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A cross-disease meta-GWAS 
identifies four new susceptibility 
loci shared between systemic 
sclerosis and Crohn’s disease
David González-Serna1, Eguzkine ochoa1,2, Elena López-isac1, Antonio Julià  3,  
Frauke Degenhardt4, Norberto ortego-centeno5, Scleroderma Genetic Consortium†,  
Timothy R. D. J. Radstake6, Andre franke  4, Sara Marsal3, Maureen D. Mayes  7, 
Javier Martín1,60 & Ana Márquez1,8,60*

Genome-wide association studies (GWASs) have identified a number of genetic risk loci associated 
with systemic sclerosis (SSc) and Crohn’s disease (CD), some of which confer susceptibility to both 
diseases. In order to identify new risk loci shared between these two immune-mediated disorders, 
we performed a cross-disease meta-analysis including GWAS data from 5,734 SSc patients, 4,588 CD 
patients and 14,568 controls of European origin. We identified 4 new loci shared between SSc and CD, 
IL12RB2, IRF1/SLC22A5, STAT3 and an intergenic locus at 6p21.31. Pleiotropic variants within these 
loci showed opposite allelic effects in the two analysed diseases and all of them showed a significant 
effect on gene expression. In addition, an enrichment in the IL-12 family and type I interferon signaling 
pathways was observed among the set of SSc-CD common genetic risk loci. In conclusion, through the 
first cross-disease meta-analysis of SSc and CD, we identified genetic variants with pleiotropic effects 
on two clinically distinct immune-mediated disorders. The fact that all these pleiotropic SNPs have 
opposite allelic effects in SSc and CD reveals the complexity of the molecular mechanisms by which 
polymorphisms affect diseases.

Systemic sclerosis (SSc) and Crohn’s disease (CD) are complex disorders characterized by a chronic deregulation 
of the immune response, in which both genetic and environmental factors are implicated in their development1,2. 
SSc is a chronic connective tissue disease characterized by vascular injury, excessive collagen deposition and 
autoantibody production1. CD is a chronic autoinflammatory disorder affecting all segments of the gastrointesti-
nal tract, the most common being the terminal ileum and colon2.

Even though both diseases present apparently unrelated phenotypic traits, several lines of evidence support 
the existence of a shared genetic component between them. First of all, results from large-scale genetic studies 
performed in each individual disease have shown a genetic overlap between SSc and CD, with several genetic 
risk loci common to both conditions, such as IRF8, TYK2, STAT4, and GSDMA/IKZF33,4. In this regard, the 
human leukocyte antigen (HLA) region represents one of the most important shared genetic risk loci across 
immune-mediated diseases5, being in fact the major risk locus associated with SSc and showing a moderate effect 
on CD3,4. Additionally, there is an important fibrotic component in both diseases. Even when fibrosis is one of the 
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primaries hallmarks of SSc, mainly involving skin, lungs, and gastrointestinal tract, it also appears in CD and is 
one of the main reasons that leads to a necessity of surgical intervention in the distal part of the small intestine6,7. 
In this line, it has been observed an increased risk of idiopathic pulmonary fibrosis (IPF) in individuals affected 
by inflammatory bowel diseases, especially in CD patients8. Fibrosis of the lungs is one of the most common 
complications in SSc and, indeed, both IPF and SSc lead to interstitial lung disease (ILD)9. Furthermore, the gas-
trointestinal tract is the internal organ most frequently involved in SSc pathogenesis, which is affected in nearly all 
patients, sharing this affection with CD. In most of the cases, this affection involves the upper part in SSc and the 
distal part in CD. However, small bowel and colorectal involvement affects 40–88% and 20–50% of SSc patients, 
respectively10,11, being the distal part of small bowel and colorectum the most affected areas in CD2. Thus, these 
observations suggest that SSc and CD are likely to share common pathogenic mechanisms of disease.

Since the advent of high-throughput genotyping platforms, including genome-wide association studies 
(GWASs) and the Immunochip approach, more than 15 and 140 genetic risk loci have been identified in SSc and 
CD, respectively3,4. However, a significant percentage of the total genetic background of both diseases remains 
unknown. The low prevalence of immune-mediated disorders represents an obstacle to the identification of 
their genetic component, making it difficult to recruit well-powered cohorts necessary to detect association sig-
nals with weak effects. Cross-phenotype meta-analyses of GWAS or Immunochip data have partially overcome 
this problem. In recent years, several studies have combined genotypic data from different immune-mediated 
phenotypes to search for shared risk alleles, either combining paired phenotypes12–17 or multiple diseases with 
common etiology18–20. This strategy has allowed the identification of new susceptibility loci shared among 
immune-mediated diseases.

Since no studies analysing the genetic overlap between SSc and CD have been performed so far, the aim of the 
present study was to thoroughly explore this common genetic background by combining GWAS data from both 
disorders.

Methods
Study population. A series of 5,734 patients diagnosed with SSc, 4,588 CD patients, and 14,568 healthy 
controls of European origin were enrolled in this study. Figure 1 and Supplementary Table S1 detail the cohorts 
included in the different stages of the study.

SSc GWAS dataset. In the discovery phase, we included GWAS data from 2,281 SSc cases and 4,410 healthy 
controls from Spain, USA, Germany and the Netherlands, all of them included in a previous study21 (see 
Supplementary Table S1).

CD GWAS dataset. The CD discovery cohort was composed of 1,988 cases and 2,978 healthy controls from the 
UK, included in the CD GWAS performed by the Welcome Trust Case Control Consortium (WTCCC)22 (see 
Supplementary Table S1).

Replication cohorts. To confirm the results obtained in the discovery phase, genotyping data of the selected 
polymorphisms were obtained from GWAS data from 3,453 SSc cases and 3,602 controls, and 2,600 CD cases and 
3,578 controls. Specifically, the SSc replication cohort included three independent case/control sets from Spain, 
USA, and Italy. Regarding the CD cohort, case/control sets were recruited from Spain, USA and Germany, all of 
them from previously published GWASs23–25.

Figure 1. Schema of the study design.
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The control population consisted of unrelated healthy individuals that were recruited in the same geographical 
regions as patients. Genotyping information of each cohort is included in Supplementary Table S1.

All SSc cases were defined based on the 1980 preliminary and 2013 classification criteria of American College 
of Rheumatology26,27 or based on the presence of at least 3 out of 5 CREST (calcinosis, Raynaud´s phenomenon, 
esophageal dysmotility, sclerodactyly, telangiectasias) features typical for SSc. All CD cases were defined based on 
a confirmed diagnosis of CD using conventional endoscopic, radiological and histopathological criteria28.

Ethics committee approval. Approval from the Comité de Bioética del Consejo Superior de 
Investigaciones Científicas and the local ethical committees of the different participating centers (University 
of Texas Health Science Hopkins University Medical Center, Baltimore, USA; Fred Hutchinson Cancer 
Center-Houston, USA; The Johns Center, Seattle, USA; VU University Medical Center, Amsterdam, The 
Netherlands; Leiden University Medical Center, Leiden, The Netherlands; Radboud University Nijmegen Medical 
Centre, Nijmegen, the Netherlands; University Medical Center Utrecht, Utrecht, the Netherlands; Vall d’Hebron 
Hospital, Barcelona, Spain; 12 de Octubre University Hospital, Madrid, Spain; Santa Creu i Sant Pau University 
Hospital, Barcelona, Spain; Hospital Marqués de Valdecilla, Santander, Spain; Hospital Clínico Universitario San 
Cecilio, Granada, Spain; Hospital Virgen de las Nieves, Granada, Spain; Hospital Virgen de la Victoria, Málaga, 
Spain; Hospital Carlos Haya, Málaga, Spain; Hospital Virgen del Rocío, Sevilla, Spain; Hospital Reina Sofía, 
Córdoba, Spain; Hospital Clínico San Carlos, Madrid, Spain; Madrid Norte Sanchinarro Hospital, Madrid, Spain; 
Hospital La Princesa, Madrid, Spain; Hospital Puerta de Hierro Majadahonda, Madrid, Spain; Hospital General 
Universitario Gregorio Marañón, Madrid, Spain; Hospital Clinic, Barcelona, Spain; Hospital Parc Tauli, Sabadell, 
Spain; Hospital Del Mar, Barcelona, Spain; Hospital Universitari Mútua Terrasa, Barcelona, Spain; Hospital 
Universitari de Bellvitge, Barcelona, Spain; Hospital General de Granollers, Granollers, Spain; Hospital General 
San Jorge, Huesca, Spain; Hospital Central de Asturias, Oviedo, Spain; Hospital Xeral-Complexo Hospitalario 
Universitario de Vigo, Vigo, Spain; Hospital Universitario Cruces, Barakaldo, Spain; Hospital Virgen del Camino, 
Pamplona, Spain; Hospital Universitario Miguel Servet, Zaragoza, Spain; Hospital Universitario de Canarias, 
Tenerife, Spain; Hospital General Universitario de Valencia, Valencia, Spain; Hospital Universitari i Politecnic 
La Fe, Valencia, Spain; Hospital Universitari Doctor Peset, Valencia, Spain; Hospital Universitario A Coruña, 
La Coruña, Spain; Hospital Universitario La Paz, Madrid, Spain; Hospital Universitari Germans Trias i Pujol, 
Badalona, Spain; Hospital General de Alicante, Alicante, Spain; Hospital Clínico Universitario, Zaragoza, Spain; 
Hospital Clínico Universitario, Santiago de Compostela, Spain; Complejo Hospitalario de León, León, Spain; 
Hospital de Cabueñes, Gijón, Spain; University Hospital Cologne, Cologne, Germany; Charité University 
Hospital, Berlin, Germany; University of Erlangen-Nuremberg, Erlangen, Germany; University of Hannover, 
Hannover, Germany; Spedali Civili, Brescia, Italy; Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico 
di Milano, Milan, Italy; Università degli Studi di Verona, Verona, Italy; Università Politecnica delle Marche and 
Ospedali Riuniti, Ancona, Italy; Christian-Albrechts-University, Kiel, Germany) and informed written consent 
from all participants were obtained in accordance with the tenets of the Declaration of Helsinki. Genome-wide 
association data from Crohn’s disease patients from UK and USA were obtained from public data repositories, the 
Wellcome Trust Case Control Consortium (WTCCC) repository and the database of Genotypes and Phenotypes 
(dbGaP), respectively.

Quality control and imputation. All GWAS data were quality control (QC) filtered prior imputation. 
Single-nucleotide polymorphisms (SNPs) and subjects with success call rates lower than 95% were removed using 
PLINK V.1.9 (www.cog-genomics.org/plink/1.9/)29. SNPs showing a deviation from the Hardy–Weinberg equilib-
rium (P-value < 0.001) and minor allele frequencies <1% were also excluded. In addition, one subject per dupli-
cate pair and per pair of first-degree relatives was also removed via the Genome function in PLINK V.1.9 with a 
Pi-HAT threshold of 0.4. Principal component analysis (PCA) was performed in order to identify and exclude 
outliers based on their ethnicity by using PLINK V.1.9 and the GCTA64 and R-base under GNU Public license 
V.2. We estimated the first five PCs using ~100.000 quality-filtered independent SNPs (r2 < 0.15). Outliers were 
defined as individuals who deviated more than six standard deviations from the centroid of their population. The 
number of SNPs before and after QC for each cohort is summarized in Supplementary Table S1.

Imputation was performed using the Michigan Imputation Server30. The software SHAPEIT31 was used in 
order to estimate haplotypes, and the European panel of the Haplotype Reference Consortium r1.132 was used as 
the reference panel for both SSc and CD genotype data in the discovery phase. Individual chunks of 50.000 Mb 
were used to carry out the imputation, covering whole-genome regions with a probability threshold for merging 
genotypes of 0.9, thus maximizing the quality of the imputed variants. Imputed data were also subjected to the 
above-mentioned QC filters in PLINK V.1.9. The total number of SNPs imputed for each cohort is summarized 
in Supplementary Table S1.

Statistical analysis. Statistical analyses were performed with PLINK V.1.9.

Discovery phase. Each GWAS case/control cohort was independently analysed by logistic regression assuming 
an additive model with the first five PCs as covariates, as a correcting method for population stratification. Odds 
ratios (ORs) and 95% confidence intervals (CIs) were calculated according to Woolf ’s method. Subsequently, SSc 
datasets were meta-analysed by the inverse variance-weighted method. Sex chromosomes were excluded from 
the analysis.

In order to detect common signals for SSc and CD with the same effect, either risk or protection, we 
selected SNPs that showed a P-value < 1 × 10−5 in the SSc-CD meta-analysis and showed nominal significance 
(P-value < 0.01) with each disease separately, as well as no significant heterogeneity in the SSc meta-analysis 
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(Cochran’s Q test > 0.05 and heterogeneity index I2 < 50%). To identify common signals for SSc and CD with 
opposite effect, the direction of association was flipped in the CD dataset (1/OR instead of OR). Again, we 
selected SNPs that showed a P-value < 1 × 10−5 in the SSc and CD meta-analysis and that were associated with 
each disease separately at a P-value < 0.01.

The strongest associated SNP within each locus was selected for the replication phase. Genetic variants were 
annotated using variant effect predictor (VEP)33 and their previous association with SSc and/or CD was explored 
using Immunobase (http://www.immunobase.org) and the GWAS catalog34.

Replication phase. Replication cohorts were analysed by logistic regression for the previously selected SNPs. 
Finally, combined analysis of the SSc and CD discovery and replication cohorts was performed using the inverse 
variance method. After the replication phase, we considered as statistically significant those signals that showed 
a P-value < 0.05 in each disease separately in the replication phase and a P-value < 5 × 10−8 in the SSc-CD 
cross-disease meta-analysis including both discovery and replication datasets.

The statistical power of the SSc-CD combined meta-analyses (both discovery and discovery + replication) 
was determined as described by Skol et al.35. In the discovery cross-disease meta-analysis, the statistical power to 
detect an association at a P-value of 1 × 10−5 (MAF = 20% and OR = 1.2) was 80%. In the discovery + replication 
meta-analysis, the statistical power to detect an association at a P-value of 5 × 10−8 (MAF = 20% and OR = 1.2) 
was 100%.

Independence analysis. For those SSc-CD common loci identified for which an association with any of the ana-
lysed diseases was already reported, we evaluated the independence between pleiotropic signals and genetic var-
iants previously associated with SSc and/or CD at the genome-wide significance level according to Immunobase 
and the GWAS Catalog. For this purpose, we used LDlink36, a tool that provides linkage disequilibrium (LD) data 
between polymorphisms across a variety of ancestral populations. Only the European ancestry was taken into 
account for the LD analysis.

In addition, since one of the shared genetic risk loci was located close to the extended major histocompatibility 
complex (MHC) region, we decided to test the independence between our new common signal and the main SSc 
and CD HLA associations. For this, we imputed SNPs, classical HLA alleles and amino acids across the extended 
MHC region (29,000,000 to 34,000,000 bp in chromosome 6) using the SNP2HLA method with the Beagle soft-
ware package37 and the Type 1 Diabetes Genetics Consortium reference panel, composed of 5,255 individuals of 
European origin38. HLA imputation of the CD discovery cohort was not possible due to the low coverage of this 
region included in the platform used for the genotyping of this dataset. For the SSc discovery cohort, the presence 
of independent effects within the extended MHC region was examined using a stepwise logistic regression by 
conditioning on the top independent signals.

Functional annotation. We assessed the potential regulatory function of the SSc-CD common suscepti-
bility variants identified by means of in silico expression quantitative trait locus (eQTL) analysis using Haploreg 
v4.1. Haploreg v4.1 is a tool for exploring annotations at variants on haplotype blocks, providing a large collection 
of regulatory information, capable of the functional assignment onto any set of variants derived from GWAS or 
sequencing studies39. We only included eQTLs found in tissues with relevance in SSc and/or CD.

Protein-protein interaction and gene set enrichment analyses. In order to identify interactions 
among proteins encoded by SSc and CD common risk loci, we decided to construct a protein-protein interaction 
(PPI) network using the STRING database V.11.040. This software provides a critical assessment and integration 
of PPI, including functional (indirect) as well as physical (direct) associations.

Gene ontology (GO) was applied to perform an enrichment analysis in order to determine whether certain 
biological processes are overrepresented in the set of SSc-CD common genes.

Results
Meta-analysis and replication. Following QC and imputation, we performed a meta-analysis consider-
ing both diseases as a single phenotype. A total of 5,994,231 SNPs overlapped between all GWAS datasets in the 
discovery phase.

When we combined GWAS data from SSc and CD under the assumption that alleles had the same effect 
in both diseases, genetic variants at 13 loci fulfilled the replication criteria (p-value < 1 × 10−5 in the SSc-CD 
meta-GWAS and p-value < 0.01 in each disease-specific analysis) (Fig. 2A and Supplementary Table S2). One of 
these common signals was located within the IRF8 region, a known genetic risk locus shared between SSc and 
CD, and, therefore, it was not considered in subsequent analyses. On the other hand, we performed the analysis 
under the assumption that alleles had opposite directions in both diseases, identifying 12 loci that fulfilled all 
criteria for the replication phase (Fig. 2B and Supplementary Table S3).

To confirm these associations, the strongest associated SNP within each locus was selected for validation in 
additional sample sets. According to the criteria established for the replication analysis (genome-wide signifi-
cance in the combined analysis including both discovery and replication sets, and nominal statistical significance 
in each disease-specific replication analysis), we identified a total of 4 genetic variants showing a pleiotropic effect 
in SSc and CD: two intronic variants located within IL12RB2 and STAT3, a SNP close to IRF1, and an intergenic 
variant at 6p21.31 located between ZBTB9 and BAK1 (Table 1). It is remarkable that an opposite allelic effect in 
both disorders was observed for all these new common signals.

Three of these shared risk loci have been previously associated with one of the analysed diseases, IL12RB2 
with SSc and IRF1 and STAT3 with CD. Shared genetic variants at the IRF1 and STAT3 loci identified in our study 

https://doi.org/10.1038/s41598-020-58741-w
http://www.immunobase.org


5Scientific RepoRtS |         (2020) 10:1862  | https://doi.org/10.1038/s41598-020-58741-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

were linked to those polymorphisms previously associated with CD (r2 > 0.40). In the case of IL12RB2, it is an 
established genetic risk locus for SSc but, in addition, the IL23R gene, located within this same genomic region, is 
a known susceptibility gene for CD. However, LD analysis evidenced that the pleiotropic variant identified in our 
study (rs6659932) was independent of the IL23R SNPs previously associated with CD (Supplementary Table S4).

On the other hand, the intergenic variant at 6p21.31 (rs68191) is located close to the extended MHC region. 
Considering this, we decided to test the independence between our new common signal and the main HLA asso-
ciations observed in the SSc and CD discovery cohorts. In the case of CD, independence between signals could 
not be checked due to the low coverage of the HLA region. Regarding SSc, two independent signals were observed 
after conditional regression analysis, HLA-DPB1*1301 (p = 1.77 × 10−19, OR = 2.79) and HLA-DRB1*1104 
(p = 1.21 × 10−12, OR = 1.83). After controlling for these two classical alleles, the SSc-CD common signal 
remained significant in the SSc discovery cohort (p-value = 8.15 × 10−3; conditioned p-value = 2.78 × 10−2).

Functional effect on gene expression. Subsequently, we used the HaploReg database to explor wether 
the most strogly associated polymorphism of each shared locus acted as an eQTL. As shown in Supplementary 
Table S5, all the pleiotopic SNPs identified in our study appeared to affect gene expression levels. Shared genetic 
variants at the IL12RB2 (rs6659932) and STAT3 (rs4796791) loci affected expression levels of IL12RB2 and STAT3, 
respectively, whereas the pleiotropic SNP of the IRF1 locus (rs2548998) acted as an eQTL for IRF1 and SLC22A5. 
Interestingly, the intergenic polymorphism at the MHC extended region (rs68191) affected gene expression levels 
of TAPBP.

Protein-protein interaction and enrichment analysis. Finally, we also evaluated the connectivity at 
the protein interaction level among the genetic risk loci shared between SSc and CD, including genes whose 
expression levels were affected by the pleiotopic polymorphisms identified in our study, that is IRF1, SLC22A5, 
STAT3, IL12RB2 and TAPBP, as well as loci associated in previous studies with both SSc and CD, including 
STAT4, TYK2, IRF8, GSDMA and IKZF3. GSDMA and IKZF3 belong to the same LD block, however GSDMA has 
been set as the most probable candidate gene of this locus in SSc and IKZF3 for CD41,42. Thus, we decided to keep 
both genes for PPI and enrichment analyses.

The PPI network involved 9 of the 10 common proteins included in the analysis, except for SLC22A5 (Fig. 3). 
We observed a strongly significant PPI enrichment (p-value < 1 × 10−6), indicating that these proteins have more 
interactions than would be expected for a random set of proteins of similar size.

Figure 2. Manhattan plot representing the results of the cross-disease meta-analysis including systemic 
sclerosis and Crohn’s disease, considering same allelic effects (A) and opposite allelic effects (B). Loci selected 
for replication are marked in black. Significance threshold at genome-wide level is marked with a red line. 
Established significance threshold for the cross-disease meta-analysis (p < 1 × 10−5) is marked with a blue line.
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To further evaluate this connection, we performed a gene ontology enrichment analysis in biological processes. 
In this regard, we observed 29 statistically significant over-represented biological processes (p-value < 0.05). The 
most significantly over-represented pathways were related to interleukin-mediated signaling, especially those 
related with the IL-12 family and the type I interferon signaling pathway (Table 2).

Discussion
Through the first comprehensive study of the genetic component shared between SSc and CD, we have identified 
four loci that contribute to suceptibility to both disorders. Of these, one had not been previously associated with 
any of the diseases under study (an intergenic locus at 6p21.31), whereas the remaining three represent estab-
lished genetic risk loci for one but not the other condition.

Although all these pleiotropic SNPs are located in non-coding regions, functional annotation indicated that 
they act as regulatory variants affecting expression levels of either the gene were they mapped or close genes in cell 
types or tissues of relevance in the pathogenesis of SSc and/or CD. In this regard, pleiotropic variants appeared to 
influence expression levels of the IL12RB2, IRF1, SLC22A5, STAT3, and TAPBP genes (Supplementary Table S5). 
Most of these genes are key players of the immune response: IL12RB2 encodes a subunit of the IL-12 receptor 
complex implicated in Th1 differentiation; STAT3 encodes a transcription factor that is essential for the differen-
tiation of Th17 cells; IRF1 encodes a transcriptional regulator of type I interferon (IFN) and IFN-inducible genes; 

Discovery Replication Discovery + Replication

SSc CD SSc-CD SSc CD SSc-CD

Region Gene SNP Test Allele P-value OR P-value OR P-value P-value OR P-value OR P-value

1p31.3 IL12RB2 rs6659932 A 2.47E-08 1.3 1.33E-04 0.79 1.54E-11 3.75E-03 1.13 3.44E-02 0.86 1.08E-11

5q31.1 IRF1 rs2548998 G 1.55E-03 1.27 3.09E-07 0.79 1.13E-08 2.00E-02 1.08 1.18E-03 0.88 2.18E-11

6p21.31 ZBTB9/BAK1 rs68191 C 8.15E-03 0.84 8.70E-06 1.39 8.33E-07 2.09E-04 0.82 1.56E-02 1.15 1.07E-10

17q21.2 STAT3 rs4796791 T 1.34E-03 1.13 1.52E-04 0.84 9.86E-07 3.85E-02 1.08 1.85E-02 0.90 2.52E-08

Table 1. Loci associated with a genome-wide significant threshold after the cross-disease meta-analysis of 
systemic sclerosis and Crohn’s disease. Results of the discovery and replication analysis for each individual 
disease and of the combined meta-analysis (discovery + replication) are shown. SNP, single-nucleotide 
polymorphism; SSc, systemic sclerosis; CD, Crohn’s disease.

Figure 3. STRING protein-protein interaction network connectivity among genetic risk loci shared between 
systemic sclerosis and Crohn’s disease.
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and TAPBP is crucial for optimal peptide loading on the MHC class I molecule. In addition, the pleiotropic var-
iant affecting IRF1 levels also regulates the expression of SLC22A5, which encodes an organic cation transporter 
involved in the active cellular uptake of carnitine.

Interestingly, PPI analysis evidenced a number of non-random connections among the SSc-CD common 
genes, including both shared risk loci previously described and comon genes identified in our study, which indi-
cates overlap among the pathways involved in the pathogenesis of these two disorders. Specifically, the IL-12 
family signaling pathways, including IL-35, IL-23, IL-12, IL-21, and IL-27-mediated signaling, were particularly 
compelling. This family of cytokines plays a crucial role in shaping immune responses, differentiation of naïve 
T cells towards different types of effector cells, as well as in the regulation of effector cell functions43. Moreover, 
the type I interferon signaling pathway was also enriched among the set of SSc-CD common genes. An increased 
expression and activation of IFN-inducible genes, known as interferon signature, has been reported in SSc44 and 
several interferon regulatory factors (IRFs), including IRF5, IRF4, and IRF8, have been involved in its susceptibil-
ity14,45, thus supporting the role of IRF1, previously associated with CD but not with SSc, as a new susceptibility 
gene for this last condition.

Considering these results, both IL-12 family and type I interferon signaling pathways could represent inter-
esting therapeutic targets for both SSc and CD. Indeed, ustekinumab, a monoclonal antibody to the p40 subunit 
common to IL-12 and IL-23, has been recently approved in the EU and the USA to treat patients with CD and, 
therefore, this drug could be repositioned to treat SSc. However, it should be advised that all the pleiotropic 
variants identified in our study showed opposite allelic effects in the two analysed disorders, thus highlighting 
the complex effects that shared associations have on disease outcomes. This could be due to the fact that con-
sequences of genetic variants are influenced by the cell type. For example, as previously indicated, the shared 
genetic variant at IL12RB2 influenced IL12RB2 gene expression levels; however, whereas the minor allele (which 
conferred risk to SSc in our study) correlated with an increased gene expression in whole blood, the major allele 
(which conferred risk to CD) had the same effect (increased IL12RB2 expression) in fibroblasts, according to 
GTEx data. In addition, the effect on gene expression of the pleiotropic SNP located within the 5q31.1 region 
was also cell type specific, influencing IRF1 expression levels in lymphoblastoid cells and SLC22A5 levels in other 
tissues, and, therefore, this SNP could have a different biological implication in both diseases. Indeed, higher 
expression levels of OCTN2, the protein encoded by SLC22A5, have been found in inflamed regions of the intes-
tinal epithelium compared with non-inflamed areas, and a role of this protein in the intestinal homeostasis has 
also been reported46; whereas, given the relevance of the type 1 interferon signaling pathway in SSc, the IRF1 
gene seems a more plausible candidate to be involved in SSc susceptibility. Considering this, it is possible that an 
effective treatment for SSc could have a detrimental effect on CD, and conversely. As previously mentioned, we 
observed discordant associations for variants located in genes implicated in IL-23 and Th1 differentiation path-
ways. In this context, IL-17-specific antibody therapy, effective in psoriasis and with promising effects on SSc47,48, 
has been proven to exacerbate CD49. This could be due to a deficient Th17 activation in CD owing to mutations 
in STAT3, which could lead to hyper-IgE syndrome, typically associated with extracellular fungal and bacterial 
infections50. Interestingly, according to our results, the STAT3 rs4796791 variant confers protection to CD and 
risk to SSc, which could lead to an exacerbate reaction in CD patients carrying this variant when treated with 
anti-IL17 therapy.

Interestingly, it has been reported a reduced incidence of CD in patients with SSc51,52. Although the causes of this 
phenomenon are not clear, our results suggest that identical genetic risk factors could have different or even opposite 
functional effects in both diseases. These ‘flip-flop’ associations have been extensively observed across different com-
parative analyses53. In this regard, a cross-disease meta-analysis including CD and type 1 diabetes54 identified two 
variants, such as IL27 rs4788084 and IL10 rs3024505, with opposite effects in these two conditions. Furthermore, 
a meta-analysis of 6 different immune-mediated disorders showed that 14% of overlapped variants were discord-
ant regarding the risk allele across diseases55. These results suggest that predisposition to related diseases may be 

Biological pathway GO term p-value* Count in gene set Shared genes involved

Interleukin-35-mediated signaling pathway GO:0070757 1.44E-05 3 of 11 STAT4, STAT3, IL12RB2

Interleukin-23-mediated signaling pathway GO:0038155 1.44E-05 3 of 9 STAT4, STAT3, TYK2

Cytokine-mediated signaling pathway GO:0019221 6.16E-05 6 of 655 STAT4, STAT3, IL12RB2, TYK2, 
IRF1, IRF8

Interleukin-12-mediated signaling pathway GO:0035722 3.20E-04 3 of 47 STAT4, IL12RB2, TYK2

Type I interferon signaling pathway GO:0060337 3.60E-04 3 of 65 TYK2, IRF1, IRF8

Interleukin-21-mediated signaling pathway GO:0038114 6.00E-04 2 of 8 STAT4, STAT3

Interleukin-27-mediated signaling pathway GO:0070106 8.30E-04 2 of 11 STAT3, TYK2

Positive regulation of transcription by RNA polymerase II GO:0045944 4.90E-03 5 of 1104 STAT4, STAT3, IRF1, IRF8, IKZF3

Positive regulation of interleukin-12 production GO:0032735 5.90E-03 2 of 34 IRF1, IRF8

Receptor signaling pathway via JAK-STAT GO:0007259 7.90E-03 2 of 41 STAT4, STAT3

Alpha-beta T cell differentiation GO:0046632 9.70E-03 2 of 50 STAT3, IRF1

Table 2. Most significantly enriched Gene Ontology (GO)-biological processes in the set of genetic risk loci 
shared between systemic sclerosis and Crohn’s disease. *p-values determined by binomial statistic test and 
adjusted by false discovery rate correction. New loci shared between systemic sclerosis and Crohn’s disease are 
in bold.
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regulated by different dose balance of genes and genomic elements in relevant biological pathways, as well as how 
these differences affect a specific cell type, as previously mentioned. In this sense, differences across cell types in tran-
scription regulation mediated by epigenetic factors such as methylation, histone modifications or long non-conding 
RNAs could influence these opposite effects for the same allele in different diseases56. It is, therefore, crucial to know 
the cell types in which genetic variants are acting to be able to elucidate their role on the pathogenesis of the disease.

Data availability
Results of the SSc-CD cross-disease meta-analysis are available from the corresponding author on reasonable request.
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