijkF ij are, respectively, the Glasma chromo-electric and

-magnetic fields, evaluated at an infinitesimal positive proper time τ = 0+ at a point x⊥
of the plane transverse to the collision axis. This object is proportional to the strong CP-

violating term of the QCD Lagrangian, which is the source for local axial charge production

(eq. (1.2)). In the present work we evaluate the correlation function 〈ν̇0(x⊥)ν̇0(y⊥)〉, which

characterizes the early event-by-event fluctuations of the ν̇ distribution. In evaluating this

object we find relatively long-range correlations that contrast with both naive expectations

one could have from the MV model — where we assume local correlations at the level

of color source distributions — and previously obtained results from the Glasma Graph

approximation [36] — which assumes a linear mapping of the statistics followed by the

color sources onto the Glasma fields. Although such a discrepancy mirrors the results found

in [34], it is worth remarking that the calculations presented in this work yield an even

larger difference with respect to those obtained under the Glasma Graph approximation.

This paper is organized as follows. In section 2 we introduce a generalization of the

MV model with explicit impact parameter dependence and relaxed transversal locality. In

this framework we outline the solution to the Yang-Mills equations with two sources at an
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infinitesimal proper time after the collision τ = 0+, which acts as boundary condition for

the ensuing evolution in the future light-cone. In section 3 we calculate the expectation

value of the divergence of the Chern-Simons current in the previously presented framework.

In section 4 we compute its two-point correlator, comparing our results with the aforemen-

tioned calculation performed under the Glasma Graph approximation [36]. We also provide

the first orders of the Nc-expansion, as well as the strict MV model limit of our expression.

Note that a big part of the technical challenges faced during the calculations presented in

this paper — such as the computation of non-trivial projections of the correlator of four

Wilson lines in the adjoint representation and the decomposition of correlators of m valence

color sources and n Wilson lines — were analyzed in depth in a previous work [34], being

the reader referred to said paper for detailed derivations. Finally, in section 5 we discuss

the physical implications and potential phenomenological applications of our result, as well

as its role in future studies.

2 Setup: the classical approach to gluon production in high-energy heavy

ion collisions

In the MV model we represent the high density of small-x gluons carried by each nucleus

with gauge fields Aµ1,2 whose dynamics follow from the classical Yang-Mills equations:

[Dµ, F
µν ] = δν+ρa(x−, x⊥) ta, (2.1)

where ρa represents the density of valence (large-x) partons and ta is the generator of

SU(Nc) in the fundamental representation. The δν+ factor indicates that the source gen-

erates a color current only in the + direction. This suggests a physical picture of the

interaction where the valence partons do not recoil from their light-cone trajectory as the

gluons they continuously exchange with the medium are too soft to affect their motion

(eikonal approximation). The MV model accounts for the event-by-event fluctuations of

color charge configurations by taking ρa as an stochastic quantity with a certain probabil-

ity distribution W [ρ] associated as weight function. Thus, the observables are obtained as

ensemble averages over the background classical fields:

〈O[ρ]〉= 1

N

∫
[dρ]W [ρ]O[ρ], (2.2)

where N is a normalization constant equal to
∫

[dρ]W [ρ]. The main assumption adopted

in the MV model is that in nuclei with large mass numbers the valence parton configu-

rations emerge from a large number of separate nucleons and are therefore uncorrelated.

Thus, invoking the central limit theorem, this model approximates W [ρ] with a Gaussian

distribution, yielding the following fundamental result:

〈ρa(x−, x⊥)ρb(y−, y⊥)〉MV = µ2(x−)δabδ(x− − y−)δ2(x⊥ − y⊥). (2.3)

Here, µ2 is a parameter proportional to the color source number density that enters as the

variance of the Gaussian weight. However, as we intend to apply a more general approach,
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we choose to relax some of the approximations implied in eq. (2.3) by considering the

following, more general, two-point function of the sources:

〈ρa(x−, x⊥)ρb(y−, y⊥)〉 = µ2(x−)h(b⊥)δabδ(x− − y−)f(x⊥ − y⊥)

≡ λ(x−, b⊥)δabδ(x− − y−)f(x⊥ − y⊥), (2.4)

where we allow the possibility of finite, non-homogeneous nuclei by explicitly introducing

an impact parameter (b⊥≡ (x⊥+ y⊥)/2) dependence as previously done in [37]. Also, we

drop the assumption that interactions are local in the transversal plane by introducing an

undetermined function f(x⊥− y⊥) instead of a Dirac delta (as previously done in [38]).

This allows to implement the JIMWLK evolution of W [ρ] within the so-called Gaussian

truncation [39–42]. Such extensions of the original MV model might prove especially useful

in subsequent phenomenological applications of our results.

Although there is no general solution for the Yang-Mills equations with two sources,

the MV model provides an analytical expression of the gauge fields at proper time τ =0+

(i.e. an infinitesimal positive proper time after the collision). These are obtained in terms of

the gauge fields that characterize each nucleus before the collision, which can be computed

independently as:

A±1,2(x
∓, x⊥) = 0 (2.5)

Ai1,2(x
∓, x⊥) = θ(x∓)

∫ ∞
−∞

dz∓
∫
dz2⊥G(z⊥− x⊥)U †1,2(z

∓, x⊥)∂iρ̃1,2(z
∓, z⊥)U1,2(z

∓, x⊥)

≡ θ(x∓)αi1,2(x⊥), (2.6)

by solving the Yang-Mills equations with one source in the Fock-Schwinger gauge [43].

Here ρ̃ is the color charge density in the covariant gauge and U is the Wilson line, an

SU(Nc) element that represents the effect of the interaction with the classical gluon field

over the fast valence partons in the eikonal approximation, i.e. a rotation in color space.

It is defined as a path-ordered exponential:

U1,2(x
∓, x⊥) = P∓ exp

{
−ig

∫ x∓

−∞
dz∓
∫
dz2⊥G(z⊥ − x⊥)ρ̃1,2(z

∓, z⊥)

}
, (2.7)

where G(z⊥−x⊥) is the Green’s function for the two-dimensional Laplace operator. The

solution at τ=0+ is found by proposing the following ansatz:

A±(x∓, x⊥)=±x±α(τ = 0+, x⊥) (2.8)

Ai (x∓, x⊥)=αi(τ = 0+, x⊥), (2.9)

where we adopted the comoving coordinate system, defined by proper time τ=
√

2x+x− and

rapidity η = 1
2 ln(x+/x−). Then, we invoke a physical ‘matching condition’ that requires

Yang-Mills equations to be regular in the limit τ→0 . In doing so, the following relations

are obtained:

αi(τ = 0+, x⊥) = αi1(x⊥) + αi2(x⊥) (2.10)

α(τ = 0+, x⊥) =
ig

2

[
αi1(x⊥), αi2(x⊥)

]
, (2.11)
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which act as boundary conditions of the subsequent τ -evolution.2 From these expressions

we can compute the chromo-electric and -magnetic fields at τ=0+ as:

Ez(τ = 0+, x⊥) = −ig δij [αi1(x⊥), αj2(x⊥)] (2.12)

Bz(τ = 0+, x⊥) = −ig εij [αi1(x⊥), αj2(x⊥)], (2.13)

being these the only non-vanishing components. This peculiar configuration of boost-

invariant longitudinal fields motivates the Glasma flux tube picture, which predicts short-

range transverse correlations [45].

3 One-point correlator of the divergence of the Chern-Simons current

Before evaluating the two-point function, in this section we will show that the expectation

value of the divergence of the Chern-Simons current over the classical background fields is

0, indicating that there is no overall CP violation in the process. Although this result has

been obtained previously in the literature [46] (or more recently in [30, 36]), we deem it

convenient to include this preface as it allows us to establish the notation used in the rest

of the paper. Let us first write ν̇0 in terms of the gluon fields:

ν̇0(x⊥) = −g2δijεklTr{[αi1x, αj2x][αk1x, α
l
2x]}

= −g2δijεklαi,a1xαj,b2xα
k,c
1xα

l,d
2xTr{[ta, tb][tc, td]}

=
g2

2
δijεklfabnf cdnαi,a1xα

j,b
2xα

k,c
1xα

l,d
2x, (3.1)

where we adopted the shorthand notation αi,a(x⊥) ≡ αi,ax . As an intermediate step we

expand the color structure of the gluon fields as [43]:

αi(x⊥)=

∫ ∞
−∞

dz−
∫
dz2⊥G(z⊥− x⊥)∂iρ̃a(z−, z⊥)U †(z−, x⊥)taU(z−, x⊥)

=

∫ ∞
−∞

dz−
∫
dz2⊥G(z⊥− x⊥)∂iρ̃a(z−, z⊥)Uab(z−, x⊥)tb ≡ αi,b(x⊥)tb, (3.2)

where we used the relation between Wilson lines in the fundamental and adjoint represen-

tations U †taU=Uabtb. The correlator of eq. (3.1) factorizes like:

〈ν̇0(x⊥)〉 =
g2

2
δijεklfabnf cdn〈αi,a1 (x⊥)αk,c1 (x⊥)〉〈αj,b2 (x⊥)αl,d2 (x⊥)〉, (3.3)

as in the MV model the color source fluctuations of each nucleus are assumed to be inde-

pendent. Thus, the building block of 〈ν̇0〉 is the correlator of two gauge fields evaluated in

the same transverse position, 〈αi,a(x⊥)αk,c(x⊥)〉. We calculate this object as a limit:〈
αi,a(x⊥)αj,b(x⊥)

〉
= δab lim

r→0

∫ ∞
−∞

dz−λ(z−, b⊥)∂ix∂
j
yL(r⊥)C

(2)
adj(z

−;x⊥, y⊥), (3.4)

2Several approaches of both analytical and numerical nature have been applied for this computation in

the literature. For instance, in [44] an analytical approximation based on an expansion of the Yang-Mills

equations in powers of τ is proposed. However, this is out of the scope of the work presented in this paper.
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where r= |r⊥|= |x⊥ − y⊥|. Here we introduced the following function:

L(r⊥) ≡
∫
dz2⊥du

2
⊥G(z⊥− x⊥)G(u⊥− y⊥)f(z⊥− u⊥). (3.5)

From its symmetries and dimension, the double derivative of L(r⊥) featured in eq. (3.4)

can be parameterized as:

∂ix∂
j
yL(r⊥) = A(r⊥)δij +B(r⊥)

(
δij

2
− rirj

r2

)
. (3.6)

This formula accounts for an explicit separation of the contributions of the unpolarized

A(r⊥) and linearly polarized B(r⊥) parts of the gluon distribution. We can express these

coefficients in terms of f(r⊥) explicitly as:

A(r⊥) =
1

2

∫
d2q⊥
(2π)2

f̂(q⊥)
eiq⊥·r⊥

q2
(3.7)

B(r⊥) = −
∫
d2q⊥
(2π)2

f̂(q⊥)
eiq r cos θ

q2
cos(2θ), (3.8)

where f̂(q⊥) is the Fourier transform of f(r⊥). As for the last factor in eq. (3.4), it

corresponds to the dipole function in the adjoint representation, which stems from the

following correlator:〈
Ua
′a(x−, x⊥)Ua

′b(x−, y⊥)
〉

= δab exp

{
−g2Nc

2
Γ(r⊥)λ̄(x−, b⊥)

}
≡ δabC(2)

adj(x
−;x⊥, y⊥). (3.9)

Here we introduced the notation λ̄(x−, x⊥) =
∫ x−
−∞ dz

−λ(z−, x⊥), as well as the following

function:

Γ(r⊥)=2(L(0⊥)− L(r⊥)). (3.10)

Computing the indicated limit explicitly, eq. (3.4) yields:〈
αi,a(x⊥)αj,b(x⊥)

〉
= −1

2
δabδijµ̄2h(x⊥)∂2L(0⊥) = −1

2
δabδij λ̄(x⊥)∂2L(0⊥). (3.11)

(For a more detailed calculation of this correlator we refer the reader to [34]). The factor

λ̄(x⊥) corresponds to λ integrated from −∞ to∞ in the longitudinal direction (in general,

we will identify functions integrated in the longitudinal direction from −∞ to∞ by simply

omitting their longitudinal dependence). The factor ∂2L(0⊥) is a model-dependent constant

that emerges from the following limit:

lim
r→0

∂ix∂
j
yL(r⊥) =

δij

2

∫
d2q⊥
(2π)2

f̂(q⊥)
1

q2
≡ −1

2
δij∂2L(0⊥). (3.12)

Some assumptions had to be made about the functions h(b⊥), f(r⊥) introduced in eq. (2.4)

in order to arrive at the expressions presented in this section. Specifically, we take h(b⊥)

as a slowly varying function over lengths of the order of an infrared length scale 1/m (or

– 7 –
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smaller), which can be understood as a cut-off that imposes color neutrality at the nucleon

size. In addition, we assume that f(r⊥) behaves in such a way that its Fourier transform

f̂(k⊥) tends to unity in the infrared limit (see [34] for details).

When finally substituting our building block eq. (3.11) into eq. (3.3), we get:

〈ν̇0(x⊥)〉 =
g2

8
(∂2L(0⊥))2λ̄1(x⊥)λ̄2(x⊥)δijεklfabnf cdnδacδikδbdδjl = 0, (3.13)

which vanishes due to the antisymmetric property of the Levi-Civita tensor. As mentioned

earlier, this null average accounts for the Glasma state being globally CP-symmetric. How-

ever, as will be shown below, local axial charge fluctuations are expected to happen on an

event-by-event basis. Our object of interest is therefore the two-point correlator of ν̇0,

whose computation we outline in the following section.

4 Two-point correlator of the divergence of the Chern-Simons current

In this section we describe the calculation of 〈ν̇0(x⊥)ν̇0(y⊥)〉, which characterizes the early

fluctuations of the divergence of the Chern-Simons current in the transverse plane. As we

did previously, we start by expanding ν̇0 in terms of the gluon fields:

ν̇0(x⊥)ν̇0(y⊥) =
g4

4
δijεklδi

′j′εk
′l′fabnf cdnfa

′b′mf c
′d′mαi,a1xα

j,b
2xα

k,c
1x α

l,d
2xα

i′,a′

1y α
j′,b′

2y α
k′,c′

1y αl
′,d′

2y ,

(4.1)

then, the correlator reads:

〈ν̇0(x⊥)ν̇0(y⊥)〉 =
g4

4
εklεk

′l′fabnf cdnfa
′b′mf c

′d′m〈αi,ax αk,cx αi
′,a′
y αk

′,c′
y 〉1〈αi,bx αl,dx αi

′,b′
y αl

′,d′
y 〉2.

(4.2)

Color algebra-wise, this expression presents the same level of complexity than the two-

point correlator of the energy density, computed in [34]. Happily, it features a much

simpler transverse index structure, which we can rewrite as:

εklεk
′l′ = δkk

′
δll
′− δkl′δlk′ , (4.3)

yielding:

〈ν̇0(x⊥)ν̇0(y⊥)〉 =
g4

4
fabnf cdnfa

′b′mf c
′d′m

(
〈αi,ax αk,cx αi

′,a′
y αk,c

′
y 〉1〈αi,bx αl,dx αi

′,b′
y αl,d

′
y 〉2 (4.4)

− 〈αi,ax αk,cx αi
′,a′
y αl,c

′
y 〉1〈αi,bx αl,dx αi

′,b′
y αk,d

′
y 〉2

)
.

The building block for this computation is the correlator of four gluon fields in two different

transverse positions:

〈αi,a(x⊥)αk,c(x⊥)αi
′,a′(y⊥)αk

′,c′(y⊥)〉=
∫ ∞
−∞

dz−dw−dz−′dw−′
〈
∂iρ̃e(z−, x⊥)

∇2
U ea(z−, x⊥)

× ∂kρ̃f (w−, x⊥)

∇2
Ufc(w−, x⊥)

∂i
′
ρ̃e
′
(z−′, y⊥)

∇2
U e
′a′(z−′, y⊥)

∂k
′
ρ̃f
′
(w−′, y⊥)

∇2
Uf
′c′(w−′, y⊥)

〉
,

(4.5)
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where 1/∇2 is the shorthand notation we adopt to denote a convolution with the Laplacian

Green’s function. The above correlator is a highly non-trivial object whose calculation

poses a number of outstanding technical challenges such as the computation of non-trivial

projections of the correlator of four Wilson lines in the adjoint representation and the

decomposition of correlators of four valence color sources and four Wilson lines. For a

detailed calculation the reader is referred to [34]. Here we will simply indicate the result,

for which we need to make some definitions. We start with the ‘connected’ function:

Cij;klab;cd(x⊥, y⊥, x⊥, y⊥)= facef bde∂ix∂
j
yL(x⊥− y⊥)∂kxΓ(x⊥ − y⊥)∂lyΓ(y⊥ − x⊥) (4.6)

×
(

4

Γ3g4N3
c

−
(
λ̄2(b⊥)

2ΓNc
+

4

Γ3g4N3
c

+
2λ̄(b⊥)

Γ2g2N2
c

)
C

(2)
adj(x⊥, y⊥)

)
,

which accounts for the contribution of correlations between the ‘external’ color source

densities and those arranged inside the Wilson lines. The remaining terms stem from a

complete factorization of the correlations of color source densities and Wilson lines:

∫ ∞
−∞

dz−dw−dz−′dw−′

〈
∂iρ̃e(z−, x⊥)

∇2

∂kρ̃f (w−, x⊥)

∇2

∂i
′
ρ̃e
′
(z−′, y⊥)

∇2

∂k
′
ρ̃f
′
(w−′, y⊥)

∇2

〉
×
〈
U ea(z−, x⊥)Ufc(w−, x⊥)U e

′a′(z−′, y⊥)Uf
′c′(w−′, y⊥)

〉
. (4.7)

These contributions are described in terms of the two ‘disconnected’ functions:

Dik;i′k′

ac;a′c′(x⊥, x⊥, y⊥, y⊥)=
1

4
δikδi

′k′
(
∂2L(0⊥)

)2
δacδa

′c′ λ̄2(b⊥), (4.8)

and:

Dij;kl
ab;cd(x⊥, y⊥, x⊥, y⊥)=2

(
δabδcd

[
N2
c − 4

2N2
c

f1 +
2

N2
c

f2 +
Nc + 2

4Nc
f3 +

Nc − 2

4Nc
f4

]
+ δacδbd

[
1

N2
c − 1

f5 −
Nc + 2

2Nc(Nc + 1)
f3 +

Nc − 2

2Nc(Nc − 1)
f4

]
+ δadδbc

[
−N

2
c − 4

2N2
c

f1 −
2

N2
c

f2 +
Nc + 2

4Nc
f3 +

Nc − 2

4Nc
f4

]
+ dabmdcdm

[
− 1

Nc
f1 +

1

Nc
f2 +

1

4
f3 −

1

4
f4

]
+ dadmdcbm

[
1

Nc
f1 −

1

Nc
f2 +

1

4
f3 −

1

4
f4

]
+dacmdbdm

[
Nc

N2
c − 4

f2 −
Nc + 4

4(Nc + 2)
f3 +

Nc − 4

4(Nc − 2)
f4

])
T ij;kl(x⊥, y⊥;x⊥, y⊥), (4.9)
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where:

f1 =
2

(Ncg2Γ)2
(1− C(2)

adj(x⊥, y⊥))2 (4.10)

f2 =
2

Ncg2Γ

(
2

Ncg2Γ
(1− C(2)

adj(x⊥, y⊥))− λ̄(b⊥)C
(2)
adj(x⊥, y⊥)

)
(4.11)

f3 =

(
4

Nc(Nc + 2)g4Γ2
(1− C(2)

adj(x⊥, y⊥))

− 2

(Nc + 2)(Nc + 1)g4Γ2

(
1− (C

(2)
adj(x⊥, y⊥))2 exp

{
−g2Γλ̄(b⊥)

}))
(4.12)

f4 =

(
4

Nc(Nc − 2)g4Γ2
(1− C(2)

adj(x⊥, y⊥))

− 2

(Nc − 2)(Nc − 1)g4Γ2

(
1− (C

(2)
adj(x⊥, y⊥))2 exp

{
g2Γλ̄(b⊥)

}))
(4.13)

f5 =
2

Ncg2Γ

(
λ̄(b⊥)− 2

Ncg2Γ
(1− C(2)

adj(x⊥, y⊥))

)
. (4.14)

The remarkable length of this function is a consequence of an specific step of its derivation

process, namely the propagation of a non-trivial color state via a 6×6 matrix that represents

the correlator of four Wilson lines in the adjoint representation in color space (see [34] for

details). Having defined these functions, we can write our building block compactly as:

〈αi a(x⊥)αk c(x⊥)αi
′a′(y⊥)αk

′c′(y⊥)〉 = Dik;i′k′

ac;a′c′(x⊥, x⊥, y⊥, y⊥) +Dii′;kk′

aa′;cc′(x⊥, y⊥, x⊥, y⊥)

+Dik′;ki′

ac′;ca′(x⊥, y⊥, x⊥, y⊥) + Cii
′;kk′

aa′;cc′(x⊥, y⊥, x⊥, y⊥) + Cik
′;ki′

ac′;ca′(x⊥, y⊥, x⊥, y⊥)

+ Ckk
′;ii′

cc′;aa′(x⊥, y⊥, x⊥, y⊥) + Cki
′;ik′

ca′;ac′(x⊥, y⊥, x⊥, y⊥). (4.15)

Substituting this result in eq. (4.4) and performing the ensuing index contractions (for

which we use the Mathematica package FeynCalc [47, 48]), we obtain the main result of

this work:

〈ν̇0(x⊥)ν̇0(y⊥)〉 =
16A4 −B4

g4Γ4N2
c

([
N6
c + 2N4

c − 19N2
c + 8

2(N2
c − 1)2

− 2
N6
c − 3N4

c − 26N2
c + 16

N4
c − 5N2

c + 4
e−

Q2
s1r

2

4

+ (N2
c − 1)

(
1− e−

Q2
s1r

2

4

(
1 +

Q2
s1r

2

4

))(
1− e−

Q2
s2r

2

4

(
1 +

Q2
s2r

2

4

))
+
r4

4
Q2
s1Q

2
s2 − 2r2Q2

s1

(
1− e−

Q2
s2r

2

4

)
+ 2

(
N2
c − 8

) (
N2
c − 1

) (
N2
c + 4

)
(N2

c − 4)2
e−

(Q2
s1+Q2

s2)r
2

4

+
(Nc − 1)(Nc + 3)N3

2(Nc + 1)2(Nc + 2)2

(
Nc

2
e−

(Nc+1)r2Q2
s2

2Nc + (Nc + 2)− 2(Nc + 1)e−
Q2
s2r

2

4

)
e−

(Nc+1)r2Q2
s1

2Nc

+
(Nc + 1)(Nc − 3)N3

2(Nc − 1)2(Nc − 2)2

(
Nc

2
e−

(Nc−1)r2Q2
s2

2Nc + (Nc − 2)− 2(Nc − 1)e−
Q2
s2r

2

4

)
e−

(Nc−1)r2Q2
s1

2Nc

]

+ [1↔ 2]

)
, (4.16)
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where the dependencies have been omitted for readability. Here we defined the saturation

scale characterizing each nucleus as:

r2Q2
s

4
= g2

Nc

2
Γ(r⊥)λ̄(b⊥). (4.17)

A(r⊥) and B(r⊥) were introduced in eq. (3.6) as coefficients of the unpolarized and linearly

polarized parts of the gluon distribution, respectively. Although we provided their general

expressions in terms of f(r⊥) (eq. (3.7) and eq. (3.8)), in order to analyze our result

quantitatively we need to adopt an specific model. In the particular case of the strict MV

model, where f(r⊥) is taken as a Dirac delta, we can compute these functions as:

A(r⊥)MV = −1

2
G(r⊥) =

1

4π
K0(mr) (4.18)

B(r⊥)MV =
1

4π
, (4.19)

where K0 is a modified Bessel function and m is the infrared cut-off mentioned in the

previous section, now employed to regularize the divergent Green’s function G(r⊥):

G(r⊥) =−
∫

d2q⊥
(2π)2

eiq⊥·r⊥

q2 +m2
= − 1

2π
K0(mr). (4.20)

Note that although we could have used an unrelated regulator mass, for the sake of simplic-

ity we choose it to be the same one introduced before. In our calculation we will consider

only the leading behavior in the m→0 limit, which is:

A(r⊥)MV ≈
1

8π
ln

(
4

m2r2

)
. (4.21)

BMV, being a constant, yields a negligible correction to this logarithm. In the same limit,

the leading behavior of Γ(r⊥) corresponds to the following expression:

Γ(r⊥)MV =
1

2πm2
− r

2πm
K1(mr) ≈

r2

8π
ln

(
4

m2r2

)
. (4.22)

Except for BMV, all these factors exhibit logarithmic divergences. However, as all logarithms

stemming from A and Γ are cancelled in the prefactor of eq. (4.16), the only divergences

that we need to deal with are the ones included in the saturation scale Q2
s (eq. (4.17)),

which diverges in both infrared m→0 and ultraviolet r→0 limits. Different prescriptions

with a varying level of sophistication are available in the literature to treat this issue. In

order to give a general idea of the magnitude and analytical features of our solution, we

will adopt the GBW model, which in practice consists simply in neglecting all logarithmic

dependencies. In this framework, on figure 1 we draw the ratio of eq. (4.16) to the square

of the energy density average:

〈ε0(x⊥)〉MV =
CF

g2
Q2
s1Q

2
s2 , (4.23)

(whose computation can be found in [34]) as a function of the dimensionless product rQs
for Qs1 =Qs2. Note that we are also taking h(b⊥)=1 (strict MV model).
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Figure 1. Two-point correlator of the divergence of the Chern-Simons current normalized to the

product of energy density averages in the exact analytical approach (blue full curve) and the Glasma

Graph approximation (red dashed curve). As a visual aid we also indicate the asymptotic behavior

in the infrared limit, which is 32/[(N2
c − 1)2r4Q4

s] (green dot-dashed curve).

Although eq. (4.16) is somewhat lengthy, the following simplifying limits provide us

with remarkably more compact formulas. In the limit of small transverse separations r→0

the two-point function tends to:

lim
r→0
〈ν̇0(x⊥)ν̇0(y⊥)〉MV =

3(N2
c − 1)

32g4N2
c

Q4
s1Q

4
s2. (4.24)

The ratio with the product of the energy density averages at each transverse position reads:

lim
r→0

( 〈ν̇0(x⊥)ν̇0(y⊥)〉
〈ε0(x⊥)〉〈ε0(y⊥)〉

)
MV

=
3

8(N2
c − 1)

, (4.25)

which displays the characteristic 1/(N2
c − 1) suppression factor of non-trivial color corre-

lations. In the opposite limit, rQs � 1, we obtain:

lim
rQs�1

( 〈ν̇0(x⊥)ν̇0(y⊥)〉
〈ε0(x⊥)〉〈ε0(y⊥)〉

)
MV

=
32

(N2
c − 1)2r4Q2

s1Q
2
s2

. (4.26)

The previous expressions, being more ‘user-friendly’ than our complete result, greatly sim-

plify the potential application of this work to further analytical or phenomenological calcu-

lations. Also, they allow for a straightforward comparison of our approach to other analyti-

cal frameworks available in the literature, which is the main subject of the next subsection.

4.1 The Glasma Graph approximation

The correlators presented in this paper, along with the energy density two-point function,

were previously calculated in [36] under the so-called Glasma Graph approximation. In

this approach it is assumed that the four-point correlation functions of the gluon fields

– 12 –
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Figure 2. Left: comparison of the covariance of the divergence of the Chern-Simons current

(lower pair of curves) and the energy density (upper pair of curves) against rQs for Qs1 =Qs2 in

the exact analytical approach (blue full curves) and the Glasma Graph approximation (red dashed

curves). Right: ratio of exact analytical result to the Glasma Graph result for the covariance of the

divergence of the Chern-Simons current (blue full curve) and the energy density (red dashed curve).

factorize into products of two-point correlation functions such that:

〈αi,a(x⊥)αk,c(x⊥)αi
′,a′(y⊥)αk

′,c′(y⊥)〉GG = 〈αi,a(x⊥)αk,c(x⊥)〉〈αi′,a′(y⊥)αk
′,c′(y⊥)〉

+ 〈αi,a(x⊥)αi
′,a′(y⊥)〉〈αk,c(x⊥)αk

′,c′(y⊥)〉
+ 〈αi,a(x⊥)αk

′,c′(y⊥)〉〈αk,c(x⊥)αi
′,a′(y⊥)〉. (4.27)

This Wick theorem-like decomposition is equivalent to assuming that the gluon fields con-

serve the Gaussian character of the color source distributions. This is not generally correct,

as the dynamical generation of the former by the latter (encoded in the Yang-Mills equa-

tions) is non-linear. However, as observed in a previous work [34], this assumption yields

a good approximation of the exact result in the limit of small transverse separations r→0.

In this limit an effective linearization of the fields’ dynamics takes place, as the connected

function eq. (4.6) vanishes and the disconnected contributions become equivalent to the

two-point function of gluon fields. This results in a mapping of the Gaussian statistics

followed by the color source distributions onto the gluon fields.

A comment is in order with respect to the designation of this approach. The original

Glasma Graph approximation combines Gaussian statistics with the assumption that the

valence quarks interact with the classical field by exchanging only two gluons, being appli-

cable in the dilute limit [49]. This results in a factorization of double parton distributions

into all possible products of single parton distributions, which yields great simplification in

the context of the calculation of di-hadron correlators [36]. In the same spirit, the decompo-

sition defined in eq. (4.27) proposes a similar approach to the calculation of 〈ν̇(x⊥)ν̇(y⊥)〉,
which is thus expressed in terms of the building block defined for 〈ν̇(x⊥)〉 (namely the

two-point correlator of gluon fields). However, note that this is not a dilute approxima-

tion, as the contributions taken into account in eq. (4.27) include gluon exchanges to all
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Figure 3. Left: comparison of the first two orders of the Nc-expansion of the two-point function

of the divergence of the Chern-Simons current against r Qs in the GBW model for Qs1 =Qs2 and

Nc =3. Blue full curve: N0
c -order term. Red dashed curve: sum of N0

c - and N−2
c -order terms. Thin

green curve: full result. Right: ratio between the full result and the sum of the first two orders of

the Nc-expansion.

orders. Ignoring conceptual differences, in this paper we will give the name ‘Glasma Graph

approximation’ to the approach based on said decomposition.

In figure 1 and figure 2 we compare our result (in the strict MV model and with

Qs1 =Qs2) with the one computed according to the Glasma Graph approximation. As can

be seen in figure 1, although both results agree exactly in the small transverse separation

limit r→0, in the rest of the spectrum (approximately for r>1/Qs) our computation yields

a significantly harder curve. As shown in figure 2, this is also the case for the two-point

function of the energy density, computed in the exact analytical approach in [34]. Another

major difference observed in said paper — and one of its main results — consists in a com-

paratively slow vanishing behavior in the infrared limit, where the covariance of the energy

density decreases following a ∼ 1/r2 asymptotic curve, in stark contrast with the much

steeper ∼1/r4 decreasing behavior displayed by the Glasma Graph result. Remarkably, in

the calculation presented here this difference becomes larger (as can be seen in the right

panel of figure 2). In the present case, while our result shows a ∼1/r4 decreasing behavior

(see eq. (4.26)), the Glasma Graph approximation yields a much steeper ∼1/r8 tail:

lim
rQs�1

( 〈ν̇0(x⊥)ν̇0(y⊥)〉
〈ε0(x⊥)〉〈ε0(y⊥)〉

)
GG

=
96

(N2
c − 1)r8Q4

s1Q
4
s2

. (4.28)

This discrepancy potentially implies much different numerical results and physical interpre-

tations for any observable built from this quantity, in particular those based in fluctuations

of the global amount of axial charge per unit rapidity (as they are proportional to the

two-dimensional transverse integral of eq. (4.26)).
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4.2 Nc-expansion

In order to complete the analysis of our final expression eq. (4.16), in this subsection we

will show its expansion in orders of Nc. The leading order term, of order N0
c , reads:

[〈ν̇0(x⊥)ν̇0(y⊥)〉]N0
c

=

[
1

g4 r8
e−

r2

2 (Q2
s1+Q

2
s2)
(

8+16e
Q2
s1r

2

2 −32e
Q2
s1r

2

4 + 24e
r2

2 (Q2
s1+Q

2
s2) (4.29)

−8e
r2

4 (2Q2
s1+Q

2
s2)
(
8+Q2

s2r
2
)

+e
r2

4 (Q2
s1+Q

2
s2)
(
Q2
s1Q

2
s2r

4+4r2(Q2
s1 +Q2

s2)+48
))]

+[1↔ 2] ,

and the next term, of order N−2c , reads:

[〈ν̇0(x⊥)ν̇0(y⊥)〉]N−2
c

=

[
1

N2
c g

4 r8
e−

r2

2 (Q2
s1+Q

2
s2)
(

2Q2
s1r

2(8 +Q2
s1r

2)e
Q2
s2r

2

2

+ 8 e
r2

4 (2Q2
s1+Q

2
s2)
(

4Q2
s1r

2 +Q2
s2r

2 − 4
)

+ 4e
r2

2 (Q2
s1+Q

2
s2)
(
Q2
s1Q

2
s2r

4 − 4r2(Q2
s1 +Q2

s2) + 4
)

− 4(Q4
s1r

4 + 12Q2
s1r

2 + 32)e
Q2
s2r

2

4 − e r2

4 (Q2
s1+Q

2
s2)
(
Q2
s1Q

2
s2r

4 + 4r2(Q2
s1 +Q2

s2)− 80
)

+
(
Q2
s1r

2 +Q2
s2r

2 + 8
)2)]

+ [1↔ 2] . (4.30)

As it is also the case for the covariance of the energy density ε0, the first two orders of the

Nc-expansion of eq. (4.16) yield a neat approximation of the complete result (see figure 3),

but not a significant improvement regarding the practicality of the formulas.

5 Discussion and outlook

In this paper we performed a first-principles analytical calculation of the two-point cor-

relator of the divergence of the Chern-Simons current. This object characterizes a source

of fluctuations of axial charge density in the Glasma state produced in the initial stage of

an ultra-relativistic HIC. With this calculation we expand on the results presented in a

previous work [34], where we computed the covariance of the Glasma energy-momentum

tensor. We performed both calculations following a classical approach based on the CGC

effective theory, which we introduced by summarizing the computation of the gluon fields

produced at τ = 0+. Our framework features an explicit impact parameter dependence

in the two-point correlator of color source densities (first introduced in [37]), as well as a

generalization of the transverse profile of the interaction. These modifications were also

incorporated in [34] with the aim of expanding the potential phenomenological applica-

tions of our results. In the present work, however, we limited our analysis to the GBW

prescription within the original MV model for simplicity.

With this setup we compare our result for the two-point correlator with the one ob-

tained under the Glasma Graph approximation [36]. As was also the case for the energy-

momentum tensor [34], the exact computation shows complete agreement with the Glasma

Graph result in the ultraviolet r→0 limit. However, a strong discrepancy emerges in the

infrared rQs�1 limit: the exact two-point correlator of ν̇ (normalized to the product of the

average energy densities at each transverse position) decays following a ∝1/r4 power-law

– 15 –
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tail, whereas the Glasma Graph expression exhibits a much more rapidly decaying ∝1/r8

behavior. Remarkably, the gap between both results is even larger than the one showed

by the two-point correlator of the energy density, which in this limit disagrees with the

Glasma Graph result by ‘only’ a 1/r2 factor. This suggests that the non-linear dynam-

ics followed by the gluon fields have an even greater effect over the long-range transverse

fluctuations of axial charge density than they do over those of the deposited energy. On

the other hand, the results show that for both calculations the fact that the Glasma field

correlators do not obey Gaussian dynamics can be overlooked in the ultraviolet limit, or

to a good approximation for correlation distances shorter than 1/Qs. This outcome agrees

with the expected validity range of the Glasma Graph approximation [49].

One feature of our previous work [34] that is not reproduced by the results of the present

paper is the logarithmic enhancement exhibited by the correlation length. The computation

of the two-dimensional transverse integral of eq. (4.26) is dominated by the lower bound

r∼ 1/Qs, as opposed to the case of the corresponding energy density correlator, which is

sensitive to the infrared cut-off r∼1/m via a logarithmic factor ln(Qs/m). This result thus

seems somewhat more consistent with the conjectured Glasma flux tube picture, which pre-

dicts the range of the transverse color screening of correlations to be of size 1/Qs [45]. Nev-

ertheless, eq. (4.26) still displays a remarkably slow fall-off that contrasts with the behavior

one could naively expect from correlations between Gaussianly-distributed color charges.

The results of this work add further evidence on the importance of the non-linear

dynamics relating color source densities and gauge field correlators beyond the validity

range of the Glasma Graph approximation (thus supporting the conclusions reached in [34]

in this regard). In addition, the expressions presented in this paper provide analytical

insight on the early-time local fluctuations of axial charge density in the transverse plane.

By following the practical steps first presented in [36], our formulas can be directly applied

in phenomenological studies of anomalous transport phenomena. From eq. (1.2) (rewritten

using the covariant coordinate system, (τ, η, x⊥)), we obtain:

dN5

d2x⊥dη
=

∫
dτ τ∂µj

µ
5 =

g2Nf

2π2

∫
dτ τ ν̇(x). (5.1)

Taking the first order of the τ -expansion of ν̇ and integrating, we get to the differential

distribution of axial charge density at early times:

dN5

d2x⊥dη

∣∣∣∣
τ=0+

=
τ2

2

g2Nf

2π2
ν̇0(x⊥), (5.2)

From this expression one can straightforwardly relate the two-point function of the

divergence of the Chern-Simons current computed here to the correlation function〈
dN5

d2x⊥dη
dN5

d2y⊥dη

〉
. This object serves as the fundamental input for the Monte-Carlo mod-

elization of initial conditions of axial charge density [36], required by those hydrodynamical

simulations that aim at describing anomalous transport phenomena. The results based on

the expressions presented here would of course be subject to higher order corrections in τ .

The computation of said terms, as well as the calculation of observables relevant to QGP

phenomenology, are left for future work.
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