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Abstract: Accurate tree cover mapping is of paramount importance in many fields, from biodiversity
conservation to carbon stock estimation, ecohydrology, erosion control, or Earth system modelling.
Despite this importance, there is still uncertainty about global forest cover, particularly in drylands.
Recently, the Food and Agriculture Organization of the United Nations (FAO) conducted a costly
global assessment of dryland forest cover through the visual interpretation of orthoimages using the
Collect Earth software, involving hundreds of operators from around the world. Our study proposes
a new automatic method for estimating tree cover using artificial intelligence and free orthoimages.
Our results show that our tree cover classification model, based on convolutional neural networks
(CNN), is 23% more accurate than the manual visual interpretation used by FAO, reaching up to 79%
overall accuracy. The smallest differences between the two methods occurred in the driest regions,
but disagreement increased with the percentage of tree cover. The application of CNNs could be
used to improve and reduce the cost of tree cover maps from the local to the global scale, with broad
implications for research and management.

Keywords: convolutional neural networks; data augmentation; deep learning; dry forest; forest
mapping; large-scale datasets; transfer learning

1. Introduction

Making accurate estimates of tree cover with affordable methods and available data across vast
regions is critical in many fields, such as carbon stocks and biomass estimation [1–5], biodiversity
assessment [6,7], ecohydrological modelling [8], Earth system modelling [9–11], forestry [12],
and ecological succession [13,14]. The role of tree cover in stabilizing the carbon cycle in drylands
is particularly relevant, give their capacity to buffer the seasonal and interannual variability in
precipitation [15]. Reducing uncertainties about the extent, distribution, and tree cover of forests
in dryland biomes [16,17] is particularly necessary given the huge contribution of drylands to the
interannual variability of the global carbon cycle [18]. To address these uncertainties, the FAO (Food and
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Agriculture Organization of the United Nations) recently conducted the Global Drylands Assessment
(GDA), a costly study that assessed the forest cover of dryland forests around the world [19].

FAO’s GDA expanded the extent of tree cover in dryland biomes by 9% [19] compared to previous
studies. Such differences in tree cover were particularly important for regions with a high proportion
of open forest (10–40% tree cover), but also for those areas with closed forest cover (≥40% tree
cover) [20]. Discrepancies in tree cover estimation can be explained by the different methodologies
used for estimating tree cover, which include images with different spatial resolutions (mainly very
high resolution versus mainly Landsat [21] or MODIS [22,23] images), and the use of different image
processing methods (automatic algorithms versus manual photointerpretation, [16,19–24]). FAO’s GDA
used the augmented visual interpretation method (implemented in the Collect Earth software) on very
high resolution images (VHR) from Google EarthTM. However, FAO’s GDA was controversial and
several studies raised many sources of uncertainty [25–29], mainly related to soil background effects
and to the biases and subjectivities introduced by hundreds of operators worldwide. In any case,
FAO’s GDA required a vast effort, which limits the use of this methodology for monitoring. Hence,
there still exists a need to develop more cost-effective, faster, less subjective and more precise methods
to reduce uncertainty in estimating tree cover in global drylands [30–32].

Recent studies have demonstrated the potential of convolutional neural networks (CNNs) in
remote sensing (e.g., [33]) for land cover mapping using aerial and satellite imagery (e.g., scattered shrub
detection [30], crop type classification, land use and land cover mapping, and change detection [34–38]).
CNNs, a type of deep-learning method within artificial intelligence, are the dominant and most accurate
methods in recognition and detection in images [39]. Since 2014, the quality of CNN architectures
has considerably improved thanks to deeper and broader networks [40]. CNNs such as GoogLeNet
Inception can achieve accuracies of over 90%, when trained on high quality datasets, operate under
strict memory and computational processing capacity constraints, and are increasingly used in remote
sensing [41]. For example, Inception v.3 [42], the model that won the ILSVRC 2016 (ImageNet Large
Scale Visual Recognition Competition), is now one of the most widely used CNNs.

Image classification based on deep learning has been proved to improve the speed and accuracy
reached by manual labelling [43–45]. CNNs have been used to classify different land uses with
well-defined classes in satellite images [46]. However, in continuous classifications, such as the
estimation of the percentage of tree cover, artificial intelligence based on deep learning has been used
in few studies (e.g., biomass estimation [47]). Our study proposes the use of CNNs to develop an
automatic method for quantifying forest cover in drylands using very high resolution satellite and
aerial images (such as the RGB images of the Earth surface provided by Google EarthTM software,
https://google.com/earth). Then, we compared the performance of our CNN-based method with the
approach of the FAO’s Global Dryland Assessment, which is based on manual visual interpretation
using Collect Earth by human technicians [19]. Our main hypothesis is that the estimation of tree
cover using a CNN-based model would be more accurate and less biased than FAO’s assessment using
manual visual interpretation. To do this, we first compared the effect of different strategies to design
the training datasets on the ability of the CNN in differentiating three tree cover classes (open, close,
and dense forest; see Figure 1 and Figure S2): i.e., (1) by including a non-forest auxiliary class with
many more samples than the targeted tree cover classes, (2) by considering samples along continuous
tree cover levels within each class versus samples taken only at a discrete tree cover level within each
class, and (3) by increasing the size of the training dataset. Second, we used the best trained CNN
model to quantify tree cover on a representative sample of plots in the FAO’s GDA. Finally, the accuracy
of tree cover quantification was compared between the CNN-based method and the FAO’s GDA [19].

The main contributions of this paper can be summarized as follows:

• Finding a dataset design and learning strategy that makes the CNN model correctly learn and
predict tree cover in orthoimages. In particular, we showed how (1) adding to the training dataset
an auxiliary “non-forest” class with many more samples than the targeted classes negatively
affected performance; (2) selecting training samples along the continuous range of tree cover
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percentages within each class achieved greater performance than selecting samples at a discrete
percentage; and (3) increasing the number of samples in the targeted tree-cover classes of the
training dataset did not significantly affect performance.

• Demonstrating as a proof of concept that CNN models can estimate tree cover in orthoimages
with better accuracy than FAO’s GDA based on manual land cover classification in Collect Earth.
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Figure 1. Workflow of the tree cover classification method of satellite images using convolutional
neural networks (CNNs). (1) Five training datasets were built from orthoimages extracted from Google
Maps in the plots of the Food and Agriculture Organization of the United Nations FAO’s Global
Dryland Assessment and from Northwestern Polytechnical University NWPU-RESISC45 (class labels
were independently verified by the authors). (2) Training phase, five CNN-based models were trained
using data-augmentation and transfer-learning techniques in TensorFlow (Inception-v3). The trained
models differentiated the classes: Open Forest, Closed Forest, Dense Forest, and Non-Forest (See
Supplementary Material, Figure S2). (3) Detecting phase, the best trained CNN-based model is applied
to 396 new images taken from FAO’s plots, stratified across zones and aridity levels to estimate their tree
cover class in different drylands globally. When image probability for belonging to a class was lower
than 50%, the prediction was considered as Uncertain. (4) Validation phase, 4a) 80% of images were
used to train the model, and the other 20% of images were dedicated for the internal validation and (4b)
the external validation was based on the 396 new images taken from FAO’s plots and independently
tagged by the authors. The performance assessment of the tree cover classifications was based on
Precision, Recall, and F1-measure.

2. Materials and Methods

The problem of estimating tree cover in global drylands with deep learning by means of an image
classification model was addressed as a proof-of-concept of how convolutional neural networks can
provide more accurate estimates of tree cover than visual photointerpretation made by humans. To build
the CNN-based model of tree cover, we used the Inception v.3 [42,43] image recognition model, one of the
most widely used CNNs (see Supplementary Material, Figure S1), with TensorFlow (Sections 2.3–2.5).
CNN-based models learn directly from image data, eliminating the manual determination of spectral
and spatial characteristics that define the classes of objects or units to be identified in the image (e.g.,
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tree cover classes). To compare CNN’s performance to FAO’s GDA photointerpretation through
Collect Earth [19], we assessed a representative sample of plots from FAO’s GDA, stratified across
12 geographical areas, four levels of aridity, and four levels of tree cover (Table S1), as in [19]. The 12
dryland regions were: Australia, Central Asia, Southeastern America, Southwestern America, Europe,
Horn of Africa, Middle East, North America, North Africa, Sahel, South Africa, and Southwest Asia.
The four aridity levels were based on the aridity index (AI: ratio between total annual precipitation
and potential evapotranspiration): hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI <

0.5) and dry subhumid (0.5 ≤ AI < 0.65)., The four tree cover classes were: Non-Forest (<10%), Open
Forest (10–40%), Closed Forest (41–65%), and Dense Forest (66–100%).

2.1. Workflow

To build the CNN-based method for tree cover estimation, we followed four phases (Figure 1):

(1) Database construction phase: five training datasets were built with examples of images with
different levels of tree cover, continuous and discrete approximations, and inclusion of auxiliary
class “Non-Forest” (see Section 2.2 and Supplementary Material, Archive S2).

(2) Training phase: training five CNN models based on Inception v.3 using two optimization
techniques, transfer learning, and data augmentation (see Section 2.3).

(3) Classification phase: classification of new 396 images with different tree cover in global drylands
(see Supplementary Material, Table S1 and Archive S3) with the built CNN-based model (see
Section 2.4).

(4) Validation phase: assessment of performance on the new images (see Section 2.5).

2.2. Datasets Design

Before building the training datasets for the CNN-based models, we compiled a global database
of very high resolution satellite and aerial RGB images from two sources:

• First, we downloaded 71,135 images from Google Maps corresponding to the FAO’s GDA 0.5 ha
forest and non-forest plots that were available at zoom 19 (eye altitude ~150 m and pixel ~0.5 m).
Download occurred between 1 and 13 December 2017 (see Supplementary Material, Archive S1).
In FAO’s GDA, each plot is georeferenced and tagged as forest or non-forest, with a tree cover
percentage, and with a climate and region of the world [19].

• Second, to increase the number of images in the “Non-Forest” class, we used the Northwestern
Polytechnical University NWPU-RESISC45 dataset [48], a set of publicly available reference
orthoimages for the classification of remotely sensed images, developed by NWPU. This
dataset contains 31,500 images with 45 different scene classes (i.e., land use, land cover, objects,
and infrastructure) with 700 images within each class. To build our global dataset, we removed all
images corresponding to the “chaparral” and “forest” classes and grouped the remaining classes.
We then reviewed all these images and filtered noisy ones. We obtained a total of 29,942 images
that met FAO’s criteria for Non-Forest (e.g., roads, rivers, beaches, urban areas, etc.).

Once the global database was compiled, we created five different training datasets to compare
the effect of five different learning strategies on the performance of the CNN-based model (Table 1).
The selection of forest images from our database was stratified across the different combinations of
regions, aridity levels, and tree cover levels used by FAO [19] (Supplementary Material, Table S1).
The five created datasets contained three tree cover classes: Open Forest, Closed Forest, and Dense
Forest (Figure S2). In the continuous strategy, we built each tree cover class by selecting training
samples along the continuous range of tree cover percentages. While in the discrete strategy, we built
each tree cover class by selecting samples only at a discrete percentage of tree cover (the 15%, 55%, and
95% levels were used to maximize the distance and contrast between classes, i.e., 40% difference in
tree cover percentage among them). We also included a “Non-Forest” class in two of the datasets (see
Section 2.4 for a description of the images contained in each dataset).
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Table 1. Five datasets created considering continuous or discrete training strategy for the forest
classes and with or without the “Non-Forest” class. In the continuous strategy, the forest classes were:
Open Forest with tree cover 10–40%, Closed Forest with tree cover 41–65%, and Dense Forest with
tree cover 66–100%. In the discrete strategy, the forest classes were: Open Forest with tree cover 15%,
Closed Forest with tree cover 55%, and Dense Forest with tree cover 95%). Number of samples (plots)
used to train the CNN-based models (third column). See Table S1 in Supplementary Material for more
information about the images used in the classes.

CNN-Based
Model type Tree Cover Classes Number of Samples Total Samples (n)

Continuous
Tree cover 10–40% 38

108Tree cover 41–65% 40
Tree cover 66–100% 30

Tree cover 15% 48
Tree cover 55% 31Discrete
Tree cover 95% 29

108

Continuous

Non-Forest 29,942

29,942 + 108Tree cover 10–40% 38
Tree cover 41–65% 40
Tree cover 66–100% 30

Non-Forest 29,942
Tree cover 15% 48
Tree cover 55% 31Discrete

Tree cover 95% 29

29,942 + 108

Continuous
Tree cover 10–40% 113

286Tree cover 41–65% 85
Tree cover 66–100% 88

2.3. Training Phase: CNN-Based Model Parameters

To build a CNN-based model able to accurately estimate tree cover in a given input image,
we evaluated different training strategies. In particular, we considered continuous and discrete
learning. In the continuous learning, the model is trained to estimate an interval of tree cover, e.g.,
Open Forest with tree cover from 10% to 40%. In discrete learning, the model is trained to estimate the
exact tree cover, e.g., Open Forest with 15% tree cover. We also evaluated considering a “Non-Forest”
class in the training. In total, we designed five datasets (see Table 1).

For this, we obtained five models by training Inception v.3 on the five created datasets. Several
studies have shown that increasing the size of the dataset using data augmentation improves the
performance of the CNN-based models [49,50]. These techniques have been proposed to reduce the
requirement of a large dataset for model training [43–45]. We configured the model parameters by
training the last two fully connected network layers in our dataset using a learning rate of 0.001 and a
decay factor of 16 every 30 epochs. As an optimization algorithm, we used RMSProp with a momentum
of 0.9 and epsilon of 0.1.

In the training phase, data-augmentation technique was used to artificially increase the number of
samples [50]. Data augmentation apply specific transformations to the original samples, but preserving
their labels to obtain samples slightly different from the original ones [50]. In particular, a 50% increase
in brightness, half-random rotation, random rotation with a factor randomly selected between 0º and
359º, random cropping, and random scale of image size were used. In addition, we used transfer
learning to reuse the knowledge acquired by the CNN model in a first problem to apply it to another
related problem. Transfer learning is analogous to the development of knowledge in humans, which
never starts from scratch, as it is always done from previous knowledge. We used the pretrained
weights on ImageNet database to initialize the Inception v.3 model. ImageNet has 1.28 million images
for 1000 different classes of objects [51].
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2.4. Optimizing a CNN-Based Model to Detect Tree Cover Classes

In the classification phase, the CNN-based model provided for each image the probability (0–100%)
of belonging to each class. The prediction of CNN-based model for each image had to be 50% or higher
probability to be used in further analysis. Otherwise, we considered the prediction to be uncertain and
was not taken into account.

To determine which of the five CNN-based models was the best estimated tree cover, each of
them had a dataset built differently (see below in this section). To assess whether the “continuous
tree cover” versus “discrete tree cover” categories increased the model’s performance during the
training phase, we tested two different strategies for constructing tree cover categories. In the first
case, we defined continuous categories considering the following three tree cover intervals: 10–40% for
Open Forest, 41–65% for Closed Forest, and 66–100% for Dense Forest classes [52]. In the case of the
discrete categories, we selected three tree cover classes with maximum separation of tree cover with
40% constructed as images of Open Forest with 15% tree cover, Closed Forest with 55%, and Dense
Forest with 95%. Therefore, there were five possible combinations (five different) regarding the type
of CNN-based model training datasets (Table 1). In addition, we evaluated whether a Non-Forest
class with tens of thousands of training images facilitates the classification of tree cover in drylands.
Finally, success rates were compared between the CNN-based model trained without a Non-Forest
class and with a Non-Forest class that contained 29,942 non-forest images from the NWPU-RESISC45
dataset [48].

2.5. Validation of the CNN-Based Model

To validate the CNN-based models, we built a final dataset of the 396 images from 71,135 Google
Maps VHR images of FAO’s GDA plots. We selected the images with samples stratified across different
combinations of regions, aridity levels, and tree cover, according to FAO [19]. Thus, to get answers
to these combinations in the 71,135 images downloaded with zoom 19 from Google Maps, we tried
to choose a minimum of three images and a maximum of seven. However, this was not always
possible, resulting in a dataset with a total of 396 images (Table S1 and Archive S3). Two evaluators
(authors) established Forest or Non-Forest tags and tree cover for each image in the external dataset.
The evaluators were trained to perform the visual interpretation of the tree cover level of the images.
Therefore, the labels assigned by them were used in the external validation as a reference for a
correct classification. Hence, two validation procedures were performed: internal and external. First,
the internal validation used the performance obtained by classifying 20% of the images from the
training dataset (while 80% was used in the training phase). Second, external validation was carried
out independently of the training dataset.

To evaluate the performance of both CNN-based models, we used these metrics [30]: precision
(Equation (1)), recall (Equation (2)), and F1-measure (Equation (3)):

Precision =
True positives

True positives + False positives
, (1)

Recall =
True positives

True positives + False negatives
, (2)

F1−measure = 2 ×
Precision × Recall
Precision + Recall

, (3)

where false positives represent the images that were classified by the models but actually corresponded
to another class, true positives represent the images that were correctly classified by the model, and false
negatives represent the images not detected by the model. In simple terms, the high positive predictive
value means that the model returned substantially better tree cover classes, while the high sensitivity
means that the model returned most of the actual tree cover. The F1-measure provides a balance
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between sensitivity and precision. We used five-fold cross-validation strategy to evaluate our approach
and the baseline on the test dataset.

3. Results

3.1. Effect of CNN Training Strategies on Performance to Estimating Tree Cover in Drylands

The lowest F1-measure for tree cover classification was observed in the two models trained with
the datasets that included the Non-Forest class. Regarding the models trained on datasets of the same
size that did not include a Non-Forest class (rows 2 and 3 in Figure 2), the CNN-based model with
continuous categories obtained a higher F1-measure than the CNN-based model trained with discrete
categories. The improvement in F1-measure thanks to the use of continuous categories in the training
dataset was large (up to 6%) in Dense forest, null (0%) in Closed forest, and small (2%) in Open forest
(Figure 2).
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Figure 2. F1-measure of the four CNN models trained and FAO assessment. X-axis shows the
F1-measure in percentage. Y-axis represents the experiments of different CNN-based models with the
classes Open forest (tree cover 10–40%), Closed forest (tree cover 41–65%), and Dense forest (tree cover
66–100%).

The increase in the size of the training dataset improved model performance. The most accurate
CNN-based model was obtained without the Non-Forest auxiliary class, using continuous tree cover
classes, and a larger number of training samples (see Table 1). This model reached the highest
F1-measure for Open Forest and Dense Forest, 71% and 79%, respectively. The CNN-based model with
the largest number of samples showed an increase in the F1-measure compared to the CNN-based
model with a smaller number of samples, up to 1% for Open Forest, and Dense Forest (Figure 2).

In summary, the FAO’s GDA manual photointerpretation method using Collect Earth [19] always
showed lower accuracy than the CNN-based model for the selected dataset in all tree cover classes.
For Open, Close, and Dense Forest classes according to the best CNN-based model, the respective
F1-measures were higher (71%, 53%, and 79%) than FAO’s assessment (54%, 30%, and 52%) (Figure 3
and Table S2).
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Figure 3. Tree cover of the 359 plots of 0.5 hectare (initial dataset 396 without 37 plots of uncertain class
with score <50%) assessed in this study according to the CNN-based method proposed in this study.
Yellow, green, and blue for Open Forest (tree cover 10–40%), Closed Forest (tree cover 41–65%), and Dense
Forest (tree cover 66–100%), respectively. Drylands aridity map from UN Environment Programme
World Conservation Monitoring Centre UNEP-WCMC: Hyperarid (Aridity Index AI < 0.05), arid
(0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5), and dry subhumid (0.5 ≤ AI < 0.65).

3.2. Differences between the Best CNN-Based Model and FAO’s Global Dryland Assessment

Full consensus of correctly estimated tree cover classes between the best CNN-based model
and FAO’s GDA assessment only occurred in 79 plots (Figure 4), 22% of the total dataset (Table 2).
The number of correctly estimated tree cover classes just by CNN-based models was higher (129) than
the number correctly estimated just by FAO’s GDA (65).
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Figure 4. Consensus on tree cover results between FAO’s Global Dryland Assessment in Bastin et al. [19],
our CNN-based method, and ground truth (GT). Blue, green, red, orange, and brown for GT and FAO
and CNN, (GT and CNN) not FAO, (GT and FAO) not CNN, GT not (FAO and CNN), and GT not FAO
not CNN, respectively. Drylands aridity map from UN Environment Programme World Conservation
Monitoring Centre UNEP-WCMC: Hyperarid (Aridity Index AI < 0.05), arid (0.05 ≤ AI < 0.2), semiarid
(0.2 ≤ AI < 0.5), and dry subhumid (0.5 ≤ AI < 0.65).
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Table 2. Consensus of the estimated tree cover class in 359 plots (396 without 37 plots with uncertain
class with score <50%). GT is ground truth, CNN is the best results of our CNN-based model, and FAO
is the FAO’s Global Dryland Assessment from Bastin et al. [19].

Combinations of Data N. of
Consensus

N. of
Disagreement

Consensus
Percentage

Disagreement
Percentage

GT and FAO and CNN 79 280 22.0 78.0
(GT and CNN) not FAO 129 230 35.9 64.1
(GT and FAO) not CNN 65 331 16.4 83.6
GT not (FAO and CNN) 95 264 26.5 73.5
GT not FAO not CNN 130 229 36.2 63.8
FAO and CNN 100 259 27.9 72.1

Hyperarid 4 17 1.1 4.7
Arid 27 55 7.5 15.3
Semiarid 33 88 9.2 24.5
Dry subhumid 36 99 10.0 27.6

Regarding aridity gradient, the disagreements between FAO’s GDA assessment and the best
CNN-based model were 4.7%, 15.3%, 24.5%, and 27.6% of F1-measure in hyperarid, arid, semiarid,
and dry subhumid, respectively (Table 2).

4. Discussion

4.1. CNNs to Estimate Tree Cover in Drylands

Our results showed that the automatic classification of tree cover in satellite VHR RGB images
in drylands with CNNs was more effective than the manual photointerpretation method of Collect
Earth used by FAO’s GDA, which employed hundreds of operators. The greater performance of
CNNs compared to human visual interpretation has also been reported in other studies (e.g., [43–45]).
Our results call for further improvements in our CNN method by using more images in the training
dataset and increasing their quality (e.g., spatial resolution) and representativeness in all global
environmental gradients.

Many studies show how deep-learning classification is a powerful tool for land cover and crop
types using remote sensing data [53,54], detection of individual trees in RGB images [55], identification
of tree species related to forest disturbance with very high resolution multispectral images [56],
and detection of firs damaged by bark beetle in unmanned aerial vehicle (UAV) images [57]. However,
the studies to detect the percentage of land use surface, is addressed by segmentation methods
such as Mask-RCNN [58] with high computational cost [59]. In this study, tree cover estimation is
approached from a simple classification method [42] with better results than manual methods [19]. In
addition, we observed that increasing the training data set improves the accuracy of the classification
(e.g., [60,61]); however, our results showed that increasing the training data on the tree cover estimation
problem, increasing training data by 165%, only improved the F1-measure to 1% in two of the three
classes studied (Tree cover 10–40% and Tree cover 66–100%).

Intermediate tree cover (Closed Forest class) was worse estimated both by the Collect Earth
manual approach and CNN-based methods compared with low tree cover (Open Forest) and high
tree cover (Dense Forest). This is due to their intermediate position between the Open Forest and
Dense Forest classes, with similarity for both classes. In fact, many studies only use two forest density
categories, such as open and dense forest (e.g., [62–64]), even for assessing transitional forests [65]
or even just one closed forest class [66]. This similarity of our Close Forest class to the surrounding
Open and Dense forest classes could confuse the identifiable patterns of Closed Forest with the other
two classes by the CNN-based models. In addition, the comparison between the FAO’s GDA method
and the best CNN-based model could have involuntary classification errors, due to human failures in
the photointerpretation of the plots or to an update of the images in Google Maps (between FAO’s
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assessment and ours) that would show changes in tree cover. Since the accuracy (F1-measure) of FAO’s
GDA tree cover estimation is relatively low [26–28], we should not expect high consensus with any
method that has high accuracy. If a high consensus exists, it would imply that the new method is as
inaccurate as FAO’s GDA [19].

The CNN-based model was more effective when the training dataset did not include a Non-Forest
class, which can be understood as a decrease in background noise [67]. So, the learning was more
oriented towards the proposed goal: the quantification of the tree cover of forest (e.g., [68,69]).
The CNN-based models trained with continuous categories showed a high F1-measure probably
because they were trained with more diverse and varied examples to characterize each class of tree
cover, except the Closed Forest class, as previously discussed. The CNN-based models trained with
discrete categories presented low F1-measure probably due to the variability between the training
samples was lower than using continuous categories.

4.2. Limitations and Challenges in Tree Cover Mapping

The main limitation found in this work was of a technical nature. Despite the current increase
in the number of very high resolution satellite sensors (e.g., [70–72]), there are still many parts of the
Earth’s surface that are not yet covered by VHR images (e.g., remote areas). For example, there is
low availability of VHR images in Africa while high availability in Australia [73]. This means that
we could not design a larger training dataset for each class (even if we used data augmentation and
transfer learning) in CNN-based models [74]. Other technical difficulties for the application of CNNs
on satellite images to estimate tree cover at the global scale are the vast amount of data to handle [75],
and the need for graphics processing unit (GPU) servers to efficiently train the CNN models [76].

Traditionally, forest cover is often estimated by surrogates of vegetation structure (e.g., leaf area
index, phytolith index [77]). Many studies have assessed tree cover from local to global scales through
the use of normalized difference vegetation index (NDVI) images from the MODIS (moderate resolution
image spectroradiometer) and Landsat satellite sensors, in both cases with high accuracies [15,18,20,22]..

In addition, as a complement to these methods, CNN-based methods could provide new
information for a more accurate estimate of tree cover and, subsequently of net carbon gains [78],
biodiversity [79], or forest health [80]. A global application of our CNN-based model on VHR satellite
images to estimate tree cover in drylands could greatly complement traditional tree cover mapping
methods [16,20,22]. Increased tree-cover estimation accuracies would also help to characterize forest
areas affected by environmental and anthropogenic changes (e.g., [81,82]), or to set priorities for
protecting biodiversity from global change [83–85]. The use of CNNs is useful due to their automatic
character; once built and trained, it can be used as a classifier of new images without another training
phase. In addition, CNNs have the favorable characteristic of being able to learn and reuse learning from
one image to another [49], this characteristic makes them versatile at a planetary scale. For example,
the application of CNN-based model of tree cover detectors on VHR satellite images could be used
to through a global community involved as part of the Group on Earth Observations–Biodiversity
Observation Network (GEOBON) initiative on essential biodiversity variables from satellite remote
sensing [86].

5. Conclusions

Dry forests have global importance. However, there is still high uncertainty about their extent and
tree cover. Our research shows how the development and implementation of a new free and automatic
tools using CNN-based models on very high resolution and free aerial and satellite RGB imagery could
be used to quantify the tree cover of forests in global drylands. Compared to Collect Earth manual
method used in the FAO’s Global Drylands Assessment, the CNN-based model has demonstrated
greater accuracy (by 23% better) and speed. We encourage further development and application of this
technology in future works at local, regional, continental, or global scales to increase the accuracy of
forest tree cover estimation in drylands, from researchers to organizations (e.g., FAO). More accurate
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tree cover mapping based on CNN models would positively impact many fields, from biodiversity
conservation to carbon stock estimation, ecohydrology, erosion control, or Earth system modelling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/343/s1,
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class) of the training dataset. Image data: Google, Maxar, and NWPU-RESISC45 dataset. Archive S1: Metadata of
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contains Id, UpperLeft and Downright coordinates, Zoom, Region, Aridity level, Class (Forest/Non-forest), and
Tree cover. Archive S2: Metadata of training dataset of continuous larger sample CNN-based model with very
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