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Although much research has been undertaken, the spatial patterns, developmental course, and sexual
dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investi-
gating differences between the sexes in autism is the small sample sizes of available imaging datasets with
mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat
overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal
differences in regional brain structure between individuals with autism and typically developing partici-
pants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions
based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were
imposed on the classifier complexity and feature space dimension to assure generalizable results from
the training set to test samples. Accuracies above 80% on gray and white matter tissues estimated from
voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male
and female adults with and without autism (N = 120, n = 30/group). The proposed learning machine
revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from
VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the
“extreme male brain” theory of autism, in sexual dimorphic areas.
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1. Introduction

The discovery of a characteristic pattern of struc-
tural brain differences associated with autism spec-
trum conditions (ASC) would be a major advance in
our understanding of this complex and highly vari-
able developmental disorder. Not only would it be a
substrate upon which to build a systems narrative of
autism, but from this starting point, it might be pos-
sible to run development “in reverse” to disentangle
the roles of environmental and genetic risk factors
in its etiology. Unfortunately, “inconsistent” is per-
haps the most common adjective associated with the
extant literature in this area.

Initial MRI observations focused on increased
total brain, total tissue, and total lateral ventri-
cle volumes in adults with autism,1 but subsequent
meta-analyses, including MRI-derived measurements
as well as head circumference and post-mortem brain
weights, were only able to detect a significant case-
control difference amongst 4–5 year olds.2 More
recent meta-analyses based on fully automated voxel
measures of gray and white matter volumes have con-
firmed the absence of any large difference in adults in
either total gray matter (GM)33 or total white mat-
ter (WM),3 or in cerebellar volume.4 Thus, if there
are differences in overall brain size, then they occur
very early in life81 and are followed by a decrease in
volume towards normative values during maturation
in adolescence and early adulthood.2,5

1.1. Gray and white matter
distributions in the autistic brain

Our knowledge of localized changes in brain anatomy
has historically come from GM and WM dis-
tributions estimated by voxel-based morphometry
(VBM). Undergoing several iterations and improve-
ments over time, VBM pipelines are automated, reli-
able6 and statistically well behaved.7 The success of
the VBM technique can be measured by the large
number of wide-ranging longitudinally and cross-
sectionally designed studies, as well as consistent
cross-study patterns of tissue differences character-
izing disorders like schizophrenia,8 Alzheimer’s dis-
ease78 and major depressive disorder.9,10

Whilst measures of global volume have gen-
erally pointed toward increases in the very early
lives of those with autism, local comparisons of
gray and white matter volume have variously

implicated both regional increases and decreases.
The greatest consistency that emerges from meta-
analyses11–13,15–18,33,80 is the large variance of both
the primary literature and the outcomes of the
derived meta-analyses, where the inclusion or exclu-
sion of just a few primary sources can significantly
alter the aggregated pattern of differences.

Explanations for the absence of a coherent nar-
rative on the structural brain differences associ-
ated with autism have been suggested to arise from
variety of origins. Whilst methodological differences
vary between studies,19 similar variability in VBM
pipelines has not hindered the observation of charac-
teristic patterns in other disorders.8–10 Autism is also
highly heterogeneous.20 Indeed, under DSM-IV, four
categories were contained within Autism Spectrum
Disorder: Asperger’s disorder, childhood disintegra-
tive disorder and pervasive developmental disorder.
It has been argued that no reliable clinical diagno-
sis has been made with these sub-types21 and that
no consistent biological substrate has been discov-
ered that differentiates between them leading to a
single diagnostic category of Autism Spectrum Dis-
order in DSM-V22 that subsumes the sub-types. Nev-
ertheless, it is unlikely that there will be an observa-
tion that unites these disorders, and in fact greater
diversity in phenotyping, perhaps down to the indi-
vidual level, is argued to be more likely to identify
an underlying neurobiology for autism.23 Stratifica-
tion does appears to yield sensitivity improvements;
for example, children with regressive autism appear
to have increases in brain size, whereas those with
nonregressive autism are not associated with a sig-
nificant size change24; and males and females with
autism display different patterns of GM change.27

What is almost certain is that should there be a true
effect, it is spatially diffuse and generally of low effect
size.

The main demographic features of ASC are its
high prevalence, affecting 1% of the entire popu-
lation,29–31 and the significant skewing of the gen-
der ratio towards male individuals to give values
of 2–3:1 male:female,30–32 and potentially contribut-
ing to the heterogeneous patterns of brain structure
associated with the disorder. Previously, most stud-
ies of the biology of autism have focused predomi-
nantly on males33 with male:female ratios in research
samples in the range 8–15:1. Studies of functional
imaging modalities that undertook analyses in each
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sex independently have found widespread significant
cross-sectional differences.34 Structural MRI stud-
ies of autism following similar stratification strate-
gies have been successful in assessing the atypi-
cal brain areas that are shared and distinct across
the sexes.3 In a recent MRI study comprising high-
functioning male and female adults with autism,34

exploratory analyses based on a VBM univariate sta-
tistical framework uncovered substantial heterogene-
ity in the neurobiology of autism. Furthermore, strat-
ification by sex can provide the empirical evidence
to test predictions from the “extreme male brain”
(EMB) theory of autism71 and other similar theo-
ries74 that predict a relationship between autism and
biological sexual differentiation.

1.2. The machine learning approach

A univariate analysis statistically processes single
features independently. Features may be voxelwise
comparisons,65,66 regions of interest (ROIs),67 or
models of brain features such as multiple hypothe-
sis testing on VBM estimates44 and intrinsic curva-
ture.46 However, detecting a putative small magni-
tude, diffuse spatial pattern of differences in autism
with a univariate approach is difficult, even in large
datasets,25,26 due to its low sensitivity to this type
of effect.

Recently, effort has been expended on developing
multivariate predictive models of biological sex based
on univariate differential patterns of brain structure,
i.e. cortical thickness.38 In a sample of neurotyp-
ical males and females, these models were subse-
quently applied to males and females with autism.
Multivariate approaches have also been applied to
other imaging measures that are hypothesized to be
altered in autism, including brain networks,39,47 tex-
ture features,40,42,43 and other voxel and regionwise
decomposition techniques,.48,49,69,79 In general, mul-
tivariate cross-sectional studies of autism with VBM
estimates of tissue volumes perform somewhat better
than univariate methods.25,28

One of the major limitations of a multivari-
ate computer-aided diagnosis (CAD) systems45,82–84

is the need for a sample size (l) that is suffi-
ciently large compared to the number of dimen-
sions d (predictors)54; that is, l � d. Neuroimag-
ing rarely satisfies this condition, thus the proposed
learning machines must be designed and adapted

to this hostile environment, otherwise control of
the generalization ability of the learning process is
arguably weak.55,58 A solution to this problem may
be achieved by the application of feature extrac-
tion/selection (FES) algorithms54 with linear clas-
sifiers rather than defining a specific metric on the
data,85 or by evaluating the role that each dimen-
sion plays in the development of the machine learn-
ing architecture.50 The aim is twofold: (i) to reduce
the number of input dimensions, retaining the rel-
evant information by measuring the importance of
each dimension, and (ii) to control the complexity
of the selected classifiers to avoid overfitting,51,52

reducing the false positive rate (type I error). In
this way, linear regressors endowed with regulariza-
tion (e.g. Lasso) have been very useful in removing
variables of reduced relevance from the model archi-
tecture, enhancing the contribution of the remaining
variables.53 Nevertheless, regularization approaches
work on the input space enforcing an aggressive spar-
sity that results in a reduction of the set of non-
filtered variables to a value comparable with the
number of training instances,53 which is particularly
damaging in neuroimaging.

In this work, we propose a new multivariate
methodology based on a one versus one group clas-
sification scheme working on a feature space. The
proposed system is designed under theoretical con-
ditions imposed on the classifier complexity and
the dimensionality of the input pattern. Briefly, the
method comprises a subject-specific and regionwise
partial least squares (PLS) FES that is then used to
identify differences from patterns of GM and WM
derived from MRI in a factorial design with factors
of sex (male and female) and condition (autism or
control), specifically: (i) identification of potential
sex-related risk and protective factors for autism; (ii)
characterization of the four classes described in terms
of sex and condition; and (iii) visualization of sex-
ually dimorphic areas related to the probability of
classification of autism in males and females.

This paper is organized as follows: Sec. 2 intro-
duces the dataset and individual preprocessing steps
implemented. In Sec. 3, the overall methodology is
presented, including a distribution-free upper bound
for the true error rate of a classifier, using the resub-
stitution error estimate. These theoretical consid-
erations permit the definition of reliable statistical
learning and validation schemes using linear Support
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Vector Machine (SVM) and FES algorithms. In the
context of the previous section, we demonstrate how
the use of these techniques provides a meaningful
overlap analysis between group-difference maps for
VBM comparisons. Later, in Sec. 4, the experimen-
tal design is outlined, along with a description of
a complete set of experiments, including the results
obtained in each experiment, a t-test for significance
in the classification experiments, and finally the spa-
tial overlap analysis of the derived PLS-based maps
with the same p-value as the t-test maps. In Sec. 5,
these results are discussed and critiqued, and finally
in Sec. 6, conclusions are drawn.

2. Materials: A Heterogenous,
Multidimensional and Multiclass
MRI Dataset

Participants (l = 120) included 30 right-handed pre-
menopausal females and 30 males with autism, along
with 30 neurotypical females and 30 neurotypical
males (see Table 1 and Ref. 34). All groups were
matched for age (range: 18–49 years) and full-scale
IQ. Participants with autism had a formal clinical
diagnosis of International Classification of Diseases-
10 (World Health Organization, 1992) childhood
autism or Asperger’s syndrome, or Diagnostic and
Statistical Manual of Mental Disorders-IV text revi-
sion (American Psychiatric Association, 2000) autis-
tic disorder or Asperger’s disorder assessed by a
psychiatrist or clinical psychologist in the National
Health Service, UK. For further details on the inclu-
sion criteria and the rationale in the diagnostic
algorithm cut-offs, please see Refs. 34–37. Exclu-
sion criteria for all groups are also outlined in
Ref. 34 and included a current diagnosis or history of
psychotic disorders, substance-use disorders, severe
head injury, genetic disorders associated with autism
(e.g. fragile× syndrome, tuberous sclerosis), intellec-
tual disability (i.e. IQ < 70), hyperkinetic disorder,
Tourette’s disorder, or any other medical condition

significantly affecting brain function (e.g. epilepsy).
The neurotypical groups did not have autism either
themselves or in their family history.

The dataset was collected by the UK Medi-
cal Research Council Autism Imaging Multicenter
Study (MRC AIMS) and was acquired at the Autism
Research Centre, University of Cambridge. Further
recruitment details can be found elsewhere.34,37,44

In addition, a larger multicenter male sample
from the MRC AIMS project37 was also used in this
paper for spatial overlap analysis. It consisted of 84
neurotypical adult males and 84 males with autism
matched for age and full-scale IQ (see Ref. 37 for
further details).

3. Methodology

The main goal of this section is twofold: (i) to pro-
vide a statistical framework (see Fig. 1) under the
conditions detailed in Sec. 3.1 for a set of linear clas-
sifiers; and (ii) to relieve the curse of dimensional-
ity encountered in machine learning algorithms pro-
cessing high-resolution images of the brain. The aim
of using such filter methods68 is to obtain a low-
dimensional set of features and then to reduce the
empirical risk without increasing the capacity of the
set of classifiers (VC dimension,57 or the number of
separating dichotomies61) by means of a linear SVM.

3.1. Upper bounds of error for
machine learning in neuroimaging

In a neuroimaging classification problem, a
d-dimensional input pattern x is observed and the
aim is to determine to which class or condition y

belongs to, considered as a random variable k =
1, . . . , K. In general, given a training sample of l pairs
(xi, yi), the parametric set of functional dependen-
cies {F (x, α)}, where α is a parameter defining the
set of specific functions with cardinality equal to N ,

Table 1. Demographics details of the dataset, group means with their standard deviation (sd).

Autism Normal

Sex M F Total M F Total

N 30 30 60 30 30 60
Age (SD) 27.2172 (7.2847) 27.8067 (7.6322) 27.5119 (7.4029) 28.1801 (5.6219) 27.4643 (6.4572) 27.8222 (6.0133)
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Fig. 1. Schematic representation of the proposed sys-
tem. Given the K = 4-class problem to be learned,
Ns = 6 different bipartitions are formed, and 6 binary
problems (dichotomizers) over the partitions are trained
and tested. As a result, a codeword of the same length
is obtained for each class that is decoded by a Maximum
A-Posteriori probability principle.

is required that minimizes the probability of misclas-
sification. In other words, we minimize

P (F (x, α)) ≡ P (F (x, α) �= y)

=
∫

y,X

(y − F (x, α))2P (x, y)dxdy (1)

on the basis of the empirical data. In this case, the
functional is known as the empirical risk and can be
computed without knowing P (x, y) as

Pemp(F (x, α)) = 1/l

l∑
i=1

(yi − F (xi, α))2. (2)

Let the minimum of Eq. (2) be attained for F (x,

αemp). The primary question is to establish when
the decision rule F (x, αemp) is close to F (x, αo), that
which is obtained by minimizing Eq. (1). Following
the derivation shown in the appendix, the actual risk

obtainedby αemp is bounded by probability 1 − η:

P (αemp) ≤ Pemp(αemp) +

√
1
2l

ln
(

N

η

)
. (3)

In addition, by the use of homogeneous linear thresh-
old functions as decision rules F (x, α ≡ w) : Rd →
{−1, 1}, where

F (x,w) =

{
1 if x ·w > 0,

−1 if x ·w < 0,

whenever the dimension (i.e. number of vox-
els/regions) of the input pattern x is far from the
number of samples (i.e. scans), d � l, P (αemp) is
seldom close to 0 and therefore the bound for the
actual risk performs satisfactorily. In other words,
for images of the brain where the number of scans
is rather small compared to the number of voxels
or regions, linear classifiers protect the system from
overfitting, thus the variance of the actual risk is
not large. Following the theory of homogeneous lin-
ear classifiers and applying the classical combinato-
rial geometry to develop the separating properties of
decision surfaces,55 we can take a step forward and
refine the bound in Eq. (3) as

P (αemp) ≤ Pemp(αemp) +

√
1
2l

ln
(

N(l, d)
η

)
, (4)

where N(l, d) is the number of linearly separable
dichotomies of l samples in a d-dimensional space
(see further details in the appendix). Therefore,
under the aforementioned conditions (d � l), the
empirical risk Pemp(αemp) is an indicator of the gen-
eralization ability of the statistical classifier, and
the maximum deviation of the frequencies from the
corresponding probability of the empirical solution
(∆P = P − Pemp) can be derived with probability
1 − η (see appendix).

3.2. PLS-based CAD system

Providing a significant set of features is important
to achieving a small empirical risk given a classi-
fier of fixed complexity (capacity). The binary FES
and classification stages within the multiclass clas-
sification problem are performed in a class pattern-
specific manner, rather than using other strategies
which combine different classes for subsequent fit-
ting of binary statistical classifiers, i.e. the one ver-
sus rest-based model. In this way, given K class pat-
terns, a total number of Ns = K(K − 1)/2 binary
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classifiers may be fitted based on the same number
of training subsets. This one versus one classification
model (see Fig. 1) allows the assessment of which
neuro-phenotypes defined in the Ns training subsets
are dominant in the corresponding Ns test subsets.
After that, the classification results can be merged to
provide an overall classification result, defined as a
decoding process in ternary error-correcting output
code algorithms.56 All of these analyses are achieved
at a high confidence level given the upper bounds of
the actual risk (see Sec. 3.1), the conditions regard-
ing the sample size and the capacity of the selected
statistical classifier.

3.2.1. Structural magnetic resonance image
acquisition and preprocessing

All 120 participants were scanned using a contempo-
rary 3 T MRI scanner (GE Medical Systems HDx)
fitted with an 8-channel receive-only RT head-coil.
Simulated T1-weighted inversion recovery images
were segmented and normalized to the standard
Montreal Neurological Institute (MNI) space using
the SPM12 software (Wellcome Trust Centre for
Neuroimaging, London, UK)63 and the CAT12 tool-
box.64 Native space GM, WM and cerebro-spinal
fluid (CSF) images were obtained using standard
automated segmentation routines. The native space
GM and WM images were registered to a study-
specific template using a high-dimensional nonlinear
diffeomorphic registration algorithm (DARTEL)65

and then clustered into 116 standardized areas.62

A modulation step was included to retain voxelwise
information about local tissue volume. The modu-
lated GM and WM maps were smoothed with a
4 mm full-width at half-maximum Gaussian kernel.
For the multicenter male sample, all preprocessing
steps were developed in the same way as described
earlier for the latter dataset. In the statistical infer-
ence part, the general linear model for VBM consid-
ered the sites (i.e. scanning machines) as covariates
(categorical fixed-effect factors).

GM and WM maps X = {xi}, for i = 1, . . . , l,
were initially parcellated into r = 1, . . . , 116 stan-
dardized regions of a brain anatomical atlas.62 Thus,
our multivariate analysis takes as its input mean gray
and white matter volumes from within each atlas
region, xi(r), separately. This procedure is appro-
priate for our purpose of observing tissue-specific

Fig. 2. (Color online) Significant GM differences (VBM)
in the study groups (p < 0.05) plotted on the standardi-
zed atlas. Relative excesses in GM volume are displayed
in orange/red, while deficits are displayed in blue (jet
color map). From left to right, up to bottom: Male con-
trol (MC) versus Male Autism (MA); MC versus Female
control (FC); MC versus Female Autism (FA); MA versus
FC; MA versus FA; FC versus FA.

Fig. 3. (Color online) Brain map (PLS) illustrating
regions where GM volume was associated with group
membership (p loading). Orange/red regions indicate
areas with a positive association between GM volume
and condition (i.e. ASD > control); blue regions indicate
brain systems of decreased GM volume in the condition
group. The selected z-coordinate was 50 for the axial slice
in the standard space of the MNI template.

local variations, although partial results may be rear-
ranged by aggregation in a complete volume, as
shown in the following sections and Figs. 2 and 3.

3.2.2. Two-sample t-test and PLS extraction

A rank FES based on the standard two-sample t-test
with pooled variance in combination with a PLS-
based FES69 was regionwise applied with the one
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versus one classification model (see Fig. 1). Given a
training subset comprising two classes j = 1, 2 with
balanced samples sizes l1 = l2 = l/2, the t statistical
vector is defined as

t =
x̄1 − x̄2

sp

√
4
l

, (5)

where sp =
√

sx1+sx2

2 is the pooled standard devi-
ation and sx1 sx2 are the unbiased estimators of
the variances of the two classes (the assumption of
the data in each group following a normal distribu-
tion was confirmed by a Kolmogorov–Smirnov test).
The effect of this operation on the brain regions is
to reduce the computational load prior to feature
extraction, and to assure that regional differences in
tissue volumes are considered when assessing overall
patterns of tissue distribution.

Once the significant regions were identified by
ranking the result of the t-test, we extracted the rel-
evant patterns within those regions by a PLS regres-
sion between the l × d data matrix X and the l × 1
vector labels Y. Briefly, in the application of PLS to
supervised classification, we maximized

ωo = max
ω

(cov(Xω,Y))2; s.t. ‖ω‖ = 1, (6)

where the score vectors s = Xω were iteratively
extracted and used to deflate the input matrix X by
subtracting their rank-one approximations based on
s.69 The deflation process was accomplished by the
computation of the vector of loadings p as a coeffi-
cient of regressing X on s:

p =
XT s
sT s

= XT ŝ. (7)

The vector of weights ωf , where f indexes the num-
ber of extracted features, is a local property in the
images, that is, the dimensional components are not
mixed in its computation, whilst the score coeffi-
cients s(i) =

∑d
j=1 Xijωj (and the matrix of scores),

and the deflation term spT |ij =
Pd

k=1 skXiksiP
l
i=1 s2

i

, etc.
are global. Therefore, the size of the input data d is
crucial to the assessment of the relationship between
GM (WM) volume and group membership with het-
erogeneous variances, where some statistical proper-
ties of the involved processes, such as the stationarity
or the ergodicity in the correlation, must be assumed
for the evaluated ROIs. In the present study, the

analysis was carried out on the set regions (see Figs. 2
and 3) selected by feature selection.

3.2.3. Statistical parametric PLS maps

The analysis of functional and structural studies usu-
ally entails the construction of spatially extended
statistical processes where each voxel of the novel
image or map is the result of a statistical test.
After that hypothesis testing process, the main prob-
lem is to determine the significance of extrema by
the use of several statistical field-based approxima-
tions,14 i.e. a three-dimensional (3D) t-statistical
field. PLS methods have been demonstrated in the
past to be very useful in describing the relation
between brain activity and experimental design or
behavior measures.41,69 In this way, PLS analysis of
brain activations is able to reveal additional regions
of salience that are not identified by typical uni-
variate voxelwise methods such as SPM. Assume
that the label vector Y contains the two global
conditions in X ({1,−1} indexed as i ∈ C1, C2)
and xi1 > xi2 , for i1 ∈ C1 and i2 ∈ C2, with-
out loss of generalization. The scores s will be
ideally located around zero with different signs,
thus from Eq. (7) for every loading component, we
have

p(k) =
∑
i1

xi(k)ŝ(i) −
∑
i2

xi(k)|ŝ(i)| (8)

for k =1, . . . , d, and a deviation from zero of this
data-weighted score summation would suggest a
region associated with a particular group member-
ship (contrast). Remapped into image space, the con-
tents of the singular vector p indicate which pixels
are most sensitive to those predefined contrasts and
define the so-called PLS map. Comparing the lat-
ter expression to Eq. (5), the PLS map can be seen
as a multivariate two-sample test weighted by the
scores of each subject with unknown distribution,
except for the normalization term that depends on
the pooled standard deviation. In fact, after some
manipulations, it yields

p = x̄1 − x̄2, (9)

where x̄j(k) ≡ ∑
Ci

xi(k)P (xi(k)) and P (xi(k)) =
|ŝ(i)| is the frequency of the observation xi(k) that
is assumed to be proportional to its score in the com-
putation of the group mean.
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The statistical significance of the PLS maps can
be assessed is many ways, e.g. by the use of a per-
mutation test.41 In this work, we proposed the use
of a parametric approach, that is very popular in
neuroimaging, based on the Gaussian Random Field
(GRF) theory. This theory models both the uni-
variate probabilistic features of the resulting SPM
and the nonstationary spatial covariance structure
of that image.63 This model can be applied as well
to the proposed PLS map as the selected quantity
that characterized the PLS computation which has
shown to be very similar to the classical two-sample
t-test mapping (except for the normalization factor).
The methodology can be described as the follow-
ing. First, given a p-value and the T SPM extracted
from the one tailed two-sample t-test with contrast
matrix [1,−1] for C1 and C2 conditions, we deter-
mine the statistically significant positive salience
threshold tcritic using the inverse cumulative density
function of the t-test distribution (the same applies
for the negative one). The biased version of the PLS-
based two-sample t-test in Eq. (9) makes up a novel
P SPM that is linearly projected to a (bias corrected)
distribution P̂ with the same parameters of the pre-
vious T SPM.a Finally, the positive saliences on this
novel map are determined by evaluating the regions,
where P̂ > tcritic at the given p-value.

3.2.4. A robust statistical classifier, SVM

The use of SVMs was motivated by the minimization
of the VC dimension and has been successfully shown
to be a robust solution in classification learning,58

which minimizes the separation margin between the
binary-labeled training data, mapped into a (PLS-
based) feature space F, by constructing a hyperplane
w whose norm is minimum58:

‖w‖2 + C

l∑
i=1

ξi (10)

subject to

yi(w · xi) ≥ 1 − ξi; ξi ≥ 0; i = 1, . . . , l,

aHere, we assume that the t-distribution is approximately

normal for a high number of degrees of freedom. Note

that if a variable X ∼ N (µ1, σ1), then Z = (X − µ1)/

σ1 ∼ N (0, 1). Conversely, given Z, then Y = µ2Z +σ2 ∼
N (µ2, σ2). Then, we can connect any pair of distributions

by Y = σ2
σ1

X + (µ2 − µ1
σ2
σ1

).

where ξi are slack variables, C is a constant
that allows a trade-off between training error and
model complexity (C is usually optimized by several
searching methods at the training stage, i.e. Bayesian
optimization in a wide range [1e − 3, 1e3]), and the
decision rule is defined as F (x,w) in Sec. 3.1. The
solution is computed using w =

∑l
i=1 aiyixi, where

the multipliers 0 ≤ ai ≤ C were derived from the
dual Lagrangian problem in Eq. (10).

4. Experiments and Results

The spatial representation of the binary classifier
output and the corresponding “loading” of the PLS
image as the new reference base for the analyzed
input patterns is discussed and shown in this sec-
tion. In this sense, we take a step forward with
respect to the majority of exploratory analyses devel-
oped so far in the literature34,44 and propose a
specific cross-validation scheme with the purpose
of discovering generalizable class features in the
GM or WM images. By training the system using
binary group differences (gender and/or condition)
and under the assumption that they are distributed
across statistically significant regions, we aim to gen-
eralize these features in the remaining study groups
which should share the same magnitude of differ-
ences across groups. The complete analysis included
a class pattern-specific two-sample test for regionwise
FES, an overlap analysis34 across group-difference
PLS maps with a VBM comparison to evaluate
the Autism theories, the assessment of the sam-
ple Autism label probability with the determination
of confidence intervals using the Clopper–Pearson
method and finally, permutation tests to check the
statistical significance of the classification results
obtained by the machine learning-based system.

4.1. Experimental setup

As discussed previously in Sec. 3.2, the images were
parcellated according to Ref. 62 and FES algorithms
were applied to the resulting images obtained from
a standardized preprocessing and image registration
pipeline.64 For the sake of clarity, we define Ns = 6
SVM classifiers acting on their corresponding group
comparisons: Group 1 (G1): MC–MA (male controls
versus male autistic individuals), G2: MC–FC (MC
versus female controls), G3: MC–FA (MC versus
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Fig. 4. Up: Detail of Slice #50 for the p-loading in Group 1 under global (on the left) and regionwise (on the right)
PLS FE. Note the noisy PLS loading on the left image as a result of processing the whole image simultaneously. Bottom:
one-sample t-test on the scores s, the rejection of the null hypothesis is obtained for 44 out of 60 subjects.

female autistic individuals), G4: MA–FC, G5: MA–
FA and G6: FC–FA.

4.1.1. Preprocessing

The application of the FES approach detailed in
Sec. 3.2 results in several weight maps for the group
comparisons as shown in Fig. 2.

With the aim of increasing the generalization
ability of the proposed classification systems, only
the first PLS component was considered (a single
dimension d = 1), thus the associated upper bound of
the actual risk, as shown in Eq. (1), provides a strong
connection between the risk and the empirical risk
(resubstitution error). It is worth mentioning what
is actually shown in Figs. 3 and 4 is the first load-
ing component p extracted from the brain regions,
separately. Figure 3 highlights the relevant regions in
terms of the PLS regression on the group differences.
Group differences G1 and G6 illustrate the regions
where the features associated with autism are differ-
ent in males and females, respectively. In the remain-
der of the figures, features associated with gender are
predominantly found in the PLS maps, e.g. the G2
pattern that refers to the VBM comparison between
MC and FC is modulated and found in group dif-
ferences G3, G4, and G5. The statistical significance
of these PLS maps is discussed in Sec. 4.2, where

the null distributions are modeled as a two-tailed
Gaussian distribution or a t-distribution with large
degrees of freedom ν.

In Fig. 4, the PLS global approach is shown
on the left and is contrasted against the regionwise
comparison for G1 (i.e. MC–MA). Observe that the
regionwise comparison provides a noisy p-loading
that is used as a reference base in the feature space
for the extracted input scores. A one-sample t-test
between the score data s obtained from the region-
wise approach and the global approach reveals that,
at a 95% significance level, 44 out of the 60 subjects
present a difference in means in regions including the
insula, hippocampus, and cingulum; Fig. 4.

4.1.2. Classification

The overall classification accuracy of each SVM
model was estimated using the re-substitution error
for the training subset and a l/2-holdout cross-
validation error for the test subset, testing for signifi-
cance by repeating the validation procedure n = 500
times, after randomly permuting the class labels. In
this sense, each of Ns = 6 training subsets, under
the one versus one classification model, allows us to
estimate the probability of the neurophenotype in
terms of sex or condition and to evaluate it on the
remaining Ns test subsets. Therefore, the four classes
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are considered as a set of participants with different
proportions or combinations of these two types of
effect (sex and condition).

The selection of other cross-validation proce-
dures, i.e. K-fold, with the aim of “pure” classifi-
cation leads to poor classification and generalization
of results mainly due to the variability of the input
patterns, the potentially preponderant role of one
effect, and small sample size. Thus, we should con-
sider the former K = 4 classes as tentative labels
as they may contain spatially-dependent neurophe-
notypes with biases towards a particular effect that
are nonuniformly distributed in the K classes.

4.2. Visualizing the patterns of brain
regions representative of
normative sex/condition
differences

The aim of this section is to analyze the differences
of the specific patterns representing sex or condition.
Following a similar analysis as in Ref. 34, we under-
took a two-sample t-test based on VBM compar-
isons between groups. Only voxelwise height thresh-
olds with no spatial extent operation were applied
under the two logical contrasts, i.e. group1 > or <

group2. Three sets of VBM comparisons were per-
formed to test EMB theory predictions71; namely,
MC–FC, MC–MA, and FC–FA comparisons. The
aim of this procedure is to generate an overlap
analysis across group-difference maps34 and compare
them with the PLS maps. The PLS maps can be
interpreted as two-tailed statistical tests, unlike the
classical one-tailed t-test maps obtained under the
SPM framework,64 and both are almost normally
distributed with a high number of degrees of free-
dom (e.g. ν = 57 for the condition comparison).70

In order to make them comparable for the compu-
tation of group-difference maps, given a set of p val-
ues {0.0001, . . . , 0.05}, we linearly transform the PLS
maps, P ∼ N (µp, σp) to a new Gaussian distribution
with mean and standard deviation of the correspond-
ing comparison group T -maps, which are normally
distributed T ∼ N (µt, σt). After this transforma-
tion, the PLS maps permit testing of the logical con-
trasts in a single map by group1 �= group2. As an
example, in those regions where there is a statisti-
cally significant sexual dimorphism MC �= FC, we
evaluated the significant differences in the neurophe-
notype of male and female individuals with autism,

Fig. 5. (Color online) GM overlapping regions in sexu-
ally dimorphic areas of males (red) and female (green)
individuals with autism at a voxel-level threshold of
p-value = 0.05.

that is, MA �= MC and FA �= FC (see Fig. 5). As
shown in the following section, the overlap analy-
sis derived from these figures partially support EMB
theory predictions by considering both directions of
effect at the same time (> and <).

4.2.1. Spatial overlap analysis

Following the discussion in Sec. 4.2, three VBM com-
parisons, MC–FC, MA–MC, and FA–FC, were eval-
uated on GM and WM volumes. We carried out the
experiments on our dataset (l = 120) and the male
sample (l = 168) described in Ref. 37, using our
PLS-based FE approach and the set of one-tailed
contrasts obtained from the univariate 2 × 2 facto-
rial design analysis provided by the SPM software.63

For each comparison, a conjunction analysis34,73 con-
sisting of logical AND masking, were assessed and
tested for significance by running Monte carlo simu-
lations (5000 iterations). The distribution of overlaps
at the same p-value threshold was sampled, i.e. from
0.0001 to 0.05 in steps of 0.0001. This spatial over-
lap analysis, which considers synthetic GM (WM)
map overlaps, allows us to assess the probability of
whether the overlapping voxels of the comparisons
occur by chance. In the baseline comparisons, we
included an additional spatial overlap analysis using
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Fig. 6. Comparison of the testing brain-level predictions of the EMB theory of Autism. (L) indicates the use of the larger
male database (i.e. using the DESPOT1 acquisitions) for the VBM comparison, described in Ref. 37.

a multicenter male sample as detailed in Refs. 34
and 37. The purpose of this MA–MC comparison is
to conduct the same analysis on a larger number of
samples (l = 168) to provide higher power to detect
the group differences, that were not found by the use
of the current database (l = 60, males only).

The spatial overlap analysis between males and
females with autism is small in both approaches (T
and PLS maps) for GM and WM (e.g. up to 15% and
10% for GM and up to 23% and 10% for WM, respec-
tively) for p ≤ 0.05 as shown in Fig. 6 in magenta
color lines. This finding clearly identifies the differ-
ences between the neuroanatomy of autism across
sexes that was previously demonstrated by the high
precision of the four-class learning machine detailed
in the previous section, and in Fig. 5. The rest
of the curves show a significant difference between
approaches, that is, the one-tailed T maps versus the
two-tailed-PLS maps. In the latter approach, we find
significant evidence for overlap between structures
sensitive to diagnosis and sexual dimorphism in both
sexes (red and blue solid lines). This evidence is only
found for the one-tailed T -based approach in females
(T –MC-FC&FC–FA, red dotted line in Fig. 5).

4.3. Classification results

The output score pattern of the set of binary classi-
fiers is shown in Fig. 7 for the training and test sets.
From this set of figures what is interesting to note is

the ability for generalization of the proposed system,
under some constrained conditions, over the tests G2,
G3, G4, and G5 (same rows on the figure). Another
relevant feature found in the output score maps is the
presence of vertical bars representing misclassifica-
tion in training and test sets. This could be identifica-
tion of the different neurophenotypes of specific indi-
viduals, e.g. participant 42 in the FC subset, as they
are always located in the wrong hyperplane subspace
at both training and test stages (see Table 2). From
this table, it is clear that MA is the class with lower
performance in classification accuracy in both stages.
Surprisingly, the features associated with autism in
the training of the SVM to classify G1 (males) cannot
be generalized in the test set (females) although these
features should be present in one class, and absent in
the other (a real binary classification problem). The
almost random pattern found in the test set could
indicate the different nature of the features of autism
in males and females. This situation is repeated in
G6 where the females were used in the training stage
and males made up the test set, confirming the latter
hypothesis.

The quantitative analysis of the output score pat-
tern is found in Fig. 8 where we represent the dis-
tribution of accuracies, including the notch analy-
sis to display the variability of the median between
samples, for all the brain regions and the accompa-
nying overlay histograms. From this figure, we can
observe how the learning systems generalize well with

1850058-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

19
.2

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
04

/2
1/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 23, 2019 16:11 1850058
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Fig. 7. Output score map of the linear SVM in the training&test configuration (GM). On the left column, we plot the
SVM scores obtained from the training set while on the right column, we show the consequent prediction on the test
set. Each row contains one of the 6 binary problems to solve the multiclass framework, depicting all the 116 regionwise
features (Y -axis) versus each subject (X-axis). The hyperplane derived at each row using the training subsets on the left
is employed in the prediction of the test subsets on the right. Note that for the ideal linearly-separable problem, we would
obtain two black (from 1 to 30) and white (from 31 to 60) columns in all cases. In this way, the fitted learner should
generalize fairly well on the remaining groups, obtaining two additional black and white columns on the test set, in case
the features on the right were characterizing the groups on the left. This is clearly not the case in the 1 and 6 rows, where
we are trying to predict male/female autistic features from the opposite sex.

Table 2. GM (WM) overlap and region-averaged accu-
racy of the output score maps (%) for the selected sub-
sets acting as training and test sets (Groups 1 and 6 are
not considered).

Train Test
Subsets Ov. Ov. Train Acc. Test Acc.

MC 90.98 89.68 77.07 (7.68) 63.03 (9.05)

G
M

FC 92.16 90.43 80.60 (6.65) 70.88 (7.84)
MA 92.27 89.34 73.09 (7.96) 64.73 (7.28)
FA 90.55 90.00 81.16 (6.33) 69.47 (8.19)

MC 90.92 86.95 81.38 (9.16) 67.30 (9.98)

W
M

FC 91.18 88.97 80.00 (8.58) 70.52 (9.23)
MA 93.22 87.64 77.63 (9.00) 64.74 (8.50)
FA 91.24 87.82 80.45 (8.88) 66.16 (9.39)

Note: The GM overlap of correctly classified patterns in

the MC subset, used at the training stage in the compar-

isons MC versus FC and MC versus FA, is 90.98%.

respect to the controlled upper bound (around 10%),
excluding the G1 and G6 which behave as random
classifiers on the test set. This effect indicates the
varying nature in the differences between MC and

MA (male autism features) which cannot be extrap-
olated to the FC–FA comparison and vice versa. In
the former groups, the gender feature is the most
prevalent, providing a high overlap in the output of
the systems for several comparisons, see Table 2.

Participants with a high or low probability of
being classified as having autism may be determined
by using a predictive mapping approach.37 Given the
output score map of a participant with sex S and
condition C at the test&training stages, we first cal-
culated the predictive class probability with respect
to the male typical neurophenotype. For this pur-
pose, the ratio was obtained of the number of regions
associated with a classification of “male” to the over-
all number of brain regions. Then, we collected all
these probabilities, one for each individual, into a
discrete set of bins from 0 to 1 in steps of 0.25, and
computed the sample Autism probability (that is,
the probability of the male neurophenotype, denoted
in Fig. 9 as P (ph = M |S, C = ASD)) as the ratio
of the number of individuals classified with autism
to the total number of individuals within the bin. As
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Fig. 8. Up: Distribution of accuracies in training and test subsets for Groups 1–6 (GM). Bottom: Overlay histogram
analysis for Groups 1–6 (GM).

shown in Fig. 9 for G2–5, where confidence intervals
are determined using the Clopper–Pearson method
in the binomial test,72 the probability of an indi-
vidual being classified as autistic in males (blue)
and females (red) evolves differently across the male-
neurophenotypic axis. In addition, within gender,
this probability increases or decreases depending on

whether the group is processed at the test or training
stage. This difference in behavior is due to the pres-
ence (or absence) of the autism feature that adds to
the gender-based difference between groups, during
the training stage.

In addition, we studied the binary classification
problem using the group comparisons (MC–MA and
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Fig. 9. (Color online) Probability for autism as a function of normative sex-related phenotypic variability in brain
morphology: Probability estimates for autism across four discrete bins along the axis of predictive class probabilities for
sex are plotted for G2–5 and training (T ) and test (t) stages. For male (blue) and female (red) models, the probability
for autism behaves in a different manner with increasingly male-typical class predictions, that is, it increases (decreases)
in females (males) at the test stage and contrarily at the training stage.

FC–FA) using a classical cross-validation scheme
used in small sample sizes, i.e. leave-one-out
cross-validation and l = 60. In this case, we employed
the same feature selection and extraction methods
with a similar parameter tuning prior to linear SVM-
based classification. As an example, for the MC–MA
comparison, the few regions extracted on GM by this
more restrictive cross-validation scheme are coinci-
dent with the regions highlighted in Fig. 5, i.e. right
middle frontal gyrus, right pallidum, etc. yielding
classification rates from 70% up to 80% in the study
groups from GM and WM tissues.

Finally, using a one versus one decoding scheme
based on a MAP strategy, the multiclass problem
may be undertaken on a regionwise basis and a out-
put score map of the linear SVM may be derived
with four class levels. Under the upper bound (∼0.1)
on the actual risk for d = 1 and using linear deci-
sion functions, the six binary classifiers can be com-
bined obtaining the results shown in Fig. 10. Note
in the upper subfigure that individuals with autism
are ordered from male to female, and a deep (light)
color represents control (autism) participant sex.

A regionwise analysis using this decoding strategy
with GM reveals regions with a high accuracy (up
to 83.33%), namely, left and right parietal, tem-
poral, occipital lobes, calcarine sulcus, etc. and a
mean across region of 62.61 ± 8.23 with confusion
depicted in the bottom of the same figure. With
WM, an improvement in performance is observed
(up to 93.33%) mainly due to the improved classi-
fication of the MC group (averaged accuracy across
regions of 67.50±9.99), with relevant regions located
at middle frontal gyrus, inferior parietal lobe, cere-
bellar cortical crus II, middle occipital and tempo-
ral lobes, etc. Additionally, in this multiclass prob-
lem, we employed the output score maps depicted
in Fig. 7 to decode the MAP output class for each
region and then a majority voting scheme across the
regions was applied to determine the final output
class for each individual. Overall, the four groups are
represented by different image patterns that can be
classified with an accuracy up to 86.7% (91.70% on
WM) using the information contained in the entirety
of the image, as shown in the confusion matrix
(Fig. 11).
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Fig. 10. Diagram on the left: Output score map of the combination of six binary classifiers in a one vs. one classification
scheme using GM-based features. Right: Confusion matrix of the regionwise classification scheme.

Fig. 11. Confusion matrix of the majority voting mul-
ticlass classification scheme corresponding to the output
score map in Fig. 10. Observe how the overall classifi-
cation result outperforms the regionwise approach, due
to the presence of outliers in the four-class problem
(patients containing a high ratio of misclassified regions).

4.4. Permutation tests

Although the experimental conditions were rigor-
ously established in the previous sections, that is,
the results obtained by linear classifiers in low

Table 3. Testing for significance the classification
models on GM features (95% significance level).
Accepted regions in % out of the 116 analyzed BAs
for the binary classifiers at the training stage.

% MC MA FC FA

G1 95.69 83.62 — —

G
M

G2 89.66 — 96.55 —
G3 90.52 — — 98.28
G4 — 82.76 98.28
G5 — 80.17 — 98.28
G6 — — 91.38 94.83

dimensional spaces are theoretically meaningful at a
significance level η (see Sec. 3.1), a permutation test
to validate these results was applied to the whole
dataset. For the complete set of binary classifiers,
the cross-validation procedure was repeated n = 500
times after randomly permuting the class labels to
derive p-value maps. As expected, the classification
obtained with this analysis for the set of classifiers is
almost random and, at the 95% level of confidence,
almost all the regions were considered as significant
in this analysis as shown in Table 3. The result of this
analysis allows the construction of relevance maps for
each classification model such as those displayed in
Fig. 12, where, as an example, we illustrate the pre-
diction of sex based on VBM features using the sex
classifier for G2.
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(a) MC relevant regions corrected by the permutation test (b) FC relevant regions corrected by the permutation test

(c) MA relevant regions corrected by the permutation test (d) FA relevant regions corrected by the permutation test

Fig. 12. (Color online) Accuracy maps for G2: Training MC–FC comparison and test on MA, FA groups with GM
features. The colorbar indicates the precision of each region in the binary classification problem of detecting sexual
dimorphism in the training and test subsets.
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5. Discussion

From the perspective of this machine learning-based
approach, the neuroanatomy of autism in males and
females is comprised of separate distinguishing pat-
terns. A distinguishing pattern similarly identifies
male and female controls. These group differences
are observed even with a small sample set, although
some theoretical bounds and suitable methodologies
must be imposed to highlight such differences. The
interactions between sex and diagnosis observed in
this paper extend those previously found in prior
work34,37 that also showed sex × diagnosis group
differences on GM and WM tissues. In particular,
greater accuracy rates were obtained with the classi-
fication apparatus described herein.

In addition, based on this multivariate methodol-
ogy, we also found that there was a significant over-
lap between the neuroanatomical features of autism
in males and females, unlike the previous approaches,
aligning with the predictions of the EMB theory in
terms of the directionality of effect, and with the
“gender incoherence” hypothesis74). These effects
were observed by the use of a regionwise PLS-based
activation map transformed into the same parame-
ters as those used in the one-tailed t maps derived
from the group differences. In fact, the approach
proposed in this paper considers not only the EMB
theory71 directionality, but also its inverse, that is,
predicting that males with autism are feminized in
terms of neuroanatomy.74 This effect was clearly
observed on GM and WM VBM comparisons and
agrees with the results obtained by testing how the
effect of autism overlaps with the effect of “feminiza-
tion” using one-tailed contrasts.34 Thus, on balance,
these results may be a demonstration of gender inco-
herence of males with autism rather than “masculin-
ization”.

The heterogeneity of autism was detected by
the assessment of the output score maps derived
from the machine learning theory. The use of cross-
validation groups further reduced the limited sample
size and degraded the performance of the CAD sys-
tem. Although some considerations and preventive
measures regarding the curse of dimensionality were
carried out to be conservative, the observed effects
and group differences could be partially sample-
specific and the current analysis requires replication
on larger datasets. These difficulties are detected in
terms of the presence of outliers, that is, participants

that are misclassified by resubstitution in almost all
the analyzed regions. Those participants that are
located in the “wrong” feature subspace present an
heterogeneous pattern that affects the performance
of the SVM when they are considered in any valida-
tion/training fold. The output score maps revealed
this misclassified sex/condition-specific neuropheno-
type on GM and WM tissues across regions and
participants.

6. Conclusions

In summary, the research developed here is a first
attempt to describe both sex-typical multivariate
neurobiological phenotypes by the use of machine
learning and an MRI sample of equal-sized high-
functioning male and female adults with and without
autism. Although the main limitation of the current
equal-sized gender datasets is the samples sizes, we
avoided this difficulty by imposing some restrictions
on the learning parameters of the system by the use
of a novel upper bound in the resubstitution esti-
mate, obtaining a good trade-off between empirical
risk and the variance of the actual risk estimation
(upper bound). In addition, the system used a set
of features extracted from PLS activation maps that
are demonstrated to be statistically significant and
in accordance with two theories of the neurobiology
of autism. The complete classification system in a
one versus one configuration achieves, under these
theoretical conditions, high classification results (up
to 86%) in a four-label classification problem, thus
outperforming the classification rate of the previous
published works on this field.34,75–77
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Appendix A

A.1. On the upper bound of the actual
risk

In terms of the one-sided uniform convergence of the
means, we are interested in assessing for a given sig-
nificance level η:

P{sup
i

(P (αi) − Pemp(αi)) > ε} < η, (A.1)

where P (αi) = P (F (x, αi)). Of course, with a sam-
ple size l → ∞, the law of large numbers expressed
in terms of the third Hoeffding inequality59 for any
functional αi establishes that

lim
l→∞

P{sup
i

(P (αi) − Pemp(αi)) > ε} = 0 (A.2)

and the uniform convergence in Eq. (A.1) is achieved.
In other cases l < ∞, the aforementioned inequality
can be used to establish the bound of the actual risk
as57

P{Γi > ε} ≤
N∑

i=1

P{γi > ε} < η = N exp(−2ε2l),

(A.3)

where Γi = supi(γi) and γi = P (αi) − Pemp(αi) and
N is the finite number of functional dependencies.
Since the inequality is valid for all decision functions
F (x, αi), the actual risk obtained by αemp is bounded
with probability 1 − η by

γemp ≤
√

1
2l

ln
(

N

η

)

that is equivalent to Eq. (3). In general, these bounds
could be further improved by considering the relative
deviations57,60 under scenarios, where P (αi) tends to
the extremes 0, 1, but that is far from our problem.

Definition. A set of l vectors is in general position
in d-space if every subset of d or fewer vectors is
linearly independent.

Consider that the training sample {xi, yi} is dis-
tributed randomly in general position, then the num-
ber of linearly separable dichotomies of the set of
input patterns is equal to N , that is, the number of
decision functions F (x, α) when the training sample
is not a root of the set (F (xi, α) �= 0). As shown in
Ref. 55 for linear decision functions and based on the
Function Counting Theorem, this is equal to

N(l, d) = 2
d−1∑
k=0

(
l − 1

k

)
. (A.4)

Thus, the bound in Eq. (3) could be rewritten as
shown in Eq. (4). As an example, if d � l, then
N(l, d) � 2l, thus the number of functions is such
that it separates the sample size in all possible ways
(nonfalsifiable learning machine), the minimum of
the empirical risk is zero and the upper bound of
P (αemp) is trivial (>0.5) independently of the sam-
ple size l. On the contrary, if d � l, the actual risk
reaches its maximum value close to the empirical
risk, i.e. for d = {1, 2, 3} and l = 120, the maxi-
mum deviations of the frequencies (∆P = P −Pemp)
are obtained with probability 1 − η(= 0.95) as

∆P ≤ {0.1398, 0.1879, 0.2286}. (A.5)

Appendix B

The MRC AIMS Consortium is a UK collabora-
tion between the Institute of Psychiatry, Psychol-
ogy and Neuroscience (IoPPN) at Kings College,
London, the Autism Research Centre, University of
Cambridge, and the Autism Research Group, Uni-
versity of Oxford. The Consortium members are
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