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Abstract: The phenolic compounds of extra-virgin olive oil can act at various levels to protect
individuals against cardiovascular and neurodegenerative diseases, cancer, and osteoporosis, among
others. Polyphenols in extra-virgin olive oil can stimulate the proliferation of osteoblasts, modify
their antigen profile, and promote alkaline phosphatase synthesis. The objective of this work was to
determine the effect of different extra-virgin olive oil phenolic compounds on the gene expression
of osteoblast-related markers. The cells of the MG63 osteoblast line were cultured for 24 h with
10−6 M of the phenolic compounds ferulic acid, caffeic acid, coumaric acid, apigenin, or luteolin.
The expression of studied markers was quantified using quantitative real-time polymerase chain
reaction (q-RT-PCR). The expression by MG63 osteoblasts of growth and differentiation/maturation
markers was modified after 24 h of treatment with 10−6 M of the phenolic compounds under study,
most of which increased the gene expression of the transforming growth factor β1 (TGF-β1), TGF-β
receptor 1,2 and 3 (TGF-βR1, TGF-βR2, TGF-βR3), bone morphogenetic protein 2 and 7 (BMP2,
BMP7), run-related transcription factor 2 (RUNX-2), Alkaline phosphatase (ALP), Osteocalcin (OSC),
Osterix (OSX), Collagen type I (Col-I) and osteoprotegerin (OPN). The extra-virgin olive oil phenolic
compounds may have a beneficial effect on bone by modulating osteoblast physiology, which would
support their protective effect against bone pathologies.
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1. Introduction

The Mediterranean diet is a balanced and varied nutritional model characterized by the
consumption of fruit, vegetables, polyunsaturated fats (e.g., from fish), and monounsaturated fats
(e.g., from dried fruit, nuts, and olive oil) [1]. Extra-virgin olive oil (EVOO), a key component of
this diet, contains more than 30 phenolic compounds with antioxidant capacities [2,3]. The chemical
composition of EVOO comprises a majority fraction, mainly triglycerides, and a minority fraction that
includes phenolic compounds [4]. EVOO appears to meet the definition of a functional food proposed
by the International Life Sciences Institute (ILSI Europe) in 1993, given its nutritional properties and its
beneficial effect on one at least one function of the organism [5]. It has been reported that the phenolic
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compounds in EVOO can protect individuals against cardiovascular and neurodegenerative diseases,
cancer, and osteoporosis, among others [6–9].

Osteoporosis is characterized by bone mass loss and bone microarchitecture impairment [10] and
affects approximately 200 million women worldwide [11], causing more than 8.9 million fractures a
year [12]. It results from an imbalance between bone formation and resorption mechanisms [13,14],
with the osteoblast playing a key role as the main cell promoting bone tissue formation and repair.
Osteoblasts derive from mesenchymal cells, and their physiology and activity are widely influenced by
endocrine, autocrine, and paracrine factors [15].

Phenolic compounds in olive oil, such us apigenin, luteolin, coumaric acid, ferulic acid and caffeic
acid, have been found to increase the proliferative capacity and differentiation of osteoblasts, among other
effects, being 10−6 M of the most active dose between the studied concentrations [6,16,17]. However, the
underlying mechanisms of their action remain unknown. Studies of markers related to bone resorption
(e.g., osteoprotegerin [OPG] and OPG/receptor activator of nuclear factor-kappaB ligand [RANKL]) have
demonstrated that phenolic compounds in EVOO inhibited osteoclastogenesis, and therefore bone tissue
loss [18,19]. It has also been observed that the EVOO phenolic compound oleuropein favored bone
preservation and repair by increasing the expression of genes related to osteoblastogenesis, including
RUN-related transcription factor 2 (RUNX-2), osterix (OSX), collagen type I (COL-I), osteocalcin (OSC),
and alkaline phosphatase (ALP) [20], thereby favoring bone preservation and repair.

The aim of this study was to explore the action mechanisms that underlie the protective effects
on bone tissue of EVOO phenolic compounds by studying the gene expression of osteoblast-related
markers, including bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), transforming growth
factor (TGF)-β1, TGF-β receptors (TGF-βR1, TGF-βR2; TGF-βR3), RUNX-2, ALP, COL-I, OSX, OPG
and OSC, using the MG63 osteoblastic cell line.

2. Material and Methods

2.1. Chemical Compounds

Caffeic acid, ferulic acid, coumaric acid, luteolin and apigenin were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and kept at −20 ◦C. The aliquots of these phenolic compounds were prepared
from mother solutions to achieve the appropriate concentration for each treatment. All solvents used
were of analytical or HPLC grade (Sigma-Aldrich), and the water was of Milli-Q quality (Millipore
Corp, Bedford, MA, USA).

2.2. Cell Culture

The MG63 osteoblast cell line, derived from a 14-year-old Caucasian male, was obtained from the
ATCC. The cells were preserved in Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen Gibco Cell
Culture Products, Carlsbad, CA, USA) with 100 IU/mL penicillin (Lab Roger SA, Barcelona, Spain),
50 µg/mL gentamicin (Braun Medical SA, Jaen, Spain), 2.5 µg/mL amphotericin B (Sigma, St Louis,
MO, USA), 1% glutamine (Sigma), and 2% HEPES (Sigma) supplemented with 10% fetal bovine serum
(FBS) (Gibco, Paisley, UK). The cultures were kept at 37 ◦C in a humidified atmosphere of 95% air and
5% CO2. The cells were separated from the culture flask using 5 mL of a solution of 0.05% Trypsin
(Sigma) and 0.02% ethylenediaminetetraacetic acid (EDTA) (Sigma) followed by their neutralization
and re-suspension in a complete culture medium with 10% FBS.

2.3. Treatments

The osteoblasts were seeded at 1× 104 cells/ml per well into a 24-well plate (Falcom, Becton Dickinson
Labware, Franklin Lakes, NJ, USA) and cultured at 37 ◦C in a humidified atmosphere of 95% air and
5% CO2 until a 80% of confluence of the well was reached. Then, the media was replaced with DMEM
containing phenolic compounds treatment at 10−6 M. All experiments included cells incubated under the
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same conditions without treatment compounds as an internal control. Three separate experiments were
performed for each treatment and at least every experiment was performed in triplicate.

2.4. RNA Extraction and cDNA Synthesis (Reverse Transcription)

The mRNA was extracted from the cells by a silicate gel technique using the Qiagen RNeasy
extraction kit (Qiagen Inc., Hilden, Germany), which includes a DNAse digestion step. The amount
of extracted mRNA was measured by UV spectrophotometry at 260 nm (Eppendorf AG, Hamburg,
Germany), and contamination with proteins was determined according to the 260/280 ratio. An equal
amount of RNA (1 µg total RNA in 40 µL total volume) was reverse-transcribed to cDNA and amplified
by PCR with the iScript™ cDNA Synthesis Kit (Bio-Rad laboratories, Hercules, CA, USA), following
the manufacturer’s instructions.

2.5. Real-Time Polymerase Chain Reaction (RT-PCR)

The mRNA of RUNX-2, OSX, OSC, COL-I, BMP-2, BMP-7, TGFβ1, TGFβ-R1, TGFβ-R2 and
TGFβ-R3 was detected with primers designed using the NCBI-nucleotide library and Primer3-design
(Table 1). All primers had been matched to the mRNA sequences of the target genes (NCBI Blast
software). The final results were normalized using ubiquitin C (UBC), peptidylprolyl isomerase A
(PPIA), and ribosomal protein S13 (RPS13) as stable housekeeping genes [21].

Table 1. Primer sequences for the amplification of cDNA by real-time PCR.

Gene Sense Primer Antisense Primer Amplicon (bp)

TGFβ1 5′-TGAACCGGCCTTTCCTGCTTCTCATG-3′ 5′-GCGGAAGTCAATGTACAGCTGCCGC-3′ 152

TGFβ- R1 5′-ACTGGCAGCTGTCATTGCTGGACCAG-3′ 5′-CTGAGCCAGAACCTGACGTTGTCATATCA-3′ 201

TGFβ- R2 5′-GGCTCAACCACCAGGGCATCCAGAT-3′ 5′-CTCCCCGAGAGCCTGTCCAGATGCT-3′ 139

TGFβ- R3 5′-ACCGTGATGGGCATTGCGTTTGCA-3′ 5′-GTGCTCTGCGTGCTGCCGATGCTGT-3′ 173

RUNX-2 5′-TGGTTAATCTCCGCAGGTCAC-3′ 5′-ACTGTGCTGAAGAGGCTGTTTG-3′ 143

OSX 5′-TGCCTAGAAGCCCTGAGAAA-3′ 5′-TTTAACTTGGGGCCTTGAGA-3′ 205

BMP2 5′-TCGAAATTCCCCGTGACCAG-3′ 5′-CCACTTCCACCACGAATCCA-3′ 142

BMP7 5′-CTGGTCTTTGTCTGCAGTGG-3′ 5′-GTACCCCTCAACAAGGCTTC-3′ 202

COL-I 5′-AGAACTGGTACATCAGCAAG-3′ 5′-GAGTTTACAGGAAGCAGACA-3′ 471

OSC 5′-CCATGAGAGCCCTCACACTCC-3′ 5′-GGTCAGCCAACTCGTCACAGTC-3′ 258

ALP 5′-CCAACGTGGCTAAGAATGTCATC-3′ 5′-TGGGCATTGGTGTTGTACGTC-3′ 175

RANKL 5′-ATACCCTGATGAAAGGAGGA-3′ 5′-GGGGCTCAATCTATATCTCG-3′ 202

OPG 5′-ATGCAACACAGCACAACATA-3′ 5′-GTTGCCGTTTTATCCTCTCT-3′ 198

Quantitative RT-PCR (q-RT-PCR) was performed using the SsoFast™ EvaGreen®Supermix Kit (Bio-Rad laboratories)
in accordance with the manufacturer‘s protocol, as described elsewhere [22]. PCR: Polymerase chain reaction.

2.6. Statistical Analysis

Further, SPSS 22.0 (IBM, Chicago, IL, USA) was used for statistical analyses. The mRNA levels
were expressed as the means ± standard deviation (SD). The multiple analysis of variance was applied
for data comparisons, considering p < 0.05 to be significant. All studies were conducted in triplicate.

3. Results

3.1. Effect of Phenolic Compounds on Gene Expression of TGFβ1 and its Receptors (TGFβ- R1, TGFβ-R2, and
TGFβ-R3)

The treatment of the MG63 osteoblast line with 10−6 M caffeic acid, ferulic acid, coumaric acid,
apigenin, or luteolin for 24 h significantly increased the expression of TGFβ1 and its receptor TGFβ-R1,
as observed in Figure 1. The expression of receptor TGFβ-R2 significantly increased by the treatment
with all phenolic compounds, except for luteolin, which had no significant effect with respect to
untreated control cells. The expression of receptor TGFβ-R3 was significantly increased by the treatment
with all phenolic compounds, except for luteolin and coumaric acid (See Supplementary Table S1).
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Figure 1. The effect of phenolic compounds on gene expression of TGFβ1 and its receptors (TGFβ-R1,
TGFβ-R2, and TGFβ-R3). * p < 0.05, ** p < 0.005, *** p < 0.001. TGF-β1: Transforming growth factor β1,
TGF-β receptor 1,2 and 3 (TGF-βR1, TGF-βR2, TGF-βR3).

3.2. Effect of Phenolic Compounds on Gene Expression on BMP2 and BMP7

Figure 2 depicts the effect of the treatment with 10−6 M of each phenolic compound on the gene
expression of BMP2 and BMP7 by MG63 cells. As observed, the gene expressions of both BMP2 and
BMP7 were significantly increased versus the controls by the treatment with each compound, except
for the expression of BMP2 by luteolin treatment (See Supplementary Table S1).

Figure 2. The effect of phenolic compounds on gene expression of BMP2 and BMP7. * p < 0.05, ** p <

0.005, *** p < 0.001. Bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7).



Nutrients 2019, 11, 1722 5 of 10

3.3. Effect of Phenolic Compounds on Gene Expression of OPG- RANKL Complex

As shown in Figure 3, the RANKL expression by the MG63 cells increased after the treatment
with 10−6 M of each phenolic compound, and their OPG expression was significantly increased by the
treatment with apigenin, ferulic acid, or coumaric acid, but not by the treatment with luteolin or caffeic
acid. Thus, the OPG-RANKL complex is increased only with apigenin and coumaric acid treatment
(See Supplementary Table S1).

Figure 3. The effect of phenolic compounds on gene expression of OPG-RANKL complex. * p < 0.05, ** p
< 0.005, *** p < 0.001. OPG- RANKL: Osteoprotegerin- receptor activator of nuclear factor-kappaB ligand.

3.4. Effect of Phenolic Compounds on the Gene Expression of RUNX-2, ALP, COL-I, OSX and OSC

Figure 4 displays the q-RT-PCR results for the expression of osteoblast differentiation markers
RUNX-2, ALP, COL-I, OSX, and OSC. The treatment with each phenolic compound increased the
expression of all markers, except for COL-I, which was not affected by caffeic acid treatment, and
RUNX-2, which was not affected by apigenin treatment (See Supplementary Table S1).

Figure 4. The effect of phenolic compounds on the gene expression of RUNX-2, ALP, COL-I, OSX, and
OSC. * p < 0.05, ** p < 0.005, *** p < 0.001. RUNX-2: Run-related transcription factor 2, ALP: Alkaline
phosphatase, COl-I: Collagen type I, OSX: Osterix, OSC: Osteocalcin.
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4. Discussion

This study found that treatment for 24 h with 10−6 M of caffeic acid, ferulic acid, coumaric acid,
apigenin, or luteolin, phenolic compounds present in EVOO changes the expression of growth and
differentiation markers by MG63 osteoblasts. Although others phenolic compounds are present in
olive oil, such as oleuropein aglycone, oleacein, oleocanthal, hydroxytyrosol and tyrosol [22], the
present study only included those compounds and the dose that had a significant effect on growth,
differentiation and the antigenic profiles of the MG63 cell line [6,16,17]. These findings indicate that
bone physiology may be modulated by the phenolic compounds in EVOO, supporting previous
observations on their action on osteoblasts at different levels, favoring bone tissue regeneration.

The expression of TGFβ1 and its receptors was increased by treatment with each phenolic
compound except for coumaric acid, which did not change the expression of TGFβ-R2 or TGFβ-R3,
and luteolin, which had no effect on TGFβ-R3 expression. The TGF-β superfamily, which includes
TGF-β isoforms 1,2, and 3, BMPs, activins, and nodal proteins, is a set of transmembrane glycoproteins
involved in the signaling cascade that regulates osteoblast differentiation and mineralization [23–25].
Moderate doses of TGF-β (1ng/mL and 10ng/mL) have been found to improve the proliferation and
differentiation of osteoblasts [26,27]. An increased expression of this marker has also been reported in
osteoblasts treated with other bone tissue regenerative therapies [23,28,29].

BMPs, of which more than 20 have been identified, stimulate bone tissue regeneration and bone
cell differentiation, as demonstrated by their effects on ALP and the expression of COL-I, OSC, and
OPN, among other cell differentiation markers [30,31]. In the present study, the expression of both
BMP2 and BMP7 was higher after treatment for 24 h with 10−6 M of each phenolic compound except for
luteolin, which only increased the expression of BMP7. These findings are consistent with the results
obtained for phenolic compounds in other vegetables. For instance, flavonoids from natural extracts
(e.g., icariin or naringin) were found to stimulate bone tissue regeneration by acting on the BMP
signaling pathway, favoring the production of molecules closely related to bone metabolism, including
ALP, OSC, and OPN [32–35]. Likewise, daidzein, a soy phytoestrogen, was reported to stimulate
osteoblast proliferation and differentiation by activating the BMP/Smad signaling pathway [36].

The osteogenic differentiation of mesenchymal cells is regulated by various transcriptional factors
such as OSX and RUNX-2/Cbfa1, which are essential for the regulation of genes involved in producing
bone extracellular matrix proteins (e.g., ALP, COL-I, bone sialoprotein [BSP], OSC, and OPN) and for the
induction of bone mineralization [37]. OSX regulates the expression of osteoblast differentiation markers
(e.g., RUNX-2 and osteonectin [OSN]) and is indispensable for bone proliferation, differentiation,
and formation [38,39]. The expressions of OSX and RUNX-2 significantly increased by the treatment
with each EVOO phenolic compound in our study, except for apigenin, which significantly increased
the expression of OSX, although to a lesser extent versus the other studied compounds, but had no
significant impact on the RUNX-2 expression. These effects were accompanied by an increase in ALP
and OSC expression after all the treatments and by an increase in COL-I and OPN expression after almost
all of them. The treatment of MC3T3-E1 murine osteoblast cells with ugonin K, a flavonoid present
in the herbaceous fern-like plant Helminthostachys zeylanica, was reported to regulate the expression
of RUNX-2 and OSX and enhance ALP activity, BSP and OSC expression, and mineralization [40].
Likewise, salvianolic acid B, a phenolic acid from the Chinese medicinal plant Salvia Miltiorrhiza,
was found to increase the expression by mesenchymal cells of ALP, OPN, RUNX-2, and OSC [41].
The increases in the expression of BMP2, COL-I, ALP, and RUNX-2 genes by the cells and in their ALP
activity and mineralization were also observed after treatment with extracts of Davallia formosana, a
petrophylic fern widely used in traditional Chinese medicine [42]. ALP and COL-I are early matrix
mineralization markers, whereas OSC and OPN are osteogenic maturation markers [43,44] that indicate
the differentiation and maturation of bone. Taken together, these data suggest that polyphenols in
EVOO (e.g., caffeic acid, ferulic acid, coumaric acid, apigenin, and luteolin) may have a beneficial effect
on bone physiology, favoring osteoblast maturation and differentiation.
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The in vitro treatment of MG63 osteoblast cells with various EVOO phenolic compounds was
found to induce cell maturation by increasing the synthesis of ALP and reducing the expression of
antigens involved in osteoblast immune functions, which may contribute to improving bone mineral
density [16]. Similar effects were observed in osteoblast cells after treatment with extracts of different
polyphenol-rich EVOO varieties (Picual, Arbequina, Picudo, and Hojiblanca), observing a greater
impact for oils with higher content of phenolic compounds [17]. According to these studies, osteoblast
maturation and differentiation can be increased in vitro by the treatment either with EVOO extracts or
with the phenolic fraction isolated from EVOO.

In contrast, an in vitro study found that treatment of mesenchymal cells with high doses
(100 µM) of hydroxytyrosol reduced the expression of osteoblast differentiation markers and inhibited
osteoblastogenesis [45], while the same dose of apigenin was reported to inhibit osteoblast differentiation
markers (COL-I production, ALP, and calcium deposits) in osteoblasts of murine origin [46]. Previous
studies by our group concluded that the dose level is a determinant factor, with high doses having a
toxic effect on cells [6].

In the present study, the expression of RANKL was increased by the treatment with all studied
polyphenols, especially luteolin, while the expression of OPG increased by apigenin, ferulic acid, and
coumaric acid, but not by luteolin or caffeic acid. RANKL belongs to the family of the tumor necrosis
factor (TNF) ligand and is expressed on mesenchymal cells, preosteoblasts, and T cells. The binding of
RANKL with its receptor (RANK) stimulates osteoclast activation and differentiation [47]. However,
OPG is a RANKL receptor that inhibits osteoclast differentiation and function, because its interaction
with RANKL can prevent it from binding to RANK [48]. The increased expression of these markers
and the higher OPG/RANKL ratio may result from activation of the Wnt canonical signaling pathway,
which would favor bone tissue formation [49]. The phenolic compounds from various vegetable
species have been found to promote osteoblast differentiation through the expression of these markers,
which are closely related to bone maturation [50–54].

Recent animal studies confirmed that various phenolic compounds in different vegetable species
(e.g., eugenol or salicylic acid) exert beneficial effects on bone [55,56]. Further, in vivo studies are
required to verify our in vitro findings on the effects on bone metabolism of the phenolic compounds
in EVOO.

5. Conclusions

These findings suggest that EVOO phenolic compounds (e.g., caffeic acid, ferulic acid, coumaric
acid, apigenin, and luteolin) may have a beneficial effect on bone physiology, exerting a stimulatory
effect on markers involved in osteoblast proliferation, differentiation and maturation. These results
support the protective effect of the phenolic compounds in EVOO against bone pathologies, like
osteoporosis. However further research is warranted to explore their usefulness in the management of
bone diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/8/1722/s1,
Table S1: Data for the gene expression of osteoblast-related markers. Mean, standard deviation and p value
information after treatment with phenolic compounds vs control.
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