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Abstract: Vegetation index time series from Landsat and Sentinel-2 have great potential for following
the dynamics of ecosystems and are the key to develop essential variables in the realm of biodiversity.
Unfortunately, the removal of pixels covered mainly by clouds reduces the temporal resolution,
producing irregularity in time series of satellite images. We propose a Bayesian approach based on a
harmonic model, fitted on an annual base. To deal with data sparsity, we introduce hierarchical prior
distribution that integrate information across the years. From the model, the mean and standard
deviation of yearly Ecosystem Functional Attributes (i.e., mean, standard deviation, and peak’s
day) plus the inter-year standard deviation are calculated. Accuracy is evaluated with a simulation
that uses real cloud patterns found in the Peneda-Gêres National Park, Portugal. Sensitivity to
the model’s abrupt change is evaluated against a record of multiple forest fires in the Bosco Difesa
Grande Regional Park in Italy and in comparison with the BFAST software output. We evaluated the
sensitivity in dealing with mixed patch of land cover by comparing yearly statistics from Landsat
at 30m resolution, with a 2m resolution land cover of Murgia Alta National Park (Italy) using FAO
Land Cover Classification System 2.

Keywords: Time-Series; MSAVI2; cloud cover; Ecosystem Functional Attributes (EFA)

1. Introduction

The primary productivity of plants is an essential variable both for the biodiversity (as a driver
of the ecosystem’s carrying capacity) and climate (as a driver of evapotranspiration, as well as being
directly involved in carbon fixation). In situ measurements of Gross Primary Productivity (GPP) require
large and costly infrastructures to estimate the CO2 fluxes from an eddy covariance measurement of
net ecosystems exchange.

Satellite data is used to obtain measurements on a large temporal and spatial scale. However,
as the signal is highly disturbed by the atmosphere, even the comparison among surface reflectance
values (i.e., atmospherically corrected) from the same geographical location across different images
entails multiple sources of errors. Fortunately, the error is nearly unbiased [1] and has a normal
probability distribution, probably caused by the multiple effect of small source of errors (i.e., in the
atmosphere correction, in pixel geometry, etc.).
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Several tools were developed to both correct noise from the time series of satellite data and to
build robust summary statistics based on seasonality and changes, generally by partitioning values in
a seasonal component and a trend component [2]. Different nonparametric and parametric approaches
are considered in literature. Within a nonparametric approach, is possible to use climatological statistics
where, selecting a yearly time-partitioning (i.e., day, month, and season), the mean value is estimated
across the years to define a seasonal expectation. Deviation from expectation is subsequently analysed
with a moving average or a trend line in order to extract the long term change, whereas residuals
are considered as noise [2,3]. Another nonparametric approach is based on fast Fourier transform
called Singular Spectrum Analysis [2,4], whereas the spectral analysis is used to estimate the seasonal
component. Within the parametric approaches, the most common methods are based on a harmonic
model where a linear regression with a sinusoidal predictor and a trend predictor are used to
decompose the time series signal. The oldest implementation of Harmonic ANalysis of Time Series
(HANTS) ([5,6] focused on the Top of Atmosphere signal with fixed seasonality and trend. A more
recent implementation as Breaks For Additive Season and Trend (BFAST) [7], allows changes both
within seasonal and trend components. Finally, noticing that some seasonal statistics are difficult
to estimate with few harmonics in case of abrupt seasonal changes, such as the start of the growing
season at higher latitudes, Timesat [8] also added, beside harmonic model, a symmetric Gaussian and
double logistic model to the tool-kit. Both new models are nonlinear and the user needs to explicitly
decide how many growing seasons will need to be considered. All these tools assume that the time
series need to have regularly spaced information and have limited or no capacity to handle missing
data. This regularity assumption apparently seems reasonable, given that satellites feature a highly
regular passing time. However, in case of localities with a seasonal cloud cover, this assumption
does not hold. In nonparametric approaches, irregularities of sampling cause noise that overcomes
the signal [3]. Often, to fulfil the regularity assumption, which is essential for the cited parametric
approaches, data are interpolated using a filtering procedure such as Savitzky–Golay. Nevertheless,
the risk is not only to alter the true signal in case of missing data covering a key moment of one or
more growing seasons, but also to alter the error estimation and therefore to inflate the confidence
in the results given. The free available time series from Landsat and Sentinel-2 satellites are often
irregular due to low-quality filtering due to the presences of clouds, shadows and aerosols. In some
locations they are very sparse, with less than 10 unevenly-spaced observations per year (e.g., in the
Peneda-Gerês National Park in Portugal). This is a very typical situation in cloudy regions, such as in
the tropics and high latitudes, where few yearly observations are usually available [9].

To overcome the limit of pairing non parametric interpolation followed by parametric seasonal
statistics estimation, it is necessary to build tools for time series analysis that are able to handle sparse
and uneven data. In this article, we propose a new method to remove noise and produce seasonal
statistics from time series of satellite images of vegetation indices. As a general approach, we selected
harmonic models that are intrinsically more flexible to handle time series with a different number
of growing seasons per year (typical in the Mediterranean biome [10]). To test the effectiveness of
the method, we assessed its effect on the key descriptors of the seasonal cycle of vegetation indices,
i.e., Ecosystem Functional Attributes (EFA) as a set of essential variables that synthesize seasonality
variations [11], which are flexible enough to be applied in different regions worldwide.

2. Materials

2.1. Study Areas

Three sites were selected in order to evaluate the proposed approach (Figure 1). First, we selected
the Peneda Gerês National Park, because it presents an intense permanent cloud cover and indeed
the need to analyse this region is the initial reason why this method was developed. The region
is characterized by mid-altitude mountains with peaks of less that 1600 m above mean sea level
that constitute a barrier for the clouds between plain of Northern Portugal over the ocean and the
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continental Spanish plain. The cloud pattern of this region was used to set up a simulation. The second
site is Murgia Alta National Park, a plateau between 300 and 600 m above mean sea level in central
Apulia (Italy), which was selected due to the availability of a very high resolution (2 m) land cover
map based on phenology features. This data was used to validate the phenology recovery of our
Landsat time series. Third, the Bosco Difesa Grande Regional Park is located a few kilometres south of
Murgia Alta National Park; it was selected for the repeated fire events that occurred in a short period
of time over a small area (see Figure 2). It is worth of notice that a very few pixels were hit more than
twice across the four fire events of 2011, 2012, 2013 and 2017, with the two small fires of 2011 and 2013
happening in a near location with no overlap, and in the region which was not hit by the fire in 2012.

Figure 1. View of the three study sites over the backgrounds of Terrametrics TrueEarth 2019 images
taken from google map services. In red the areas of interest, while in green the boundary of the
protected areas. Peneda Gêres (a) is show in UTM29N projection, while Murgia Alta and, just south,
Bosco Difesa Grande are shown in panel (b) using UTM33N projection. (c) The location of the area of
interest are shown within European continent.

2.2. Satellites Time Series

All satellite scenes belonged to Landsat 5, 7 and 8 collections , considering atmospherically and
geometrically corrected data from USGS (U.S. Geological Survey) (Collection 1 Level2 tier 1). The tier 1
images are already intercalibrated across the Landsat sensors, therefore we used them directly without
further calibration. The fact that some regions of a given scene could have erroneous atmospheric
correction should not impact our analysis, given that only temporally correlated errors, not spatially
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correlated ones, can impact pixel-based approach. Details on data stacks are given in Table 1. All three
stacks had pixels masked because of the Scan Line Corrector failure of Landsat 7.

(a) Times a pixels was hit by a fire in the period
of interest

(b) Estimated fire extension by combined dNBR data and in situ maximal envelope

Figure 2. Summary of the four fires that hit the “Bosco Difesa Grande” region as defined by dNBR
analysis (difference of the Normalized Burning Index) and bounded by the fire cadastral delimitation.
(a) The four fires are overlapped to observe the number of different fire event that hit each pixel area;
(b) the view of each fire event. Very few experimented 3 fire events.

Table 1. Dataset used in this work.

Name Locality Scenes n◦ X Cells n◦ Y Cells Years Span

Peneda Gerês 66 2521 2458 2005–2010
Murgia Alta 538 1122 488 2000–2018

Bosco Difesa Grande 192 87 96 2010–2017

3. Methods

3.1. Harmonic Models

The seasonal component of a vegetation index (VI) signal can be modelled with a simple harmonic
model (see Equation (1)) that tracks the shape of seasonality with increasing fidelity as much K
harmonic are added. Typically, three harmonics are used: annual, biannual and triennial. The model
has two vector parameters: the vector A of amplitudes and the vector δ of phases for the different
sinusoidal function. This model is not linear and needs to be reparametrized as in Equation (2),
to become linear where the two new parameters γ and θ do not have such a straightforward meaning.
To correctly parametrize the K integers we use the coefficient f that describes the length of a calendar
year in the same time unit of t, number of days since the 1st of January of the first year of the time series.
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)
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(
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)
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To apply the equation to time series, we need to add to the seasonal component the baseline value
a0 and ε the noise component (3). To increase the robustness to the fitting procedure of the model,
we assume that the baseline value is constant within a calendar year. This is a simplification in respect
to reality and to other proposed models [7], but it allows to avoid the risk of multiple optimal solutions,
which is possible when the sample could be uneven and sparse. In the first approximation, we force
the seasonality to be constant across the time series, allowing only mean value to change: the Yearly
Anomaly Model (YAM, Equation (4)). At a later stage, we loosen this assumption allowing each year
to have a different seasonality: the Yearly Seasonal Model (YSM, Equation (5)). In this model Γ and Θ
are matrices with K columns (number of harmonics) and Y rows(number of years).

VIt =a0 + h(γ, θ, t) + εt (3)

VIt =a0 +
Y

∑
y=1

ay + h(γ, θ, t) + εt (4)

VIt =
Y

∑
y=0

(
ay + h(Γy, Θy, ty)

)
+ εt (5)

Summary Descriptors of the Seasonal Dynamics

The interest of summary statistics is to produce compact representation, easy to compare across
different pixels that have different patterns of missing data and overlap different habitats. The
three ecosystem functional attributes (Alcaraz-Segura et al. 2006, 2009, 2013) are the annual mean
value (an estimator of annual primary production), the annual standard deviation (a descriptor of
seasonality of carbon gains) and the day of the year of the maximum vegetation index value (an
indicator of the growing season). These set of metrics are easy to apply to different habitats, as
they are based on a general statistical property of a series of data and, at the same time, they are
ecologically relevant [11–13]. Furthermore, each EFA has the advantage to report different information
from each other, allowing the three dimensions to produce an effective summary of the time series
information. The EFA were added with another dimension that measures change in phenology across
time: the interannual standard deviation of the period (see Formula (6)). This should summarize all
the information not captured yet by the yearly EFA and should be ecologically relevant being a proxy
for the stability of a patch of land in terms of primary productivity.

StdInter =
√

Var(VI)− E[Varyearly(VI)] (6)

where Var(VI) is overall variance of the Vegetation index time series, and E[Varyearly(VI)] is the mean
of the yearly variances of the time series.

3.2. Models Fitting

YAM is a linear model with such a moderate number of parameters to be estimated (2K + Y) that,
one or two points per year can be used to fit within a least square approach. On the contrary, although
perfectly linear, YSM would need at least 2K + 2 observations for each year. Further given that
parameters are yearly and not integrated across the time series, it is very likely that the estimate will
be with a large confidence interval and/or biased. In addition, in a least square framework, some EFA
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statistics derived from fitted values would have a confidence interval difficult to estimate, as is the
case of “day of maximum”.

To resolve this trade-off, we adopted a Bayesian approach for which it was possible, with a
hierarchical framework, to use informed prior for integrating information across time series years.
According to the approach, the uncertainties of statistics of the posterior distribution can be derived by
simply re-sampling from the subsequent distribution itself, taking into account not only the variance
of estimates, as in least square, but also the covariance between model parameters. The availability of
the covariance matrix allows a correct generation of modeled observations (i.e., parametric bootstrap)
from which is possible to estimate accurate expectation and error for the summary statistics. Generally,
Bayesian approaches are hampered by a computation burden, given that no general analytic solution
exists and therefore numerical approaches are taken. Fortunately, an analytic solution was proposed
for an additive linear model, using a conjugated prior approach [14]. A python library [15] that
implements the method within the framework of numpy and sklearn python modules is available.
The numpy library allows to make use of multicore computation, which proves to be essential for large
datasets as those in use in the Satellite Remote Sensing community.

The hierarchical strategy used to fit the YSM is displayed in Algorithm 1. First, a YAM model is
fitted on the full time series using a non-informative prior. A lightly informed prior is built from YAM
posterior to inform the YSM of each year: only Γ and Θ location and dispersion are used, while the a
parameter is left with a non-informative prior. The dispersion values are enlarged by multiplying them
by the square root of the total observation counts to simulate a pseudo-count of value 1. Second, data
are split per calendar year. For each block of observations, first, YSM is fit using the lightly informed
prior. Then, if the block under examination is not the first one, the YSM model already informed
with previous year data is updated with current year observations. Finally, a model with a simple
trend line model with no seasonality is fitted with non-informative prior. The three fitted models are
compared, using the estimate of the marginal likelihood within a Bayesian factor framework. A value
of 1.6 corresponding to the lower bounds value for “strong support” in the Jeffrey’s Bayesian factor
table is used as threshold. In case no fitted models reach this value of support, the model informed by
previous year is preferred.

Algorithm 1: Pseudocode of fitting strategy for the Bayesian model. YSM and YAM are the
harmonic model defined in the text, while TM is a simple trend model. When the model is fit
with no explicit prior definition a flat prior was used.

begin
Fit YAM model on full time series TS;
Relax posterior to get lightly informed prior;

foreach year in TS do

Fit YSM model with prior from previous year;
Fit YSM model with lightly informed prior;
Fit TM model that imply lost of seasonality;

Select best model with Bayesian factor;
Define prior of next year with best model posterior;
Extract Yearly Attributes from yearly posterior;

end
Extract Resilience Attribute from overall posterior;

end

The selected fitted model then is used to generate 500 time series replicates with a time frequency
of 15 days that will be used to estimate mean statistics and uncertainties on mean statistics, using
standard deviation over the replicates.
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3.3. Cost of Model Fitting

As for all data analysis for satellite remote sensing time series, computation efficiency is paramount
in order to make their application usable. The python libraries used (xarray, sklearn, and Bayesian
linear model), and how the functions are applied to the stack of data are all optimized in order to
make use of the parallelism implemented in the numpy matrix object. Nevertheless, an estimate of
summary statistics entails numerical simulations that could compromise the efficiency of the estimation
itself. We evaluated the impact of two simulation aspects (i.e., number of sampled days per time
series replicates and the number of replicates) and compared them with the change in time due to the
number of pixel history processed. All three parameters are linear in the range of values explored. The
first aspect has the same high slope than pixel history, and therefore it is costly. The second aspect,
i.e., number of replicates, is well handled by the library (see Figure 3) with a less steep slope. For
this reason, for the first aspect we chose lesser value, 36-yearly samples (one sample every 15 days),
whereas for the second aspect we chose a larger value of 500 replicates, in order to obtain more precise
EFA estimates.

Figure 3. Time of execution evaluation. The x-axis is relative at the value of the 3 different
parameters. When one parameter is changed the others are fixed to 36 and 500 for yearly sample and
replicates, respectively.

4. Results and Discussion

4.1. Selection of Vegetation Index

At a first approximation, the method is not addressed to a specific vegetation index and according
to a general inference framework it assumes that the noise is normal and that the error is homogeneous
(i.e., homoscedasticity). We can assume that the surface reflectance has an error which is approximately
normal and that it is homogeneous for a not too high value, as it is possible to infer from the plots in [1].
However, the normality and homoscedasticity of errors is not guaranteed to be preserved after the
index calculation. It is possible to estimate the expected uncertainties propagation for NDVI looking
at the derivative of the formula [16]. We followed the same approach, a sum of square derivative in
respect to both bands, using a symbolic derivative of the formula estimated with [17] for an MSAVI2
that has a very different Formula (7) but uses the same bands.

MSAVI2 =
(2NIR + 1 −

√
(2NIR + 1)2 − 8(NIR − RED))

2
(7)

To validate the theoretical approach, we also performed a simulation with 500 replicated, with
the addition of a Gaussian white noise with standard deviation of 0.01, a rounded value of the mean
standard deviations estimated in Table 1 for band 3 and 4 in [1]. Results are shown in Figure 4,
where it is possible to notice that theoretical expectation and simulation match each other. Slightly
higher dispersion in simulation is due to some negative values of reflectance that were not truncated.
Looking at theoretical expectation only, it is possible to observe that MSAVI2 produces a much more
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homogeneous outcome with all values ranging between 1 and 2.5 times the error of input data, with
the exception of the RED value of less than 0.1. On the contrary, NDVI, always ensuring the RED band
a value greater than 0.1, ranges between 0.5 and 14 times the input error, thus making a difference
in the expected standard error of 28 times across values of the same dataset. It is possible to observe
a ratio output/input noise less than 1 in NDVI at a higher value of surface reflectance because it
saturates at a higher level of vegetation cover [18], and thus representing another negative aspect of
the index.

Figure 4. Ratio between input and output noise for different values of surface reflectance NIR and
RED. In panels (a,c) data are relative to NDVI, while the others to MSAVI2. In panels (a,b) data are
obtained from numerical simulation with 500 replicates per pair of surface reflectance values, whereas
(c,d) resulted from the derivative approach.

This observation leads us to use MSAVI2 for the rest of the analysis and to suggest the user
of our approach to avoid normalized difference indices but seek more robust implementation of
band normalization.

4.2. Simulation of Cloud Cover Experiment

To evaluate the performance of our approach on sparse and uneven distribution, we selected a
subset of pixels in the Peneda Gerês dataset for which all observations were available. In this way,
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we selected 431 pixel series of 66 observations. We applied a 100 random cloud pattern found across
the dataset to each of the pixel series, and estimated EFA for each year of observation, using both our
method and the uncorrected data. Results are displayed in Figure 5, where the importance to correct
the data to obtain credible EFA is clear: corrected data have lower spread and expectation is unbiased.
The modelled data have some outliers farther away than raw data, but the five explored quantiles are
generally less spread than raw data.

(a) Yearly Mean and Standard deviation

(b) Yearly day of maximum estimation (c) Yearly observation counts

Figure 5. Distribution of difference between 423 EFA values across 6 years (2005–2010) in the Peneda
Gerês data set, estimated with a full set of observations and applying on them 100 different cloud
patterns. Estimates with modelled and raw data are respectively blue and orange. In subfigure (a–c) are
shown yearly mean and stardard deviation, day of the year of maximum and number of observation
per year, respectively.

4.3. Testing over Forest Fires

To test the method’s sensitivity to change in seasonality, the performance was evaluated in case
of events like forest fires, with a known date and a maximal extension. Two large fires and two
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smaller ones hit the region over the “Bosco Difesa Grande” (BDG) regional park from 2010 to 2017.
The official maximal extension was taken from the national fire cadastre [19] and was compared with
the results of a classical dNBR analysis (difference of the Normalized Burning Index in pre- and
post-fire images [20]), using as threshold a decrease of 0.27 of the index, corresponding to “medium
severity” or more (see also [21]). For the subsequent analysis, we considered the area that was hit by
fire at the intersection of the two masks. In fact, dNBR was flagging few pixels outside the cadaster’s
perimeter, probably due to some dry spots, while the cadaster is by construction an overestimated
area (the convex hull includes all burned patches). For this evaluation, we also took into consideration
the BFAST [7] program given that, differently from our approach, it explicitly models abrupt changes.
The program requires an evenly sampled time series with a fixed number of observations per year with
no missing data. We regularized the time series to 16 days, using a Savitzky–Golay filter, obtaining 182
scenes. We selected one year as the time between two breaking points, despite the advised value is
four years [2]. The outputs of the two programs are not directly comparable, given that our approach
produced statistics for each year, whereas BFAST produced statistics for each input date. We modified
our approach to identify on the fitted data the day with maximum decrease rate (ratio between
difference in fitted value and difference in time) per year and used this as an estimator of break to
compare it with BFAST. In the comparison (Table 2, see also Appendix A), our approach (indicated as
BM, also known as the Bayesian Model) shows much more favourable results both in terms of bias and
in terms of average deviation. The particularly bad results for the 2017 fire of BFAST (expected value is
422.1 days before true value, with standard deviation of value of 271.1) are probably influenced by the
scarce capacity to discriminate between two breaking points at about one year of distances to each
other: the growth following the 2012 fire ended in 2016 (first breaking point), but a second fire hit the
region in the following July (second breaking point), as shown in Figure 6.

2013
2014

2015
2016

2017
2018

Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Resampled

0.025-0.975
MedianMedian
Median 2010/11

Bfast est.

0.025-0.975

Fire

Median
Bfast est.

M
S

A
V

I

Figure 6. Summary of the Breaks For Additive Season and Trend (BFAST) reconstruction over the
pixel that experienced 2012 and 2017 fire based on dNBR analysis. In green the observation after
Savitzky–Golay filter, in dark red the median of the BFAST expectation, in cyan the median of pre-2012
expectation. Vertical dark red line represent BFAST estimation of breaking point, whereas bright red
is the actual fire event. Take note that median estimation and 2.5 and 97.5 quantile of breaking point
estimation overlap in the figure.
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The distances between the two events is approximately a year, and is therefore compliant with the
setting that we imposed, but BFAST preferred for all pixels involved to fuse the two events. Summing
the Trend and Seasonal components we built a BFAST expected value. From this, we built the same
summary statistics as those of our approach. First, we built a linear model where the fire history,
coded as four cipher binary variable, tried to predict the standard deviation across years estimated
with our method and BFAST on each pixel. The results were very similar across our approach and
BFAST, with both methods explaining 31.75% of variation. Second, for the 3-yearly EFA statistics, we
built a similar linear model only for the four years when fire event had happened. For each of the
four years we coded with 0 and 1 if the dNBR analysis had a decrease larger than 0.27, and added
as predictor also the year of observation treating it a categorical variable, and 2011 (the first year
of fire) was used as reference. Similar to the inter year standard deviation, the variance explained
between the two approaches is very similar as reported in this instance (Table 3): BFAST greater than
2% in predicting the mean value, while our method results greater than 3.5% and 2.5% in predicting
intra-year variation and day of maximum, respectively. Note that the negative coefficients for the
unburned part in 2012–2017 for the yearly mean statistics are due to the very bad spring of 2012 and to
the patch of old burned areas in the following years. Finally, we looked at the spatial and temporal
local variation of the estimates. Both approaches observed the pixels through time without taking into
account their respective spatial context, so in a good approach local variation should be much lower
than overall scenes variation. As far as statistics are concerned, we chose median of standard deviation
and we selected a 3 × 3 size kernel to define local neighbourhood. On the contrary, the standard
deviation estimated from a temporal moving window of 3 × 3 size, should give values not too low
compared to overall time variation. In fact, both approaches try to minimize a temporal variation,
so the method that leaves more variation is more sensitive to changes. We reported the median value
over the time series for the two approaches (Table 4). The result (Table 4) shows that our approach
produces less local spatial variability than BFAST per day of maximum estimated (the ratio kernel
std on total std is 0.207 versus 0.658 in BFAST), whereas for the other statistics our approach is only
slightly better. Looking at the temporal local variation again, our method proves to be more effective
in estimating the day of maximum with a higher local variation (0.643 versus 0.183). For the yearly
variation (“std intra”), BFAST has a slightly higher value (0.708 over 0.560) which is not caused by a
higher kernel variation, but by a lower overall variation.

Table 2. Bias and average deviation in days of the two methods (our proposed method, BM, and the
reference, BFAST) compared to the true date of fire over the pixel characterized by dNBR smaller than
−0.27, estimated using pairs of Landsat image before and after the known fire date. Negative value of
bias indicates the estimated date prior true date. In each case the nearest break was used to estimate
the statistics.

Bias Std
Method Fire Event BM BFAST BM BFAST

27 June 2011 33.3 118.2 51.2 196.1
30 June 2012 21.4 −29.9 47.6 110.6

15 August 2013 −17.7 15.7 62.5 245.6
12 August 2017 −3.1 −422.1 51.4 271.1
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Table 3. Results from 4 linear models for yearly mean and yearly standard deviation estimated with
our approach (BM) and BFAST that use year of observations and fire events (estimated from dNBR) as
predictors. We report the coefficient and the variance explained, adjusted by number of parameters
(Rsq adj).

mean_mean stdintra_mean maxpos_mean
BM BFAST BM BFAST BM BFAST

Intercept (2011:nofire) 0.330 0.322 0.090 0.080 144.206 145.140
2012:nofire −0.038 −0.053 −0.007 −0.006 −4.431 −13.457
2013:nofire −0.053 −0.041 −0.005 0.004 −8.722 3.898
2017:nofire −0.011 0.006 0.006 0.007 5.722 −8.013

fire −0.076 −0.069 −0.003 −0.000 −26.258 −29.640
2012:fire 0.023 0.029 0.004 0.011 13.924 34.929
2013:fire 0.071 0.077 0.012 −0.008 4.703 35.068
2017:fire 0.027 0.013 0.018 −0.006 19.348 26.071
Rsq_adj 0.162 0.182 0.048 0.013 0.065 0.041

Table 4. Spatial and time local variation of estimates across methods (our proposed ones, BM, and
BFAST), using standard deviation as metric. A kernel of 9 pixels and a moving window of 3 were used
respectively for space and time domains. For each summary statistic, the mean kernel, the overall and
the ratio of the two values are reported.

Space Time
BFAST BM BFAST BM

maxpos kernSD 18.289 5.945 1.247 4.490
TotSD 27.787 28.748 6.819 6.986
Rate 0.658 0.207 0.183 0.643

mean kernSD 0.021 0.021 0.027 0.022
TotSD 0.067 0.066 0.036 0.029
Rate 0.319 0.321 0.747 0.766

std intra kernSD 0.014 0.014 0.007 0.007
TotSD 0.036 0.038 0.009 0.013
Rate 0.386 0.378 0.708 0.560

std inter kernSD 0.006 0.006 - -
TotSD 0.036 0.038 - -
Rate 0.153 0.146 - -

4.4. Effect of Land Cover on Vegetation Phenology

To evaluate the quality of our prediction, we compared our results over the Murgia Alta National
Park based on Landsat7-8 at 30 m with a land cover prediction inferred with an object based approach
from four seasonal images of Worldview-2 (2 m resolution) taken in 19 April 2011, 5 October 2011,
22 January 2012 and 6 July 2012, respectively [22]. The landcover was inferred using the value of three
indices (NDVI, WBI, Brightness) across the four images and comparing them with knowledge rule on
the seasonality (natural phenology and agricultural practice) of the different land cover types. Finally,
texture features were used to solve the difference between grassland and trees, and open and close
land cover. For each 30 m tile, we calculated the proportion of the 16 land cover classes found within it,
and used those values as predictor for the 3 EFA dimensions of 2012. Three linear models were built:
one with EFA estimated from unmodified USGS data (Raw in Figure 7), one with data corrected with
our approach (noW in Figure 7), and finally a weighted linear model using both our estimate EFA and
the estimate error on the EFA estimate as weight (W in Figure 7). The weight was set as proportional
to the inverse of the estimated standard deviation. In case our numerical estimate was zero, we set
the weight as proportional to the inverse of one tenth of the smallest standard deviation recorded in
the stack for that EFA dimension. The results show (Figure 7) that, regarding intra-year variation,
the EFA dimension is best predicted by land cover mapping, closely followed by the mean values.



Remote Sens. 2020, 12, 83 13 of 16

Furthermore, in the consideration of the different estimates of EFA in terms of explained variance, the
relation among dimensions remains the same and systematically in each dimension the best estimator
results our approach, weighted by our estimates of error, whereas the least explained data are the EFA
obtained by unmodified USGS data.

Figure 7. Variance explained by land cover frequency over the summary statistics.

5. Conclusions

The aim of the present study is to show that the assumption of a regular time frame to collect
summary statistics that allows using observations that are irregular and sparse, and yet to obtain
robust and compelling statistics, as shown in our cloud cover experiment or in tracking multiple
fire event test case. Furthermore, we took the stance to produce yearly statistics that are partially
informed by long term observation. This is similar to what proposed in [23], but with the difference
that we approached it in an explicit Bayesian framework and not within a rigid system of rules based
on the number of observations available in each year. We are able to use the Bayesian framework
using the conjugate prior and with the assumption that noise is normally distributed. This is quite
a heavy assumption that holds on atmospherically corrected data, thanks to the multiple effect of
overestimation and underestimation that the correction entails, and if no heteroscedasticity is added
by the choice of the vegetation index as we show in the Section 4.1. The application of this method is
limited, in a region with complex orography, by the need to correct data topographic errors such as
shade or diffuse light. NDVI is said to be more robust to these effects, but to be used in this framework
it is necessary to include explicit weight. We plan to do this upgrade in the next release of this software.
Further development should go in the direction of producing statistics per object not per single pixel.
This would allow to produce a more robust prediction. The software is distributed as open source on
Github and will be available in the computation platform VLAB developed within the GeoEssential
project. The portability is guaranteed by the availability of docker environment.
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Appendix A. Detailed Comparison of Fire Breaks

Figure A1. Comparison between estimation of maximum change near the first fire event. Histogram
shows distribution of differences in day of the year between the actual fire event and the estimated one
on the pixel that dNBR analysis identified as hit by this fire event. In the lower part, the two images
show the spatial distribution in the two approaches. The projection used in the map is UTM zone 33N
and extent and orientation is the same as Figure 2a in the main text.

Figure A2. Same as Figure A1 for the second fire event.
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Figure A3. Same as Figure A1 for the third fire event.

Figure A4. Same as Figure A1 for the forth fire event.
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