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Abstract: Stochastic models based on deterministic ones play an important role in the description
of growth phenomena. In particular, models showing oscillatory behavior are suitable for
modeling phenomena in several application areas, among which the field of biomedicine stands out.
The oscillabolastic growth curve is an example of such oscillatory models. In this work, two stochastic
models based on diffusion processes related to the oscillabolastic curve are proposed. Each of
them is the solution of a stochastic differential equation obtained by modifying, in a different way,
the original ordinary differential equation giving rise to the curve. After obtaining the distributions
of the processes, the problem of estimating the parameters is analyzed by means of the maximum
likelihood method. Due to the parametric structure of the processes, the resulting systems of equations
are quite complex and require numerical methods for their resolution. The problem of obtaining
initial solutions is addressed and a strategy is established for this purpose. Finally, a simulation study
is carried out.

Keywords: diffusion processes; growth model; oscillabolastic curve; stochastic differential equations

1. Introduction

Ordinary differential equations are one of the most frequently used mathematical tools for
modeling and describing dynamical systems in general and growth phenomena in particular. In such
models a quantitative variable evolves with time according to certain parameters and deterministic
functions, and for their properties they are commonly applied to several fields of research.

Studying such models requires, on the one hand, understanding the evolving mechanisms of
dynamical systems to properly explain their behavior. On the other, we must be able to include in them
external information different from that supplied by the variables under study. In doing so we modify
their behavior and exert external control on the evolution of the phenomenon under consideration.

However, in many situations, the resulting models do not adequately reproduce the observed
phenomenon. The main reason is that deterministic models do not take into account certain
disturbances that can greatly influence the final behavior. These disturbances may have multiple and
various origins, which are not always quantifiable or may even be unknown. As stated by Li et al. [1],
“noises are ubiquitous in both nature and human society, such as fire, earthquake, climate warming, financial crisis,
etc.”. Many applications require the modeling of external elements whose nature can be considered
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stochastic, either because of the impossibility of making measurements or because said measurements
present a high degree of uncertainty. It is, therefore, necessary to modify the deterministic model to
introduce a random element.

Faced with that need, the design of models is obtained from the ordinary differential equation
for the deterministic model, in which a random element is introduced, usually a function of a white
noise. The result are stochastic models. Such modification requires considering stochastic differential
equations (SDE) whose solutions are, under some conditions, diffusion processes. Not only does the
use of these stochastic models provide a more realistic explanation of the variables under study, but it
also allows us to study other important aspects (like inference or certain time variables that represent
some features of the phenomenon).

As previously mentioned, ordinary differential equations are modified to give rise to a certain
curve by introducing in them a white noise function. The choice of such function (usually motivated
by specific characteristics of the studied phenomenon) can lead to a variety of stochastic processes,
although they are related to the same deterministic curve. In addition, that choice can determine
our specific approach to the stochastic solution process. In fact, even if the SDE has a solution (and
sometimes it is not an explicit one), the resulting diffusion process is difficult to handle because
the associated Kolmogorov equations have not yet been solved. For example, Feller pioneered this
methodology by applying it to the case of the logistic equation and introducing an additional error term
that was directly proportional to the square root of the variable. However, the backward and forward
equations associated with the diffusion process solution of the SDE have never been solved (see
Schurz [2] for other possible choices of the error term and associated diffusion processes). Furthermore,
and regarding the logistic case, in the few cases where the transition density has been calculated (see
Tuckwell [3]), it was impossible to find an explicit expression for certain important characteristics such
as the mean of the process. This has led to theoretical works that analyze the existence of a solution
for the SDE, study its stability properties (see Sun and Wang [4]), or propose simulation techniques
(see Hu and Wang [5]). These considerations can be extended to other types of situations beyond the
logistic case.

In light of the above, efforts have been made to address SDEs whose solutions are more
manageable stochastic processes and also reproduce a certain pattern of observed behavior, i.e.,
their mean follows a given growth curve. This allows certain issues to be directly addressed,
including inference or the study of temporal variables (such as first-passage-times), without having to
resort to approximations such as those derived from the discretization of the SDE. The modification
of certain ordinary differential equations by adding a multiplicative noise has given rise to processes
whose mean is a growth curve. In this sense it is worth highlighting the role of the lognormal process
with exogenous factors. As a matter of fact, concrete choices of such exogenous factors lead to
processes by which we may study patterns of behavior modeled by a wide range of growth curves (see
Román-Román et al. [6,7] and references therein). These references are related to the one-dimensional
case, although there are extensions to multidimensionality such as the one proposed by Rupšys in [8],
where a 4-variate Bertalanffy-type SDE is considered.

Other lines of action within the scope of SDEs should be mentioned. For example, the inclusion
of delays in the modeling of certain phenomena (see Rupšys [9], Longtin [10], Sakthivel et al. [11]),
the introduction of fractional Brownian motion and fractional calculus (Dung [12]), or the consideration
of both methodologies at once (Moghaddam et al. [13]).

We must keep in mind that the ultimate objective of studying models such as these is modeling
behavior patterns in real situations. Beyond the widely discussed classic growth curves (logistic,
Gompertz, Bertalanffy, Richards, etc.), other interesting families of curves have been considered
in recent times. Among them, the hyperbolastic functions of type I, II and III, introduced by
Tabatabai et al. [14], stand out. The main feature of this type of curves is the introduction of hyperbolic
functions into known models, thus revealing mobile inflection points and increasing the capability of
the models to fit real data. Some works have proved the usefulness of such curves in the description of
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dynamical phenomena. For example, Eby et al. [15] used them to study the growth of the solid Ehrlich
carcinoma under particular treatments, obtaining a more accurate representation than those yielded by
other classic curves such as Gompertz or Weibull. Tabatabai et al. [16] used the hyperbolastic type III
model to describe the behavior of embryonic stem cells. Later, other models derived from hyperbolastic
curves have been introduced, specifically the oscillabolastic and the T-model (Tabatabai et al. [17,18]).
Focusing on the first one, the oscillabolastic curve was introduced as an appropriate model to describe
dynamic phenomena that present oscillatory behaviors. The introduction of parameter-dependent
trigonometric functions allows for oscillatory dynamics to be incorporated into the model and
regulates both the amplitude and frequency of such oscillations. A progressive reduction in amplitude
guarantees the asymptotic stability of the oscillatory behavior. In that paper the authors applied the
oscillating model to two data sets: the first dealing with the oscillabolastic modeling of Ehrlich ascites
tumor cells, and the second with the mean signal intensity of Hes1 gene expression in response to
serum stimulation.

The main objective of this article is to present two diffusion processes associated with the
oscillabolastic curve. Each will be obtained from a differential equation verified by the curve,
and include an additive and a multiplicative error term, respectively. The rest of the paper is organized
as follows: in Section 2 the oscillabolastic deterministic model is introduced and studied from a
classical as well as an alternative differential formulation. The adaptation of these two formulations
to stochastic models takes place in Section 3. To provide practical instances of application to the
models presented, Section 4 addresses the maximum likelihood estimation of the parameters of each
model. The complexity of the models and their high number of parameters make the resolution of
the likelihood equations somewhat difficult. The use of numerical methods will thus require the
prior estimation of initial solutions for the system, which is why a methodology for its calculation is
suggested at the end of that section. Section 5 is a simulation study for both models that includes the
generation of data for each process and the application of our proposed estimation methodology.

2. The Oscillabolastic Curve

The original formulation of the oscillabolastic curve is given by the function u : R→ R,

u(t) = κ + α sin(βt)/t + γ arcsinh(θt)/t, (1)

where κ, α, β, γ and θ are real parameters. Clearly, the function u(t) is defined for all t and
limt→∞ u(t) = κ. As easily seen, for t → 0+ one has u(t) = κ + αβ + γθ, so one can define u(t)
also at t = 0. However, in the context of growth phenomena, t is a time index and therefore we
consider the curve defined in [t0,+∞), t0 ≥ 0.

To study the behavior of (1), we start by observing that its expression is determined by two terms,
say u(t) = u1(t) + u2(t), where u1(t) = κ + α sin(βt)/t and u2(t) = γ arcsinh(θt)/t. It can therefore
be seen that the behavior of the curve is governed mainly by u1(t). This function summarizes the
oscillatory trend of the model, as well as its evolution towards κ, which we consider to be the population
limit in a growth model (and not the maximum sustainable capacity that is typical of monotonous
and positive growth models). Parameter α is responsible for the amplitude of the oscillations, which
become larger as |α| grows. Furthermore, their frequency is directly proportional to |β|.

The flexibility of the oscillabolastic curve is clearly increased thanks to the influence of u2(t).
In this case, the hyperbolic arcsine allows u1(t) to be deformed, thus making the oscillatory pattern
evolve along a curved path. This in turn has an impact on the sequence of local extremes of u(t)
(local minima and maxima at each oscillation), since one of the functions (u(t) or u1(t)) will present
a wider range at initial values than the other, which will remain closer to constant value κ. In any
case, both will eventually converge to κ. Figure 1 shows the two parts of an oscillabolastic curve
for κ = 1, α = −1, β = 1, γ = −1 and θ = 1, as well as the resulting curve u(t). It can be seen how
u2(t) influences the final curve by modifying the behavior of u1(t). This interaction is indicated by a
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dashed line representing translated function u2(t) + ν, where ν is the average difference between u(t)
and u2(t).

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

t

u 1
(t

)

0 10 20 30 40 50
−

0.
8

−
0.

6
−

0.
4

−
0.

2

t

u 2
(t

)

0 10 20 30 40 50

−
0.

5
0.

0
0.

5

t

Curve u
Translated u2

(a) (b) (c)

Figure 1. u1(t) curve (a), u2(t) curve (b), and oscillabolastic u(t) curve together with u2(t) (dashed
line) moved to indicate the trend (c). The translation of u2(t) is the average between the difference
u(t)− u2(t) for every t. Parameters: κ = 1, α = −1, β = 1, γ = −1, θ = 1, t0 = 1.

Another fundamental aspect of u2(t) is its ability to make the final curve smoother, and to
partially compensate the amplitude of oscillations from u1(t). In this sense, high values of γ/α cause a
deformation of the oscillations, increasing the difference between the increasing and decreasing phases.

In any case, the behavior of the oscillabolastic curve u(t) is characterized by four parameters. It is
not easy to establish a clear pattern of influence for each without taking into account the others, as well
as the time interval in which the curve is evaluated.

An important characteristic of the oscillabolastic curve is the presence of multiple inflections,
a logical consequence of the oscillations of the model. Equation d2u(t)/dt2 = 0 leads to the following
equation, verified for any inflection time t∗,

2γ arcsinh(θt∗)−
γθt∗(2 + 3θ2t2

∗)

(1 + θ2t2∗)3/2 = 2αβt∗ cos(βt∗) + α sin(βt∗)(β2t2
∗ − 2). (2)

From an analytical approach, the function u(t) satisfies, under the initial condition u(t0) = u0 ∈ R,
the linear ordinary differential equation

d
dt

u(t) = (gδ(t)− u(t)) t−1, (3)

for t ≥ t0 > 0, being

gδ(t) = κ + αβ cos(βt) + γ θ
(

1 + θ2t2
)−1/2

(4)

a real function defined in the same domain as u(t) and where δ denotes the parametric vector
δ = (κ, α, β, γ, θ)T .

On the other hand, it is possible to reformulate the oscillabolastic curve as

u(t) = κ
(
1 + α′ sin(βt)/t + γ′ arcsinh(θt)/t

)
,

where the relationship between the parameters of both formulations would be given by α′ = α/κ and
γ′ = γ/κ.

In this case, it can be verified that the reformulated curve is the solution to the linear ordinary
differential equation

d
dt

u(t) = hδ′(t) u(t), t ≥ t0 > 0, (5)
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with initial condition u(t0) = u0, and where function hδ′(t) is expressed as

hδ′(t) =
α′ (β t cos(βt)− sin(βt)) + γ′

(
θt√

1+θ2t2 − arcsinh(θt)
)

t2 + α′t sin(βt) + γ′t arcsinh(θt)
, t ≥ t0 > 0, (6)

being δ′ = (α′, β, γ′, θ)T .
Both differential equations, (3) and (5), define deterministic models of evolution for the

oscillabolastic curve. The most notable difference between them is their structure: in the first case
we have a non-homogeneous linear differential equation with non-constant coefficients, while in the
second it is reduced to a multiplicative model.

Given the potential applications of both models, their stochastic extensions will be addressed in
the following sections. The main idea is to make the mean of the resulting stochastic process able to
describe oscillabolastic-type behaviors, which opens the door for observed patterns of this type to
be reproduced.

3. Oscillabolastic-Type Diffusion Processes

This section introduces stochastic extensions for the deterministic oscillabolastic model in light of
the two differential equations described in the previous section. The starting points will be ordinary
differential Equations (3) and (5). Although both are linear differential equations, the diffusion
processes to which they give rise have different characteristics. The former is a Gaussian process (of
the non-homogeneous Ornstein–Uhlenbeck type), while the second is related to the non-homogeneous
geometric Brownian motion, or lognormal process with exogenous factors.

3.1. Oscillabolastic Gaussian Diffusion Process

This process is obtained by adding a random component to (3). Specifically, a white noise with
variance σ2 is included in the model, where σ > 0 is a parameter that marks the random influence on
the model. Writing the resulting equation in the traditional form of stochastic differential equations,
we have

dXG(t) =
(

gδ(t)− XG(t)
)

t−1dt + σ dW(t), (7)

where {W(t); t ≥ t0} is the standard Wiener process in R, which we consider independent from the
initial variable XG(t0), whereas gδ is given by (4).

Equation (7) is a linear SDE verifying the conditions of existence and uniqueness of solution.
In fact, functions t 7→ −t−1 and t 7→ gδ(t)t−1 are measurable and bounded in every subinterval [t0, T],
with T > t0, of [t0,+∞), which guarantees the existence and uniqueness of a global solution (i.e.,
defined in [t0,+∞)) for each initial condition XG

0 = XG(t0).
This solution is a stochastic diffusion process {XG(t); t ≥ t0}, adapted to the natural filtration

generated by the Borel sets in one dimension and characterized by drift (gδ(t)− x)/t and constant
infinitesimal variance σ2. The explicit formulation of the process is given in terms of the solution of
ordinary differential equation dx(t)/dt = −x(t)/t, leading to

XG(t) =
(

t0 XG
0 +

∫ t

t0

gδ(s)ds + σ
∫ t

t0

s dW(s)
)

t−1.

Initial condition XG
0 is fundamental to establishing the nature of the process. Indeed, if XG

0 is a
constant (degenerate) or a Gaussian random variable, then the solution of (7) is a Gaussian diffusion
process (from now on we will consider both scenarios). In addition, in the case where XG

0 is constant,
the independence of the increments of the process is also guaranteed.
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On the other hand, condition E
[
|XG

0 |p
]
< ∞ guarantees the existence of the p-th order moment

for XG(t). Specifically, the expressions of the mean and covariance functions are respectively

mδ(t) = E[XG(t)] =
(

t0E[XG
0 ] + κ∆0t + α∆0 sin(βt) + γ∆0 arcsinh(θt)

)
t−1,

C(t, s) = Cov(XG(t), XG(s)) = (σ0t0)
2 /(st) + σ2

(
t3 ∧ s3 − t3

0

)
/(3st),

for s, t ∈ [t0,+∞), being σ2
0 = Var[XG

0 ]. Here ∆0 denotes increasing operator ∆0 f (t) = f (t)− f (t0) for
a function f , whereas t ∧ s = Min(s, t).

Regarding the mean function mδ(t), note that it can be expressed as

mδ(t) = u(t) +
t0

t

(
E[XG

0 ]− u0

)
,

where u0 = u(t0) is the initial value of the oscillabolastic curve. Also note that when constructing
the stochastic model, the main goal is for the mean function of the process to coincide with that of a
prescribed oscillabolastic model, i.e., mδ(t) = u(t) for all t. Regarding the last expression, this condition
holds when E[XG

0 ] = u0. However, the asymptotic tendency of the process (the behavior of its mean at
the limit) is similar to that of the oscillabolastic deterministic model. Indeed, the difference between
the mean and the curve, for each time instant, decreases as t tends to ∞, i.e.,

lim
t→∞
|mδ(t)− u(t)| = 0.

With regard to the transition density function, which is required to implement the inference
procedures that will be described in the next section, for any time instants t > s ≥ t0 the conditioned
variable XG(t)|XG(s) = y is normal, with mean and variance given respectively by expressions

µδ(s, t) = mδ(t) + σ(t) ρ(s, t) (y−mδ(s)) /σ(s),

ν(s, t)2 =
(

1− ρ(s, t)2
)

σ(t)2,

where σ(t) = C(t, t)1/2 is the standard deviation of XG(t) (resp. for s) and ρ(s, t) = C(s, t)/ (σ(s)σ(t))
is the correlation function. Both expressions can also be written in the form

µδ(s, t) =
1
t

(
sy +

∫ t

s
gδ(r)dr

)
and

ν(s, t)2 =
σ2

3

(
t3 − s3

t2

)
,

from which the probability transition density function is given by

f (x, t|y, s) =
(

2π
σ2

3

(
t3 − s3

t2

))− 1
2

exp

−
(

x− s
t y− 1

t
∫ t

s gδ(r)dr
)2

2 σ2

3

(
t3−s3

t2

)
 . (8)

3.2. Oscillabolastic Diffusion Process Derived from the Non-Homogeneous Lognormal Diffusion Process

From Equation (5), it is possible to obtain a stochastic model whose mean function coincides with
the original deterministic model, i.e., the oscillabolastic curve. As a matter of fact, this differential
equation represents a Malthusian model with a time-dependent fertility hδ′(t) given by (6).
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The introduction of a white noise $(t) with variance σ2 in this fertility component, accomplished by
replacing hδ′(t) with hδ′(t) + $(t), leads to the SDE

dXL(t) = hδ′(t)XL(t) dt + σXL(t) dW(t), XL(t0) = XL
0 , (9)

where W(t) is the standard Wiener process, independent from XL
0 , t ≥ t0. Please note that the

reformulation of the original curve leads to a model with one parameter less than the Gaussian model.
In this case, the existence and uniqueness of the solution is ensured by the continuity of the hδ′(t)

function. Thus, the solution of (9) is a stochastic diffusion process {XL(t); t ≥ t0} characterized by
drift hδ′(t)x and infinitesimal variance σ2 x2. Furthermore, a closed-form expression for the solution is
given, for t ≥ t0, by

XL(t) = XL
0 exp

(
Hξ(t0, t) + σ(W(t)−W(t0))

)
,

where

Hξ(s, t) =
∫ t

s
hδ′(u)du− σ2

2
(t− s) = log

Qδ′(t)
Qδ′(s)

− σ2

2
(t− s), s < t, ξ =

(
δ′T , σ2

)T
,

being
Qδ′(t) = 1 + α′ sin(βt)/t + γ′ arcsinh(θt)/t.

This process is a particular case of the non-homogeneous lognormal diffusion, or lognormal
diffusion process with exogenous factors. The inclusion of the hδ′(t) function in the drift justifies the
terminology: the infinitesimal mean of the process can be affected by the inclusion of time-dependent
external factors.

As regards the distribution of the process, if XL
0 is distributed according to a lognormal distribution

Λ1
[
µ0; σ2

0
]

or is a degenerate random variable (P[XL
0 = x0] = 1), all the finite-dimensional distributions

of the process are lognormal. Concretely, ∀n ∈ N and t1 < · · · < tn, vector (XL(t1), . . . , XL(tn))T is
distributed according to a n-dimensional lognormal distribution Λn[ε, Σ], where the components of
the vector ε are εi = µ0 + Hξ(t0, ti), i = 1, . . . , n, being σij = σ2

0 + σ2(min(ti, tj)− t0), i, j = 1, . . . , n,
those of the matrix Σ.

As far as the transition probability is concerned, it is obtained from that of (XL(s), XL(t))T , s < t.
Concretely,

XL(t) | XL(s) = y Λ1

(
log y + Hξ(s, t), σ2(t− s)

)
, s < t,

whose density function is

f (x, t|y, s) =
1

x
√

2πσ2(t− s)
exp

(
−

log x
y − Hξ(s, t)

2σ2(t− s)

)
. (10)

Once the distribution of the process has been established, we may calculate a variety of its
associated characteristics including the mean and conditioned mean functions, whose expressions are

mδ′(t) = E[XL
0 ]

Qδ′(t)
Qδ′(t0)

and

mδ′(t|t0) = E[XL(t)|XL(t0) = x0] = x0 exp
(

Hξ(t0, t) +
σ2

2

)
= x0

Qδ′(t)
Qδ′(t0)

,

respectively. Both functions are oscillabolastic curves of the type introduced in the previous section.
Other characteristics of the process can be obtained from the results included in Román et al. [6].
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4. Estimation of the Parameters

The main useful application of the diffusion processes described in the previous section is the
description of dynamic phenomena subject to random influences, in particular growth phenomena.
For that reason, the estimation of the parameters included in the models is especially relevant.
Among the procedures available we will employ the maximum likelihood estimation method.
The estimation of the parameters involves solving a system of equations, which will require using
adequate numerical techniques.

Let us consider d sample paths observed at time instants tij, (i = 1, . . . , d, j = 1, . . . , ni). Please
note that neither the sample sizes nor the times of observation have to be the same, although
we will suppose that the first time of observation is common for all sample paths, i.e., ti1 = t0,
i = 1, . . . , d. Let XT

i be the vector containing the random variables of the i-th sample-path, i.e.,

Xi = (X(ti1), . . . , X(ti,ni ))
T , i = 1, . . . , d, and denote X =

(
XT

1 | · · · |XT
d
)T .

For simplicity, we consider a degenerate initial distribution, i.e., P[X0 = x0] = 1. The reason is
that the parameters of the distribution in the non-degenerate case (normal or lognormal depending
on the process) are usually considered functionally independent from the parameters involved in the
transition distribution, so the estimation of these last parameters is not influenced by the estimation
of the others. In any case, if X0 were not degenerate its parameters could not be estimated from the
values of the sample paths at the first time instant of observation.

In what follows, and for the sake of simplicity in the notation, we will not differentiate between
the processes when noting the observed values. Obviously, the context determines the meaning in
each case.

4.1. The Gaussian Case

Let us consider a fixed value x of X. From (8) the likelihood function can be obtained, whose
logarithm is

log Lx(ξ) = −
n
2

log
2π

3
− n

2
log σ2 − 1

2

d

∑
i=1

ni

∑
j=2

log
∆t3

ij

t2
ij
− 3

2σ2

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− Gδ

ij

)2
,

where n = ∑d
i=1(ni − 1) and Gδ

ij :=
∫ tij

tij−1
gδ(s)ds. Now operator ∆ (applied to a generic function f )

denotes the increments ∆ f (tij) = f (tij)− f (tij−1).
To obtain the maximum likelihood estimates, we must calculate the derivatives of log Lx(ξ) with

respect to the parameters. In this sense, the derivatives with respect to the components of δ are

∂τ log Lx(ξ) =
3
σ2

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− Gδ

ij

)
∂τGδ

ij, τ ∈ δ (11)

where

∂τGδ
ij =



∆tij if τ = κ,

∆ sin(βtij) if τ = α,

α ∆
(
tij cos(βtij)

)
if τ = β,

∆ arcsinh(θtij) if τ = γ,

γ ∆
(

t2
ij

/√
1 + θ2t2

ij

)
if τ = θ.
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On the other hand, the partial derivative with respect to σ2 is

∂σ2 log Lx(ξ) = −
n

2σ2 +
3

2 (σ2)
2

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− Gδ

ij

)2
. (12)

Finally, by using (11) and (12), and equating to zero the partial derivative of the loglikelihood,
one gets:

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)
∆tij = 0,

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)
∆ sin(βtij) = 0,

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)
α∆
(
tij cos(βtij)

)
= 0,

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)
∆ arcsinh(θtij) = 0, (13)

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)
γ∆
(

t2
ij

/√
1 + θ2t2

ij

)
= 0,

3
nσ2

d

∑
i=1

ni

∑
j=2

1
∆t3

ij

(
∆
(
tijxij

)
− k∆tij − α∆ sin(βtij)− γ∆ arcsinh(θtij)

)2 − 1 = 0.

The resolution of this system will be determined by the application of numerical techniques. Such
procedures will require a set of initial solutions. This problem, common to the two models presented,
will be addressed in Section 4.3.

4.2. Lognormal Case

Regarding oscillabolastic process XL(t), given by SDE (9), the maximum likelihood estimation
can be addressed by means of the procedure described in [6]. This approach has already been used
succesfully in the inferential treatment of the Gompertz multisigmoidal diffusion process [7], as well as
in the generalization of the classic Weibull model, in particular for the hyperbolastic type III diffusion
process [19].

In this case, and considering probability transition density function (10), the logarithm of the
likelihood function is given by

log Lx(ξ) = −
n
2

log(2π)− n
2

log σ2 −
Z1 + Φξ − 2Γξ

2σ2 ,

where

Z1 =
d

∑
i=1

ni

∑
j=2

1
∆tij

log
xij

xij−1
, Φξ =

d

∑
i=1

ni

∑
j=2

1
∆tij

(
mξ

ij

)2
, Γξ =

d

∑
i=1

ni

∑
j=2

mξ
ij

∆tij
log

xij

xij−1

being mξ
ij = Hξ(tij−1, tij).

The estimate of vector ξ (see [6] for details) follows by solving the system of equations

Ψδ′ −Ωξ = 0, (14)

Z1 + Φξ − 2Γξ − σ2Z2 + σ2Yξ = nσ2, (15)
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where

Ωξ =
1
2

∂Φξ

∂δ′T , Ψδ′ =
∂Γξ

∂δ′T , Yξ = −
∂Φξ

∂σ2 , Z2 = −2
∂Γξ

∂σ2 .

These functions are obtained from the partial derivatives of the mξ
ij functions:

τωδ′ =
∂mξ

ij

∂τ
=

1
Qδ′(tij)

∂Qδ′(t)
∂τ

∣∣∣∣
t=tij

− 1
Qδ′(tij−1)

∂Qδ′(t)
∂τ

∣∣∣∣
t=tij−1

, τ ∈ δ′,

∂mξ
ij

∂σ2 = −1
2

∆tij,

where

∂Qδ′

∂τ
=



sin(βt)/t if τ = α′,

α′ cos(βt) if τ = β,

arcsinh(θt)/t if τ = γ′,

γ′/
√

1 + θ2t2 if τ = θ.

From these last expressions, and from those of Ωξ and Ψδ′ , the subsystem of Equation (14) can be
written in the form

τΞδ′ +
σ2

2 τΩδ′ = 0, τ ∈ δ′, (16)

with

τΞδ′ =
d

∑
i=1

ni

∑
j=2

log
(

xi,j/xi,j−1
)
− log

(
Qδ′(tij)/Qδ′(ti,j−1)

)
∆tij

τω
i,j,j−1
δ′ , τΩδ′ =

d

∑
i=1

ni

∑
j=2

τω
i,j,j−1
δ′ , τ ∈ δ′.

On the other hand, and after some calculus, Equation (15) transforms into

σ2
[
n + σ2Z3/4

]
+ 2Xδ′

1 − Xδ′
2 − Z1 = 0, (17)

being

Xδ′
1 =

d

∑
i=1

ni

∑
j=2

(
log
(
Qδ′(tij)/Qδ′(ti,j−1)

))2

∆tij
, Xδ′

2 =
d

∑
i=1

ni

∑
j=2

log
(
xi,j/xi,j−1

)
log
(
Qδ′(tij)/Qδ′(ti,j−1)

)
∆tij

,

and Z3 =
d

∑
i=1

ni

∑
j=2

∆tij.

As in the previous case, system of Equations (16) and (17) cannot be solved explicitly, and it is,
therefore, necessary to use numerical methods such as Newton-Raphson’s, for which an initial solution
is required. In the next subsection we present a strategy to provide such a solution based on the
information provided by the sample data, and applicable to the two resulting systems of equations.

4.3. Initial Solutions

As already mentioned, the systems of likelihood equations obtained in the preceding subsections
have a high degree of complexity due to the high number of parameters involved (although in the
lognormal case this number is reduced) and to the presence of random data. Their resolution, therefore,
will require the use of numerical techniques. For such procedures to be applied a prior choice must be
made regarding initial solutions.
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This section proposes a strategy based on the information provided by the sample data. The key to
the procedure focuses on the sample mean function, which is calculated from the values of the sample
paths at each time instant of observation ti. Since the procedure needs to evaluate this function over the
entire observation interval, a spline function is later fitted to the mean values of the observed sample
paths. Furthermore, the procedure is applicable to the two processes introduced earlier. The goal is
to make the theoretical mean functions of both processes approximate the oscillabolastic curve (1),
although in the Gaussian case this approach is asymptotic. We expose the strategy for the Gaussian
case. For the lognormal-type process it is deduced by simply taking into account the relationship
between the parameters which has been described in Section 2.

The following is the suggested procedure for each parameter:

• κ: This is the limit value of the model, and represents its asymptotic behavior when t → +∞.
However, due to oscillations, this value is not the maximum (which usually occurs in monotonous
positive growth models, giving rise to the carrying capacity of the system under consideration).
Since the curve approaches κ, a possible option to obtain an initial value κ0 is to take the last value
of the sample mean function. However, this depends largely on the length of the time interval,
as well as on the amplitude of the oscillations and/or of the curvature of the model. These effects
can lead to estimates of κ far from its true value. For greater accuracy, an alternative approach
would be to take the average value between the sequences of local extreme values (maxima and
minima) of the sample mean function.

• α, β, γ, θ: The calculation of initial values for these parameters is quite complex. The starting point
is to have an approximation for one of the instants of time (t∗) in which an inflection is observed
in the mean of the process. To obtain it, a maximum of the derivative of the sample mean function
is numerically approached.

On the other hand, it can be observed that (1) is a linear function in α and γ. Therefore,
considering t0 and t∗, and the value κ0 previously calculated, it is possible to obtain an expression
of both parameters as a function of β and θ from the system of equations

κ0 = u0 − α sin(βt0)/t0 − γ arcsinh(θt0)/t0,

κ0 = u∗ − α sin(βt∗)/t∗ − γ arcsinh(θt∗)/t∗. (18)

Please note that u0 and u∗ can be obtained from the spline function previously adjusted to the
mean of the sample paths. We shall denote by αβ,θ and γβ,θ the resulting values. Now the problem
has been reduced to finding initial values for β and θ. To this end we look for pairs of values (β, θ)

within a two-dimensional bounded region satisfying the inflection condition (2) for a predefined
error threshold, say ε, i.e., it must hold∣∣∣∣∣γβ,θθt∗(2 + 3θ2t2

∗)

(1 + θ2t2∗)3/2 − 2γβ,θ arcsinh(θt∗) + 2αβ,θ βt∗ cos(βt∗) + αβ,θ sin(βt∗)(β2t2
∗ − 2)

∣∣∣∣∣ < ε,

being t∗ the inflection time instant previously obtained. We suggest using values of ε between
0.0001 and 0.1, depending on the order of magnitude of the sample data. Initial values β0 and θ0

will be the mean of the resulting values for each parameter, respectively. Finally, the initial values
for α and γ are obtained from αβ0,θ0 and γβ0,θ0 , respectively.

• σ2: The initial value for σ2 is obtained from the estimation of the variance of the one-dimensional
distributions of the processes. For instance, in the case of the Gaussian oscillabolastic process,
the variance is (please remember that we have considered a degenerate initial distribution)

Var[X(t)] = σ2 t3 − t3
0

3t2 ,
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so, if we denote by σ2
i the sample variance at ti, a linear regression model of the σ2

i values versus
ti (i = 1, . . . , n) is considered in order to obtain the estimated value for σ2. It should be noted that
the sample variance can sometimes present a rather volatile behavior. Therefore, in practice it is
advisable to procure a smoothed version of said function before obtaining values for σ2

i .

For the other oscillabolastic-type diffusion process, for which (see Section 3.2) X(t)  Λ1[ε, ς]

being ς = σ2(t − t0), we can avoid using the sample variance function. In point of fact, it is
well-known that for a lognormal distribution Λ1[ε, ς] the quotient between the arithmetic mean
and the geometric one provides an estimation of ς. This leads, for each ti, and when the initial
distribution is degenerate, to an estimate of σ2 (ti − t0) in the distribution of X(t), say, σ2

i =

2 log(mi/mg
i ), i = 1, . . ., where mi and mg

i are, respectively, the values of the mean and the
geometric sample mean of the sample paths at ti. Again, the initial value for σ2 is obtained by
performing a simple linear regression of σ2

i values against ti.

Please note that if X0 is not a degenerate random variable, σ2
i provides an estimate of σ2

0 + σ2(ti −
t0) for each ti. In that case, σ2

0 can be previously estimated from the values of the sample paths at
t0 and then its values introduced in the regression function.

5. Simulation Study

In this section, a simulation study illustrates the behavior of the oscillabolastic process, as well
as the application of the proposed methodology for estimating the parameters of the processes
under consideration. One of its most interesting aspects is how initial solutions are obtained for the
subsequent estimation of the parameters of the process, to which end we have applied the methodology
proposed in the previous subsection.

5.1. Simulation in the Gaussian Case

Data from the oscillabolastic Gaussian process are obtained by simulating 20 sample paths in the
time interval [1, 10], with degenerate initial distribution x0 = 1. As for the values of the parameters, we
have started by considering κ = 2.5, α = −2, β = 1.5, γ = 1 and θ = 0.5. The parameter corresponding
to the infinitesimal variance is, in this case, σ2 = 0.0025. Simulated paths are shown in Figure 2.
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Figure 2. Simulated sample paths for the oscillabolastic Gaussian process. Parameters: κ = 2.5,
α = −2, β = 1.5, γ = 1, θ = 0.5 and σ2 = 0.0025.

Following the method described in Section 4.1, the system of maximum likelihood Equation (13) is
solved by numerical procedures. To do this, initial solutions to the parameters are obtained by applying
the methodology described in Section 4.3. The initial value for κ is selected by taking the last value
of the observed mean, in this case κ0 = 2.58. One inflection point is calculated from (2) after fitting a
spline function to the observed mean values, resulting in t∗ = 1.38, and being u∗ = 1.71 the value of the
curve at this point. With this information, initial values β0 and θ0 for β and θ, respectively, are found by
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holding the inflection condition with an error threshold ε = 5× 10−4. The search region is determined
by the square [0.1, 3]× [0.1, 1]. In fact, the number of oscillations of the observed data suggests that β

must lie between 0.1 and 3 (and might even be 2). On the other hand, the absence of a pronounced
curvature implies low values of θ. Finally, the initial values are β0 = 1.5 and θ0 = 0.3. From these
values, and using the expressions αβ0,θ0 and γβ0,θ0 obtained from (18), we find the corresponding initial
values for α and β, concretely α0 = −1.97 and γ0 = 1.1. Finally, the initial value for σ2 is obtained
from the estimation of the slope of the regression line of observed variability against time, resulting in
σ2

0 = 0.0029.
Once the initial values of the parameters have been determined, they are used to solve the system

of equations. Detailed results for estimated values of each parameter are shown in Table 1. Please
note that in this case, initial values coincide with estimated ones, mainly due to low variability of the
sample paths.

Table 1. Results for simulated Gaussian oscillabolastic diffusion.

κ α β γ θ σ2

Estimated values 2.584 −1.973 1.500 1.1 0.300 0.0029

To evaluate the quality of the estimation of the process, we have considered the absolute relative
errors between the sample mean of the simulated process and the estimated one, i.e.,

RAE =
1
n

n

∑
j=1

|mj − m̂j|
mj

,

where mj and m̂j are the values of the sample mean function and the ones estimated at tj, j = 1, . . . , n.
In this case, the value of this error is RAE = 0.024, which indicates a very good fit between

the observed and estimated mean functions from the values found for the parameters. This can be
visualized in Figure 3, in which both mean functions are plotted.

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time

Observed mean
Estimated mean

Figure 3. Simulated and estimated mean functions. Gaussian oscillabolastic process.

A new simulation study has been carried out in order to check the process estimation for oscillatory
behavior, for example when the parameter β that influences the frequency of the oscillations is varied,
and to accommodate for the variability of the sample paths. The simulation pattern is the same
as the one considered in the previous case. Parameter β takes values 2, 3, and 4. As previously
mentioned, the number of oscillations in the data may determinate the range of values of β. Also,
the curvature of the trend followed by the oscillations may be a good indicator for the range of
parameter θ. Initial values coming from this bounded region lead to the estimation of α and γ.
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Final results for different combinations of parameters are shown in Table 2. A graphical
comparison between simulated and estimated mean functions, for different parameters, is shown in
Figure 4. It is observed that despite the initial difference between the mean function and the original
oscillabolastic curve, the Gaussian diffusion process performs well with the proposed methodology
for the parameter estimation. Please note that the last two results are the same but for different regions
of β0. Results are the same up to the sign of α and β, due to the odd condition of the sine function.

Also, three simulations has been carried out for different values of the infinitesimal variance,
σ2 = 0.0001, 0.0025 and 0.01, with parameters κ = 2.3, α = −2, β = 2, γ = 1, and θ = 0.5 from t0 = 1
to 10, starting at x0 = 1. Please note that final performance is very good although, as expected, RAE
increases with variability. Results are shown in Table 3 and Figure 5.

Table 2. Results for simulated Gaussian diffusion with different parameters.

β = 2
κ α β γ θ σ2

Original 1.837 −2 2 1 0.500 0.0025
Initial 1.850 −1.792 1.564 0.812 0.561 0.0029
Estimated 1.855 −1.790 1.565 0.813 0.561 0.0029

β0 ∈ [1, 3] Inflection t∗ = 2.97 RAE = 0.011

β = 3
κ α β γ θ σ2

Original 0.801 −2 3 1 0.500 0.0025
Initial 0.980 −1.942 3 0.611 0.550 0.0013
Estimated 0.977 −1.950 3 0.620 0.550 0.0014

β0 ∈ [2, 5] Inflection t∗ = 1.98 RAE = 0.07

β = 4
κ α β γ θ σ2

Original −1.495 −2 4 1 0.500 0.0025
Initial −1.464 −2.012 4.000 0.836 0.551 0.0020
Estimated −1.463 −2.012 4 0.838 0.550 0.0021

β0 ∈ [3, 5] Inflection t∗ = 5.48 RAE = 0.02

β=2 β=3 β=4

Figure 4. Simulated and estimated mean functions for variations of parameters of Table 2.
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Table 3. Results for simulated Gaussian diffusion for different values of σ2.

σ2 = 0.0001
κ α β γ θ σ2

Original 2.337 −2 2 1 0.500 0.0001
Initial 2.392 −1.864 2 1.032 0.300 0.0001
Estimated 2.392 −1.869 2 1.038 0.300 0.0001

RAE = 0.013

σ2 = 0.0025
κ α β γ θ σ2

Original 2.337 −2 2 1 0.500 0.0025
Initial 2.369 −1.865 2 1.330 0.250 0.0020
Estimated 2.369 −1.868 2 1.332 0.250 0.0022

RAE = 0.013

σ2 = 0.01
κ α β γ θ σ2

Original 2.337 −2 2 1 0.500 0.01
Initial 2.479 −1.867 2 0.741 0.300 0.012
Estimated 2.483 −2.059 2.002 0.806 0.304 0.029

RAE = 0.016

σ=0.0001
2

σ=0.0025
2

σ=0.01
2

Figure 5. Sample paths (top) and simulated vs. estimated mean functions (bottom) for σ2 =

0.0001, 0.0025, 0.01, (see Table 3).

5.2. Simulation in the Lognormal Case

The simulation scheme applied to the lognormal oscillabolastic diffusion process is similar to the
one used earlier. In this case, the initial value of the degenerate distribution is x0 = 0.5. Original values
for the parameters are α′ = −1, β = 2, γ′ = 1, θ = 0.5, and σ2 = 10−3. Figure 6 displays the simulated
paths (note that in the lognormal case, and in contrast to the Gaussian one, variability grows faster due
to its dependence on the state).
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Figure 6. Simulated sample paths for the oscillabolastic lognormal-type diffusion process. Parameters:
α′ = −1, β = 2, γ′ = 1, θ = 0.5 and σ2 = 10−3.

The initial values for the parameters follow from the methodology used in the lognormal case.
The search region for β0 and θ0 is the same as in the Gaussian simulation example above. The number
of oscillations (in relation to the time interval) and the curvature of the observations suggest that this
may be a good choice. An inflection condition with t∗ = 2.97, u∗ = 1.32 and error ε = 0.1 results
in initial values β0 = 2 and θ0 = 0.55, respectively. Because of increasing variability, very low error
thresholds are not recommended, as they would decrease performance.

Initial values of α′ and γ′ have been calculated following the same methodology set out in the
previous example, resulting in α′0 = −0.85 and γ′0 = 0.48. Finally, the initial value of infinitesimal
variance σ2 follows from the regression analysis of the values obtained from the arithmetic and
geometric mean of the observed mean values. In this case, σ2

0 = 0.001 is obtained.
Using these initial values in the numerical resolution of the maximum likelihood system of

Equations (16) and (17) leads to α′ = −0.948, β = 2, γ′ = 0.747, θ = 0.564, and σ2 = 0.001. Table 4
summarizes the results.

Table 4. Results for simulated lognormal oscillabolastic diffusion.

α’ β γ’ θ σ2

Estimated values −0.948 2 0.747 0.564 0.001

Figure 7 shows the simulated and estimated mean functions. Note how the adjustment provided
by the mean function is good and is supported by the value of the RAE, which is RAE = 0.007.
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Figure 7. Simulated and estimated mean functions. Oscillabolastic lognormal-type diffusion process.
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As for the Gaussian oscillabolastic diffusion process, another simulation study has been carried
out by varying, in this case, parameters β (which affects the frequency of the oscillations) and σ2

(responsible for the variability of the sample paths). Following the same methodology as in the
Gaussian case, the ranges of β and θ can be directly proposed from the observations.

In this case, paths are simulated for values of β = 2, 4, 6. Final estimated values, as well as the
search range for initial values of β are shown in Table 5. Furthermore, Figure 8 shows simulated and
estimated mean functions for some combinations of parameters. RAE for every one of them is also
shown in the table. These values suggest that the model and the proposed estimation methodology
perform very well.

On the other hand, Table 6 and Figure 9 also show good performance for different values of
variability, in particular σ2 = 0.0001, 0.0025, 0.01 for parameters α′ = −0.5.β = 2, γ′ = 1, θ = 0.5 and
x0 = 1 for t ∈ [t0, 10] with t0 = 1.

β=2

4

6

Figure 8. Simulated and estimated mean functions for variations of parameters of Table 5.

Table 5. Results for simulated lognormal diffusion with different parameters.

β = 2
α’ β γ’ θ σ2

Original −0.500 2 1 0.500 0.0001
Initial −0.372 2.047 0.353 0.526 0.00002
Estimated −0.492 1.999 0.813 0.585 0.0001

β0 ∈ [2, 5] Inflection t∗ = 1.03 RAE = 0.001

β = 4
α’ β γ’ θ σ2

Original −0.500 4 1 0.500 0.0001
Initial −0.314 4.067 0.196 0.600 0.0002
Estimated −0.477 3.999 0.694 0.637 0.0002

β0 ∈ [2, 5] Inflection t∗ = 3.90 RAE = 0.002

β = 6
α’ β γ’ θ σ2

Original −0.500 6 1 0.500 0.0001
Initial −0.329 6 0.274 0.550 0.0002
Estimated −0.474 6.000 0.705 0.618 0.0002

β0 ∈ [4, 7] Inflection t∗ = 0.99 RAE = 0.004
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Table 6. Results for simulated lognormal diffusion for different values of σ2.

σ2 = 0.0001
α’ β γ’ θ σ2

Original −0.500 2 1 0.500 0.0001
Initial −0.516 1.789 0.557 0.665 0.00003
Estimated −0.489 2.001 0.915 0.520 0.0001

RAE = 0.003

σ2 = 0.0025
α’ β γ’ θ σ2

Original −0.500 2 1 0.500 0.002
Initial −0.498 1.809 0.451 0.667 0.0004
Estimated −0.498 1.809 0.451 0.667 0.0004

RAE = 0.004

σ2 = 0.01
α’ β γ’ θ σ2

Original −0.500 2 1 0.500 0.010
Initial −0.506 1.794 0.410 0.674 0.007
Estimated −0.466 1.979 0.360 0.866 0.006

RAE = 0.012

σ=0.0001
2

σ=0.0025
2

σ=0.01
2

Figure 9. Sample paths (top) and simulated vs. estimated mean functions (bottom) for
σ2 = 0.0001, 0.0025, 0.01, (see Table 6).

6. Conclusions

Classic growth curves are generally described as arising from ordinary differential equations,
which can be studied by themselves or as part of more sophisticated models. In the present paper,
we have focused on the study of the oscillabolastic curve, which is particularly interesting for its ability
to describe dynamic oscillatory phenomena.

Stochastic models are obtained from deterministic ones by including in them certain random
fluctuations that can significantly influence the evolution of dynamic phenomena. This work considers
two oscillabolastic stochastic models that retain the properties of the original curve and can be applied
to practical situations. Two strategies have been proposed for managing the original differential
equation and producing two different stochastic models. One of them is a Gaussian process while the
other is a derivative of the lognormal process with exogenous factors.
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One of the main problems derived from such models is the development of inference strategies.
The estimation of the parameters by maximum likelihood implies the numerical resolution of two
systems of equations. We have proposed a methodology to obtain initial solutions for the parameters
based on the main traits of the model, namely the presence of an oscillabolastic trend (in the lognormal
case) or an asymptotic oscillabolastic behavior (in the Gaussian case). To apply these procedures,
a simulation study has been carried out taking into account a variety of error measures. This simulation
study confirms the validity of the methodology proposed.
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