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ABSTRACT

against cancer has arisen as one of the main challenges for
humanity. This is largely due to the annual increase of the amount
of people who suffer from any type of cancer. The growth in the life
expectancy, the unhealthy lifestyle or the pollution, are possible fac-
tors for this increase. For that, scientists and researchers are focused
on the study and comprehension of the development of this genetic
disease. The treatment and analysis of biological data coming from
different omics sources are helping to address the study of cancer from
different perspectives, with the purpose of achieving an early diagnosis
and increase the life expectancy and the survival rate. Moreover, the
consolidation and the cost reduction of Next Generation Sequencing
technologies and platforms has lead to a notable increase in the preci-
sion, quality and quantity of the omics studies and the available data.
In addition to this, thanks to the use of machine learning techniques
applied to the study and evaluation of omics data, the search of groups
of relevant biomarkers or possible gene signatures is tackled in forms
impossible until now, due to the dimensionality of the problem.

On this basis, the main objective of this thesis is the search of rele-
vant biomarkers at gene expression level, by using the integration of
heterogeneous transcriptomic sources for different cancer pathologies.
To carry out this search, heterogeneous public data from different
databases have been gathered in order to find relevant biomarkers. Fur-
thermore, through the use of advanced feature selection and machine
learning techniques, relevant biomarkers are evaluated with the aim of
discovering their potential to discern the state of a patient who suffer
from cancer. All of this accompanied by a biological enrichment of the
relevant genes for each case of study, making use of the literature. As
culmination of this thesis, the design and implementation of a novel
and public tool named as KnowSeq has been carried out. KnowSeq
was designed with the purpose of yielding to the expert in bioinfor-
matic and computational biology scope, an automatic tool to perform
complete gene expression analyses in an easy and flexible way. The
tool also counts with an advanced machine learning evaluation process,
as well as an automatic biological enrichment for the final expressed
genes.
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RESUMEN

contra el cancer se ha establecido como uno de los prin-
cipales retos de la humanidad. Esto es debido al aumento afio
tras afio del nimero de personas que padecen algtn tipo concreto de
cancer. El aumento de la esperanza de vida, los malos habitos de vida
o la contaminacién son factores ha tener en cuenta en este crecimiento.
Por ello, la comunidad cientifica e investigadora tiene en uno de sus
puntos de mira el estudio y comprensién del desarrollo de esta en-
fermedad multifactorial. El tratamiento y anélisis de datos biolégicos
provenientes de las diferentes 6émicas existentes ayuda a abordar el
estudio del cadncer desde diferentes perspectivas, para asi tratar de
buscar nuevas formas de diagndstico precoz y aumentar la esperanza
de vida y supervivencia de los pacientes. Ademads, con la implantacién
y abaratamiento de las tecnologias y plataformas Next Generation
Sequencing, la precision, calidad y cantidad de los estudios se ha incre-
mentado notablemente, permitiendo paulatinamente el avance de la
sociedad hacia la medicina personalizada o de precisién. A todo esto
se le afiade el uso de técnicas de aprendizaje automético aplicadas al
estudio y evaluacién de datos 6dmicos, el cual ha permitido llevar a cabo
la biisqueda de grupos de biomarcadores o posibles huellas génicas
que antafio eran inviables por la dimensionalidad del problema.

Bajo estas premisas, el objetivo principal de esta tesis es la busqueda
de biomarcadores a nivel de expresiéon de gen, mediante la integracién
de fuentes heterogéneas de datos transcriptémicos para diferentes
patologias de céncer. Para llevar a cabo dicha biasqueda, se han recolec-
tado datos publicos y heterogéneos de diferentes Bases de Datos para
realizar su integracién y analisis de expresion diferencial en busca de
biomarcadores relevantes. Ademads, mediante el uso de técnicas avan-
zadas de seleccion de caracteristicas y aprendizaje automatico, dichos
biomarcadores son evaluados con el fin de saber su potencial a la hora
de discernir el estado de un paciente. Todo ello, acompafiado de un
estudio biolégico a nivel de literatura del conjunto final de genes desta-
cados en cada caso. Como colofén de esta tesis, se ha llevado a cabo el
disefio e implementacién de una herramienta actualmente ptublica en
el lenguaje R llamada KnowSeq. Dicha herramienta se disefi6 con el fin
de brindar a los expertos en el &mbito de la bioinformaética una man-
era de automatizar, bajo un solo paquete software, todos los procesos
implicados en los anélisis de expresion de gen.
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cancer is one of the most deadly worldwide diseases.

For this reason, the number of biological data available to carry
out analyses is growing exponentially. As a result, the number of
studies and researches that try to find relevant biomarkers is gradually
increasing too. With this enormous quantity of biological data, it is
clear the necessity of using Machine Learning techniques to analyse

and process them, and extract information and knowledge from them.

In particular, the application of different Machine Learning methods
can assist in finding hidden relations and relevant biomarkers never
seen before.

However, the computational cost to process great amounts of genomic
data can be considerable. To deal with it, it is highly recommendable
to use optimization techniques and specific parallelization hardware
such as computer clusters, and

It is important to highlight that this trend continues, and that the

amount of biological data will keep on growing in the near future.

In view of these circumstances, the future of the bioinformatics and
computational biology scope is moving forward with the application
of Machine Learning and high performance computing approaches.
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1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

For several decades, cancer has been one of the most studied diseases
due to its high mortality rate. Although thanks to the research and
medical advances, nowadays the disease has the best survival rate ever,
there does not exist a real cure for cancer yet. For that, cancer still holds
the second position in the most deadly diseases worldwide ranking
with an estimated number of death in 2018 of 9.6 million people, only
behind cardiovascular diseases [1]. The only possibility to significantly
increase the cancer survival rate is achieving early diagnosis. However,
the diagnosis is usually done when the patients present symptoms
and, in many cases, it is too late. On the other hand, there are cancer
types such as pancreatic cancer that usually is only diagnosed when
the cancer is in a very advanced stage, and practically without any
chance of curing it. For these reasons, it is primordial to research on
new methods to find biomarkers that allow achieving those diagnostics
in an early stage or, even before the emergence of the disease.

The amount of generated data is massively growing due to several
sequencing programs existing around the world, such as the 100K
genomes in UK [2], the European 1+ Million Genomes Initiative [3] and
All Of Us in America [1], among others. Because of that, the researchers
have access to the largest number of samples ever. Furthermore, thanks
to the use of Machine Learning techniques, unknown behaviours of the
genome are now able to be detected and studied, allowing us to trace a
biological profile for each type of cancer.

Nevertheless, due to this massive data availability state, the
amount of heterogeneous data sources, understood as data coming
from different technologies (Microarray and RNA-Seq) or different
platforms or manufacturers (Affymetrix, [llumina, etc.), is higher than
never before. The availability of massive heterogeneous data sources
presents certain challenges. A main one is the massive integration
of heterogeneous data sources coming from different omics, or from
different technologies inside the same omic, which can help to increase
the data availability for a study, and ease the detection of hidden
behaviours. In the case of the integration of different omics, a mutation
on a set of genes or a genome region can be followed at gene expression
and proteomic levels, so the direct effect of those mutations in the
rest of biological processes can be observed. On the other hand, the
integration of technologies or platforms coming from the same omics,
allows achieving a huge number of samples and compensating possible
unbalanced classes in order to ensure the robustness and the statistical
significance of the studies. techniques learn more and better with a
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higher number of samples to train the models. For that, if the classifiers
count with more samples, they will obtain more generalised models,
thus achieving thus best classification results when the models have to
deal with unseen samples.

The increase in the number of data and the advances in the
integration of omics information and assessment, are opening the
door towards the precision or personalised medicine instead of the
traditional try and error medicine. The main strength of the precision
medicine is the possibility to treat in a personalised way each patient
depending on the mutations or gene expression of his genes. This
is extremely useful in order to apply concrete drugs to each patient
instead of standardised treatments. However, although there are many
advances in the field, a proper infrastructure to storage and manage
the huge volume of data generated to perform this implementation
is still required [5]. Furthermore, it is still necessary to dig deeply in
the research to understand all the underlying relations and processes
involved in the development of cancer diseases. This is why the study
using the integration of different types of omics data, in order to seek
hidden knowledge about cancer, is now more important than ever
before. These studies are changing the way we understand medicine
and, in particular genetic diseases.

1.2 MAIN OBJECTIVES

Taking into account the main motivations presented in ,
and the current state of the art, which is later presented in Chapters

and 3 (which introduce the Biological and backgrounds of the
works presented in this thesis), the main objective of this thesis is
to make relevant contributions in the integration of heterogeneous
transcriptomic data and subsequent differential expressed biomarkers
analysis and assessment, through the application of feature selection
and predictive models. The specific main objectives are detailed
below.

1.2.1 Integration and analysis of heterogeneous data

The first specific objective is to design and propose and automatic
pipeline to carry out the integration of data coming from heterogeneous
transcriptomic technologies and platforms. Once the integration is
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successfully performed, the pipeline follows carrying out a quality
analysis over the integrated dataset. Finally, the appropriate relevant
biomarkers extraction is performed. With that in mind, an in depth
explanation of each of the steps above is given hereunder:

1. Before integrating all the samples, it is highly recommended
to carry out a strong quality analysis and batch effect removal
process for each series or dataset involved in the integration. The
influence of outliers can introduce some noise and unwanted
deviation in the results, thus they must be removed. On the other
hands, in order to correct possible intrinsic deviations of the
samples, it is desirable to treat the batch effect to ensure the best
harmonization among the series and samples.

2. There exist many platforms that belong to different sequencing
technologies. It is very interesting to take advantages of all of
them with the purpose of avoiding the lack of samples that nor-
mally suffer many genetic diseases in public or controlled
Moreover, in many cases, an unbalanced problem appears due
to the differences at number of available samples among the ad-
dressed classes or states. In such cases, it is better to complement
the lack of samples with another datasets instead of applying
imputation methods to create new samples.

3. At last, if the quality analysis and integration have been per-

formed, the integrated dataset can be employed to extract the

. If all the process is followed in a rigorous and robust-

ness way, the extracted biomarkers would be able to discern the
studied cancer or sub-types of cancer.

1.2.2 Data assessment using Machine Learning approaches

Once the candidates have been obtained, the second specific
objective proposed in this thesis is to study and research the use
of different algorithms for optimising and assessing biomarker
sub-sets for different types of cancer. This was carried out in the the
following sub-objectives related to the assessment and selection,
making use of both feature selection and classification algorithms:

1. With the aim of achieving a reduced gene signature for the tackled
disease, a feature selection step will be performed before the
predictive model application. A feature selector has the capability
to decide which are the best reduced sub-set of that will



1.2 MAIN OBJECTIVES

achieved similar of equal classification results than the complete
set of candidates. For that, the algorithms create a ranking
that reorder those biomarkers.

2. To evaluate the feature selection ranking of biomarkers, different
proposed classification algorithms will perform the applied, carry-
ing out a C'V process. This process will provide assessment in the
search of a final sub-set of that reach optimal classification
results.

3. With the two previous considerations in mind, the final objective
is to perform a test step of the different I'S and classification
algorithms evaluated. Several samples unseen before in the pro-
cess will be used to classify them by using the predictive models
trained with the reduced sub-set of . This final phase will
provide the expected performance of the selected classification
model and the selected sub-set of candidates, in their ca-
pability to discern people who suffer from the addressed disease
from healthy people.

1.2.3 Novel bioinformatic tool implementation

Following the main thread of this thesis, the next objective is to en-
capsulate the complete proposed automatic pipeline implemented in
the development of the previous objectives of this thesis, in one tool
under the same programmatic language. This objective expects to bring
a novel tool to help to the experts in the field to acquire robust knowl-
edge and conclusions for the data and diseases to study. The idea of
creating an automatic tool emerges due to the nonexistence of tools
that embrace all those functionalities, specially including a complete
Machine Learning step, under the same environment.

1.2.4 Use of High Performance Computing Tools

The final specific objective of this thesis is to use to distribute
and optimise the processes within the pipeline requiring a high com-
putational cost. There exist a number of platforms to carry this out

such as computer clusters, or . First, the use of computer
clusters to distribute the raw data pre-processing is analysed
and performed. Then, the use of is preliminary approached for
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the optimisation of the Machine Learning algorithms parallelization,
however not finished at the end of this Ph. D. Finally, although there
exists the possibility to take advantages of the potential of for
the processes optimization, this platforms will not be considered for it
in the thesis.

1.3 THESIS STRUCTURE

This section provides a brief description of each of the chapters that
make up this thesis with the objective of providing a global view of its
structure. The document is divided into three main parts according to
the content of the chapters they contain. First two parts comprise dif-
ferent chapters. The final one comprises appendices and bibliography.
Therefore, the structure of the thesis is as follows:

. : this chapter has introduced this the-
sis, presented its motivation and its objectives. An overview of
the structure of the document is also provided in this section

. : this chap-
ter presents a biological state of the art supporting the biological
motivation of this thesis. Concretely, an in depth background
about the sequencing technologies history will be provided, to-
gether with information about the he different omics available
and about the origin of genetic diseases.

. : this chap-
ter, following the line of , presents the second state of the
art of this thesis, summarising the most renowned Machine Learn-
ing techniques. Furthermore, the justification of the application
of this type of techniques to bioinformatics and computational
biology will be explained.

. : this chapter presents the experimental
guidelines followed for the researches included in ,
and Appendix A. The pipeline addressed for the evaluation of
the data, such as the origin of the samples or series used, are also
described. The chapter also presents the different Machine Learn-
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ing algorithms and their particularities, and the characteristics of
the platform and devices on which the codes will be executed.

: this chapter is focused on the integra-
tion of different heterogeneous Microarray and RNA-Seq plat-
forms of breast cancer series from public . Moreover, once
the integration was done, a search of relevant biomarker for auto-
matic diagnosis via Machine Learning was implemented. Finally,
a thorough study of candidates was performed to look to
their biological and medical relationships with breast cancer [6].

: this chapter tackles a diagnosis problem
with the main types of leukemia involved. For this study, het-
erogeneous Microarray and RNA-Seq datasets were integrated
in order to acquire a significant number of samples available.
Furthermore, a set of with the potential to discern among
the different types of leukemia was searched. For that, a new
parameter for multiclass genes selection was introduced and then,
those were assessed with Machine Learning techniques. To
conclude, clinical researchers provide a study of the final biomark-
ers to gather information about their relations with the different
types of leukemia [7].

: As a colophon of this doctoral thesis, once the first
studies presented in and 6 were done, the idea of
combining all the functionalities implemented for them into one
tool emerged. KnowSeq was born as an R package that combines
the traditional gene expression steps with a Machine Learning
set of steps under the same tool and language [3, 9]. This chapter
shows in detail the KnowSeq characteristics, functionalities and
possibilities, addressing a real Breast cancer RNA-Seq dataset
study case. KnowSeq is already public in the most renowned
bioinformatic repository, Bioconductor [10].

: this chapter briefly presents the conclu-

sions drawn from the results obtained and the contributions of
this doctoral thesis. Furthermore, future work is also exposed.

: this appendix presents an extension
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of an international conference publication, which addresses the
assessment of different feature selection methods for multiclass
lung cancer data, using microarray data and the KnowSeq R/Bioc
software package presented in chapter 7. Moreover, we present a
new Biologically-based Feature selection algorithm named as

that includes in its operation, information about the literature-
extracted relation of the with the studied disease.

: this appendix con-
tains the user documentation to learn all about KnowSeq. For
that, all the functions included in KnowSeq are explained, even
with example code.

: this appendix lists the different publi-
cations obtained during the course of the thesis. Publications in
international journals with impact factor are included, as well as
publications in international conferences.

: this ap-
pendix lists the different grants that support the development of
this thesis and associated publications. Furthermore, the special
acknowledgements are also included here.

: lists the scientific publications and web links that
support the content of this thesis.
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technological and medical advances taken place over the last
decades are allowing significant improvements in cancer detection
and treatment. Thanks to that, the survival rates of the different types
of cancer are higher nowadays. Furthermore, with the arrival of
technologies, the amount of accurate biological data coming from a vari-
ety of omics sources has greatly increased. These are publicly available
in most of the cases, and have eventually replaced their predecessor:
the microarrays. During this chapter, the state of the art regarding the
different omics and the advances of the sequencing technologies along
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2 BIOLOGICAL BACKGROUND: A SEQUENCING REVIEW

the history will be summarised, setting up the conceptual biological
framework that surrounds this thesis. For a more detailed information
about the concepts and explanations described along this Chapter, the
reader can refer to the original scientist sources [11-14], together with
all the references along the text that support this review.

2.1 CANCER OVER THE LAST YEARS

Cancer is derived from the Greek word "karkinos", that is synonym
of malignant tumour and malignant neoplasm among others, and it
makes reference to a set of multifactorial diseases with genetic pre-
disposition that share the same nature. Cancer was recognised and
typified by Hypocrates (460-370 BC) and Galen (129-210 AD) [15]. All
of the existing types of cancer are produced by several factors that
leads to an uncontrollable cell division that invades nearby tissues and
organs. The cells life cycle contains a growth step and division step to
create new cells when the body needs them. When these cells grow old
or are damaged, they die and are replaced by healthy cells. When a
person suffers from cancer, this process goes uncontrollably and the
old and damaged cells are kept while new cells are created, forming
benign or malign tumours. These cancerous cells have the capability to
ignore the biological signals that indicate that they have to stop their
division and start their programmed cell death, also known by the
term apoptosis [16]. These signals are the methods employed to remove
unnecessary or useless cells, avoiding possible disorders caused by
them.

As was mentioned before, cancer is a multifactorial disease caused by
a combination of genetic and environmental factors working together
in ways that are not yet fully understood. These alterations can be
hereditary or can be produced by damages caused by several
factors. In most cases, the cells can correct those damages but,
otherwise, they can lead to the development of a genetic disease or a
multifactorial disease such as cancer.

Depending on the origin of the tissue of a tumour, it can be defined with
different names (carcinoma, sarcoma, melanoma, lymphoma, among
others related terms). Furthermore, even within a concrete type of
cancer, there are many sub-groups that identify the aggressiveness of
this cancer and its type of treatment.

Staging helps to know where a cancer is located, or where it has
spread, and whether it is affecting other parts of the body. For many
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types of cancer, clinicians commonly use the system of the

to describe a cancer’s stage. system is based on a set of four
questions that are answered by using diagnostic tests, imaging scans,
and surgery to remove or get a sample of the tumor [17].

* How large is the primary tumor? Where is it located? (Tumor, T)

* Has the tumor spread to the lymph nodes? If so, where and how
many? (Node, N)

* Has the cancer spread to other parts of the body? If so, where
and how much? (Metastasis, M)

* Are there any biomarkers or tumor markers linked to the cancer
that may make it more or less likely to spread?

By combining the results raised by system, clinicians can deter-
mine the stage of a cancer. Normally, all the cancers have four stages
(I, I1, IIT and IV) but, some of them have also a stage 0. Depending on
the stage, the possibility to cure the disease and the survival rate varies
widely. A brief description for each stage is given herein:

¢ Stage 0: This stage makes reference to cancer "in situ" or in the
place where it started, because the cancer has not spread to nearby
tissues. Stage 0 is often highly curable, by removing in many cases
the whole tumour through surgery.

¢ Stage I: This stage represents a small cancer or tumour that has
not grown deeply into nearby tissues. Furthermore, it has not
also spread to the lymph nodes or other parts of the body. It is
usually known as early-stage cancer.

¢ Stage II and III: Both stages indicate larger tumours that have
grown more deeply into nearby tissue. They may have also reach
lymph nodes but not other parts of the body.

e Stage IV: This stage means that the cancer has spread to other
organs or parts of the body. It is also known as advanced or
metastatic cancer.

Once a cancer is in stage IV it is considered that this cancer has metasta-
sis. In that case, the survival rate is usually very poor, as cancerous cells
are spread to other parts of the body, usually adjacent to the starting
tumour place.
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2 BIOLOGICAL BACKGROUND: A SEQUENCING REVIEW

Nowadays, the improvement in the standard of living of the whole
population is leading to a population with a longer life expectancy.
However, the elderly persons [DNA can not repair the DINA damages
suffered due to mutations and external factors. Figure 2.1 represents
the number of annual diagnosis cases of cancer between 1990 and
2017 [18]. It is interesting to see how from 1990 to 2017 the number of
people of 50 years old and above that suffer from some type of cancer
have considerably increased. However, the number of diagnoses cases
of cancer has grown in a greater or lesser extent regardless the age.
This seems to be due to external factors (Tobacco, Alcohol, Pollution...)
that are affecting directly to the health of our society.

This trend is repeated in Figure 2.2, but in this case representing the
number of annual worldwide death because of cancer between 1990
and 2017.

100
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60
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~ year old

40
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20 - 15-49
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Figure 2.1: Total number of people worldwide with cancer differentiated
by age. This is measured across all cancer types. Source: https://
ourworldindata.org/cancer

2.2 HISTORY OF SEQUENCING

Genome keeps all the secrets about evolution, genetic diseases and the
life itself. For that, from the end of the nineteenth century, with the orig-
inal idea of the concept of gen (then called factors) proposed by Gregor
Mendel, the mankind has been trying to discover and understand the
complex world of genetics. During the twentieth century, advances in
understanding genes and inheritance continued. Finally, through a set
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Figure 2.2: Total annual cancer deaths worldwide differentiated by age
across both sexes. This is measured across all cancer types. Source:
https://ourworldindata.org/cancer

of experiments in the 1940s to 1950s, it was demonstrated that DINA is
the molecular repository of genetic information [19, 20]. Then, James D.
Watson and Francis Crick published a model of the double-stranded
DNA molecule whose paired nucleotide bases indicated a compelling
hypothesis for the mechanism of genetic replication. Although Wal-
ter Fiers and his team were the first to determine the sequence of a
gene [21], Frederick Sanger proposed the first improved method to se-
quence genes efficiently [22]. However, the whole human genome was
not completely sequenced until 2003 with the Human Genome Project
by using an automated version of the Sanger sequencing method [23].

Sequencing simply means determining the exact order of the bases
in a strand of DNA. Because bases exist as pairs, and the identity of
one of the bases in the pair determines the other member of the pair,
researchers do not have to report both bases of the pair.

This section makes a journey through the different generations of
genome sequencing [11]. These methods and technologies have con-
tributed to improve the sequencing along the short history of this field.
Furthermore, this section will take into account the near future of se-
quencing. The sequencing cost of a human genome has been drastically
reduced from the start of the twentieth century to nowadays thanks
to the technological improvements underneath the sequencing genera-
tions. As Figure 2.3 shows, with the arrival of NG5S in 2007-2008, the
evolution of the sequencing cost broke the Moore’s Law trend, suffering

15
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an exponential decrease of the sequencing cost per genome. Concretely,
in early 2000s the cost per human genome was around 100.000.000 $,
but at present time, sequencing a human genome cost only around
1000 $ depending on the technology and the conditions. Due to this
enormous drop of the sequencing cost, it expects that the amount of
available sequencing data will exponentially increase, allowing the
development of more complex studies, requiring special pipelines and
computer systems and architectures to analyse them.

Cost per Human Genome
$100,000,000

$10,000,000
Moore’s Law
$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.gov/sequencingcosts

$100 S
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 2.3: Sequencing cost evolution per human genome in
last two decades. Source: https://www.genome.gov/about-genomics/
fact-sheets/Sequencing-Human-Genome- cost

2.2.1 First Generation: Classic Sequencing

This section will expose the classic sequencing techniques used until
the arrival of . Thanks to these techniques many advances in the
sequencing of different species and diseases were made, achieving
medical and biological milestones.

2.2.1.1  Sanger Sequencing

Frederick Sanger has been one of the few personalities in the world that
has won twice a Nobel Prize. He won his second Nobel Prize thanks to

a novel sequencing method, that received his name, developed
in 1975 [24]. Two years later, he used this method to obtain the first
totally sequenced of a living being in history, the bacteriophage

®-X174 [22].
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Sanger method is based on the polymerisation and the use of
dideoxynucleotides as reaction finishers. The first step in the sanger
method is to heat the to separate the two strands. Once the

is obtained, a primer or a small sequence of nucleic acids is
introduced to initiate the sequencing process when this primer binds
with the polymerase.

The primer is complementary to the start of the strand to sequence. The

polymerase keep going replicating until it find a nucleotide of
stop (dideoxynucleotide). This process is repeated by using nucleotides
of stop for each of the four nucleotides that conform the : Adenine
(A), Cytosine (C), Thymine (T) and Guanine (G).

Once the different sequenced fragments are acquired, they are
introduced inside of an electrophoresis tube. Inside the tube, the frag-
ments are jointed to a fluorescent mark and subjected to an argon laser
that allows to parallel measure the different fragments.

Figure 2.1 briefly shows the Sanger Sequencing. Firstly, The
fragment is denatured into two fragments. Then, a
fragment is amplified into millions of copies. After that, a primer
corresponding to one end of the fragment is added. It is then when
the fragments are joined to four polymerase solutions. Subsequently,
the chain grows until a termination nucleotide is randomly added
and the resulting fragments are denatured to acquire a set of

. Finally, the fragments are separated by electrophoresis and the
sequence is read.

2.2.1.2  Maxam-Gilbert Sequencing

This sequencing method was developt by Maxam and Gilbert in the
year 1976 [25]. Maxam-Gilbert method is very effective but limited, due
to the necessity of chemical sequencing. This means that it is required
the use of chemical processes to interrupt the chains. Then, the
resulting fragments run through a gel to resolve the sequence order.

The first step to acquire the sequence is to denature the to ob-
tain the by applying heat. When the two strands are separated,
Gamma-32P are joined with 5" end of the DNA fragment by a kinase
reaction.

After that, the molecule is marked at specific nucleotides and
then, broken with the purpose of obtaining a break for each of the reac-
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Figure 2.4: Sanger Sequencing method. Source: https:
//www.researchgate.net/publication/234248746_Simulation_
of_polymer_translocation_through_small_channels_A_molecular_
dynamics_study_and_a_new_Monte_Carlo_approach/figures

tions (G, A+G, T+C, C). The reactions are made through the following
chemical agents:

¢ Dymethil Sulfate (G)

¢ Formic Acid (A+G)

¢ Hydrazine (T+C)

¢ Hydrazine plus salt (C)

Due to these reactions, a set of radioactively marked fragments are
generated from the end until the place where the molecule was broke.
Once the fragments are extracted, they are separated by size in four
reaction tubes, using electrophoresis gel. To visualise the fragments
of each reaction, the gels are placed under X-ray, which achieves a
set of dark bands which represent the location of radiolabeled
molecules. Finally, the fragments are ordered by size and the
sequence can be deduced by inference. A graphical representation of
the Maxam-Gilbert method can be seen at Figure
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2.2.2  Second Generation: Next Generation Sequencing

makes reference to the second generation of sequencing tech-
nologies, also known as . Nowadays, has replaced the first HicH
generation sequencing methods and it has been set as the current stan- ~ Trrovcrrur
dard in the market. These technologies are more powerful and cheaper ~ ~*V*N“¢

than the classic technologies, thus they have revolutionised the way of
studying the different omics.

\\\V///\\\,//ﬁ\\¥
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Figure 2.5: Maxam and Gilbert Sequencing method. Source: https:
//binf.snipcademy.com/lessons/dna-sequencing-techniques/

maxam-gilbert
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2.2.2.1  Roche 454 sequencing

C

This technology is considered the first available commercial
method [26]. It is required to perform a library preparation before
the sequencing process. Firstly, the is broken into small fragments
of 300-800 BI”, and different adapters are also added to both ends of
each fragment.

The second step is to carry out the emulsion . The most important
feature of emulsion is the creation of a large number of indepen-
dent reaction space for amplification. When the sample

amplification is finished, an aqueous solution that contains the emul-
sion reaction components will be imbued into a mineral oil surface.
With this, several small water droplets are formed and wrapped by
mineral oil. Each of the small droplet builds an independent reac-
tion space. Finally, each tiny fragment will be amplified over 1 million
times in order to achieve the minimum level needed by the sequencing.

When the library creation and the amplification are correctly carried
out, the last step to perform is the amplified fragments sequencing.
Pyrosequencing method is usually used to achieve the sequences. For
that, a small beads are inserted into the nanopores of a and the
sequencing reaction is started. sequencing reaction is based on
the s which are amplified and fixed. In the reactions, each type
of produce a characteristic fluorescence colour, hence the
sequences are measured according to those fluorescence colours. At the
end, the sequencing results will be processed by computer software.
Figure 2.6 represents in detail the Roche 454 sequencing method.

2.2.2.2 [llumina SBS Sequencing

The SBS, also known as Reversible Terminator Sequencing, is a widely
used . was developed and established by Illumina as a com-
mercial implementation in 2008 [27]. This sequencing technology is
responsible for the 9o% of the worldwide data. The Illumina sys-
tems are able to carry out massive parallel sequencing that considerably
reduce the sequencing time and cost. was introduced by Illumina,
with their HiSeq and MiSeq platforms. Concretely, HiSeq sequencer is
the cheapest of the second generation sequencers with a cost of $0.02
per million bases.

Firstly, the must be broken into more manageable fragments
between 200 to 600 BI’. Then, short sequences of known as
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Figure 2.6: Roche 454 Sequencing method. Source: http://clinchem.
aaccjnls.org/content/55/4/641/tab- figures-data

adaptors are joined to the fragments. The binds to primers on COMPLEMEN-
the surface of the flowcell and the that does not adhere is washed = 2%~

away. DA

It is necessary to amplify the fragments, for that they are repli-

cated to form small clusters of with the same sequence. Thanks to

this amplification, each cluster will emit a signal that is strong enough

to be captured by a sensor. A set of bridges of will be created

between the primers on the flowcell surface.
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The is then denatured into by applying heat, leaving
million clusters with the same sequences. Then, the primers
and fluorescently labelled terminators that cut synthesis are

introduced to the flowcell.

The polymerase is bound to the primer and the first fluorescently
labelled terminator is added to the new strand. Then, a set of
lasers are passed over the flowcell to activate the fluorescent label
on the nucleotide base. This fluorescence is detected by a sensor and
registered on a computer. The terminator is then removed from the
tirst base and the next terminator base can be joined alongside. Finally,
the process goes on until all the clusters have been correctly sequenced.
All this process is showed at Figure

2.2.2.3 ABI/SOLiD Sequencing

SOLiD Sequencing is a technology developed by Life Technologies.
It is a very powerful technology with the capability of generating
hundreds of million of small sequencing reads at the same time [25].

Starting with a sample to sequence, a library of fragments is pre-
pared, which will be used to also create clone populations. The joined
fragments have an universal adaptor sequence in order to establish an
identical and known initial sequence for each fragment.

After that, an amplification by emulsion is carry out, just like
for 454 Sequencing method. Thanks to the amplification process, each
fragment could be amplified around 1 million times with the purpose
of achieving the minimum level required by the sequencing method.

Finally, the sequencing process has several hybridisation rounds with
16 different nucleotides marked with 4 different colours. Employing a
colour code each position is evaluated twice by two different primers
and, due to that, the discrimination among sequencing errors and
polymorphisms detection increase. A representation for this method is
showed at Figure

2.2.2.4 lon Torrent sequencing

Ion Torrent sequencing was released on February of 2010 by Ion Torrent
system [20]. As happen with 454 sequencing, the first step for the
sequencing is the library preparation. This process is very standardised
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and normally takes , fragmenting it to a fragments between 200
and 400 BP. Then, those fragment are amplified by the emulsion PCR
method explained above.

Ion torrent is base on the synthesis sequencing, that works through the
polymerization of a complementary chain with natural
Furthermore, a semiconductor chip with the capability of detecting H+
ions is required. This method works as follow:
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Figure 2.8: ABI SOLiD Sequencing method. Source: https:
//www.researchgate.net/publication/24043867_Next-Generation_
Sequencing_From_Basic_Research_to_Diagnostics/figures?lo=1&
utm_source=google&utm_medium=organic

When a nucleotide is joined to a strand by a polymerase, an hydro-
gen cation is released as subproduct. This cation carry an ionised charge
that can be detected by the ions sensor. Then, while the sequencer over-
whelms with nucleotides the chip, any nucleotide incorporated to the
template strand will be detected by the sensor due to the change in
the voltage, and the system will report the corresponding base. If a
nucleotide is added more than once consecutively, the detected signal
will be more intense. The explanation of Ion Torrent method can also
be seen at Figure

2.2.3 Third Generation: towards the future sequencing

As was mentioned ahead, has revolutionised the analysis
and it is the most widely used technology nowadays, consequently
the largest amount of sequencing data comes from at present.
Nevertheless, technologies need an amplification process through

. This amplification step usually is very expensive and takes a
considerable amount of time. Furthermore, these technologies create
relatively short reads that needs a posterior complex assembly step.
With the aim of solving this particularities, scientists have developed
the third generation sequencing. The technologies developed under
the third generation are cheaper than their predecessors, and samples
preparation is easier because they do not need amplification.
Moreover, third generation technologies have the capability to create
long reads exceeding several kilobases for the resolution of the assembly
problem.
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Figure 2.9: Ion torrent Sequencing method. Source: https://www.
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2.2.3.1 Pacific Biosciences SMRT Sequencing

Pacific Biosciences was the first company to developed the first
sequencing method and, nowadays still being the most widespread
third generation sequencing technology [30].

This method is based on the same fluorescent labelling than other
technologies (Roche 454, Illumina SBS), but the signals of the nu-
cleotides are detected in real time instead of by amplification. For
that, Pacific Biosciences create a structure with many cells that
contain microfabricated nanostructures or . The exploit
the properties of light passing through openings with a diameter less
than its wavelength, so light cannot be propagated. Each has a

polymerase adhered to their bottom with the fragment to
sequencing.

When the sequencing reaction starts, the fragment is introduced
by the polymerase with fluorescent labeled nucleotides. When-
ever a nucleotide is added, it releases a luminous signal that is recorded
by sensors. The sequence could be determined thanks to detection
of these labeled nucleotides. The process is showed at Figure

25

SINGLE
MOLECULE REAL TIME

ZEROMODE
WAVEGUIDES



26

INDELS: INSERTION
AND DELETIONS

2 BIOLOGICAL BACKGROUND: A SEQUENCING REVIEW

This SMRT method has some advantages in comparison with NGS
technologies. The main advantage is the facility to prepare the sample,
because it only takes 4 to 6 hours instead of days as happen with NGES.
Furthermore, the long-read lengths currently are around 10 kbp but,
individual very long reads can be until 6o kbp, which is longer than
any of the NCS approaches. However, this systems have a high error
rate of around 13%, which mainly are INDELS errors along the long

reads.
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Figure 2.10: Pacific Biosciences
https://www.researchgate.net/publication/281772504_
EVALUATING_EMERGING_TECHNOLOGIES_APPLIED_IN_FORENSIC_
ANALYSIS/figures?lo=1&utm_source=google&utm_medium=organic
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2.2.3.2  Oxford Nanopore DNA Sequencing

was developed in 2014 as a method to determine the
DNA sequence. Firstly, the company released a portable device called
MinION with the purpose of generating longer reads that will ensure
better performances that technologies. The device is connected to
a laptop through the 3.0 port. In order to examine the performance
of device, the company released a program for testing it by a
community of users.

To carry out the sequencing in this technology, the first strand of a

molecule is adhered by a hairpin to its complementary strand.

Then, the fragment is passed through a nanoscale hole, known
as nanopore. This nanopore can be made by proteins or synthetic
materials.

As Figure shows, when the fragment passes through the
nanopore, it generates a variation of an ionic stream, this variation is
recorded inside a graphic model and then analysed to distinguish the
sequence. For this reason, the sequencing is made on real time over the
strand, generating the template read. Finally, the hairpin structure is
read followed by the inverse strand, creating the complement read.

The advantages for this methods are very similar to the advantages
for Pacific Biosciences SMRT Sequencing. Firstly, the low cost and
small size of this technology is a point of inflection in comparison to
predecessor technologies. Furthermore, the MinION device provides
portability and versatility, due to the sample is loaded into a normal

laptop and data is displayed on the screen and generated in real time.

Finally, the device can create very long reads which can improve the
posterior assembly. Nevertheless, the device has a high error rate of
12%.

2.3 UNDERSTANDING THE MAIN OMICS

In the evolution of a cancer, there exists different processes to be
analysed: from the genetic mutations or alterations to the uncontrolled
massive cellular proliferation. These biological processes have been
studied separately by different omics, depending on the biological

type of the data involved and the information that each type provides.

The word omics makes reference to a field of study in biology. The
omics study point to the collective profiling and quantification of
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Figure 2.11: Nanopore Sequencing method.
Source: https://www.scienceinschool.org/content/
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clusters of biological molecules, that are translated into the structure
and functions of the different organisms. Thanks to the biological
characterisation technologies and the precision that they supply, there
are many advances in the fight against rare diseases and cancer, by
using those omics as well as their integration [31—36].

In the precision medicine and computational biology scope there
are mainly four omics: Genomics, Transcriptomics, Proteomics and
Metabolomics. Although they will be explained in depth in the next

subsections, Figure shows the relations among them. A change
or mutation in the could lead to changes at expression level of
the genes measured in the . Then, those expression variations

could change also the proteins codified by the affected genes and hence,
affect to the metabolites. Therefore, a mutation or variation in the genes
could lead to a series of biological changes at different biological levels,
which could end up arising a genetic disease.

2.3.1  Genomics

Genomics is focused on the structure, function, evolution, mapping,
and editing of genomes. All the information about a person from birth
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Figure 2.12: Relation among the four main omics: Genomics, Tran-
scriptomics, Proteomics and Metabolomics. A change in one of them,
could leads to a series of biological changes in the operation of its
subordinates.

to death is codified in the genome. For that, in order to understand
our life itself, the study and comprehension of the whole genome is
required to understand our life itself. The eyes colour, the stature, the
physical constitution, even the diseases that a person could suffer from
are some of the codified things in the genome.

Genomics studies are usually known as GWAS or WGAS, and they
try to find associations between genome variants and genetic diseases.
Those variants or alterations in the genome might be beneficial to the
organism, harmful or neutral. Moreover, if the variants affect to a 50 BI’
or less, they are considered as short variants. Taking this into account,
SINPs and short INDELS are part of this group of variants. On the other
hand, if the variants affect to more than 50 BI’, they are considered
as structural variants. Inside the structural variants can be found long
INDELS, duplications, CN'V, inversions and translocations [37]. All
these variants are represented graphically at Figure 2.15.
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With that in mind, there are two type of genetic mutations that could
lead to develop genetic diseases or cancer. The first type emerges from
germinal mutations in the genetic constitution of the reproductive cells.
These type of mutations might pass to the progeny of the individual and
affect to population evolution over the years. There exists several studies
that correlate germinal mutations across generations with inherited
cancer and rare diseases [35—14].
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Figure 2.13: Different types of variants existing in the genome. Source:
https://www.pacb.com/applications/whole-genome-sequencing/
variant-detection/
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The second type emerges from somatic mutations in the genome during
the life of an individual. These mutations do not pass to next genera-
tions. Somatic mutations can accumulate in our cells and are mostly
harmless, but may also have more serious effects such as cancer [415].
There a plenty of studies searching the role of somatic mutations for
the different types of cancer [16—50].

2.3.2 Transcriptomics

The main goal of transcriptomics is the study and comprehension of the
transcriptome, or the set of present in a cell. The transcriptome
shows what genes are expressed or inhibited at a specified time. With
this information, it can be found those genes that are related with
the development of the different types of cancer. For that, the tran-
scriptomics studies are focused on the differences at expression level
between both the cancerous cells and the healthy cells transcriptomes.

The production of the is driven by the of the cell, which
supplies a pattern to create the messenger . This creation of

is known as transcription. Then, through a process called translation,
the messenger is translated into the final codified proteins in the
cells. Figure shows graphically how the is produced from
the replication, and its role in the proteins creation.

When a person suffers from a cancer, its genome has usually been
affected by commonly several genetic mutations. This fact leads to
the codification of erroneous messengers when the transcription
step is carried out. At the end, those wrong transcriptions could be
translated in erroneous proteins, which directly affect to the biological
processes of the cells, tissues or even the entire organism.

For this reason, one of the most important pillars in the battle against
cancer is the research of the expression level of the genes, in order
to determine the consequences of the variation of the expression in
the protein codification. There is a large literature on transcriptomic
changes with the objective of extracting biomarkers for different types
of cancer [51-55], even sometimes predicting the survival rate [56-55].

31
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2.3.3 Proteomics

Proteomics is focused on the large scale study of the proteomes. The
proteome represents the set of codified proteins for an organism. How-
ever, the proteome changes along the time and differs from cell to cell.
To a certain extent, the proteome reflects the underlying transcriptome
because the messenger is translated into proteins. Nevertheless,
protein activity is also affected by other factors apart from the expres-
sion level of genes.

As can be seen at Figure , there exists different areas inside pro-
teomics according to the experimental design. Many researches try
Dirreren-  t0 seek when and where the proteins are expressed ( ) together
marwy Exeressep with how they affect to biological processes [59, 60]. There are also
PROTEINS . . . .
many interest in how those proteins affect metabolic pathways [61,
]. Furthermore, there are studies focused on the proteins production,
degradation and steady-state abundance [63-65].
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However, there is a concrete field known as P’’I which studies the
proteins interaction and, in many cases, their relation with cancer. AA
Ivanov et. al. exposes the potential of I’I’l as a anticancer strategy [66].
Moreover, Wang, S. et. al. target a concrete "’ as a new cancer ther-
apeutics [67]. PPl is also applied to detect prognostic significance in
breast cancer thanks to the interaction of proteins, as demonstrate
Spears, M. et. al. [68]. Besides the mentioned studies, there are many
more aiming to understand this complex field, and to improve the
biological cancer mechanisms knowledge at proteins level to counteract
them.
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Figure 2.15: Different areas of study in proteomics.
Source: https://www.ebi.ac.uk/training/online/course/
proteomics-introduction-ebi-resources/what-proteomics

2.3.4 Metabolomics

Metabolomics makes reference to the in-depth study of the small
molecules or metabolites inside a cell, tissue or organism and directly
reflects the underlying biochemical activity and the state of cells or
tissues. The metabolome is the total existing set of metabolites in a
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biological sample under given genetic, nutritional or environmental
conditions.

The metabolome is formed by small molecules or metabolites, defined
as low molecular weight organic compounds, typically implicated in
biological processes as substrates or products. Normally, metabolomics
studies metabolites within a mass range between 50 and 1500
Just as a curiosity, one is equivalent to 1.66054 x 10724 grams.
Figure shows some examples of small molecules or metabolites.

Due to the reaction of the metabolites, the metabolome is constantly
changing. The small molecules are constantly being absorbed, synthe-
sised, degraded and in interact with other molecules, both within and
between biological systems, and with the environment. Figure
contains the possible reactions that affect the metabolites in a cell.

Metabolites analysis are an ideal tool for precision medicine due to
its non-invasive nature and its close link to the phenotype. Biomarker
discovery on cancer, and drug safety screens are two examples where
metabolomics has already helped diagnosis and decision making [69—

1.

Metabolites can be used as biomarkers to distinguish between two
groups of samples (disease and control) or more. Taking this into
account, a metabolite present in disease samples but not in healthy
samples, would be selected as a metabolite biomarker. For example,
samples coming from urine, saliva, bile, or seminal fluid can be used
to discover biomarkers, due to the highly informative metabolites that
each biological fluid contains. For that, this omic has the potential to
identify hundreds of metabolites, giving the possibility to diagnose
these diseases in an earlier stage. In this sense, there are a lot of studies
seeking biomarkers for cancer early detection and diagnosis [72—76].
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Figure 2.17: Metabolic reactions produced in a cell: Binding/Dis-
tion and transport.

sociation, degradation, modification, classic biochemical reac-

https://www.ebi.ac.uk/training/
online/course/introduction-metabolomics/what-metabolomics/
metabolome-and-metabolic-reactions
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2.4 HETEROGENEOUS TRANSCRIPTOMICS SOURCES

Throughout this chapter, Sections 2.1, 2.2 and 2.3 have addressed sev-
eral important definitions and the state of the art in relation to cancer
and the different sequencing generations and omics. This overview is
very important in order to understand the heterogeneous data gather-
ing carried out in the experiments included in this doctoral thesis. The
"heterogeneous" term refers to the fact that data used is a collection of
datasets coming from different sources and different sequencing tech-
nologies. This last section of the chapter presents relevant information
and studies about heterogeneous transcriptomics sources.

Gene expression is practically the most important source to find biomark-
ers in cancer. Because of that, this thesis is focused on the use of gene
expression sources and their integration. Concretely, the integration
of datasets coming from both Microarray and RNA-Seq technologies,
which are explained at Subsections and

Biomedicine literature shows that, for each cancer, there are many
genes playing a role in its development and also many combination
of them. However, it is important to note that for each cancer there is
not only a unique gene signature, or a single set of genes that have
direct and unambiguous relation with it for clear diagnosis, prognosis
or prediction of therapeutic response. Rather, the number of possible
gene signatures variate is undefined, and literature show very different
outcomes in biomarker set discovery for a given cancer, which might
even depend on the statistics threshold and the number of samples
used for a given the study.

The use of machine learning approaches for validating gene signa-
tures is broader than ever before, due to the increase in the number
of available samples and the current computational power [77]. Under
this reality, many studies suggest possible gene signatures that are not
clinically validated [/5], although being statistically significant. Never-
theless, care must be taken when a gene signature is proposed, because
applying machine learning without a properly biological interpretation
could lead to a nonsense gene signatures [79].

There are several studies in the literature that propose different gene
signatures for different types of cancer. Ru He and Shuguang Zuo pro-
vide a gene signature with 8 different genes for early-stage Non-small
Cell Lung Cancer in their study [¢0]. On the other hand, Cardoso et. al.
supply 70-gene signature for treatment decision in breast cancer [51].
In this sense, there are similar studies for almost all the existing can-
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cer [82-54]. At sight of this, there is not only a unique gene signature
that identify a concrete cancer because there are an enormous number
of genes involved in cancerous processes.

2.4.1  Microarray

For several decades, Microarray technology has allowed studying al-
terations at gene expression level with the purpose of finding genes
involved in pathologies of genetic source. This technology is highly
widespread and well-known, and is based on the capability of the
complementary molecules to hybridise among themselves. This allows
determining the gene expression values of each studied gene in the
analysed set of samples [35]. Through this process, the over-expressed
or inhibited genes can be identified in tumor samples when comparing
to normal samples.

The microarray operation is based on the hybridisation process.
Through this process, two fragments are only hybridised if they
are complementary between them. In order to be complementary, the
Watson-Crick rule must be fulfilled. This rule establishes that in the

, the Adenine (A) is joined to the Thiamine (T) and the Cythosine
(C) to the Guanine (G) as can be observed at Figure

The process to measure the gene expression of a sample in a microarray
is explained hereunder and represented in the Figure . The spots
or oligonucleotides probes are adhered to a surface of 1 cm?, creating
a array in which the probes are equidistant among them. Then,
each fragment is fluorescently labeled and incorporated into the
array. Once this has been done, the genetic material in each probe that
has not been hybridised is cleaned. Finally, the microarray is measured
by a scanner when the fluorescent probes are subjected to a laser.
Afterwards, the microarray image is analysed to know and quantify
the proportion of hybridised samples.

The final result is stored at a .CEL file which can be loaded into a
computer to analyse the gene expression values of an individual. In
the majority of studies concerning to microarray, there are as CEL files
as individuals, hence the volume of information to analyse is usually
very high.

There are mainly two microarray technologies that have almost all the
market, [llumina [56] and Affymetrix [87]. Several studies have empha-
sised the good correlation between the data from both technologies,
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Figure 2.18: Hydrogen bonds and nucleotides of the
DNA Double-Helix. Source: https://trickle.app/drip/
15481-dna-is-the-blueprint-for-building-our-bodys-cells/

specially when differential expression analysis are addressed [55-90].
However, there are others important manufacturers or technologies as
Agilent [91], Exigon [92] or Tagman [93].

A feature of Illumina is that it provides the expression data not only at
probe level but also at gene level. That can be achieved by implementing
around 30 replies for each nucleotide in the array. This means that the
same gene can be stored in different probes. Illumina can also provides
expression data for each samples separately or grouped.

On the other hand, Affymetrix makes use of multiple probes as an
internal controls to verify the correct functioning and not only for the
hybridisation.
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15 Microarray %85 39536

Final Results

Figure 2.19: Microarray creation process. Through this process, a set
of genes can be measure at expression level to carry out differential
expression analysis between a chosen population.

Affymetrix counts with spotted c[DN A, which are arrays-based GeneChips.

The main difference with Illumina BeadArray is that each probe in the
array is located in a specific and known position. The Illumina process
is different due to there is a decoding step for the position of each
probe depending on it molecular location. Figure >.20 shows the two
different Affymetrix and Illumina microarrays explained ahead.

Lastly, the Illumina hybridisation happens in parallel because several
arrays are faced to the same substrate, while Affymetrix arrays are
processed in different substrates.

2.4.2 RNA-Seq

Although Microarray had been the best gene quantification technology
since the ninety decade, RNA-seq was consolidated as the most pow-
erful and newest technology since the last decade [12]. As a natural
evolutionary step in the gene quantification technologies, RNA-seq
is gradually replacing the widespread use of Microarray. There exist
many manufacturers that work with RNA-seq but, nowadays Illumina
leads the RNA-seq sequencing technology market. Although its ap-
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Figure 2.20: Affymetrix GeneChip and Illumina Bead Array representa-
tion

plication was originally intended for genomic transcription study, it
also allows achieving a mapping between the levels of transcription
and gene expression [94]. Thanks to this, it is possible to combine gene
expression levels from both Microarray and RNA-seq. This is achieved
through the quantification of the total number of reads that are mapped
to each locus in the transcriptome assembly step. RNA-seq has many
advantages in comparison with Microarray, which are explained herein.

RNA-seq offers an important number of advantages over Microarray
that were clear described by Wang et al. [94], although the cost of RNA-
seq experiments is still nowadays higher in some cases than Microarray
technology’s:

* RNA-Seq allows detecting the variation of a single nucleotide.

RNA-Seq does not require genomic sequence knowledge.

RNA-Seq provides quantitative expression levels.

RNA-Seq provides isoform-level expression measurements.

RNA-Seq offers a broader dynamic range than Microarray.
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The classic RNA-Seq pipeline is showed at Figure . The standard
process starts in the laboratory. Firstly, the is extracted from a
tissue or cell and then isolated. With the isolated , the is
synthesised and fragmented to create the sequencing library. Then,
the library is sequenced with a depth between 10-30 million reads per
samples by using a platform (from Illumina in the most of cases).
Normally, a file is obtained as sequencer output, which contains
all the sequenced fragments.

However, the process still continues once the reads are available, be-
cause they have to be aligned and/or assembled to a reference genome,
in order to reconstruct the individual genome. With the aligned sam-
ples the counts can be estimated. Counts make reference to the number
of reads that overlap a given feature like a gene. With the counts in-
formation, the equivalent gene expression can be found in order to
achieve a way of discerning among states (i.e. Cancer and Control).
Then, the samples follow a filtering and joint normalising process for
acquiring a strong quality samples for the posterior statistical
extraction model design.

There are three different types of generated reads, depending on the
technology used for sequencing the samples as Figure shows.
Each type counts on some advantages and disadvantages. A brief
explanation is given herein.

¢ Short-read sequencing: This is the most common read used
for differential expression analysis. In this sense, Illumina short-
read sequencers have generated more than 95% of the public
RNA-seq worldwide data. This method has been consolidated as
the standard method to detect and quantify gene expression, due
to the high quality and performance for generating transcriptome
data. This is the reason why this sequencing technology gener-
ates between 100-1000 time more reads per run than long-reads
technologies and for that, it is the most suitable technology nowa-
days for differential expression analysis. However, this technology
requires amplification in all cases.

¢ Long-read sequencing: Currently, there are alternatives
to Illumina short-reads sequencing. Thanks to the long-reads
technologies from Pacific Biosciences and Oxford Nanopore, the
necessity of short-reads assembly has been removed for the single-
molecule sequencing of an individual. Furthermore, in compari-
son with short-reads technology, the ambiguity in the mapping of
sequence reads is drastically reduced. In some protocols there is
no needs of amplification, accelerating the process. However,
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Figure 2.21: RNA Sequencing process. Through this process, the RNA
is sequenced with the purpose of measuring the gene expression for
transcriptomic analysis.

this technology is not suitable for differential expression analysis
due to the low number of reads per run in comparison with
short-reads technology. The main application of this technology is
for isoform discovery, de novo transcriptome analysis and other
complex transcriptome analysis.

* Long-read direct RINA sequencing: Oxford nanopore demon-
strates that their technology can sequence RN A directly without
PCR amplification or cDNA synthesis. Thanks to this technology,
the generated biases are removed and the epigenetic information
retained. As happen with Long-read c[DN A, this technology is not
suitable for differential expression analysis. However, Long-read
direct RN A is commonly used in the same applications as Long-
read cDNA and, also for detecting ribonucleotides modification.
This is a very novel technology with a great future ahead.
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Figure 2.22: Different types of reads achieved depending on the con-
sidered RNA-Seq sequencing technology. Source: https://www.nature.
com/articles/s41576-019-0150-2

For the development of this thesis, Illumina short-reads data were
solely used because, as it was mentioned before, this type of reads are
the best to carry out differential expression analysis. There are many
researches that address complex RNA-Seq analysis for biomarkers
detection in different cancer pathologies and rare diseases. In this
sense, Kaczkowski, B. et al. found a set of candidate biomarkers with
pan-cancer potential by analysing different tumour and healthy cell
lines from different cancers [95]. On the other hand, Liang, J. et al.
identified biomarkers for lung adenocarcinoma stages detection by
using RNA-seq data [96]. However, RNA-seq has improved not only
the cancer biomarkers detection but also the rare diseases diagnosis. For
example, Kremer, L. S. et al. improve the genetic diagnosis of Mendelian
disorders through the RNA-seq sequencing data [97]. Finally, scientists
also take advantages of RNA-seq for fighting against brain diseases
such as Alzheimer. Sutherland, G. T. et al. develop a study that shows
the potential of this technology in comparison with Microarray for the
transcriptomic analysis of this terrible disease [95].

2.4.3 Microarray and RNA-Seq integration

For some years now, integration of heterogeneous gene expression data
is one of the main transcriptomic challenge to address. Normally, the
available public series or datasets belong to a concrete transcriptomic
platform or manufacturer, and contain a meaningless number of se-
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quenced individuals to perform a robust study. In this sense, focusing
solely on a concrete series or dataset leads to achieve results from a
very tiny amount of population. In some cases, such as in rare diseases
studies, they are made under these conditions due to the lack of avail-
able series or samples. Nevertheless, in the case of cancer studies, the
number of available samples is usually higher and dispersed across
different transcriptomic sources.

On this basis, integrating different datasets and series allows taking
advantage of a larger number of samples and, consequently, improving
the scale and the statistical significance of the results. However, this
process is not trivial because each transcriptomic source has its own
manner to quantify and calculate gene expression. For that reason,
intrinsic biological information can be lost in the process. Because of
that, several studies have been carried out to find what manufacturers
and technologies have consistency among them, with the purpose of
trying their joint integration. Concretely, M. Barnes et al. corroborate
the correlation among Affymetrix and Illumina microarrays [58]. The
classical Microarray analysis pipeline was focused on the extraction
of different gene signatures for each series, and the obtaining of a
final signature performing the intersection of all of them with a Venn
Diagram. However, several methods appeared for carrying out a correct
integration of microarray from Affymetrix and Illumina [99, ], with
the aim of exploiting the correlation between them. Afterwards, several
tools were published to automatise this Microarray integration process
such as VirtualArray [101], EMMA 2 [102] and FatiGO+ [103].

At present, Microarray has been gradually replaced with the arrival of
RNA-seq, which is a clear evolution of its predecessor. Nevertheless,
there are a considerable amount of public microarray without analysis
yet. In this sense, those microarrays still are unexploited truthful sources
of information. Under these considerations, the integration of RNA-seq
together with Microarray is a way of exploiting the Microarray hidden
potential. As Nookaew et al. explained, there is a high consistency
between RNA-seq and Microarray, thus encouraging to continue using
Microarray as a versatile tool for gene expression analysis [104].

With every passing year, the number of available new RNA-Seq samples
increase while Microarray new samples is gradually disappearing. Due
to that, although the integration of RNA-Seq and Microarray is a very
promising process addressed in the develop of this thesis, in the near
future the heterogeneous RNA-Seq integration data will be the most
important and relevant. However, for multiclass experiments there still
are a lack of RNA-Seq available samples that can be complemented
with Microarray data. All these points of view and different integration
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levels have been tackled along this doctoral thesis, producing different
high impact publications [6—5, 105, 106]. In addition, the integration
of different data sources can be supplied to the methods with
the necessary quantity of samples for proper design of the predictive
models, which usually are hard to gather only with only one technology.
Although some advances were previously made in this line [107-109],
in this thesis a novel pipeline to carry out the integration and the
posterior assessment will be presented.
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revolutionised the way computers were able to
perform advanced data analysis and infer patterns, behaviour
and knowledge from data, in countless fields, not only those directly
related with computer science. That is why nowadays there are uncount-
able applications applying machine learning techniques for predicting,
classifying and decision making in all sciences and industry (such
as automatic car driving, face recognition, etc.). Although many of
those techniques exist since many years ago, the recent technologi-
cal advances in the computational scope and the capacity of massive
data generation, storage and processing have allow extracting the real
potential of more thoroughly than ever.

With these considerations in mind, is the perfect way to tackle
with the identification of optimal sets of biomarkers among all existing
in the genome, in order to achieve proper early cancer diagnosis and
treatments. In this thesis, a number of techniques are addressed
and proposed, including well-known Supervised Classification Mod-
els and Feature Selection algorithms, with the purpose of assessing
and identifying possible optimal candidates related to cancer
diseases.
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For a more detailed information about the concepts and explanations

described along this Chapter, the reader can refer to the original

scientist sources [guyonzoo3introduction, kotsiantiszoo7supervised,

bishopzoob6pattern, saeyszoo7review, larranagazooémachine], together
with all the references along the text that support this review.

3.1 SUPERVISED CLASSIFICATION MODELS

There are two types of classification or prediction models in M1.: su-
pervised and unsupervised learning algorithms. On one hand, the
supervised algorithms know beforehand the labels/classes (output val-
ues) of both training and test input data. Based on this, the supervised
model learns not only from the input data distribution itself but also
from the labelled information. This type of learning models are ideal
for problems in which the labels are known, and the model has to
learn relations or differences among the existing classes. On the other
hand, unsupervised learning methods do not know previously any
information the information on the labels associated with the input
data. In this sense, these algorithms try to learn patters or clusters
existing in the input data. For that, the main goal for these models is
to discover the underlying distribution in the data, with the purpose
of learning complex and hidden relations. Output values are then as-
sociated with the input pattern or clusters according to experience or
experts knowledge.

For the development of the experiments that support this thesis, su-
pervised learning algorithms have been applied. When a differential
expressed analysis is addressed, the label of each patient or individual
used to perform the study is perfectly known. Thanks to this, it is easier
to find relevant differences between the considered groups by taking
into account these known labels. Then however, for the test phase of the
development of the models, test data is totally left apart and operated
as unseen data. This section reviews some of the most well-known
supervised learning algorithms applied to bioinformatics data, and
which will be applied in the experiments presented in this thesis.

3.1.1 Naive Bayes

classifier is a classic supervised algorithm based on the Bayes
Theorem [115]. This classifier assumes that the presence or absence
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of a specific feature is independent of the presence or absence of any
other feature for the studied variable. For example, each feature that
define a person (Height, Two legs, Face, Hair, Sex...), contributes to the
probability of being a person regardless of the presence or absence of
the rest of features.

One of the main advantage for NB model is the low number of required
training samples to estimate the means and variances for the classi-
fication. Due to the independence of the variable, it is not necessary
to determine the covariance matrix. Under these considerations, this
method is very powerful when the assumption of the independent
features make sense. Moreover the computational cost for carrying
out the training and test is very low in comparison with other more
complex supervised algorithms.

As was mentioned above, is a conditional probabilistic model based
on the Bayes Theorem. On one hand, the conditional probabilistic model
establishes that a concrete event (A) will occur with a probability equal
to the conditional probability of that event given a set of independent
events (By) (Equation 3.1).

P(A|By,By, ..., By) (3.1)

On the other hand, Bayes theorem determines the relation between
the probabilities of two given events (Equation 3.2). By means of the
Bayes Theorem is possible to obtain the probability of suffering from
lung cancer depending on the fact of being smoker. On the other hand,
and having information about patients who suffer from lung cancer,
the probability of being smoker when suffering from cancer could be
calculated.

P(A|B;) * P(B;)

(3-2)

classifier is designed taking into account the conditional probability
along with the Bayes Theorem, as well as the naive concept. The naive
concept means that all features or events (B;) will have an independent
influence over the event to study (A), regardless the presence or absence
of any other events (B;V]j # i). Equation 3.3 shows the mathematical
representation of probabilities identification.
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P(A,By,By, ... By) = P(A)P(B1|A)P(By|A)...P(B,|A) =

P(A) [TP(BA) 53)

i=1

In a problem to identify if an individual is a men or women given
a set of characteristics (Weight, Height, foot size. i.e.), classifier
calculates the possibilities for each class given each of the characteristics
separately, assigning to the individual the sex which obtains the higher
probability.

This classical classifier has been used in several research studies in a
broad range of fields such as text classification [116], emotion recog-
nition [117], network intrusion detection [115] or even for combining
multi-species microRNA data [119], among many others.

3.1.2 k-Nearest Neighbour

is one of the most widespread and old supervised classifiers due
to its simplicity, powerful recognition capacities and low computational
cost in comparison with other more complex methods [120, 121].
is based on classification by distance calculation, usually euclidean
distance, from the sample to classify to the rest of samples. Once
the vector of distances is determined and ascending reordered, the
parameter k will indicate the number of nearest neighbours to the
sample to classify to take into account. Thus, the classes of the samples
in the first k positions of the vector of distances are consulted.
will assign the majority class among the k-nearest neighbour to the
samples to classify. A graphical representation of this method can be
seen at Figure

The euclidean distance can be calculated as Equation 3.4, where x
is the sample to classify and x represents one of the neighbours.
Although euclidean distance is the most common distance for

in the literature, others such as Manhattan, Chebyshev and Hamming
distances are used too.

/

d(x,x) :\/(xl —x)2+ (22— x5)2 + oo+ (X0 — X),)2 =
(3-4)



3.1 SUPERVISED CLASSIFICATION MODELS

;..
o
g
2
)5»
\.'

\ ._..Jb,ll
h ) ~, = N
e B / . _ p - J
A ~e-
L 4
ol ¢ =
4 ClassC
ol

>
Figure 3.1: classifier graphical representation, where the num-

ber of nearest neighbour from the class B is higher than from the
other two classes. Source: https://www.researchgate.net/figure/
Example-on-KNN-classifier_figl 331424423

is a supervised learning algorithm, which means that all samples
are labeled and, this information is used to calculate the recognition
rate of new unseen samples. Furthermore, is Non-Parametric,
which means that no data distribution assumption is done, avoiding
the threats of mismodeling the intrinsic data distribution. In addition,

is an instance-base learning algorithm which means that the
algorithm does not explicitly create a model for learning. Instead of
creating a training model, chooses to retain the training instances
which are utilised as knowledge for the posterior prediction step.

On a formal basis, according to a positive integer ‘k’, a new unseen
sample ‘x” and a closeness measure ‘d’, carries out the three
steps listed herein. Moreover, the mathematical implementation for the
calculation of the classes that correspond to each evaluated ‘x’ is given
by the Equation

1. The algorithm calculates through the entire training dataset the
distance ‘d” between the sample “x” and each training sample. The
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set A is formed by the ‘k’ points of the training dataset that are
closest to “x".

2. Then, the algorithm calculates the conditional probability for
each class for ‘x’, that corresponds to the fraction of points in ‘A’
with a concrete class label. As supplementary information, I(x) in
the Equation 3.5 represents the function that returns 1 when the
argument x is true and o otherwise.

3. At the end, the class that achieves the higher conditional proba-
bility is assigned to the sample ‘x’.

Ply=jlx=i=¢ 167 =)) 5:5)
ieA

is not only an algorithm for supervised learning but also used
for feature extraction, dimension reduction, decision boundary, data
reduction, data imputation, regression and outliers detection among
others. Furthermore, has been applied in multitude of fields such
as prediction of proteins location [122], authentication of smartphone
users based on the way they walk [123], estimation of Mediterranean
forest attributes [124], proactive detection of DDoS attacks [125]etc.
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3.1.3  Support Vector Machines

is a complex classification and regression methodology for su-
pervised machine learning published for the first time at 1995 by
Cortes et.al [126]. It is included within the so-called kernel methods,
a widespread and powerful set of algorithms with a higher computa-
tional cost in comparison with the methods explained above (B and

)- starts from the idea of trying to separate the points from
different classes in a N-Dimensional space through the calculation of a
hyperplane.

In practice, there are infinite hyperplanes that separate the classes in the
space. Nevertheless, the objective is to find the hyperplane that obtains
the best margins of separation between any point from the two classes
and the hyperplane. This optimal hyperplane is obtained by convex
optimization, given a set of hyperparameters, and the points defining
it are also known as support vectors. A graphical representation of a
hyperplane and the support vectors is given at Figure 3.1 in order to
understand better
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Figure 3.2: classifier graphical representation, when

there an hyperplane separating two classes with the most
separated support vectors. Source: https://unipython.com/
support-vector-machines-svm/

Hyperplanes are considered as decision boundaries with the purpose
of performing the data points classification. Points falling on either side
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of the hyperplane separated by support vectors can be assigned to one
of the classes. Moreover, the number of features establish the dimension
of the hyperplane. For example, for two input feature, the hyperplane
is just a line. However, for three input feature, the hyperplane becomes
a two-dimensional plane.

In , the hyperplane is defined by a linear equation, for which, if the
output of the linear function is positive, the point or sample to classify
is identified with one class. Conversely, if the output is negative the
sample is identified with another class. Support Vector get the values
1 or -1 in this equation, acting the range of values (-1,1) as the points
falling within the margin of the hyperplane in the training data.

The maximisation of the margin between the data points is usually
performed by means of the hinge loss function, which is represented at
Equation 3.6. In it, the cost is 0 when both the predicted and the actual
values have the same sign, otherwise, the loss value is calculated. Then
a regularisation parameter(A) is added to the cost function to find a
balance between the margin maximisation and loss (Equation 3.7).

ety £ ={° _ TSz 66)

mingA || w [|* + Y (1 —y; (xj, w))+ (37)
i=1

In order to find the absolute minimum, it is necessary to compute the
gradients. For that, the partial derivatives with respect to the weights
must be calculated (Equations 3.5 and 3.9). Through the use of those
gradients, the weights can be progressively updated.

0
a_w,f |w||* = 2Awy (3.8)

iia—wmmm+:{

8wk

0 ify(x,w)>1

—VYiXik, else (39)

On one hand, when the model predicts the classes without errors
(no misclassification), the gradient is updated from the regularisation
parameter (Equation )-
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w=w—ax* (2 w) (3.10)

On the other hand, when there is a misclassification, the gradient up-
dating is carried out including the loss together with the regularisation
parameter (Equation )-

w=w+ ax (y;x; — 2Aw) (3.11)

The most simple way to separate samples from different classes is
through a line or hyperplane. However, in many cases the universe of
features and samples to study is more complicated and harder to clas-
sify. This may be because several causes such as the presence of more
than two classes to classify, a high number of features, which leads to
the common fact that datasets that can not be linearly separated. To
solve this problem, a Kernel function is usually implemented in A
Kernel function allows operating in a higher-dimensional space, with-
out computing the coordinates of the samples in that space. To achieve
it, the inner products between the images of all pairs of samples in the
feature space are computed. This operation is often computationally
cheaper than the explicit computation of the coordinates.

In SVMs, the C hyperparameter establishes a trade off between the
correct classification of training examples and the maximisation of the
decision margin. Then, when a bi-class classification with a low number
of features is addressed, it is common to use a linear kernel function.
However, to deal with more complex problems, the gaussian kernel
function is highly recommended. In this kernel, the ¢ hyperparameter
manage the gaussian kernel width.

has been used in multitude of applications, reaching very promis-
ing results in many cases. For that, this algorithm is one of the most
standard methods for supervised learning in the literature. Among
those applications there are a kernel implementation for protein
classification [127], for recognising human actions [128], for
malware detection [129], even for the classification and visualisation
of travel blog entries based on types of tourism [130], among many
others.

3.1.4 Random Forest

is considered one of the top-used existing classifiers nowadays. This
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method combines individual decisions trees to make a RF, then each
individual tree determines a class and, the final prediction by the forest
will be the most voted class [151].

To understand better kT, it is primordial to know the basis of Decision
Trees, as they are the foundations of RI. This method selects a set of
features from the input data and tries to separate the data points taking
into account the differences in the feature values existing within the
data samples in each class. In the example showed at Figure 3.3, there
are a set of numbers (five 1s and three Os that are also the classes).
Through a decision tree they will be separated using their features. The
features selected to classify them are colour (red vs. blue) and if the
number is underlined or not.

Although in real situations, input data will not be as easy as the
example, the intrinsic logic of the Decision Tree is the same. Basically,
at each node, the tree will query what feature will allow splitting
the data in a form that the emerging groups are as different among
themselves as possible.

11111000

No Is red? l Yes

11 11000

|

O
Noi

Is underlined?

Yes
11 00

Figure 3.3: Decision Tree example in which a set of numbers is classified
depending on their colour and underlining.

As it was mentioned above, I" is an ensemble conformed by many
independent decision trees. The main advantage of kI relies on the
large number of relatively uncorrelated models or trees that operate
as a group, as they will outperform any of the individual models or
decision trees. Working as individual entities, some trees may be wrong
while other trees will be right. For that reason, when all the trees are
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joined as a group, they are able to predict more accurate, using a voting
scheme, protecting each other from their individual errors.

Single Decision Tree Random Forest

Class 2

2
( )
e & é & i
O v 9 o9 e Class 1
O O Class 1

] \a, Class 2

Class 1

@ @ © @ @ |\ o

Class 2

Class 1

Figure 3.4: RF representation together with a single decision tree in
order to see the comparison between them. Source: https://miro.
medium.com/max/2000/0*xYEwFetXQGPB8aDFV

Taking into account that RF is a predictor consisting of a set of M ran-
domised and uncorrelated regression trees. Succinctly, at Equation

the calculation of the predicted value at the point x of a decision tree
inside the RI is represented. In this equation, m,(x; ®;) represents the
predicted value at a certain point x by the j-th tree, where ©, ...,y
are independent random variables, distributed as a generic random
variable ©, independent of the dataset D,,.

1y (x; @, Dy ) (3.12)

When all the trees that conform the perform their prediction at
certain point x, a majority voting is required to determine the final
prediction of the RI. For that, and for a binary problem, Equation
shows the evaluation along the M trees in the forest, in which at least
the fifty percent of the trees have to vote the class 1 to assign this value
to the final prediction, otherwise the value 0 will be assigned.

(3.13)

mM,n(X,'@l,...,@M, Di’l) — {0 lfM Z]:] mn(x,G)]; I/l) > 7

otherwise

As happen with other techniques, R also has a set of hyperparam-
eters to tune in order to achieve a better fit of the models. The main
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hyperparameter to tune is the number of trees created to training the
model. For datasets and problems with high dimensionality, the num-
ber of trees to achieve a correct fit is usually higher than the number of
trees in low-dimensional problems. However, there are some important
hyperparameters to tune such as the maximum number of features
considered for splitting a node, the maximum number of levels in each
decision tree, the minimum number of data points allowed in a leaf
node, or the minimum number of data points placed in a node before
the node is split.

As it happens with the other supervised methods explained above,

has been used for many applications along the science and other
disciplines. In this sense, this approach was used for identifying SNPs
predictive of phenotype [132], the prediction of protein—protein in-
teractions [133], the imaging atmospheric of the Cherenkov telescope
MAGIC [134] and for UAV remote sensing for urban vegetation map-
ping [135], amongst others.

3.2 FEATURE SELECTION

is a machine learning technique that consists in reducing the set of
features employed in the design of the predictive model, in order to
maintain only the truly relevant features for the addressed problem.
Concretely, 'S approaches are used for the following reasons:

¢ The simplification of the predictive models. Models with a more
reduced set of features are easier to interpret and understand for
the researchers or experts in the problem at hand.

* A reduced sub-set of feature also may dramatically shorten the
training computation of the predictive models, especially in some
specific methodologies whose complexity depends on the number
of features used.

* The curse of dimensionality is a very common problem when
datasets with more features than samples is handled. The dis-
persion within the input data space increases exponentially with
the dimensionality of the input data, detracting from statistical
significance to the results attained with any model used.

¢ Finally, I'S usually is useful to enhance generalisation and min-
imising overfitting. Since predictive models with more irrelevant
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or redundant features can generate models more prone to errors
and values deviations in these features.

Along this section, three well-known feature selection algorithms will
be briefly exposed here, which correspond to the feature selection
methods applied in the experiments that support this doctoral thesis.

3.2.1  Relief

Relief is a well-known feature selection algorithm, whose main draw-
back is that it is highly sensitive to feature interactions [136]. Although
the algorithm was originally created for 2-class classification problems,
it was adapted too for multiclass classification. To perform the selec-
tion, Relief calculates a score for each feature, then the feature vector
is reordered to create a ranking. Finally, the top scoring features are
usually selected as the final sub-set of the

For the score calculation, the algorithm detects the differences between
the value in the nearest neighbour pairs of features. When a difference
in the features values of a neighbouring pairs of features appears and
they have the same class than the observed feature, the score for this
feature decreases (hit). Conversely, when the difference in the features
values of a neighbouring pairs of features appears with different class
than the observed feature, the score for this feature increases (miss).
A representation of Relief hit and miss given an observed instance is
given at Figure

Relief has the advantages of being not dependent on heuristics as well
as having a low computational time. Nevertheless, the algorithm does
not discern between redundant features, and a reduced numbers of
training samples can lead to erroneous results.

The algorithm takes as input a dataset that contains n samples with m
features, labeled through two known classes. Then, the algorithm starts
with a weight vector of zeros (W) with a size equal to the number of
features (m). The score calculation will be repeated k times in order to
update the weights vector each iteration.

For each iteration, a features vector (X) from one random samples
is taken along with the features vectors of the samples closest to X
from each class, calculating the Euclidean distance or other well-known
distance. As it was mentioned before, the closest same-class samples is
known as near-hit, and the closest different-class samples is known as
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Relief
o % Target Instance (e.g. Class ‘()’)
X @ * Xo®
. % - o X ® Instance with Class ‘O’
o % x @ " (Zero instance weight)
» "8 % Instance with Class ‘X’
y ® X *‘ ® (Zero instance weight)
O P » ®)
° s % ® Instance with Class ‘O’
XX X ° Nearest Neighbor(s) (Near)
o *x o) a X Instance with Class ‘X’
y ® wx ® s Nearest Neighbor(s) (Near)

p - dimensional space

Figure 3.5 Relief near-hit and near-miss representation
given an observed instance (Target Instance). Source: https:
//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Relief_
Wiki.svg/1200px-Relief_Wiki.svg.png

near-miss. Then, the Weight vector (W) is updated taking into account
the near-hit and the near-miss, as it shown at Equation

W; = W; — (x; — nearHit;)? + (x; — nearMiss;)? (3.14)

In this sense, the weight of a given feature decreases if it discerns from
the same feature in closest samples of the same class more than closest
samples of the other class, otherwise the weight of the observed feature
increases.

Finally, once all the iterations are done, the Weight vector (W) is divided
by the number of iterations k with the aim of calculating the relevance
vector, selecting all those features that exceed a given threshold.

3.2.2  minimum Redundancy Maximum Relevance

is one of the most powerful and widespread feature selection
algorithm among the scientific and community. The algorithm was
originally developed by Peng et al. [137]. At its origin, was
mainly designed to deal with the classification of DNA microarray
data, with the purpose of reducing the extremely amount of genes or
biomarkers candidates in comparison with the low number of samples
usually available. However, the method has been used more extensively
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in other fields and applications. Although has high complexity
in computational terms and this complexity scales quadratically with
the number of features and linearly with the number of samples, it
also offers one of the best trade-offs between stability and accuracy as
Brown et al demonstrates [138].

takes into account the importance or relevance of the features
(genes) for a given classification task. creates a ranking of
features based on their relevance to the classification, penalising also the
redundancy among the features. The aim of the algorithm is to achieve
the maximum relevance between a set of features X, and the class ¢
but minimising the redundancy, taking into account the M| between
the features. The measures the mutual dependence between the
two variables or features. Equation shows the calculation of the
between a pair of features (A and B), which can be obtained if the
marginal probabilities p(a) and p(b), and the joint probability p(a,b) are
known.

p(a,b)
a,b)log( .1
ng e W))) :15)
Firstly, selects features such that they provide maximum rele-

vance between the features set selected S and the class c. Equation
consists of the sum of the M1 of all the features in S separately with
the class ¢, divided by the number of elements of the feature vector S.

maxD(S,c); Z (X;;c) (3.16)

€

Nevertheless. choosing features only according to the maximum rel-
evance can bring a high redundancy, effect called also as colineality.
Therefore, Equation estimates the redundancy existing among the
features in the subset S by summing the VI between those and dividing
them by the cardinal of the features vector S.

minR(S 2 (Xi, X))

T (3-.17)

Finally, by combining the Maximum relevance and the Minimum re-
dundancy equations, algorithm is designed. Equation
represents the junction of both criterion with is used in a greedy way
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to iteratively select features forming a ranking, where S represents the
set of currently selected features.

1
maxx,q¢s[1(Xi;c)] — S XZS I(Xj; Xi)] (3.18)
]'E

3.2.3 Random Forest as Feature Selector

Previously, was described as one of the most famous and powerful
classifiers nowadays. However, is also used as feature selection
method through a measure called feature importance, which is returned
by the algorithm. R was concretely used as feature selector for selecting
biomarkers in Microarray data by Diaz et al. in 2006 [139], thus this
method is used since several years ago. 1" provides a good predictive
performance in most of cases and easy interpretability. Focusing on
the second advantage, the interpretability is provided as the method
is straightforward to derive the importance of each feature on the
different decision trees. Thanks to this, it is very simple to know how
much each feature is affecting to the final decision.

To understand the feature importance, it is pertinent to remember the
operation of RF, which consist in the creation of several decision trees,
each of them designed over a random extraction of the samples and a
random extraction of the features. For this reason, not every random
tree uses all the features or all the samples, guarantying that the trees
are uncorrelated and, hence less trended to over-fitting. Basically, each
uncorrelated tree is a sequence of yes-no questions based on a single
feature or a combination of them. At each node or question of a tree, the
dataset is divided into 2 sub-sets, each of them contain samples that are
more similar among themselves but different from the samples in the
other sub-set. Consequently, the importance of each feature depending
on how pure each of the sub-set is, understanding by pure the correct
separation of the samples along the sub-set due to the feature influence.

The use of I as feature selector by using tree derived feature impor-
tance is a very simple, fast and precise way of choosing features for
the reduction of the dimensionality and noise for the final predictive
model.

However, this method is based on impurity reduction and due to that,
it is biased towards preferring features affecting more classes. Moreover,
when the dataset contains correlated features, some of features can be
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selected as predictor feature by the model, with no preference of one
over the rest. Nevertheless, if one of them is used, the importance of
the rest of features decrease significantly due to the impurity that these
features can remove is already erased by the used feature. Consequently,
these features will have a very low importance in comparison with the
chosen feature.

3.3 MACHINE LEARNING FOR BIOMARKERS ASSESSMENT

The potential of has constantly increased in the last years due
to the increment of both the data available and the computational
performance of the current computing systems, including the almost
unlimited potential that virtualisation and cloud computing provide to
any research group or company at reasonable cost. For these reasons,
although years ago practice seemed to be focused only on the
computer sciences scope, nowadays they are widely used in practically
every study field. That is the case with the biomarkers assessment in
cancer, a very concrete application of inside the Bioinformatics and
Computational Biology scope. In the fight against cancer, the search
of possible new biomarkers or combinations of them is one of the
most promising allies. Due to that, there are plenty of researches that
propose and assess different candidate gene signatures for different
cancer pathologies, rare diseases, Alzheimer, i.e.

Concretely, for gene expression analysis, the dimensionality of the ex-
periments is usually very high due to the number of features involved.
Taking into account that the human genome contains between 20.000-
25.000 protein coding genes, it is moreover impossible to find and
evaluate biomarkers manually or without applying any of the existing
well-known statistical methods or approaches. In this sense, thanks
to these techniques the traditional analysis of a very reduced set of
biomarkers has turn into the possible analysis of the whole genome
for discovering biomarkers whatever being their location inside the
genome. For that, through the use of techniques, the possibilities of
learning and detecting new biomarkers and hidden relations between
them have increased remarkably. In addition, it is easier for biologists
and clinicians to have a reduced and clear sub-set of candidate biomark-
ers with the aim of evaluating them at biological level to prove their
real impact in the disease.

Although this thesis is focused only on transcriptomic biomarkers
understood as , there are others biomarkers such as proteins or
metabolites in which is applied too. For example, Swan et al. in 2013
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perform a review of the use of for the classification and biomarker
identification in post-genomics biology with proteomics data [140]. In
this review, several well-known supervised learning classifiers and
feature selection methods are applied in different proteomics issues,
achieving very promising results.

Another relevant study were done by Abeel et al. in 2009, which address
a robust biomarker identification for cancer diagnosis with ensemble

feature selection methods by using [141] approaches. For that,
they used four microarrays, achieving a possible gene signature of a
few tens of . The importance of a good 'S implementation must

be highlighted from this article, because they achieved an improvement
of 15% in the classification accuracy thanks to the

Biomarkers can be extracted even from images as Woo et al. shown
in their article in 2015. They used human neuroimaging along with
machine learning techniques to develop objective brain-based biomark-
ers of the neural functions and neuropathology that underlie chronic
pain [142]. Furthermore, Azuaje et al. make use of techniques for
cardiovascular biomarker discovery based on the combination of gene
expression and functional network analyses [143].

Moreover, there are not only isolated studies but also tools and systems
that try to automatise the biomarkers discovery. For example, Horng et
al. proposed an expert system to classify Microarray gene expression
data using gene selection by decision tree in 2009 [1.44]. Statnikov et
al. created GEMS in 2005, which is a system for automated cancer
diagnosis and biomarker discovery from microarray gene expression
data [145]. Even was originally designed by Peng et al. [157]
for I'S applied to biomarkers detection in DNA microarray data, as it
was mentioned above.

As it has been explained along this section, the biomarkers detection
is crucial for winning the battle against multifactorial and genetic
diseases such as cancer. However, it is also very important not only to
know those biomarkers but also how counteract their effect to make
the disease diminish. In this sense, Vamathevan et al. have made a
review of the applications of to drug discovery and development
in 2019 [146].

To sum up, has a tremendous number of applications to help to
understand the diseases like cancer and the way which they growth. In
a near future, thanks to the medical, biological and computer sciences
advances, the precision medicine will be a reality which will allow
saving a lot of life from genetic and multifactorial diseases.
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are analysis in the literature that combine the differential
gene expression analysis with techniques in different ways.
However, those analysis are usually focused only on one type of cancer
and in a bi-class approach, and make only use of a single dataset or
series. In this sense, the development of this thesis is supported by
the creation of an automatic pipeline to carry out complex differential
gene expression analysis along with the posterior machine learning
assessment, taking into account the integration of heterogeneous data
sources. Furthermore, this automatic pipeline has been tested under
different cancer pathologies and different number of classes (not only at
bi-class level), achieving in all cases outstanding results. In this section,
the different steps that conform the mentioned automatic pipeline will
be in-depth explained. Moreover, as a colophon, the process to publish
the automatic pipeline in the most important worldwide repository of
Bioinformatics will be also detailed.



68

CENTRAL
PROCESSING UNITS

GIGAHERTZ

GIGABYTE
Ranpom

AccEss MEMORY
SMALL

COMPUTER SYSTEM
INTERFACE
TERABYTE
NETWORK FILE
SYSTEM

OPERATIVE
SYSTEM

4 METHODOLOGY & RESOURCES

4.1 HARDWARE & SOFTWARE RESOURCES

The experiments that support this doctoral thesis have required a
very high computational cost, specially for the RNA-Seq RAW data
alignment. This RAW files usually need a huge storage capacity as each
tile contains a puzzle in which each piece is a fragment of the

of an individual. Because of that, it has become necessary to use
hardware. For the RAW files alignment two computer clusters have
been used, reducing drastically the computational cost for aligning the
samples and for counting the reads per genes for each individual. Then,
for carrying out the biomarkers detection and analysis, R language was
used along with Matlab for the assessment of the first version of the
pipeline. Once the pipeline was finished, the step was implemented
in R language too. All these steps were run in a Personal Computer
prepared for complex and heavy analyses. The clusters and the personal
computer characteristics are listed herein:

* BioATC: Computer cluster with a total of 19 computing nodes
and, the following features per node:

-2 Intel Xeon E5520 (2.27
cores, and 8 processing threads).

) (each processor with 4

- 16 of

— Massive storage: Disk with 160 in the compute
nodes. 2 of storage in the main node, available via
from the compute nodes.

— Network: Gigabit Ethernet and Infiniband.

— 0O5: CentOS 7.6.1810 64 bits.

- Job Scheduling System: Slurm.

— Monitoring: Ganglia.

¢ ATCBioSimul: Computer cluster with a total of 4 computing
nodes and, the following features per node:

-2 Intel Xeon Silver 4110 8c (2.10
with 8 cores, and 16 processing threads).

) (each processor

- 32 of
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-2 Asus Dual RTX-2080 A8G EVO 8 GDDRG6 in the
last compute node.

— Massive storage: RAID with disks (15 1B and 12 ), SERTAL
and (35 TB). Both available via from the compute = ArraciEp SCSI
nodes. GIGABIT PER
SECOND
N
— Network: Gigabit Ethernet. AylvAcﬁﬁ?gﬁim
— OS5: Ubuntu 18.04.2 LTS 64 bits.
— Job Scheduling System: Slurm.
— Monitoring: Ganglia.
e MSI GP62VR 7RF Leopard Pro: Personal Computer with the
following features:
- Intel Core i7-7700HQ (2.8 , 4 cores and 8 process-
ing threads).
- 32 of
- Nvidia GeForce GTX 1060 3 GDDRs.
— Massive storage: with 256 and 2 hard disks with 1 SOLID-STATE
per disk. Drive

— OS5: Ubuntu 16.10 LTS 64 bits.

4.2 ASSEMBLING AN INTELLIGENT DIFFERENTIAL EXPRESSION
PIPELINE

Traditionally, the proposed methods for differential expression analy-
sis in the literature do not include a learning step together with
a biological enrichment process. Along this thesis, a whole pipeline
not only for Microarray but also for RNA-Seq that includes RAW
data pre-processing and quality treatment, heterogeneous integration,
biomarkers detection, assessment and biological enrichment has
been carefully designed. The main goal of this pipeline is to provide
to the scientific community an automatic and integrated pipeline for
performing all-in-one differential expression analysis under the same
programmatic language (R) or environment. The pipeline has been
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tested under different conditions and diseases and not only in one iso-
lated experiment. This section contains an explanation for the different
sub-steps that conform the pipeline.

4.2.1 Heterogeneous Data Gathering

The samples gathering is the first step to perform a differential gene
expression analysis. This is a delicated process, because samples in bad
condition can introduce noise and bias in the final results. In order to
reduce possible deviations coming from the data, all the experiments
of this thesis have been done by using Microarray and RNA-Seq RAW
data with the aim of applying the same pre-processing strategies to all
of them.

4.2.1.1  Web-platform Databases

To look for the samples, two of the most well-known public and con-
trolled databases have been used. The first one is the public database
, which has series from Microarray belonging to practically
any type of cancer or multifactorial or genetic disease [1.47]. More-
over, stores series from RNA-Seq, although the amount
of Microarray series is far larger than of RNA-Seq series. However,
this database stores not only series coming from transcriptomic but
also series from other different omics and technologies. The samples
are not usually stored separately, instead, the samples are organised
in series or platforms, which are groups of samples belonging to the
same laboratory or experiment. It is very normal to find samples that
have been previously treated with drugs, which can confound the
biomarkers extraction and predictive models if some genes have been
over-expressed or inhibited due to the effect of those drugs.

The other database is Portal which has public and controlled
samples depending on if the samples can identify an individual or
not [148]. For example, files are all of them under controlled

access because a genome could identify an individual, however images
and count files are public without any restriction. In this case, samples
are separated by type of cancer, and are individually downloaded.
The main advantage of Portal is that samples are harmonised
among them following the same alignment process, which ensure the
outstanding quality of all samples. Furthermore, Portal counts
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with the clinical information that can be used to study the disease
progression and lifestyle of each individual.

4.2.1.2  Microarray RAW data processing

Microarray RAW data are usually stored at .CEL files for Affymetrix
microarrays and .TXT for Illumina microarrays. Affymetrix and Illu-
mina also organise in a different manner the information inside the
RAW files. Taking this into account, the easiest way to pre-process the
RAW files from both manufacturers is through the use of the specific
R packages for each of them. In the case of Affimetrix, the package
affy can open .CEL files to extract the gene expression values from the
information of an Affymetrix Microarray [149]. For that, the package
counts with the algorithm, which converts the intensities in the
.CEL files into an expression measure in log base 2 scale [150].

Then, for [llumina microarrays, the .TXT files can be pre-processed
with the lumi R package [151]. As happen with Affymetrix RAW files,
the Illumina RAW files contain the intensities of the probes from the
microarrays. This intensities can be translated into gene expression by
using the function lumiExpresso from lumi package, which implements
also a log base 2 scale. Keeping the same transformation scale between
Affymetrix and Illumina Microarray is very important to achieve a
correct integration between both technologies.

4.2.1.3 RNA-Seq RAW alignment

RNA-Seq RAW pre-preprocessing is a more complex process, involving
more steps than for Microarray RAW pre-processing. files are
conformed by many fragments of from an individual. Those
fragments are unordered and need to be realigned by using a reference
genome, which is a compendium of genomes from different volunteers
that represents the standard human genome. This process takes a lot
of time and is very heavy in terms of computation and, due to this
reason computer clusters were used to carry out the alignment process.
Furthermore, a file is required depending on the aligner used for
the alignment. It is a widely used format for storing gene annotation
and structures. In the case of the experiments done for this thesis,

the file was necessary due to the Tophat2 [152] and Hisat2 [153]
aligners, which were used for the RNA-Seq RAW alignment. Once
the tiles are created, it is required to count the number of times

or reads per genes in the aligned genome. For that, Htseq-counts

RoBusT
MULTI-ARRAY
AVERAGE

GENE TRANSFER
FormAT



72

4 METHODOLOGY & RESOURCES

allows counting those reads and create a .TXT files which contains the
reads per gene [154]. Finally, through count files, the equivalent gene
expression values can be calculated.

4.2.2 PV@—p?’OCCSSng

Dataset pre-processing is the most sensitive step in any pipeline in
which biological data is involved, due to the possibility of losing intrin-
sic information, or of introducing noise or bias inside the samples. To
avoid as far as possible these problems, the pre-processig step has to be
restrictive and robust, applying outliers detection and quality analyses
strategies. Even so, when an integration is to be carried out and several
heterogeneous data sources turn into one super-dataset.

4.2.2.1  Outliers detection

It is very common to find samples which differ from the numerically
trend of the samples inside of a dataset or series, abruptly deviating
the mean. These samples are considered as outliers and they have to
be removed from the rest of samples. The first step to achieve a great
concordance among the series to integrate is the outliers detection and
removal with the aim of removing those samples that could introduce
irregular values. This detection is usually performed by using statistical
analyses which allows detecting those unusual values.

ArrayQualityMetrics R/Bioc package includes a set of statistical ap-
proaches with the objectives of catching possible outlier from different
perspectives [155]. Mainly, the package computes four different test to
find outliers. The distances between arrays to search for possible sam-
ples far from the others. The Kolmogorov-Smirnov K statistic which
measures the probability that a concrete univariate series is drawn
from the same parent population as a second series. The density of the
standard deviation to measures any possible samples that introduce ab-
normal modifications into the standard deviation. At last, the MA plots
are also represented through the calculation of Hoeffing’s D-Statistic,
which computes the differences among the density distributions of
each array with a reference array that consists of the median across
arrays. The outliers detected by those methods are removed to ensure
the correct harmony among samples.
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Although ArrayQualityMetrics was designed only for Microarray qual-
ity analysis, the package has been adapted to RNA-Seq in KnowSeq
in order to compute the quality analysis regardless the transcriptomic
technology.

4.2.2.2  Data Suitability

Having homogeneous data would be the ideal scenario when an inte-
gration is carried out. Nevertheless, each of the different manufacturers
and technologies have their own particularities in the data, which must
be removed or minimised to reach the integration. Firstly, all datasets
have been pre-processed depending on the manufacturers they belong
to, as it was previously mentioned. Then, a logarithmic transformation
must be applied to those series or datasets which are not in log, scale.
Furthermore, the bit depth of each series must be also equalised in
order to keep the expression ranges of all series in the same dynamic
range, avoiding the rise of erroneous . Finally, it is very com-
mon that each manufacturer has its own gene annotation, because of
that genes have different identification between series from different
technologies, making impossible their integration. It is required that
annotations from different sources will be translated into standard ex-
isting annotations such as Entrez [156], Ensembl [157] or Gene Symbols
( ) [158]. After all these adequacy strategies, heterogeneous data
should be ready to integrate them.

4.2.2.3 Batch Effect Treatment

The presence of batch effects is one of the most problematic situation
in omics data analysis, when there are different data sources involved.
Batch effect makes reference to an intrinsic deviations of the samples
given a set of factors (the laboratory, the lab technicians, the sequencers
or even the environmental factors). Taking this into account, each series
or datasets can suffer from a different batch effect among their samples.
There are many debates on this topic because of it is very difficult to
know if those deviations are due to batch effect or, otherwise biological
deviations. Furthermore, even if batch effect is located, it is a challenge
to truly know if data has been really corrected and, consequently,
batch effect removed [159]. In this sense, there are different batch
effect removal strategies to apply depending on if batch groups among
samples are known or unknown.
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When batch groups are known, the batch covariate can be calculated,
in this case ComBat method is the most widespread strategy to remove
batch effect. ComBat adjusts batch effect by applying parametric or non-
parametric empirical Bayes frameworks following the methodology
described by Johnson et al. in 2007 [160]. To carry out this correction,
estimations taking into account several factors are calculated for each
genes in each batch. The estimations are usually simple measures such
as mean and variance. Those measures are estimated by means of
extracting information through multiple genes with similar expression
in each known batch.

However, when there are public datasets or series involved in a research,
it is very difficult to know the batch groups because of a lack of
information about the series creation and sequencing. Under these
conditions, there are well-known methods to estimate the influence
of batch effect in the samples. The chosen method in this thesis is
the algorithm to find surrogate variables [161]. The aim of this
method is to remove all unwanted variations, protecting the contrasts
due to the classes to compare. This is translated into the extraction of
features that are truly different between groups, removing all common
latent variations. Nevertheless, there are other methods such as ,
also very useful for removing unwanted variations when there is no
predefined factor of interest. It is also the case in which a normalisation
is required without knowing which factors of interest will be studied.
In this sense, corrects the gene expression by estimating and
removing the unwanted variation, without removing the unobserved
variation of interest [162].

4.2.2.4 Heterogeneous Transcriptomic Integration

Ensuring data quality for the integration requires an enormous effort to
avoid losing biological information. Once these step are correctly per-
formed, heterogeneous data sources are ready to be integrated. There
are two important steps for an appropriate integration of heterogeneous
data: data merging and normalisation.

The first step, data merging, requires the correct individual pre-processing
of all available series in the study. Afterwards, heterogeneous integra-
tion was carried out using the merge function from the base R package.

The second step in the integration is the normalisation of the integrated
dataset. To perform this normalisation, the normalizeBetweenArrays func-
tion was used. This function is based on quantile normalisation and
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allows to remove any possible deviation or variation among different
arrays or datasets. Concretely, the method selected for the normalisa-
tion in this function is the “Aquantile" that ensures that the A-values
(average intensities) have the same empirical distribution across arrays,
leaving the M-values (log-ratios) unchanged.

These tasks are essential in order to achieve a correct normalisation of
the biological data and its subsequent processing. The integration is
indeed a critical process in the study as if the merging or normalisation

are not properly done then the extracted would be erroneous.
This would introduce confusing values in the research, that would
lead irretrievably to a misleading selection of and subsequent

erroneous outcome of the machine learning process.

4.2.3 Biomarkers Detection

Once data is already pre-processed and/or integrated, the biomarkers
detection can be carried out with the security of having a high quality
dataset, which will ensure the correct candidates extraction. It
has to be highlighted that through this process, the curse of dimension-
ality is partially avoided because this step acts as a I'S, removing those
features without enough information to discern between the addressed
states (Tumour vs Normal i.e.). For this reason, threshold values in-
volved in this step have to be wisely chosen to achieve a correct number
of features with discerning potential.

In the literature, limma R package has been postulated as the most im-
portant tool for performing differential gene expression analysis [163,

]. Limma was originally designed only for Microarray, however,
over the years the package has been updated to support also RNA-Seq.
Normally, are selected depending on their LogoFoldChange and
their P — value from limma output table. Fold change is a measure that
describes how much a value changes between two different observation.
For example, an initial value of 10 and a final value of 20 corresponds
to a fold change of 2. Nevertheless, when a gene in a class is inhibited,
its expression will be between o0 and 1 in comparison to the other class,
and, if this gene is over-expressed in one class, its value will range from
1 to infinity. With the aim of equalising this situation, Logy FoldChange
(LFC) is used instead of Fold Change, which allows representing inhib-
ited genes with minus sign and over-expressed genes with plus sign.
Equation represents the LogFoldChange formulation given two
observation A and B. Otherwise, P — value represents the threshold
for considering a gene as a taking into account the , which
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represents the expected numbers of type I errors. These errors occur
when the null hypothesis is incorrectly rejected (False positive).

LFC =1log(B—A)/A (4.1)

4.2.4 Machine Learning Assessment

Thanks to techniques, new biomarkers have been found and as-
sessed over the last years for different multifactorial and genetic dis-
eases. As it was mentioned at Section 3.3, it has become impossible to
find in a manual way truth biomarkers among the massive quantity
of transcriptomic generated data. In this sense, has allowed to
extract and learn concrete and truthful biological information from
a huge dimensionality space, providing a powerful tool for scientists
and clinicians. Then, those biomarkers previously selected with

can be corroborated in the laboratory in order to determine their real
biological impact.

4.2.4.1 Feature Selection

Finding a reduced sub-set of with the capability of discerning
among addressed states can be a challenging task. In this sense, I'S tech-
niques are usually implemented to obtain a reduced sub-set of

that diminishes the model complexity while practically preserving the
predictive model results, also avoiding possible overfitting. All the ex-
periments in this thesis include a 'S process that allows obtaining the
final sub-set of presented for each cancer pathology addressed.
Thanks to this process, a small set of candidates, even for multi-
class experiments, were achieved and assessed obtaining in all cases
outstanding results and cancer related

4.2.4.2 Predictive Model Implementation

Once are obtained, they become potential biomarkers to discern
among the states to study. For that, those have to be evaluated
depending on their gene expression values. If those have truly
differences between the expression values among the studied classes,
they would have the desired discernment potential for these analysis.
This is where predictive models are applied with the aim of carrying out



4.2 ASSEMBLING AN INTELLIGENT DIFFERENTIAL EXPRESSION PIPELINE

an evaluation of those , learning relevant information from them
and using this information to predict unseen samples. Furthermore,
the more available samples or observations, the larger generalisation
capability the predictive models will have.

In order to accomplish this task, it is recommended to train the pre-
dictive models following a strategy. Concretely, for this thesis a
k-fold C'V was implemented, which means that the training dataset is
splitted into k sub-training sets, leaving the rest of samples for vali-
dation. Thanks to this technique, all the training samples are used for
both training and validation at least once. Finally, at the end of the
validation process, there are as results as k iterations, which will be
used to decide the final sub-set of for the test process.

The final sub-set of chosen in the previous validation process is
used to training the final model along with the whole training dataset
and, also for testing the model with unseen samples kept from the
beginning only for this step.

Keeping a robust methodology ensures the correct assessment.
Due to that, the addressed problems in this thesis have been carefully
studied, warrantying the good practices in the pipeline.

4.2.5 Biological Enrichment

The aim of this type of analyses should be not only the search and as-
sessment of candidates biomarkers, but also their biological enrichment
in order to give to the results a truth biological sense. For this reason,
all the experiments are accompanied by an exhaustive literature
enrichment with references that related those with the specific
cancer addressed in each study.

However, the pipeline has been expanded with new biological enrich-
ment functionalities when it has been encapsulated under the KnowSeq

R/Bioc package. Understanding the real impact of needs more
than the appearing relation with cancer in the literature. For example,
the Gene Ontology enrichment allows retrieving biological lo-

cation and functionalities. Determining affected pathways by

is also very useful in order to see how the gene expression variation
affects to adjacent genes in the same pathway/s, which could lead to
bifurcations and activation of different biological processes (Apoptosis,
Angiogenesis, i.e.). Finally, finding a score that relates with a
concrete cancer taking into account different factors (RNA expression,
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affected pathways, literature evidences, i.e.) is possible and very useful
to know and quantify this relation. All this improvements to the bio-
logical enrichment process allow achieving a real biological overview
of those based on the existing information of them in different
organisations and biological databases. As it was mentioned above, all
these processes have been added to the automatic pipeline through our
public KnowSeq R/Bioc package.

4.3 PUBLISHING A BIOCONDUCTOR PACKAGE

Once the pipeline was finished, the idea of encapsulating it in a tool pub-
licly available for the scientist community emerged. For Bioinformatics,
R language has been postulated as the most used language in the
literature and, taking this into account the pipeline was designed and
implemented under a R package (KnowSeq). Moreover, to maximise it
diffusion Bioconductor repository was chosen to publish KnowSeq, as
it stores the most well-known Bioinformatics R packages [165].

To achieve the Bionconductor quality requirements, a set of severe
considerations were addressed for the package design. All the functions
must be correctly documented and the examples have to run correctly,
furthermore all the inefficient structures and functions were replaced
following the R design guidelines. Finally, the package documentation
was iteratively revised until its quality was certified by Bioconductor.

To submit KnowSeq, a public Github repository was done with the con-
tribution request to the Bioconductor contributions Github repository.
The issue to follow the KnowSeq Bioconductor revision is public and
can be read by following this link: https://github.com/Bioconductor/
Contributions/issues/1121. In this issue, Bioconductor staff and the
main author (D. Castillo-Secilla) interact until KnowSeq passes all the
tests to be accepted for being published in Bioconductor. The KnowSeq
user manual is included in the Appendix B of this doctoral thesis as well
as in Bioconductor repository (https://bioconductor.org/packages/
release/bioc/vignettes/KnowSeq/inst/doc/KnowSeq. pdf).



BREAST CANCER PROFILING BY INTEGRATING
HETEROGENEOUS TRANSCRIPTOMIC PLATFORMS

CONTENTS

51 Background .. ... ... ... .. .. o o oL
5.2 Intelligent Breast cancer pipeline methodology . . . . ... ..
5.2.1 Breast cancer data gathering . . . . ... ... ... ...
5.2.2 Microarray DEGs extraction . . . . ... .........
5.2.3 RNA-Seq DEGs extraction . . . ... .. .........
5.2.4 Intelligent Integrated Pipeline . . . . .. ... ... ...
5.2.5 Predictivemodels . . ... ... ... ... ... ...
5.2.6 Featureselection . ... .. ... ... ... ... ...
5.3 Results and Discussion. . . . ... ... .. .. .........
5.3.1 Gene expression Analysis. . . . ... .. .. .......
5.3.2 Classificationresults. . . . .. ... ... .. ......
5.4 Conclusions of the Chapter . . . ... ...............

present chapter is a reorganised and extended version of the
published manuscript "Integration of RNA-Seq data with hetero-
geneous Microarray data for breast cancer profiling" [6]. In this study,
the first version of the integrated intelligent pipeline was presented,
obtaining for differentiating between a breast cancer cell line
and a normal cell line. All the samples used for the study coming from
Microarray and RNA-Seq are publicly available at
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5.1 BACKGROUND

Nowadays, public repositories containing large Microarray gene expres-
sion datasets are available. However, the problem lies in the fact that
microarray technology is less powerful and accurate than more recent
Next Generation Sequencing technologies like RNA-Seq. In any case,
information from Microarray is truthful and robust, thus it can be ex-
ploited through the integration of Microarray data with RNA-Seq data.
Additionally, information extraction and acquisition of large number of
samples in RNA-Seq still entails higher costs in terms of time and com-
putational resources than Microarray. Along this Chapter, a new model
to search a candidate gene expression breast cancer signature through
the integration of heterogeneous data from different microarray and
RNA-Seq series is proposed. Furthermore, a classification method is
carried out in order to test the robustness of the when unseen
data is presented for diagnosis.

Breast cancer is one of the five most dangerous cancers in the world,
showing a high mortality rate according to and being the cancer
with the highest impact among the female population. Calculations
have shown that about 1 in 8 women are diagnosed with breast cancer
during their lifetime. There are some risk factors that promote breast
cancer such as age, genetic disposition, previous diagnosis, previous
non-cancerous (benign) breast lump, overweight, i.e. Concretely, in
2017, a total of 611.625 died due to breast cancer.

Normally, Breast cancer is divided into two subgroups: non-invasive
breast cancer (carcinoma in situ) and invasive breast cancer. The first
one is found in the ducts of the breast ( ) and it has not spread into
the breast tissue surrounding the ducts. The other one occurs where
the cancer cells have spread through the lining of the ducts into the
surrounding breast tissue. Invasive breast cancer is the most common
type of breast cancer.

Nowadays, many breast cancer diagnosis are performed when a patient
presents several related symptoms, thus increasing the mortality risk. If
the cancer has spread, treatment becomes more difficult, and generally
the chances of surviving are significantly lower. However, cancers
that are diagnosed at an early stage are more likely to be treated
successfully. Therefore, it is primordial to find biomarkers that allow
an early diagnosis of breast cancer.

There are many breast cancer transcriptomic data publicly available
stored in Microarray. Those microarrays belong to experiments already
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available and there are also even a high number of them that have not
been analysed so far. Those series might have information that could
reveal important facts and candidate biomarkers. In any case, there is
no doubt that although RNA-Seq is the present of the transcriptomic
profiling, it can also take advantage of the available data from Microar-
ray technology. As Nookaew et al. explained, there is a high consistency
between RNA-Seq and Microarray, thus encouraging to continue using
microarray as a versatile tool for gene expression analysis [104].

The aim of this research is the search of possible breast cancer biomark-
ers, taking into account patient and control samples stored at

. On one hand, the training dataset is conformed by 108 microarray
samples, 65 samples from Affymetrix and 43 from Illumina technolo-
gies and 24 RNA-Seq samples from Illumina Hi-Seq. On the other
hand, a test dataset has been also designed due to the necessity of
achieving samples that have never been seen in the extraction
and validation processes. This test set is formed by 120 samples of
microarray (108 of Illumina and 12 of Affymetrix) as well as 6 samples
of RNA-Seq from Illumina Hi-Seq. Most of the previous studies in the
selection of biomarkers perform this process through statistical tools
over a given dataset and a given technology. However, this research
takes an innovative step forward by combining different datasets and
Microarray technologies with RNA-Seq data.

5.2 INTELLIGENT BREAST CANCER PIPELINE METHODOLOGY

5.2.1 Breast cancer data gathering

The gathered samples for this research coming from two different cell
lines. A cell line can be defined as a standard cell culture which will
proliferate indefinitely inside an appropriate medium and space. For
control samples MCF10A cell line has been selected, which is a healthy
non-tumorigenic epithelial cell line. Otherwise, MCF7 line cell has been
chosen for cancer samples, as it is considered a breast cancer cell line.
To achieved them, a widely searched through the NCBI-GEO platform
have been done with the aim of finding series belong to the selected
cell lines from Microarray and RNA-Seq.

Once the requirements for selecting the desired samples were estab-
lished, an exhaustive search of Affymetrix and Illumina series was
carried out for microarray data. On the other hand, RNA-Seq data was
selected from Illumina HiSeq technology. Only public series containing
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the above-mentioned cell lines were selected. Table 5.1 summarises the
selected series for this study. As can be seen, the NCBI GEO database
offers a larger availability of Microarray data in comparison with the
number of RNA-Seq samples. Two different integrated sets have been
designed, one for training predictive models, and the other for their
test, both containing microarray as well as RNA-Seq samples. These
series are publicly available at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=S.NAME where S.NAME is the name of each series
at NCBI GEO.

Table 5.1: Description of the training and test series considered with
number of samples/outliers.

TRAINING SERIES

Series Quellity Senuplles | Bediueleel Senplles
GSEs2y12 | Affymetrix | Microarray 19 1 Manchester (UK)
GSE40987 | Affymetrix | Microarray 10 ¢ Boston (USA)
GSE52262 | Affymetrix | Microarray 16 0 Houston (USA)
GSE12790 | Affymetrix | Microarray 20 1 San Francisco (USA)
GSE46834 | Illumina Microarray 8 o New York (USA)
GSE68651 Tllumina Microarray 35 1 Southampton (UK)
GSE74251 | Illumina RNA-Seq 12 o Philadelphia (USA)
GSEy4377 | Illumina RNA-Seq 12 o Towa (USA)

TOTAL  Integrated 132 3

TEST SERIES

Saies Quellity Semplles | Iselneled Samypiles
GSE75292 Tllumina Microarray 6 1 Goyang (South Korea)
GSE29327 | Affymetrix | Microarray 6 o South San Francisco (USA)
GSE30931 Tllumina Microarray 12 o Goettingen (Germany)
GSE48398 | Ilumina Microarray 36 o Texas (USA)
GSE35928 | Affymetrix | Microarray 6 o Piscataway (USA)
GSE57339 | Illumina Microarray 12 o New Haven (USA)
GSE45715 | Illumina Microarray 42 o Miami (USA)

TOTAL  Integrated 126 1

5.2.2 Microarray DEGs extraction

As it was mentioned at Chapter 4, Microarray analysis includes several
steps to ensure the correct data treatment. Figure outlines the
Microarray data analysis pipeline. As a reminder, RAW files from both
Affymetrix and Illumina are subjected to a quality analysis together
with an outliers detection and removal. This quality analysis also
contains the intra-series normalisation along with the batch effect
treatment. Before integrating all the Microarray series, it is required to
retrieve the gene annotation for each technology in order to translate
and unify the name of the genes across series. Following the integration
strategy also defined at Chapter 1, Microarray data from the two
different technology are combined, achieving a Microarray integrated
dataset. Finally, extraction is carried out, acquiring a set of
Microarray
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Figure 5.1: Microarray gene expression pipeline followed to extract
and pre-process the microarray RAW data in this study.

5.2.3 RNA-Seq DEGs extraction

The proposed pipeline to treat RNA-Seq RAW data has been followed
for the gene expression values retrieval. This pipeline has been ex-
plained at Chapter 1 but it is also summarised here. A graphical repre-
sentation of the pipeline is shown at Figure 5.2. Starting from the SRA
original files, FASTQ files are obtained by using SRA-Toolkit. Then,
the reference genome and the files are required to carry out the
alignment process to obtain the tiles by using TopHatz2. Conse-
quently, with the aligned files the counts files can be acquired and the
gene expression values calculated. It is very important at this point the
application of a quality analysis together with a batch effect removal
strategies. At the end of the RNA-Seq pipeline, the dataset formed by
all the RNA-Seq samples was used to retrieve a set of RNA-Seq

5.2.4 Intelligent Integrated Pipeline

As a first approach of this new intelligent pipeline, an extension of
the classical gene expression data analysis pipeline is proposed in this
research. This pipeline counts with two main improvements. On one
hand, this pipeline integrates data from both Microarray and RNA-Seq
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Figure 5.2: RNA-Seq gene expression pipeline implemented for ex-
tracting gene expression values from RNA-Seq RAW data.

technologies. On the other hand, a assessment through a feature
selection and classification process by using separated training and
test datasets was performed. Figure 5.3 represents the workflow of this
research, including the new pipeline, for the extraction and assessment
of related to Breast Cancer.

Firstly, the integration of the heterogeneous series from both Microarray
and RNA-Seq technologies has been carried out following the integra-
tion strategy mentioned at Chapter . Thanks to this integration, the
resultant dataset has more samples for the VI, giving to the predictive
models more information to learn.

Although the integration of different gene expression sources is very
useful to achieve a dataset with a high number of samples for VI, this
process can introduce deviations for the selection. With the aim
of minimising this possible deviations, a concrete strategy has been
designed.

Concretely, extraction was performed at different levels using the
limma R package, both at individual levels (Microarray and RNA-Seq
separately) and at integrated level (joining Microarray and RNA-Seq
data).

At the end of the extraction procedure, a total of three different
sets of were obtained: the first one using only Microarray data,
The second one using only RNA-Seq data and the last one with the
integrated data from both technologies. Subsequently, the intersection
of these sets was obtained. This intersection represents an invariant set
of which are expressed independently of the used sequencing
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Figure 5.3: Integrated pipeline followed for this study

Integrated Dataset

technology and the integration process. A Venn Diagram was used to
perform this intersection.

5.2.5 Predictive models

Once a set of candidates [DECs which can be considered as biomarkers
for breast cancer were retrieved, the assessment of those DECs through
two different classification technologies were made: 5V M and RF. The
main objective is the validation of the behaviour of the DEGs with the
arrival of new unseen samples. The selected DECGs and the training
dataset were used for building the predictive models that were later
evaluated over the test dataset. Although both algorithms have been
explained at Chapter 3, a briefly summary of both is given herein.

e 5VM: This algorithm is based on the idea of separating the differ-
ent categories in a problem through a hyperplane. The algorithm
calculates the maximum-margin hyperplane that maximises the
distance between different classes. For overlapped data, this type
of models turn a reduced space into a higher space for performing
the classification using a kernel function. Moreover, 5V allows
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classification errors that are controlled by the v hyperparameter
in order to improve the generalisation capability of the model.

e RF: This method grows many single classification trees with the
purpose of building a forest of uncorrelated classification trees.
For the classification, the algorithm assigns the input vector to be
classified to each tree of the forest. Once that each individual tree
performs classification, the forest chooses the class having most
votes over all the trees. After each tree is built, all of the data are
run down the tree, and proximities are computed for each pair of
cases. If two cases occupy the same terminal node, their proximity
is increased by one. At the end of the run, the proximities are
normalised by dividing by the number of trees. Proximities are
used with the aim of replacing missing data, locating outliers and
producing illuminating low-dimensional views of the data.

10-fold cross-validation was used over the training dataset to obtain
the optimal hyperparameters for both methodologies: o (kernel width)
and v for , and number of trees for

5.2.6  Feature selection

Before the predictive models assessment, a process was made by
applying algorithm over the candidate biomarkers with the
objective of finding a reduced subset of genes that gives similar classifi-
cation performances, reducing the number of genes. In this way, the
reduction of the number of biomarkers allows creating a more simple
and interpretable model, as well as more computationally efficient,
while maintaining the robustness of the method. To sum up,

sorts genes using mutual information as the criterion for computing
the relevance and redundancy among biomarkers in this case. Taking
this into account, will rank in first position the gene that con-
tains the maximum relevance information but minimum redundancy
information with respect to the rest of the genes, and so forth, it will
proceed with the whole ranking.

5.3 RESULTS AND DISCUSSION

This section will focus on exposing and discussing the obtained results
after the experimentation process followed for this breast cancer study.
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The section is divided in two subsections: first subsection shows the
results for obtaining the set of , while the second subsection will
show classification results by making use of the former set of genes.

5.3.1 Gene expression Analysis

This subsection encompasses the achieved results for extracting the
Breast cancer related . As it was previously stated, the hetero-
geneous transcriptomics series have been integrated. This integration
have two main objective. The first one is to increase the number of
available samples that will be used at the input of techniques with
the aim of improving the robustness and stability of the results. The
last one is to achieve an independence of the obtained from
the technology, thanks to the intersection of the from different
sources.

When working with heterogeneous transcriptomics data sources, nor-
malisation is one of the most sensitive steps in the whole process,
because a single mistake in this step could cause interpretation errors
and it may lead to a false set of . Figure 5.4 shows the heterogene-
ity among samples coming from different series and technologies. Both
training and test datasets have been subjected to a joint normalisation
using normalizeBetweenArrays function from limma R package. Fig-
ure 5.5 shows the results once the joint normalisation was applied. As
it can be seen, the dynamic range between samples has been equalised.
From now on, only the training dataset will be used in the process for
identifying

The next phase in the pipeline is the identification of the both for
each technology separately (Microarray & RNA-Seq) and for the inte-
grated dataset. Several thresholds were imposed in order to determine
the : the LogpFoldChange was set to be greater or equal than 2
and the P — value was set to be less or equal than o.001. These con-
straints ensure that the selected will be statistically significant,
showing different behaviour between MCF; and MCF10A samples.
This restrictions were applied to all the datasets: Microarray, RNA-Seq
and integrated datasets, acquiring three different sets of . At last,
through the intersection of the three sets of , an total of 98 com-
mon were found. This genes comply with the restrictions and
they are differentially expressed in all datasets as the intersection shows
(Figure 5.6). Consequently, the obtained set of genes are differentially
expressed independently of the gene expression technology.
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MICROARRAY TRAIN MICRO AND RNA-Seq TEST

Figure 5.4: Expression levels of training and test datasets before nor-
malisation

MICROARRAY TRAIN MICRO AND RNA-Seq TEST

Figure 5.5: Expression levels of training and test datasets after normali-
sation
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Figure 5.6: DEGs intersection among RNA-Seq, microarray and the
integrated dataset.

It is very interesting to see the boxplots with the mean gene expression
values for each samples in the training dataset. Figure shows a
clearly differentiation between the boxplots in the average value of
MCFy; samples with regard to MCF10A samples (Cancer vs Control).

Table 5.2 shows the 98 common together with the five statistics
values computed by the limma package. The log-fold change (logFC)
represents the difference between breast cancer and control expressed
values. If | logFC |> 2 it means that there exists significance differ-
ences between cancer and control values. The second value is the the
moderated t-statistic, which has the same interpretation as the normal
t-statistic but the standard errors have been reduced between the genes,
effectively obtaining information from the set of genes to help with
inference about each individual gene. The next value is the P-Value
(PVal) which represents the probability of obtaining a result equal or
higher than what it was observed when the null hypothesis is true. The
adjusted P-Value indicates which proportion of comparisons within
a family of comparisons (hypothesis tests) are significantly different.
The B-statistic (B) is the log-odds that a given gene is differentially
expressed.
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Table 5.2: List of 98 common expressed genes obtained as the intersec-
tion of Microarray, RNA-Seq and integrated dataset.

Eenes
Neamnes
KRT19
KRT6A
NNMT
VIM
AKR1B1
SFRP1
TGFBI
MT1E
C3
BMP7
KRTs
CXCL1
S100A2
KRT7y
TNS4
EEF1A2
CLMP
IF116
LAMC2
IGFBP4
FAMS83A
SYTL2
SNAI2
DNER
PRKCDBP
ALOX15B
IGFBPs5
BNC1
GFRA1
DSCs3
PTGES
TFF1
RAB25
KRT14
EFEMP1
SLPI
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FOXO1 -2.649 -8.921  2.408E-15 3.188E-14 24.113
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Figure 5.7: Gene expression values boxplot for the set of 98 expressed
genes. Figure shows significant differences between expression values
for MCF7 and MCF10A cell lines.

5.3.2 Classification results

This subsection assesses the performance of the selected through
a feature selection and predictive models application. For that purpose,
the classification algorithms and kI have been implemented. The
Training dataset has been used as the input data for the predictive
models. The 98 common have been chosen as classification
features ordered by a mutual information based ranking given by the

algorithm. Moreover, for the posterior assessment of the
models against new unseen samples, the test dataset has been used.
This samples were correctly normalised as it was previously described
in order to avoid possible errors with the dynamical midrange of the
samples in the classification step.

One of the fundamental pillar of this novel pipeline is the tech-
niques application to the set of common . Results for both algo-
rithms ( and ) in the validation stage with the training dataset,
using the 98 reached an accuracy equal to 100%. Therefore, all
samples belonging to the training dataset were correctly recognised
and classified. When the model using 98 the test dataset was
assessed, an accuracy of 97% was reached, confirming the robustness
of the proposed pipeline approach.
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Subsequently, the 'S algorithm has been applied with the aim of reduc-

ing the cardinality of the 98 . In consequence, returned
a gene ranking based on mutual information. Figure shows the
validation and test results using algorithm. These results are

above 96% using only the first gene of the ranking for classification.
Furthermore, using the reduced set of the first six genes in the ranking
it may be observed that the validation results for classification reached
an accuracy of 98%. Furthermore, classification results when using the
new 126 unseen samples from the test dataset are coherent reaching
an accuracy of 96.5%. Therefore, the behaviour of the predictive model
performs such as the validation results predict. Consequently, the main
set of 98 common were reduced to the later six genes set that
allow to discern if new samples are cancerous or not with a maximum
of 3.5% of error. The results obtained by RI' were slightly worst to the
described results, as it can be seen at Figure 5.9. With the purpose
of exposing the precise test accuracy percentages for the reduced sub-
set of six for each predictive model, Table 5.3 is also provided.
This Table shows that reaches better results than X" no matter the
number of used.
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Figure 5.8: Validation and test classification results with SVM using the
most relevant genes obtained by mRMR.

Table 5.3: Table with the test results from the predictive models after

the feature selection step.
N} o 2 3 al 5 ©
SYML | 85.6% | 92.1% | 94.8% | 95.2% | 95.3% | 96.5%
RIE 85.5% | 85.5% | 87.5% | 91.2% | 91% | 88.4%
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Figure 5.9: Validation and test classification results with RF using the
most relevant genes obtained by mRMR.

Figure shows a heatmap draw from the reduced six sub-set of

. Two distinct groups are clearly identified: one matching MCF10A
samples and the other matching MCF7 samples. Henceforth, this indi-
cates that the expression profiles of these constitute a possible
diagnosis criteria for breast cancer using MCF7y cell line.

Figure contains two boxplots for each of the six , repre-
senting the average expression value for the cancerous samples (red)
and control samples (green). As can be seen, average expression val-
ues between cancerous and control samples are clearly differentiated,
thus reaffirming their potential as breast cancer biomarkers for MCFy
samples.

Finally, once the potential biomarker genes were identified as the
reduced subset of six genes a literature review and biological study
was done in order to reveal the relation between those genes and their
involvement in breast cancer:

* Secreted frizzled-related protein 1 (SFRP1): Inhibition of SFRP1
increases the proliferation, migration and invasion of breast can-
cer cells. SFRP1 exerted this function by activating Wnt B-catenin
signaling pathway in breast carcinogenesis [166, 167].

¢ Glutathione S-transferase mu 3 (GSTM3): GSTM3 is suggested as
an important modifier that impacts on individual susceptibility to
develop breast cancer among premenopausal women [165]. High
expression of GSTM3 is related to protective genotypes against
breast cancer.
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Figure 5.10: Hierarchical cluster over MCF10A and MCF; samples
using top 6 DEGs

¢ Gulfotransferase family 1E member 1 (SULT1E1): SULT1E1 is
an enzyme that catalyzes the sulfation of active 17B-estradiol
into inactive form. SULT1E1 is highly expressed in normal mam-
mary epithelial cells and rarely expressed in breast cancer cells.
However, its overexpression in breast carcinomas is considered
to retarded tumor cell growth by arresting cell cycles and in-
ducing apoptosis and may thus improve the prognosis of breast
cancer [169, 1.

* Myoglobin (MB): MB plays a functional role in breast cancer
progression by promoting the growth of fully oxygenated cells
through the control of fatty acid homeostasis and lipogenesis [171,

]. MB is dose-dependent downregulated by 178-estradiol in
breast cancer cells [173].

¢ Tripartite motif containing 29 (TRIM29g): TRIM29 is considered
a breast cancer tumor suppressor. Low TRIM29 expression in
breast cancer is associated with more aggressive tumor features.
Suppression of the oncogenic transcription factor TWIST1 expres-
sion is one mechanism suggested by which TRIM2g9 functions as
a suppressor of breast cancer development [174].

* V-set and transmembrane domain containing 2 like (VSTML2):
Although VSTM2L is detected in breast cancer tissues, to date
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Figure 5.11: Average expression value boxplots of the six most relevant
DEGs acquired in this research.

there are no relation between its expression and breast cancer
development in the current literature.

The first five of these six genes have been formerly reported as genes
related with breast cancer whilst the sixth gene is present in breast
cancerous tissue but there is no evidence of a direct implication with
breast cancer development. This means that the results following the
proposed integrated pipeline are coherent as the reduced sub-set of
six is formed by genes related with breast cancer. Furthermore,
these can be used for classification and diagnosis purposes over
new unseen samples, so that they can be designated as a new candidate
biomarker signature when this type of data or cell lines from breast
cancer are present.

5.4 CONCLUSIONS OF THE CHAPTER

Along this chapter, a first approach for integrating data from different
heterogeneous transcriptomic sources has been designed and tested.
To carry out this integration, an exhaustive search from the NCBI-GEO
public repository has been done in order to collect breast cancer and
control cell lines (MCF7 and MCF10A) samples from both technologies.
The intersection of retrieved from RNA-Seq, Microarray and the
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integrated dataset has allowed to identify a set of candidates biomarkers
for the diagnosis of this disease using MCF7 cell line.

Afterwards, through was applied in order to select the
most relevant biomarkers sub-set to achieve similar results, reducing
the complexity. Then, both and predictive models were built

starting from the training dataset. The classifiers were validated with
the test dataset achieving both outstanding results, overcoming though
to

To conclude this chapter, results show that the can be designated
as robust biomarkers for breast cancer diagnosis when specific cell
lines samples are used. Furthermore, even with a small subset of six
of those , a great validation accuracy was reached (98%). Also

classification results over new unseen data show great accuracy (96.5%).

Five of these top six genes have been formerly reported as genes that
show biological relation with breast cancer, therefore reinforcing the
designation of the expression profiles of these for breast cancer
diagnosis by using MCFy samples.
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research is a a reorganised and extended version of the pub-

lished manuscript "Leukemia multiclass assessment and classifi-

cation from Microarray and RNA-Seq technologies integration at gene
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exposed at Chapter 5 for Integration of heterogeneous data in Breast
cancer [6].
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6 LEUKEMIA MULTICLASS DIAGNOSIS AND ASSESSMENT

6.1 BACKGROUND

As it was mentioned along this doctoral thesis, in more recent years,
an important increase in the number of available public omics data
has taken place due to the widespread use of . Moreover, the
continuous developments in and in the areas, are allowing
a faster and more efficient analysis and processing of this type of
data. Nevertheless, biological information about a certain disease is
normally widespread due to the use of different sequencing technolo-
gies and different manufacturers, in different experiments along the
years around the world. Thus, nowadays it is of paramount importance
to attain a correct integration of biologically-related data in order to
achieve genuine benefits from them. In this research, an evolution of the
pipeline presented at Chapter 5 has been addressed with the purpose
of taking advantage of both RNA-Seq and Microarray. Furthermore,
this integration has been done at multiclass level, due to the nature of
the problem studied. At sight of this novel analysis, a new parameter
has been introduced for extracting a set of candidate . This novel
parameter will be called from now on and it will be used together
with the in order to find . This parameter aims to measure
the “coverage” that a certain biomarker has over the different diseases
analysed, i.e., the number of diseases it is able to discriminate.

In this Chapter, from the use of transcriptomic data coming from
heterogeneous sources, different types of leukemia will be studied in
order to find a leukemia gene signature for each of them. Leukemia,
together with Lymphoma and Myeloma, is one of the three different
existing blood cancer forms. People that suffer from leukemia produce
an abnormal number of immature white blood cells, which collapse
the bone marrow and inhibit the creation of the rest of vital blood cells
for a balanced immune system and healthy blood. There are two main
types of leukemia, being each divided into two subtypes:

¢ Acute Leukemia appears suddenly and progresses quickly so the
treatment has to be urgent.

- : is the most common leukemia in people around 70
years but it has impact in all ages. This malignancy is a
heterogeneous group of neoplastic disorders, that are char-
acterised by the proliferation and accumulation of immature
hematopoietic cells in the bone marrow and blood. Differ-
ent genetic factors have been identified that predispose to
the development of . In this context, the germline pre-
disposition and the existence of haematological disorders
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antecedent, have been associated with an increased risk of

[175, 176].

- : is the most common leukemia in children. About half
the cases are in adults and half in children. is also
a very heterogeneous disease, characterised by impaired
differentiation and proliferation of immature lymphoid cells
in the bone marrow and peripheral blood. However, the
prognosis of these patients has improved in the last years,
especially in children, leading to cure rates approaching
80% to 90% due to the intensification of treatment, patient
stratification based on clinical risk factors, and minimal
residual disease (MRD) monitoring [177, 178].

¢ Chronic Leukemia: symptoms appears more slowly, maybe in
months or even years.

- : it is very unusual and affects only 700 people per
year. , defined as a clonal myeloproliferative disorder,
was the first human malignancy associated to a consistent
chromosomal abnormality and is characterized by the pres-
ence of the fusion oncogene BCR-ABL. Clinical symptoms
associated to this disease include hypercellular bone marrow,
anemia, platelet dysfunction, and an increase in the number
of leukocytes, especially neutrophils and immature myeloid
cells [179, 180].

- : it is more common in people over 60 years and is very
rare in people under 4o years. is a common B-cell tu-
mor, characterised by the gradual accumulation of clonally
expanded CDs+ B lymphocytes in peripheral lymphoid or-
gans, secondary lymphoid organs, and bone marrow. It is
also a genetic and biological complex disease, and the most
commonly used factors to stratify patients are the muta-
tional status of the variable portion of the immunoglobulin
gene, the deletion of the chromosome 17p and TP53 gene
mutations [1871, ].

This Chapter is twofold objective. The first one is the extraction of possi-
ble that allow discerning among the different forms of leukemia
and people who does not suffers from the disease. The second one is
to perform a classification stage for the assessment. Therefore,
this study is about a multiclass classification problem in which a set of

will be selected as long as they are useful to discern among the
five classes: four different types of leukemia and healthy subjects. This
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is a very novel research because most of the studies are dichotomous,
addressing only two classes for their researches. To this end, the public
repository has been used.

For the assessment, a set of smart leukemia classifiers to perform
a differentiation among the different types of leukemia addressed when
unlabeled samples are presented were build. To this end,

algorithm was applied in order to select the most relevant to
improve and perform the classification. Also, four different predictive
models have been designed and their results compared. The classifiers
are the following: , RF, and

6.2 INTEGRATED PIPELINE FOR MULTICLASS LEUKEMIA ANALYSIS

6.2.1 Data gathering

For this experiment, both Microarray and RNA-Seq samples have been
collected in order to accomplish the integration of a wide range of
heterogeneous data. As already mentioned, all series has been down-
loaded from the public database. A comprehensive search
has been carried out with the purpose of gathering a notable number
of samples belonging to the leukemia states addressed in this work.
Furthermore, as all the samples must belong to the same tissue, only
samples from cells of bone marrow have been used for both healthy and
leukemia samples. With regard to Microarray samples, the two main
platforms (Affymetrix and Illumina) have been taken into account. For
RNA-Seq, samples have been solely collected from the most important
sequencing platform known as Illumina HiSeq. Finally, a total amount
of 11 series from Microarray and 2 series from RNA-Seq were selected
for the research. These series are publicly available at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=S.NAME where S NAME is
the name of each series at NCBI GEO shown at Table 6.1, which also
includes information about the collected series.

Additionally, Table 6.2 shows the number of samples of each class for
each gene quantification technology. It is worth noting that only Mi-
croarray technology presented samples for each of the studied classes.
Indeed, there are not enough public samples of these states for RNA-
Seq. This is an important motivation to keep using Microarray samples,
taking advantage of them. In this sense, the integration that our pipeline
performs is a significant step forward, opening the door to more com-
plex studies.
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Table 6.1: Relevant information about the series studied in this research.
Total Samples column represents the total amount of samples that each
series contains. Accepted Samples column denote the number of samples
that belong to the different leukemia or healthy states and that will be
analyzed in this study. The Outliers column quantifies the low quality
samples that were removed from the Accepted Samples. Finally, the
Procedence column reveals the genetic diversity in the origin of the
series for thus study.

Serics iliotal Oulfles | Bocdanee
Semplles | Semplles

GSE6691 | Affymetrix | Microarray 56 11 o Sa(lslzr;?rrll)ca
GSE51082 | Affymetrix | Microarray 139 55 1 O(E‘Jesg:;
GSE12417 | Affymetrix | Microarray 163 152 11 (Gl\g:rﬁ::y)
GSE21029 | Affymetrix | Microarray 62 19 = B?Itj'lsezc)la
GSE49067 | Affymetrix | Microarray 12 12 & ]?SSS’EZT)I
GSE36474 | Affymetrix | Microarray 7 3 o (Etrailgsisuerlz)
GSE33075 | Affymetrix | Microarray 27 24 3 Sa(légr;?rrll)ca
GSE34860 | Affymetrix | Microarray 78 78 o ?ﬁ:f;;
GSE61853 Ilumina Microarray 14 7 o (Soi)?}fjli(;r;ea)
GSE11504 | Affymetrix | Microarray 25 7 0 (Ngi}\?ay)
GSE13576 | Affymetrix | Microarray 209 197 o I;?g?;/)a
GSE98310 | Illumina RNA-seq 22 20 - 1(\@2::‘52;
GSE63646 | Illumina RNA-seq 71 71 o C(;iljl;nAb)us
TOTAL § - 885 658 & :

6.2.2  Multiclass Workflow

The Multiclass pipeline can be split into four steps or phases, as it is
shown at Figure 6.1. For Microarray and RNA-Seq RAW data treat-
ment, the strategies explained at Chapters 1 and 5 have been followed,
although they are also represented at Figure
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Table 6.2: Number of categorized samples collected for each of the
applied sequencing technologies. HBM stands for Healthy Bone Marrow
and the rest represent the four types of leukemia. A lack of RNA-seq
samples is clearly showed except for the AML state.

Iypesiaie | I5IBML | AWML | AJLL | @WMIL | CILL
IVIiCroarray; 26 259
RINJACSEq 0 93 0 0 0
ilotall 26 352 197 53 29
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Figure 6.1: Proposed pipeline for the integration and classification of
heterogeneous (Microarray and RNA-Seq) biological data, and the
posterior Machine learning assessment.

6.2.2.1  Microarray and RNA-Seq Integration

As it was already mentioned, this pipeline is an improvement of the first
integrated pipeline designed and tested at Chapter 5. Some indications
about the pipeline is given herein in order to sum up the integration
process.

Firstly, data are merged, requiring the correct individual pre-processing
of all available series in the study. Afterwards, heterogeneous integra-
tion was carried out using the merge function from the base R package.
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The second step in the integration is the normalisation of the integrated
dataset. To perform this normalisation, the normalizeBetweenArrays
function was used. This function is based on quantile normalisation and
allows removing any possible deviation or variation among different
arrays or datasets.

These two tasks are essential in order to achieve a correct normalisation
of the biological data and its subsequent processing. The integration is
indeed a critical process in the study as if the merging or normalisation

are not properly done then the extracted would be erroneous.
This would introduce confusing values in the research, that would
lead irretrievably to a misleading selection of and subsequent

erroneous outcome of the machine learning process.

6.2.2.2  Multiclass DEGs Extraction

Once the integration has been properly carried out, the next step is
the extraction. There are some statistical toolboxes/routines that
allow estimating if a gene has enough statistical significance for being
considered a or not.

As mentioned before, a multiclass problem is addressed in this study,
which means that have to be valid for discerning among more
than two classes. Specifically, five classes are identified in this study,
being necessary to find a group of with the capability of discern-
ing among these classes in order to achieve multiclass classification.
However, it is important to notice that limma, when dealing with a
multiclass problem, takes into account only one value of the be-
tween two classes, to identify if a gene is relevant or not, omitting the
needed consideration of the rest of classes and class comparisons.

The total number of binary problems (taking one against one class com-
parisons) that take place in a problem with N classes can be defined
as shown in Equation and it will be called from now on COVj;y.
With the purpose of properly identifying the differences in gene ex-
pression among all classes involved in a multiclass problem, and thus
identifying the best for the same purpose, the of a gene
is defined as the number of class pair comparisons that a gene covers
when a restriction is imposed (furthermore, the possible

also have to reach a P-value lower or equal to 0.001). In our present
problem including 5 classes, COVj;uy takes the value of 10 (ten pairs
of class combinations). The real potential of this parameter lies in the
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ability to discover high coverage , thus allowing us to discern
among the maximum possible number of classes.

N2 - N
COVmax = T (61)

Using as criteria to identify gene signatures implies choosing a
coverage threshold, so that a certain biomarker will be selected only
if it covers or differentiates at least a certain number of binary class
comparisons. A large coverage threshold could be too restrictive, and
a small coverage threshold could lead to the selection of too many
biomarkers. The determination of an appropriate threshold is
therefore critical in this problem. A medium size representing
a trade-off between large and low differentiability in number of class
pairs -coverage- (a fraction of COVjy,y, such as COVyyax /2, COVipax /3,
depending on the number of classes considered) may seem to be a

reasonable threshold. The test presented later will study the
performance of different threshold values and their importance
in the results.

6.2.2.3 Machine Learning Assessment

As it has been highlighted along this doctoral thesis, extraction is
a very sensitive process because. In order to assess the selection,
a process is performed, which is explained below.

Firstly, the dataset is normalised with median o and standard

deviation 1. This step homogenises into the same type of distribution
the gene expression values and can suppress the effect of possible
remaining outliers due to the bounded range.

Although the use of limma for extraction already identifies candi-
date for the classification of the different diseases, the application
of a specific I'S process before the classification step would reduce the
dimensionality of the problem, simplifying the classification while keep-

ing the final accuracy. Precisely, the algorithm (Explained at
Chapter 3) has been used with the aim of obtaining a ranking with the
most appropriate combination of our , according to the operation

of the algorithm.

When both, the normalisation and process are done, four different
supervised learning algorithms are applied to an increasing number
of selected , according to the algorithm. A step using
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k-fold is performed in order to assess the results of the classifiers on the
dataset. As a reminder, K-fold algorithm iteratively leaves out 1/k
data from the training dataset, which are used to assess the classifier
when the training is done. Finally, both accuracy and fi-score are
calculated using the outcomes from the k assessment processes. This
last measure takes into account the grade of classification of each class,
not only the total amount of samples correctly classified. Equation
represents fi-score, that is used when a multiclass problem is tackled
due to the relevance of this measure in this type of problems. It is
calculated by using both the precision or accuracy (Equation 6.2) and
the recall or sensitivity (Equation 6.3).

Precision — TruePositives (6.2)
"~ TruePositives + FalsePositives '

Recal] — TruePositives 63)
~ TruePositives + FalseNegatives 3

Precision * Recall
Precision + Recall

f1_score = 2 % (6.4)

The whole machine learning process has been explained so far, but
without going into detail of each of the four implemented classifiers
( , , R and NB) due to they have been in-depth explained at
Chapter 3, and two of them briefly reminded at Chapter

6.2.3 ANOVA test

The test plays a very important role in this experiment as it
will analyse and compare the performance of the four classifiers, as
well as of different combinations of the hyperparameters and

for optimal relevant biomarker identification. This step is very useful in
order to determine if the classifiers have significant differences among
them. Moreover, the test will provide valuable information about which
combination of and is better for our study and it will bring
some light into the optimization of these parameters for further studies.
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6.3 RESULTS

This section will be split into three subsections in order to expose
the results in the most clearly and organised way. Firstly, the impact
of both the and the on the final classification results is
evaluated performing an test. Secondly, the first four steps
of our pipeline are applied for the extraction of the . Finally, the
results of the ranking process, and the assessment of those

using a machine learning process will be shown.

6.3.1 Statistical assessment through ANOVA test

The test is very useful at this point due to two main reasons.
On one hand, it is important to optimise the parameters because there
are several possible values that both the and the could take.
On the other hand, four different predictive models are assessed in
this experiment. At sight of these considerations, the test
can decide if there are statistically significant differences among the
classifiers and how the value of both the and the could affect
tinal results. The chosen classifier, and are the parameters
that a priori could cause more impact in the study. Nevertheless, the
final number of selected genes after a feature ranking process ( )
could also affect final results, so it will also be considered.

Therefore, the possibles values that the four factors can take in the test
are the following;:

¢ C(lassifier: this variable represents the classifier used for the simu-
lation. This classifier can be , , or

. : this variable represents the Log-Fold Change used in order
to extract the relevant genes, taking the values 1, 1.5, 2, 2.5 or 3.

. : this variable represents in a multiclass problem, the number
of combination of classes in which a gene is truly relevant, taking
the values 2, 3, 4 or 5.

* NR. GENES: this variable represents the number of genes finally
selected with , which were used as input for the classifier,
taking values 10, 20, 30 or 4o0.
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From all the possible combinations of the previous factors, a wide
range of simulations have to be addressed and evaluated in order
to achieve an statistical interpretation of the results. Consequently,
the test evaluates how both accuracy and fi-score are affected by the
four chosen variables for the test (Classifier, , , NR. GENES).
Table shows the relevance of these variables with respect to the
accuracy. In this table is clearly seen how all the studied variables are
relevant with regard to the accuracy, taking into account that P-value
of each of them is less than 0.05. This means that it is important to take
all of them into account for the research.

Table 6.3: Variance analysis for the accuracy - Sum of Squares type III

Source St off @l | Wiechmm Seerne | Bavelve | Ravelne
IVIainly;

ALElassifien 0.0802257 3 0.0267419 67.86 0.0000
BRI 0.00438299 4 0.00109575 2.78 0.0256
CICON 0.00660603 3 0.00220201 5.59 0.0008

1D} INI® GIEINIES 0.0724379 3 0.024146 61.27 0.0000
Resgiclualls 0.593102 1505 0.000394088
0.757276 1518

In the same way that the previous table shows how selected variables
affect accuracy, Table analyses the impact on the fi-score. As it
happened for accuracy, selected variables are also relevant for the
f1-score because the P-value for each analysed variable is less than 0.05.

Table 6.4: Variance analysis for the fi-score - Sum of Squares type III

Source Sumiof§Squarel I GIINRVIe diumiSquarel BEzvaluel BRvalue
IVIainly;
AC@lassifier 0.0177814 B 0.00592712 38.60 0.0000
IBAEE 0.010959 4 0.00273975 17.84 0.0000
& COWV 0.0014741 3 0.00491365 32.00 0.0000
1D3 IN® GIEINIES 0.0398155 3 0.0132718 86.43 0.0000
Regichells 0.230789 1503 0.000153552
0.311559 1516

Previous tables showed how the studied variables affected both ac-
curacy and fi-score. At this point, the impact of each value that the
different variables could take will be described through a group of
plots. In this sense, Fig 6.2 shows a graph for each of the studied vari-
ables (Classifier, , , NR. GENES). The classifier variable chart
clearly shows that the classifier attaining the highest accuracy is
Furthermore, both and obtain the same results leaving R as
the worst classifier for this study.
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Focusing on the , the plot shows that an increase of does not
lead to an accuracy improvement. However, it is really important to
note the behaviour of . As it can be seen, an increase in leads

to an accuracy improvement, meaning that the new proposed measure
is an important criterion in the selection of multiclass biomarkers.
Among the values compared, ranging from 2 to 5, an improvement in
the final recognition was shown due to the fact that as the value of
increases more classes are covered by the selected genes.

Finally, it is straightforward to expect that larger gene signatures may
attain higher accuracy in the identification of the different pathologies
studied than shorter gene signatures. This is shown by the NR. GENES
variable, whose values range from 10 to 4o.
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Figure 6.2: ANOVA results showing the impact on accuracy for each of
the evaluated variables.

In the same way that the previous figure shows how the variables
have a direct impact in the accuracy, Fig represents the impact
regarding the fi-score. The results for the , and NR. GENES
have the same behaviours in the fi-score than in the accuracy but for
the classifier variable. In this case, achieves better results than the

. However, is still the best classifier and the worst for the
study.

At sight of the test results, only one of the possible com-
binations of and will be taken into account to extract the
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Figure 6.3: ANOVA results showing the impact on the f1-score for each
of the evaluated variables.

biomarkers of this study. Specifically, the equal or greater than 2.5

and the equal or greater than 5. These values are both the best
combination in terms of achieving the best possible results, as can be
seen in the plots exposed before. Then, for these requirement

settings, gene signatures with different NR. GENES will be finally
studied, and the detailed results of the four classifiers will be shown.

6.3.2  Applying Coverage for DEGs extraction

Before presenting the extracted , the results of the series integra-
tion for this study will be shown. In order to perform an integrated
analysis of these series, an individual analysis and correction of each
series was done. Furthermore, it is necessary to correct the existing
differences among the series due to the variety of technologies and
platforms present in this study. In this sense, Fig shows the nor-
malisation and bit depth correction across the series once have been
normalised separately.

In order to achieve the best coercing among the series after the inte-
gration, a joint normalisation with quantile normalisation is required,
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Figure 6.4: Expressions values comparison among leukemia series
before the joint normalisation and integration steps.

with the purpose of obtaining the same dynamical range among the
series (see Fig 6.5).
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Figure 6.5: Expressions values comparison among leukemia series after
the joint normalisation and integration steps.

Once normalisation using the normalizationBetweenArrays function has
been accomplished, the dataset is completely ready to perform gene
expression analysis. Thus, limma will be used in order to achieve
this analysis. Nevertheless, it is important to note that this study is a
multiclass gene expression problem. Therefore, it is necessary to use
limma with this consideration, avoiding the classical biclass pipeline
which limma implements by default.
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Once multiclass limma was applied, a list of were reported. Those
genes passed the three imposed restrictions: equal or greater than
2.5, equal or greater than 5 and P-value equal or less than 0.001. A

total of 42 genes that satisfy these restrictions were returned. Table

collects the 42 genes and shows statistical values about those

These statistical values are the T-statistic, the P-value, the and the
for each gene.

6.3.3 Multiclass DEGs assessment using Machine Learning

Once the extraction pipeline was done by using the integrated
dataset, algorithm was applied, obtaining a ranking of

in which the most relevant would be placed on the first positions
within of this ranking. Furthermore, thanks to its operation taking
into account the mutual information among the selected , this
algorithm can also minimise the redundancy among them.

Fig 6.6 shows in an ordered way the 10 first genes returned by
ranking, revealing for each of them, the expression levels of each class.
Such genes will be more deeply commented both at bioinformatic
and at biological level in the Discussion section. Reminding the
parameter introduced in this study, it can be observed how the ,
concretely the 10 first of the ranking, present different expres-
sion levels not only for one class with regard to the others but also
among several classes. For example, the first gene of the Figure (BLK)
shows different expression levels for four of the types of leukemia,
hence allowing us to discern among these classes. Indeed, due to the
behaviour of the algorithm, this gene is the one with the highest
level of Mutual Information with respect to the classifier variable.

Subsequently, the performance of the obtained ranking was evaluated.
For that, four different classifiers were implemented and compared.
Furthermore, this comparison has been performed for different number
of genes (10, 20, 30 and 40) and for both the Accuracy and the f1-score.
As for the simulations of the test, a C'V process (5-fold) was ap-
plied with the objective of providing an estimation of the performance
on unseen samples, avoiding overfitting. This restrictive process
guaranteed a significant representation of the lowest frequent classes
(specially HBM and , see Table 6.2) in all data folds.

The result of these comparisons can be seen at Table 6.6. This Table
shows how reaches better results with respect to the rest of
the classifiers in practically all the comparisons, reaching 96.40% of
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Table 6.5: Table with the expressed genes that represents several statis-
tical values of these genes.

1 I —sigiisiic | pP—wdlye | pLFC | COV
HIPK1 16.0875204 2.4713e-23 | 3.288872 6
SLC4A1 13.5735052 4.7010€-12 | 3.421740 6
FGD2 22.0274586 8.1678e-21 | 4.201152 6
DOCK2 24.4474942 1.9231e-24 | 3.678663 6
PADI2 22.1425831 1.3321e-30 | 3.050733 6
LAPTM4B 10.7437126 1.1139e-12 | 2.935885 6
C110rfs58 12.5259082 6.9347€-10 | 4.240850 6
LITAF 12.7181709 2.1436e-10 | 3.927194 6
SF1 10.9802843 4.1383e-06 | 4.076528 6
RPS24 9.6354228 5-2593€-07 | 3.943997 | 6
CLEC2B 8.5098540 1.2060e-11 | 3.407249 6
EEF1A1 10.8653720 9.2231e-08 | 4.247919 7
LGALS3 11.2588096 1.2091€-10 | 3.999583 6
PLCG2 28.0170676 1.6955e-56 | 3.616019 6
BANK1 17.9033482 1.2248e-26 | 4.082236 6
H2AFY 13.7470887 2.1613e-09 | 5.151885 6
TSPAN3 18.6133699 1.8746e-18 | 3.606852 6
MKNK1 14.3396635 8.2579e-12 | 3.432300 6
PABPC1 9.7297018 2.8194€-06 | 4.177165 6
TAB2 15.0096557 3.7740e-18 | 3.071626 6
ROCK1 23.5206238 2.6058e-34 | 3.951989 6
RPS15 19.3210248 1.1963e-10 | 5.208190 7
GSN 8.5034573 3.6481e-10 | 2.994001 6
CMTM6 13.4600508 2.1206e-08 | 4.303823 6
FUS 22.7727271 1.5430€-33 | 3.524736 6
SEPT7 20.3301923 6.7129e-24 | 3.804574 6
ZNF160 14.9926210 5.0560e-20 | 3.280500 6
ANXA2 10.3112336 1.0576€-07 | 4.099294 6
EAF2 11.5559113 1.4391e-09 | 3.466531 6
TCF4 15.7648662 2.0821e-22 | 3.698245 6
CD22 34.1927437 1.1397e-64 | 3.522825 6
POU2AF1 31.2157033 8.9199e-59 | 5.590414 6
CFD 16.3828557 2.5946e-18 | 3.855234 6
BLK 34.6994030 2.5379e-69 | 5.076078 6
CD1g 36.4443927 6.559e-108 | 4.806683 6
BLNK 25.7630631 1.7997e-37 | 5.563086 6
ACTN1 14.7867854 2.1587e-20 | 4.260679 6
CTGF 11.8350681 7.5825e-13 | 4.142035 6
TCL1A 24.0024506 1.1794€-34 | 4.774254 6
PPP1R16B 11.0936657 4.0266e-11 | 2.949562 6
AZU1 11.1121946 4.3126e-11 | 4.161520 6
ATP8B4 17.1102708 2.0803e-28 | 3.665865 6




6.3 RESULTS

Accuracy using only the 10 first chosen by algorithm,
from the total of 42 . However, the f1-score reached by in
this case is lower than the one reached by the rest of the classifiers for
this number of genes. For 20 , reaches 98.56% of Accuracy
and 98.75 of fi-score, being ahead of the rest of the classifiers. This
behaviour is repeated for both 30 and 40 as can be seen at Fig
and at Fig 6.8. These figures show the evolution of the Accuracy and the
f1-score, respectively, for the four implemented classifiers. Regarding
the rest of classifiers, reaches comparable although slightly worse
results than for 30 and 40 genes. Finally, and present
clearly worse results regardless the number of selected genes.

Table 6.6: Results of the four classifiers for both the accuracy and
f1-score when using a different number of genes

95,64% | 97.13% | 96,61% | 98.27% | 98,14% | 98.75% | 97,83% | 98.59%
96.40% | 96.28% | 98.56% | 98.75% | 98.78% | 99.05% | 98.87% | 99.05%
94.76% | 97.29% | 95.98% | 97.79% | 95.34% | 97.79% | 95.66% | 97.61%
95.51% | 97.01% | 95.05% | 96.58% | 95.35% | 96.81% | 95.42% | 96.94%
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Figure 6.6: o first selected differentially expressed genes by mRMR al-
gorithm (order from left to right and from top to bottom: BLK, DOCK2,
LAPTM4B, EEF1A1, RPS15, RPS24, AZU1, PABPC1, C11ORF58 y
BLNK), with the expression levels for each type of leukemia studied.
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Figure 6.7: Plot that represents the accuracy achieved by each of the
four classifiers used in the study.
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Figure 6.8: Plot that represents the fi-score achieved by each of the four
classifiers used in the study.

64 RESULTS INTERPRETATION

Once the results of this study were exposed, the discussion of these
will be performed with the purpose of giving an explanation both at
biological and bioinformatic level.
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6.4.1 ANOVA interpretation

test is one of most important and crucial step carried out
in this study due to the relevance of the parameters involved in the
test. All the conclusions acquired emanated from the interpretation of
both Table 6.3 and Table 6.4 and also from both the Figure 6.2 and the
Figure

Firstly, the best classifiers for both the Accuracy and the f1-score were

and . This behaviour is the same one observed in our
previous study related to breast cancer but at bi-class level instead of
at multiclass level. This result also coincides with the results obtained
in other related works [183-185]. Furthermore, a Naive Bayes classifier
was implemented in order to assess its performance with respect to

the other classifiers, which were already compared in the literature.

However, the performance obtained by the classifiers came out to

be worse than and classifiers. Both, and work

based on distances or similarity measures (kernels), while is based

on bayesian probabilities and is based on the creation of decision

trees to carry out the classification. This operation of both and
algorithms might be giving rise to these results.

Secondly, it was observed how the parameter does not have a
relevant impact on the optimal selection. For the evaluated
values of this parameter, there is not a clear increase of the performance
when the value of increases too. Nevertheless, it is important to
note that is not used in a isolated way as this parameter is used
in conjunction with the parameter, which showed to be the most
important parameter for the selection.

Thirdly, the statistical evaluation of the parameter proves that it is
the most important parameter in this study. parameter increases
the classification performance as its value increases too. However, this
parameter must be used carefully in a multiclass problem. A too high
value of the parameter can lead to an aggressive and extreme
reduction on the final number of selected . On the other hand, a
too small value of this parameter would let too many genes, increasing
the payload of the system and reducing the possibility of finding a
reduced and thus useful genetic signature. In our case, the test
shows how an intermediate value of 5 was the optimal among
the studied values and hence, this value was used for the definitive
extraction of the
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Lastly, when the number of genes increases, the final classification
rate increases too for both the Accuracy and the fi-score measures.
Nevertheless, this rise significantly decreases when the number of
genes exceeds the value of 20, showing either that it is not possible
to provide more information to perform the classification, or that
overfitting occurs.

To sum up, it can be seen how the test shows the impor-
tance of the considered parameters, excluding the , for the optimal
recognition of possible genetic signatures. Moreover, thanks to the new
parameter great classification results were obtained due to the
multiclass selection achieved by this parameter.

6.4.2 Differential Expressed Genes selection and assessment

The test allows defining an optimal parametrisation for this

problem. By using a value for the greater or equal than 5 and

a value for the greater or equal than 2.5, a total of 42 multiclass
were obtained. These genes were used as input variables for the

classifiers with the main purpose of evaluating their potential as

with the capability of discerning among the studied pathologies.

During the extraction process, an integration of the series from both
RNA-Seq and Microarray has been carried out. Thanks to this, the num-
ber of samples available for this study increased considerably. The lack
of public samples from RNA-Seq in comparison with Microarray was
the motivation to perform the integration. Therefore, it was shown how
Microarray still has a great potential in the field of gene quantification
technologies and can longer be used in order to reinforce studies of
this nature, increasing the number of available data and allowing to a
more robust genetic signature discovery in diverse pathologies.

Moreover, thanks to the introduction of the parameter in the
study, each DEG selected has the potential to discern among several
of the 5 proposed classes. Concretely, if the maximum number of pair
classes comparison are 10 and, the imposed restriction for each gene
is that these discern minimum among 5, in the Table 6.5 it is
shown how all the selected have the capability of discerning
between 6 and 7 pair classes. Therefore, it makes sense to think that all
the classes are discerned by any of the at any point with respect
the other classes. In the validation process, theses genes have proven
that they are strong candidates to be a possible gene signature that
discern among the different types of leukemia studied in this article.
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For the evaluation, 4 different classifiers were implemented.
The results of these showed a high classification rate for the studied
measures, Accuracy and fi-score. Furthermore, thanks to the feature
selection process performed by mRMR, an optimal selection of subsets
of genes for a reduced genetic signature was ensured.

Additionally, it is important to highlight that in order to ensure the
correct validation of the data, a 5-fold validation has been implemented

keeping an homogeneous distribution of samples of each state in each
fold.

Hence, at sight of these results, with only 10 of the 42 , it is
achieved a practically full discernment of the available samples under
. With only 10 genes, classifier reaches a 96.40% of Accu-
racy and a 96.28% of fi-score for the five groups considered includ-
ing healthy samples. This means that the found applying our
methodology, which makes use of the parameter, properly works
to discern, with a very high precision, among the 5 proposed classes.

6.4.3 Biological relevance of the DEGs

The top ten of the genes highlighted (see Figure 6.6) in our study
were related in one way or another to peripheral blood leukocytes.
Among them, DOCK2 gene which codifies by a protein involved in
cytoskeleton remodelation and migration in response to chemokine
signaling, has an especial relevance [156]. It has been reported that
DOCK2 gene is overexpressed in chronic lymphocytic leukemia B-cells
promoting their proliferation in response to Wntsa [157]. This gene
has been proposed as an drug target against leukemic cells since its
expression is limited to hematopoietic tissues theoretically limiting
side effects [155]. In addition, our results showed modulation of genes
normally expressed in B-cells, such as BLK, BLNK and PABPC1. BLK
is a proto-oncogene that encodes for a nonreceptor tyrosine-kinase
involved in B-cell proliferation and differentiation. Signaling through
BLK supports the pro-B to pre-B transition, growth arrest and apoptosis
downstream of B-cell receptor [159]. Interestingly, this gene acts as a
tumor suppressor in chronic myeloid leukemia stem cells and has been
implicated in the progression of acute lymphoblastic leukemia [190,

]. On the other hand, BLNK gene encodes for a cytoplasmic adaptor
that plays a critical role in B-cell development [192]. Deficiency in this
protein has been identified in some cases of pre-B acute lymphoblastic
leukemia [193, ]. In fact, the somatic loss of BLNK and concomitant
mutations lead to a constitutive activation of Jak/STATs5 pathway,
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resulting in the generation of pre-B-cell leukemia [195]. Finally, PABPC1
encodes for a poly(A) binding protein that regulates immunoglobulin
secretion in these cells [196].

Modulation of genes normally expressed in others peripheral blood
leukocytes such as T-cells (LAPTM4B and EEF1A1 genes) and neu-
trophils (Azurocidin 1 gene) were also detected in our study. LAPTM4B
gene acts downregulating the TGFB1 production in regulatory T-
cells [197]. Differential expression of LAPTM4B and MIR155HG was
confirmed in a small cohort of young adult NPM1-mutated cytogenet-
ically normal acute myeloid leukemia (CN- ) patients. Although
there is no direct evidence that links LAPTM4B to leukemia, its upreg-
ulation has been shown to implicate PI3K/AKT signaling and ubig-
uitination pathways, both with crucial roles in leukemogenesis [198].
The gene EEF1A1 also plays a key role on the proliferation inhibition
and apoptosis induction of human acute T lymphocytic leukemia cells,
contributing to cancer survival in haematopoietic malignancies [199].
On the other hand, Azurocidin 1 gene encodes for a preproprotein
that matures into azurophil granule antibiotic protein, with mono-
cyte chemotactic and antimicrobial activity [200]. In chronic myeloid
leukemia, this gene has been included inside a set of six genes to dis-
criminate between tyrosine kinase inhibitor therapy responders and
non-responders [201]. Dunne et al. demonstrated that downregulation
of this gene correlates with a poor treatment outcome in patients with
acute myeloid leukemia [202].

Finally, both RPS15 and RPS24 genes encode for ribosomal proteins
that are component of the 40S subunit. Interestingly, the first one
has been found in different studies to appear mutated in chronic
lymphocytic leukemia patients, as it lead to impaired p53 stability [203,

]. The second one appears mutated in Diamond-Blackfan anemia,
a congenital non-regenerative hypoplastic pathology, characterized
by macrocytic anemia, erythroblastopenia, and an increased risk of
developing leukemia [205]. Finally, C110rf58 gene encodes for the
Chromosome 11 open reading frame 58, also be known as Small Acidic
Protein (SMAP) [206].

The most common mutations associated with are in FLT3, NPM1,
CEBPA, and TP53 [207]. However, the extensive work involving the
sequencing of genomes and exomes of this malignancy has revealed a
variety of recurrent gene mutations associated [205]. In the same way, it
is well described that is a multistep disease, caused by the accumu-
lation of mutations involving cell growth, proliferation, survival, and
differentiation [209]. The introduction of genome-wide technologies
has contributed to elucidate the molecular mechanisms underlying
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leukemic transformation in and has allowed the identification of
different subgroups [210].

Although the starting point of is well known, other genetic and
cytogenetic changes play important roles in prognosis and treatment
of this malignancy [211]. In this context, the mechanisms for insensi-
tivity of stem remains unclear. Factors such as quiescence, high
level of BCR-ABL expression, acquired mutations in the oncogene,
and overexpression of membrane transporter proteins are very impor-
tant [212]. has the highest genetic predisposition of all hematologic
neoplasms (approximately 5-10% of cases have a family history of

) [213]. It this disease, the genetic alterations have a great impact on
the clinical course of the patients. Previous whole genome and exome
sequencing studies have reveled recurrently mutated genes (such as
NOTCH1, MYDS88, TP53, ATM, SF3B1, FBXW7, POT1, CHD2, RPS15,
IKZF3, ZNF292, ZMYM3, ARID1A, and PTPN11), but deletions of
chromosome 13q14 is the most frequent aberration in , occurring
in 55% of cases [214].

6.5 CONCLUSIONS OF THE CHAPTER

Throughout this Chapter a new approach of the integrated pipeline
presented at Chapter 5 has been designed. Datasets from different
technologies and from different platforms have been integrated with
the purpose of collecting a higher number of samples due to the lack of
RNA-Seq samples of leukemia available at public databases, ensuring
also the heterogeneity of the study. Furthermore, different types of
leukemia series have been selected with the purpose of trying to find
relevant biomarkers that allow to discern among the five classes. This
study was not performed yet and both, the introduced pipeline at
multiclass level and the metrics for the extraction, are a very
novelty step in this field.

On one hand, in this multiclass study that considers different types
of leukemia, an important new parameter called has been used
for extracting the along with the classical . This parameter
extracts biomarkers that are able to discern one or different classes
from the rest using paired combinations. Moreover, the test
performed has shown that this parameter has been crucial in the devel-
opment of the study. Therefore, the combination of both the and
the for multiclass biomarkers selection is an important advance
in this field with very promising results.
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A set of 10 have been identified as possible candidate biomarkers
and assessed through a set of machine learning classifiers. On the
other hand, the classification results at the multiclass level using the
extracted has shown a high percentage for both the Accuracy
and the f1-score metrics, overcoming the 96% with only a small subset
of ten genes. At sight of these results, our can discern among the
five proposed classes and can shape a powerful tool that could be very
useful for the clinicians in decision making.

Thereafter, the biological study of the small subset of ten genes reveals
a strong relationship between nine of the ten genes with the leukemia
disease. Concretely, these genes highlighted were related with rele-
vant biological processes such as proliferation, apoptosis or migration
among others in peripheral blood leukocytes including B-cells, T-cells
and neutrophils. Furthermore, these genes have been previously related
to the neoplastic process in the hematopoietic tissue being especially rel-
evant the modulation of the DOCK2 gene which has shown therapeutic
implications in leukemic cells.

In conclusion, the designed pipeline has allowed extracting multiclass
, which are closely related with Leukemia and the different ad-
dressed sub-types.
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Chapter is a a reorganised and extended version of the under

review in pre-print manuscript "KnowSeq R/bioc package: Be-

yond the traditional RNA-Seq pipeline. A breast cancer case study" [¢],

in which KnowSeq R/Bioc package is formally presented, as well as a

breast cancer study performed using the package library to show its
potential.
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7.1 BACKGROUND

Along the experiments that support this doctoral thesis, a new pipeline
has been designed and implemented to carry out complex transcrip-
tomic analysis, involving several steps. Firstly, a raw samples treatment
and a quality analysis is important to extract gene expression values.
After that, a extraction and a subsequent gene enrichment can be
performed. The development of intelligent predictive tools results es-
sential in bioinformatics given that there exists a real need of assistance
for decision-making systems towards precision medicine. Therefore,
with this in mind, KnowSeq was born with the aim of encapsulating
all those functionalities under the same scope. The main advantage of
KnowSeq is the incorporation of steps such as feature selection and
classifier design in the traditional transcriptomic pipeline. No tool exists
in the research community that achieves this complete transcriptomic
analysis, encapsulating all those steps in one single tool.

In order to show the functionalities provided by the general pipeline
designed for the KnowSeq package, an application to a real problem
is included in this Chapter together with a technical description of
KnowSeq. Concretely, an analysis of a breast cancer set of patients
collected from the controlled repository portal is performed,
keeping paired samples between tumour and control.

sequencing studies are fundamental to win the battle against
multifactorial and genetic diseases like cancer. Cancer is still the sec-
ond cause of death worldwide, just behind cardiovascular disease.
Although the survival rate is increasing gradually thanks to the medi-
cal researches and advances, the design of novel bioinformatic tools that
allows processing and extracting multi-omics information from raw
data is a crucial objective in this research area. Currently, there exist dif-
ferent tools that combine the different steps and technologies involved
in this scope [215—217]. Nevertheless, to the best of our knowledge,
there are no tools that integrate the traditional extraction steps
with further, and nowadays essential, steps dealing with the intelligent
predictive model design and biological enrichment processes. Those
steps are focused on the design of decision-making system applied to
precision medicine [5]. KnowSeq is thought to deal with the Homo
Sapiens genome, but it is prepared to support any other species.

Specifically, the study addresses the application of KnowSeq for the
search of relevant biomarkers for breast cancer detection as study case,
together with their related biological information. This means that the
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pipeline applied for breast cancer data here could be applied for any
other study from genetic sources, no matter the pathology to address.

Although KnowSeq is focused on RNA-Seq as it is the most powerful
and widespread genetic characterisation technology for transcriptome
nowadays, Microarray can be analysed too. KnowSeq comprises a large
part of the tools used in our previous studies/publications involving
RNA-Seq data. Several cancer types were addressed such as breast
cancer, skin cancer, leukemia and lung cancer and in all them relevant
results were achieved [6, 7, 218, 219]. They widely confirm the validity
of KnowSeq to carry out gene expression analysis.

In this scope, KnowSeq can be very helpful to perform these types of
analysis to find and assess biomarkers. For that, this Chapter addresses
a real application of KnowSeq to a set of raw breast cancer controlled

data coming from Portal [148]. Although KnowSeq allows the
SRA /FASTQ alignment, Portal does not supply those files, thus,
for the analysis, 180 tiles belonging to 9o breast cancer patients

were used. For each patient, two samples were collected, a primary
tumour sample and a solid tissue normal sample. Thanks to this, the
experiment was designed with Tumour-Normal paired samples, which
ensures the best experiment quality in terms of samples.

KnowSeq was published at Bioconductor in June 2019 and it has gradu-
ally achieved more downloads monthly. Figure 7.1 shows this increase
in the number of downloads as well as the number of distinct IPs that
have downloaded KnowSeq.

Although the methodology will be deeply explained in the next sec-
tions, a brief summary of KnowSeq giving basic information about its
operation and possibilities is given herein: the download and alignment
of the samples is performed automatically. Then the gene expression
values are estimated and the quality analysis and batch effect removal
is carried out. When the quality is checked, the between two
or more conditions established by the user are extracted (e.g. treated
vs non treated, normal vs control, etc). At this point, the traditional
primary pipeline is over. Nevertheless, KnowSeq adds a set of steps
to provide depth to the studies. In these new steps, a feature selec-
tion approach is included to estimate those genes that contain more
information to discern between conditions (in our study case, normal
vs tumoral tissue). Furthermore, it also includes a machine learning
step with different algorithms and configurations to assess those

Finally, the most useful step at biological level added by KnowSeq is
the enrichment step. In this sense, the tool allows retrieving in-
formation about the of the , the involved pathways coloured
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Figure 7.1: KnowSeq downloads statistics from its publication in June
2019 to January 2020. It can be seen how the number of total downloads
it increasing monthly.

according to the gene expression level of the samples and a list of
diseases related with the DECs and different combination of those
DEGs. Due to all of these reasons, KnowSeq is the only R/bioc package
that allows performing a complete RNA-Seq study by using the same
single tool and programming language during all the process.

7.2 IMPLEMENTATION

This section describes all the steps implemented by the KnowSeq
pipeline, being also applied to this research. Figure 7.2 represents
the whole pipeline and four different steps can be clearly distin-
guished: Webdata Resources gathering, RNA-Seq RAW data process-
ing, Biomarkers identification and assessment and DECs enrichment
methodology. On this basis, each step is presented in one subsection
with the purpose of giving a deeper explanation for each of them. It
is to be highlighted that KnowSeq is designed to achieve a high mod-
ularity. This means that each of the steps and sub-steps conforming
KnowSeq can be perfectly replaced, provided that the inputs maintain
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Figure 7.2: Pipeline implemented by KnowSeq R/bioc package. In the
pipeline are the traditional steps in the RNA-Seq data pipeline together
with the new steps added by KnowSeq.

the same data type. Because of this, KnowSeq can be easily adapted
even for different species and biological data types not explicitly ad-
dressed in this first version of our tool. Furthermore, the pipeline can
be launched from different steps depending on the type of input files
(e.g. SRA/FASTQ, BAM or counts). In order to summarise the different
functions available in the package, Table 7.1 shows for each function
the name, the pipeline step where this function is used, the description
of the functionality and the different options implemented inside the
function. Furthermore, the functions inside the table are ordered by the
steps in Figure 7.2.

7.2.1  Webdata Resources

One of the hardest step in any biological study is the data gathering.
KnowSeq allows to automatize the download of public and controlled
samples from the most renowned web platform databases: NCBI/GEO,
ArrayExpress and GDC Portal. The data from NCBI/GEO and Array-
Express are publicly available and from these web platforms KnowSeq
only requires the series ID to download. However, the raw data in GDC
Portal are under restricted access and an authorisation is required via
token file. If the user has this token file, CDC Portal raw data could be
automatically downloaded by calling the function gdcClientDownload.

127



128

7 KNOWSEQ: IMPROVING RNA-SEQ ANALYSIS

Table 7.1: Table that contains the most important functions in KnowSeq.
For each function, the name, the pipeline step where this function is,
the description and the options inside the function are showed.

Function Name

Pipeline step

Description (options)

downloadPublicSeries
gdcClientDownload

Webdata resources
Webdata resources

Download series from GEO and AE
Download data from GDC-Portal

Biomarkers Identification . .
RNAsegQA & Assessmment Expression matrix QA
, Biomarkers Identification . . . .
getAnnotationFromEnsembl Retrieve information for a DEGs list
& Assessment
Biomarkers Identification
batchEffectRemouval Batch effect treatment (Combat, SVA)
& Assessment
. . Biomarkers Identification . . .
limmaDEGsExtraction Biclass and multiclass DEGs extraction
& Assessment
. . Plots different data information and results
Biomarkers Identification
dataPlot & Assessment (boxplot, orderedBoxplot, genesBoxplot,
heatmap, confusionMatrix, classResults)
oS Biomarkers Identification Feature selection for a DEGs matrix
& Assessment (mRMR,RF)
knn_CV Sl i o Run a knn-CV for a DEGs matrix
& Assessment
knn_test Biomarkers Identification Run a knn-test
& Assessment
rf_CV e . Run a rf-CV for a DEGs matrix
& Assessment
Biomarkers Identification
rf_test & Assessment Run a rf-test
som_CV ol et Lilemitlfonition Run a svm-CV for a DEGs matrix
& Assessment
Biomarkers Identification
sum_test Run a svm-test
& Assessment
. DEGs Enrichment Related diseases for a DEGs list
DEGsToDiseases S .
methodology (targetValidation, genes2Diseases)
, DEGs Enrichment .
geneOntologyEnrichment Gene ontology for a DEGs list
methodology
DEGsPathwayVisualization DEGs Enrichment Pathway visualization for a DEGs list
methodology
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Users need then to construct or download a / tiles with the
information of each data/series. Using the specific function download-
PublicSeries, an automatic download of these supporting files are made
with series that belong to and ArrayExpress. Thanks to this,
it is very simple to specify and gather the series and samples required
to perform an analysis. All the data used to carry out our study, were
downloaded by using this method.

7.2.2  RNA-Seq RAW data processing

When working with RNA-Seq data, an alighment process is required by
using the human reference genome in order to obtain the count files to
perform the analysis. KnowSeq allows to download the Human
Reference Genome 37 and 38 from Ensembl, although
whichever reference genome can be used if the user indicates the path
to the file. In this step, the raw files in SRA/FASTQ [220] formats are
processed to obtain the files. This is performed through the use
of rawAlignment KnowSeq function. For this process, KnowSeq counts
on the samtools [221] and four of the most well-known aligners with
the purpose of giving to the academics not only one option to apply.
The aligners are tophat2, hisat2, salmon and kallisto [152, , ,

]. Furthermore, the Htseg-count tool extracts the count files for each
samples [154].

Finally, through the function countsToMatrix, all the count files are
merged in one aggregated matrix with edgeR. By the use of the function
calculateGeneExpressionValues, the equivalent gene expression values
are calculated with cqn R package [224, 225]. By applying this step to
the counts files, the desired number of samples can be automatically
processed. It is highly recommended to run the raw data alignment in
a computer cluster as the use of the tools involves high computational
cost for this task.

7.2.3  Biomarkers identification & assessment

To achieve the extraction, KnowSeq implements a step that
allows to do that task for any specie and disease with genetic relation.
Moreover, our tool incorporates mechanisms to study the quality of the
samples and the batch effects. It also includes the possibility of plotting
all the required charts for the graphical assessment of the samples
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(e.g. boxplots by samples, boxplots by genes, heatmaps...) in a unique
function named as dataPlot.

Although the output of the KnowSeq aligner step can be used as
input of this step, the user can also introduces its own samples matrix.
KnowSeq has been designed as a modular tool, this meaning that the
user can carry out all the study by using KnowSeq or can use only the
steps in which the user has interest.

extraction is a very delicate process because the samples must
pass a strong quality analysis and batch effect removal steps. KnowSeq
has a quality analysis step by using arrayQualityMetrics package
adapted to RNA-Seq by running the function RNAsegQA. This package
counts on several statistical analysis to detect possible outliers in the
samples [155]. Furthermore, our tool also has graphical representation
such as gene expression boxplots disordered and ordered by class or
label, heatmaps and gene by gene boxplot even allowing multiclass
representation. It is very crucial to perform the quality analysis in a
rigorous manner to ensure the correct development within the rest of
the study. Even though the quality analysis is well done, there still
exists the possibility of having batch effect among the chosen samples
or series. The batch effect is a deviation effect in the gene expression
values due to several external technical factors (origin, sequencing
hour, lab technician, among others) and it is very hard to treat [159].
KnowSeq allows to use two of the most relevant algorithms to treat
batch effect such as ComBat for predefined batch groups and sva for
unknown batch groups [226] through the function batchEffectRemouval.

In order to perform extraction, limma R package is used, with
the peculiarity that KnowSeq automatically detects the number of
different classes or labels and consequently applies limma biclass or
multiclass [163]. For the multiclass, the coverage parameter introduced
at Chapter 6 that allows detecting that are expressed for more
than one biclass comparison has been added to KnowSeq. This
extraction is carried out by using the function limmaDEGsExtraction.

Next, a process is highly recommended for precision medicine
to reduce the system complexity, diminishing the number of genes
and, helping to make clinical decisions [227-229]. For that, KnowSeq
allows to apply with the function featureSelection, two different feature
selection algorithms, [230] and as feature selector [139].
These algorithms create a ranking of in order to increase the
classification rate by putting the with more information for the
classifier listed at the top.
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Finally, for the supervised process, KnowSeq allows using three of
the most relevant classifiers: [126, 1, [232] and [233].
There exist two versions for each classifier in KnowSeq, one version
with (knn_CV, sym_CV & rf_CV) in which the user decides the
number of fold and the data partitions always considering the represen-
tation of all the classes, and other version for testing (knn_test, svm_test
& rf_test), by using a test dataset without independent from the
dataset used for the extraction and assessment. Furthermore,
for the three algorithms the hyperparameters are optimised, searching
the acquisition of the best model for each analysis. Moreover, KnowSeq
allows plotting the graphical representation of the results, including
the confusion matrix, the sensitivity, the specificity and the f1-score.
This gives to the user the possibility to perform a complete analysis
and assessment of the addressed problem in a very simple and quick
way.

7.2.4 DEGs enrichment methodology

This tool is designed to automatise the knowledge extraction whatever
is being the disease and for that, the last step of KnowSeq pipeline
attains biological knowledge related to the final candidates.
This knowledge must be interpreted by a clinician or a person with
biological profile. In this sense, KnowSeq can retrieve information from
three different sources to help with that interpretation. One of these

sources is the enrichment with information about the biological
functions and locations of the [234, ]. The three available GO
domains are queried by our tool: the BI’r, the and the CC. Thanks to

this, the biological functions related with the DEGs can be acquired in
order to perform a more deeply study trying to find connections with
the addressed disease. For the enrichment, the topGO R package
is used [236] and, in order to carry out the retrieval, KnowSeq has
the function geneOntologyEnrichment.

The second source of biological information is the pathway visualisa-
tion. Nowadays it is well known that the interaction of several genes
whether can lead to a genetic disorder or not. Genes interacting among
them in the same biological function are distributed in the same path-
way. For that reason, it is important to know not only the expression of
the but also their interactions with genes that belong to the sames
pathways of those . The pathview package allows to colour the
pathways depending on the expression values of the genes inside the
pathways [237]. KnowSeq has kept this idea to automatically retrieve
and colour all the pathways related with the final candidates and

131

BroLoGIcaAL
PRrocCESs
MOLECULAR
Function
CELLULAR
COMPONENT



132

Kyoro
ENCYCLOPEDIA OF
GENES AND GENOMES

Tuae CANCER
GENOME ATLAS

7 KNOWSEQ: IMPROVING RNA-SEQ ANALYSIS

listed in the database [235]. With this implementation, it is easy
to know if the expression of the and the surrounding genes are
affecting a critical function in the disease development. The function
DEGsPathwayVisualization takes care of this process.

The last source of biological information implemented in KnowSeq is
the related diseases retrieval and it is performed executing the func-
tion DEGsToDiseases. In this step, all the related diseases of the
candidates listed in the literature are obtained with the purpose of
tinding possible relation with the pathology addressed and with other
possible precursor pathologies. Furthermore, the diseases related with
a set of are also obtained in order to find possible that
are related with the same pathology. This information can be attained
from two different sources: the first one is the Gene Set to Diseases
web platform [239] and the second one is the targetValidation [240]
web platform. Then, the acquired diseases are correctly formatted by
KnowSeq to do more readable this information for the user.

With the information collected by KnowSeq automatically from the
three different sources, a strong biological enrichment process is done
in order to build a biological profile for each of the without
requiring external tools.

7.3 BREAST CANCER APPLICATION

This section is divided in four subsections, one for the information
about the data acquisition and three representing categories of results
that were obtained for this study. For the last three subsections, the
tirst one is focused on the final candidate extraction and the
restrictions imposed to achieve them. The second one shows the as-
sessment of those by using machine learning techniques with
the main goal of finding a smaller sub-set of . Finally, the last
one describes the enrichment of the sub-set of in order to find
relevant biological information about them in an easy way by using
KnowSeq.

7.3.1 Data preparation & description

All the data or samples used in this case of study come from and
have been acquired through Portal platform. For this breast cancer



7.3 BREAST CANCER APPLICATION

study, 9o patients were selected with the condition of having tiles
from both solid normal and primary tumour tissues for each patient.
With this condition the paired datasets are ensured, achieving the best
quality conditions in terms of samples for the study. Primary breast
cancer is a tumour that still remains inside the breast or the lymph
nodes (glands) under the arm. On the other hand, the solid normal
tissue is collected from the adjacent healthy tissue to the primary breast
tumour. A table with all patient data to replicate the study is available
at Table 7.2. In order to perform a more robust study, two different
datasets will be taken into account. The first dataset is formed by 8o
patients and will be used to extract the . The second dataset is
conformed for the 10 remaining patients and will be only used for
testing those in a machine learning step. Thanks to this division,
the extracted will be independent of the samples used to assess
them.

7.3.2 DEGs extraction and analysis

The importance of achieving robust biomarkers is crucial for this type of
problems thus, it is important to correctly select the imposed restriction
to extract the set of . To find them, as mentioned before, 80
patients were used and the 10 remaining patients were kept only for
testing those in the machine learning step. This separation is
very important to test the in patient never seen before in the
process, bringing robustness to the results and avoiding overfitting. The
quality analysis was first performed to the 8o patients and no outlier
was detected among them. Then, the batch effect removal step was
applied taking into account that the possible batches were unknown.
The algorithm [161] was performed to find the surrogate variables
in order to create a model considering those variable to remove the
deviations. It is critical to remove the batch effect in order to correct
the data but without removing any possible deviations caused by
biological processes. After the quality analysis and the batch effect
correction steps, candidates can now be extracted. To carry out
this extraction, the thresholds imposed were very restrictive, using two
well-known statistics values for filtering: the greater or equal than
3 and the P-value less or equal than 0.001. Applying these restrictions,
a total amount of 50 candidates ordered by were extracted.

Table shows those with several statistical values that describe
at numerical level why those genes have been selected as . Those
values are the five statistics seen at Chapters 5 and 6. As it can be seen,
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all the candidates pass the imposed restrictions and they will be
assessed to corroborate their validity.

Table 7.2: Patients Samples IDs from GDC used for the development of
this research.

BIRCA Prujee: GRXC 11D

TCGA-BH-AOAU

TCGA-BH-AODZ

TCGA-BH-A1ET

TCGA-BH-AOAY

TCGA-BH-AOEO

TCGA-BH-A1EU

TCGA-BH-AOAZ

TCGA-BH-AOE1

TCGA-BH-A1EV

TCGA-BH-A0B3

TCGA-BH-AOH5

TCGA-BH-A1EW

TCGA-BH-A0B5

TCGA-BH-AOH7

TCGA-BH-A1F0

TCGA-BH-A0B7

TCGA-BH-AOHg

TCGA-BH-A1F2

TCGA-BH-AOBA

TCGA-BH-AOHA

TCGA-BH-A1F6

TCGA-BH-AOBC

TCGA-BH-AOHK

TCGA-BH-A1F8

TCGA-BH-AOBJ
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Table 7.3: Table with the 50 DEGs candidates extracted for this study
and several statistical values for those DEGs.

llog EGNWAVeExpr it IRAValule ad)ARAVall
COL10A1 -7.1720 | 14.8062 | -23.9116 | 1.3885e-20 | 2.0014e-18 | 37.0692
CST1 -6.8780 | 12.0813 | -15.2775 | 2.2569e-15 | 4.2166e-14 | 24.9740
MMP13 -6.6652 | 12.6433 | -23.5212 | 2.1842e-20 | 2.9420e-18 | 36.6168

LINCo1614 | -6.5380 | 14.5261 | -20.4209 | 1.0349e-18 | 6.4411e-17 | 32.7475
SLC24A2 -6.2606 | 10.8512 | -19.2851 | 4.8451e-18 | 2.2617e-16 | 31.1924
COL11A1 -5.8136 | 16.1869 | -26.8715 | 5.4897e-22 | 2.0147e-19 | 40.2812

MMP11 -5.5748 | 15.7695 | -27.1724 | 4.0272e-22 | 1.6695e-19 | 40.5878

CAy 5.4495 12.3041 22.7570 | 5.4093e-20 | 5.8144e-18 | 35.7099
IBSP -5.4158 9.7764 -17.3262 | 8.4221e-17 | 2.4182e-15 | 28.3072
PLPP4 -5.4069 | 11.0745 | -20.3021 | 1.2119e-18 | 7.3562e-17 | 32.5887
MMP1 -5.2066 | 12.5466 | -17.7029 | 4.7652e-17 | 1.4990e-15 | 28.8834
LEP 5.2911 15.4111 12.7145 | 2.3314e-13 | 2.3836e-12 | 20.2601

MYOC 5.2690 | 11.2076 | 15.8110 | 9.2770e-16 | 1.9577e-14 | 25.8761
NPY2R 5.1723 | 12.0594 | 14.2605 | 1.3176e-14 | 1.9586e-13 | 23.1819

EPYC -5.1495 | 9.8030 | -16.9509 | 1.5009e-16 | 4.0510e-15 | 27.7222
LINCo0922 | -4.9341 9.0520 -19.3696 | 4.3080e-18 | 2.0622e-16 | 31.3109
CST2 -4.8586 | 11.9503 | -15.2360 | 2.4212e-15 | 4.4841e-14 | 24.9026
CSTy -4.7626 | 10.3939 | -14.0907 | 1.7854e-14 | 2.5427e-13 | 22.8731

CD300LG 4.7297 | 15.0205 | 27.8248 | 2.0795e-22 | 1.1035€-19 | 41.2410
ANGPTL7 4.6405 | 13.1176 | 14.4855 | 8.8454e-15 | 1.3878e-13 | 23.5869
SCARAj5 4.6061 | 14.4664 | 23.1422 | 3.4131e-20 | 4.0065e-18 | 36.1706
ADGRD2 4.5781 9.9209 19.5686 | 3.2720e-18 | 1.6478e-16 | 31.5882
ACo44784.1 | -4.5405 | 12.4070 | -14.0387 | 1.9606e-14 | 2.7528e-13 | 22.7780
OPRPN 4.4570 | 11.9701 | 10.6963 | 1.4700e-11 | 9.6064e-11 | 16.0423
GLYAT 4.4221 11.4900 | 14.8858 | 4.4038e-15 | 7.5592e-14 | 24.2953
LINCo1705 | -4.4206 | 8.2294 | -21.5106 | 2.5216e-19 | 2.0538e-17 | 34.1667
AC093895.1 | -4.4142 7.2190 -13.6822 | 3.7519e-14 | 4.8207e-13 | 22.1182

DLK1 4.4100 | 11.1670 | 11.1259 | 5.8440e-12 | 4.1775e-11 | 16.9813
DSCAM-AS1 | -4.3949 | 12.0297 | -8.8010 | 1.1385e-09 | 5.0128e-09 | 11.6176
PLAC1 -4.3843 8.8461 -15.0985 | 3.0582e-15 | 5.4733e-14 | 24.6655
COMP -4.3195 | 15.8240 | -17.6860 | 4.8879e-17 | 1.5286e-15 | 28.8577

LINCo2408 | -4.3143 | 7.0213 | -13.9943 | 2.1243e-14 | 2.9515e-13 | 22.6965
AC104407.1 | 4.2835 | 13.0120 | 13.0863 | 1.1424e-13 | 1.2825e-12 | 20.9859

PITX1 -4.2759 | 14.3922 | -18.0804 | 2.7203e-17 | 9.3295e-16 | 20.4503
CXCL2 4.2568 | 17.2496 | 17.7874 | 4.1995e-17 | 1.3449e-15 | 29.0112
WIF1 4.2474 | 12.1155 | 13.5579 | 4.7191e-14 | 5.8834e-13 | 21.8850
PLINyg 4.2328 | 18.3265 | 16.4032 | 3.5554e-16 | 8.5226e-15 | 26.8485
CCL11 -4.2158 | 12.6651 | -16.2890 | 4.2684e-16 | 9.9858e-15 | 26.6633

VEGFD 4.1739 | 13.6021 | 21.6667 | 2.0704e-19 | 1.7581e-17 | 34.3646
CSN1S1 4.1379 | 11.1700 5.9985 | 1.6242e-06 | 4.1544€-06 | 4.2666
LRRC15 -4.1185 | 16.6620 | -18.0938 | 2.6671e-17 | 9.2062e-16 | 29.4702
CIDEC 4.0943 | 16.1264 | 12.6589 | 2.5971e-13 | 2.6166e-12 | 20.1503
AC112721.2 | -4.0904 9.5582 -19.0034 | 7.1918e-18 | 3.1717e-16 | 30.7939
CNTNAP2 -4.0853 | 17.0082 | -12.7531 | 2.1636e-13 | 2.2371e-12 | 20.3361

S100P -4.0752 | 15.6872 | -10.5751 | 1.9148e-11 | 1.2194€-10 | 15.7732
ADIPOQ 4.0540 | 17.3106 | 10.6432 | 1.6498e-11 | 1.0663e-10 | 15.9248
WT1 -4.0456 9.7736 -9.5566 | 1.9007e-10 | 9.7380e-10 | 13.4377
GPD1 4.0364 | 18.0172 | 13.6989 | 3.6389e-14 | 4.7058e-13 | 22.1493

CHRNA®6 -4.0287 | 8.9468 | -13.2380 | 8.5741e-14 | 9.9333e-13 | 21.2777
TRHDE-AS1 | 4.0243 12.2240 12.4349 | 4.0261e-13 | 3.8499e-12 | 19.7042
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Furthermore, the Figure represents an expression heatmap that
graphically shows important differences. It can be seen how the
expression levels are different between both groups (normal and tu-

mour). Due to that expression differences, models could learn the
way of discerning among the addressed groups in order to determine
the validity of these for this problem.

Color Key

ADBV-RNA-Tumor
FD-RI

AOBT-RNA-Normal

Figure 7.3: Heatmap of the 50 DEGs candidates clearly showing differ-
ences between tumour and normal samples.

7.3.3 Machine Learning assessment

KnowSeq includes a step to assess those and their capability
to discern among the considered pathologies. Through this process, a
smaller subset of can be achieved with the purpose of finding a
more reduced gene signature candidate. For that, KnowSeq has three
different supervised algorithms and two different 'S methods as
was explained before. This step has two different approaches. The
first one is the application of a process to assess the with the
training patients. The second one is the test process in which our

are evaluated by using the 10 test patients previously chosen only for
this purpose.

Firstly, a 10-CV step was applied in order to see the behaviour of the
classifier with the 8o patients training dataset when those are
used for classify. Thereupon, all the different combination of classifiers
with 'S algorithms reached better results than without applying I'S,
recognising all the training samples with a few number of genes.
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and acquired outstanding results, but had slightly better
results than the other two algorithms.

However, it is important to know how the classifier behaves with

samples never seen before in order to simulate a real clinical case.

This is the reason to create a test process with the 10 patients (20
samples) datasets. These patients were left out at the beginning for all
the study to be used now to assess the . Different matches, or
combinations between classifiers and 'S algorithm, were executed with
the purpose of searching the combination with the best results. Those
combinations are the possible permutations resulting from the different
classifiers ( , and RF) with none feature selection (No ES.)
and with the different feature selection algorithms ( and
f.s.). Table 7.1 contains the results for all these combinations depending
on the number of genes used to classify. It is important to highlight
that with only 3 genes, reached 100% of accuracy when

and RF f.s. were applied. also reached 100% with RI" f.s. but no
with . For its part, RI" only achieved 100% with 10 genes and
by using RI f.s. algorithm. Although all of them achieved prominent
results, obtained the best results whatever being the 'S algorithm
and the number of genes used. As it can be seen, with only 3 genes
selected by the 'S process from all the , all the test patients were
perfectly recognised for the machine learning designed models. This
means that KnowSeq brings the support to create intelligent systems
with the capability of extracting relevant biomarkers that are useful to
discern among the addressed diseases or states.

Once the classification is done, it is very helpful to see graphically the
gene expression differences that exist between the tumour samples and
the normal samples for the three 3 that discriminate perfectly
the test patients. In order to carry out this representation, KnowSeq
counts contains the dataPlot function in mode genesBoxplot. Figure
represents the genes Boxplots for the top 3 without apply
(ordered by ), applying and applying R f.s. respectively. In
this figure, the first gene selected by the three methods (No ES,

and RF f.s.) is the same (COL10A1). However, the second gene selected
by and RF f.s.(VEGFD & MMP11), both are different than the
second gene with more (CST1). The third and last gene selected
by and RF f.s. (PITX1, LINCo1614), are also different again than
the third gene with higher (MMP13). Nevertheless, even though
the genes selected by have more differences in average expression
between the states, the genes selected by the algorithms discern
better between such states, thus reaching better classification results
as can be seen in Table 7.4. Consequently, adding a refined 'S as well
as a classification algorithm based on technology proved that the
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Table 7.4: Table that contains the test results for the different combina-

tions of feature selection algorithms with the classifiers depending on

the number of DEGs selected.

No IZS; iIRIVIIRE IREHfSS

. Cemes | 3 5 (0] 3 5 10) 3 5 10
ISIVAVIS 85% | 90% | 95% | 95% | 95% | 100% | 100% | 95% | 100%
BNINE | 90% | 85% | 100% | 100% | 100% | 100% | 100% | 100% | 100%

IRIE 85% | 90% | 95% | 90% | 70% | 95% | 85% | 85% | 100%

selected potentially improve the differentiation of states against
classical metrics like with a few number of

It is a priority in this research to minimise the number of genes and
maximise the final achieved accuracy. This way, a very small sub-set
of can be found to have the capability of discerning among
the studied states. Nevertheless, KnowSeq is flexibly prepared to use
and analyse as many genes or as the user requires. Also, it
is important to highlight that, even though a bi-class problem was
taken into account for this study, KnowSeq is designed to analyse any
multiclass problem. In this sense, the confusion matrix, the fi-score,
the sensitivity and the specificity metrics calculation are considered by
our package.

7.3.4 DEGs enrichment

At this point of the study, our have been assessed by applying
a machine learning process. Nevertheless, those must be inter-
preted at biological level by experts in the field. In order to help with
the biological interpretation, KnowSeq has a last step in its pipeline

created solely and exclusively to this purpose ( Enrichment). Al-
though this study searches a very small subset of , the enrichment
step in KnowSeq does not depend on the number of , because

the package can compute all of them.

Previously, in the machine learning results, the 10 test patients were
totally recognised with only 3 genes selected by both f.s. and

in conjunction with the classifier. Firstly, the relationship
between those 6 and breast cancer will be searched by using the
function DEGsToDiseases with the targetValidation platform selected.
This platform has several scores to determine if a gene is related with
the different possible diseases based on the information collected by
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Figure 7.4: Boxplots of the 3 first DEGs selected by KnowSeq without
feature selection algorithm and with mRMR and RF.
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the web platform. Those scores increase when the association increases
too, that meaning a strong association with the selected disease.

From the 9 commented before, only two from f.s.
(COL10A1 & MMP11) and two from (COL10A1 & VEGEFD)
have a strong reported relation with breast cancer and one of them is
common to No ES., and f.s. (COL10A1). The 6 remaining

have no relation or the relation is poor (a very low association
score). It is very interesting to note that only the first gene of the top 3

without 'S has important relations with breast cancer, although
they are the with the higher or P-value. Therefore, the use
of a I'S step in this case has remarkably supposed the determination of

in the first positions more related with breast cancer. This fact
clearly improves the classification accuracy as shown in the previous
sub-section. Hence, the 3 breast cancer reported will be used for
the enrichment.

As can be seen at the heatmap in Figure 7.5, the 3 final (COL10A1,
MMP11 and VEGFD) clearly distinguish between tumour and control
samples. In the case of COL10A1 and MMP11 are inhibited in tumour
samples with regards to normal samples. Otherwise, VEGFD are over-
expressed in tumour samples in comparison with normal samples. It is
very important to know about these differences in order to find drugs
or treatment that can correct them.

For these , a set of scores are showed in Table 7.5. These 4 scores
acquire values between o and 1: the Literature score is calculated based
on the evidences in the literature of the involvement of a gene with the
corresponding cancer (breast cancer in this case); the RNA Expression
score uses data from Expression Atlas to see if a gene has differences
at expression level for a disease; the Affected Pathways score evaluates
from the reactome platform if the gene is involved in relevant pathways
for the disease. Lastly, the final association score is calculated from the
previous scores. As can be seen in the table, the three genes have a
strong final association, so they are highly involved in breast cancer.
From this point, the experts in the field have an important overview of
the genes to continue investigating them.

Once the disease relationship process has been carried out, the next
step is the enrichment. For this process the same 3 are used
and the five most important for the three and for the three
different ontologies (BI’r, & CC) will be retrieved with the function
geneOntologyEnrichment. Table 7.6 shows the top 5 for our 3

As it can be seen, the VEGFD gene does not appear for any terms
in the top 5, but only related with COL10A1 and MMP11 genes.
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Figure 7.5: Heatmap for the 3 breast cancer related DEGs selected the
feature selection algorithms.

Table 7.5: Table with the information about the association scores for
the final 3 DEGs to study.

Ifiters IRINAPEXPY IRath's Einall
COLLnAT 0.0372 0.1787 0.6835 0.7323
IVIIVIR: 0.1935 0.1094 0.6065 0.6670
\VEEED) 0.1169 0.1400 0.6948 0.7428

Only increasing the maximun number of retrieved (:Os, CGOs related to
the VEGFD were retrieved. Thanks to this step, the BI’r, the M and
the CC of the DECGs are stored by KnowSeq to help users knowing the
biological domain of each DECs and studying possible relations with
processes that could lead to develop cancer.
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Finally, the last biological enrichment step included in KnowSeq is the
pathways enrichment. Pathways involving our are interesting to
understand how the expression changes are affecting other genes and
biological processes as well as how theses changes can turn into cancer
(breast cancer, in this case). To achieve that, KnowSeq includes the
function DEGsPathwayVisualization. This function makes use of
database to acquire the pathways information. For the COL10A1, there
is one reported pathway affected. For the MMP11 there exists no
affected pathways in . Finally, for the VEGFD gene there are
nine reported pathways. Figure 7.6 shows the pathway hsao4974 that
is related with the colagen gene (COL10A1) and performs the Protein
digestion and absorption process. In the figure, the collagen box shows
a clearly difference between the tumour samples (red) and the normal
samples (green). This means that the COL10A1 gene could activate
erroneous processes inside the pathway depending on its expression.
Table shows the nine VEGFD related pathways as well as the
pathway related with COL10A1 gene.

Table 7.7: Table that contains the retrieved pathways with their descrip-
tion for the final DEGs.

DEGES] 11D IDes@ripion
COL10A1 | hsaog974 | Protein digestion and absorption
hsaogo10 MAPK Signaling Pathway

hsaogo14 RAS Signaling Pathway
hsaogo15 RAP1 Signaling Pathway
hsaog151 PI3K-AKT Signaling Pathway
VEGFD | hsaog510 Focal Adhesion
hsao4668 TNF Signaling Pathway

hsao4926 Relaxing Signaling Pathway
Age-Rage Signaling Pathway
hsao4933 in diabetic complications
hsao5200 Pathway in Cancer

The gene VEGEFD is involved in several pathways (Pathway in cancer
included). The changes in its expression could produce disorders in
those pathways which could end up in the development of breast
cancer and other diseases.

When all the enrichment pipeline of KnowSeq is over, this information
is used to find and learn more about those and their relation
with breast cancer. For that, it is very important that all these details
will be studied and analysed by experts in bioinformatics and biology.
KnowSeq expects to provide a very powerful and useful tool for those
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Figure 7.6: Pathway hsao4974 in which the COL10A1 gene is involved.
As can be seen in the pathway, the collagen box indicates a strong
expression change in the tumour samples in comparison to the normal
samples.

experts that could retrieve the most crucial information for the
based on their expression in an easy and adaptable way.

7.4 CONCLUSIONS OF THE CHAPTER

Along this Chapter, the specific objective followed in this doctoral thesis
to design and encapsulate in a new tool the automatic and intelligent
pipeline has been completed. KnowSeq includes the traditional steps
in gene expression studies but also implements a 'S and a step, as
well as an enrichment step. Thanks to this, complete analyses can be
done from RAW data up to the biological knowledge extraction in a
easy, modular and flexible way.

Furthermore, in order to present a case of study with the tool, a breast
cancer problem has been addressed with files automatically
downloaded with KnowSeq from Portal. A total of 8o patients
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with paired samples (Normal-Tumour) were used to extract the
candidates. Those candidates were assessed through a step
with the purpose of finding a very reduced sub-set of with the
capability to discern between normal and tumour samples. Further-
more, different 'S algorithms were applied in order to find a better
order of those to achieve outstanding classification results rate
with less . Finally, the were assessed by using 10 patients
never seen before, achieving remarkable results since all the patients
were totally recognised with only three for several combinations
of classifiers and I'S algorithms.

Then, a final sub-set of three were enriched by using the KnowSeq
functions designed with this purpose. Those have a strong rela-
tion with breast cancer, there exist evidences at gene expression level, in
the literature and in affected pathways that link the final three enriched
DEGs with the disease.

At sight of these considerations and by way of conclusion of this
Chapter, KnowSeq is an R package that gives the possibility to carry
out RNA-Seq and Microarray analyses in an easy way with all the
required steps included in the pipeline. KnowSeq expects to serve as a
novel tool to help to the experts in the field to acquire robust knowledge
and conclusions for the data and diseases to study. KnowSeq has three
clear strengths: the first one is the modular design, because the analyses
can be started from different points (FASTQ, , count and even
a custom expression matrix); the second one is the versatility due to
the different algorithms for and 'S and the different databases
implemented in KnowSeq; and the last one is the adaptability of the
analyses, because KnowSeq allows to use data from different sources
and, even select different parameters that give to the user a real control
of the pipeline.
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this doctoral thesis an existing problem dealing with the pro-
cessing of heterogeneous transcriptomic data has been exposed,
tackled and justified. With the aim of proposing a methodology to
deal with such data in different cancers, the design of an intelligent
automatic pipeline for the integration and analysis of heterogeneous
transcriptomic data has been carried out. Furthermore, different cancer
types have been studied and related to them have been extracted
and assessed through techniques. Finally, a new tool, an R pack-
age named (KnowSeq) now publicly available at Bioconductor, was
designed to bring the researchers a way of automatically performing
those analysis in an easy and quick form. At sight of these considera-
tion, this last chapter presents the final conclusions that support this
thesis, taking into account the main objectives proposed in Chapter
In addition, the future work, which is intended to be addressed at soon
as possible in order to continue with the high quality contributions to
the scientist community of the research line proposed, is also detailed
here
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8.1 FINAL CONCLUSIONS

Considering the results and conclusions for the researches presented
at Chapters 5, 6, 7 that support this thesis, the final conclusions for
this doctoral thesis will be in-depth detailed, taking into account the
specific objectives proposed at Chapter 1. For that, the conclusions will
be sub-divided into one conclusion per objective along with a final
thesis conclusion.

The first proposed specific objective was the design and implemen-
tation of an automatic pipeline for the integration of heterogeneous
transcriptomic data sources regardless the genetic disease addressed.
This idea emerged with the aim of taking advantages of the differ-
ent heterogeneous data existing in public databases. There is a huge
number of Microarray data that have not been analysed so far, con-
taining in any case useful information about genetic diseases. Those
Microarray data together with new RNA-Seq series may allow creating
larger datasets than never before. As evidenced by the results of the
presented researches, the integration has been successfully carried out
for different types of cancer by combining Microarray and RNA-Seq
samples coming from different sources. Furthermore, when the inte-
gration was done, related to the studied cancer were correctly
retrieved. Thereby as a conclusion for the first proposed objective, the
implementation of an automatic pipeline for integrating heterogeneous
transcriptomic data sources has been satisfactorily completed, even
for different types and sub-types of cancer (Breast cancer, Leukemia
and Lung cancer -see Appendix A-), achieving a complete and general
pipeline.

On the basis of the first specific objective, the second proposed specific
objective was the assessment of the extracted through the use of
techniques. In this sense, different I'S and classification algorithms
were proposed and evaluated for the different tackled types of cancers.
In all of the cases in which classification algorithms were applied, out-
standing results were achieved, even for unseen samples. In addition,
the use of 'S techniques has allowed to select a reduced sub-sets of
that allow discerning among the different states, achieving practi-
cally the same results than with all of . This confirms the validity
of the integrated pipeline to extract related to the addressed
cancers, as well as the proper application and implementation of the
different proposed predictive models. In view of these considerations,
the second proposed objective has been also successfully carried out,
ushering the possibility of finding new robust gene signatures for the
addressed types of cancer.
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What’s more, it is important to note that many researches are very
difficult to reproduce, because the code is not available or the expla-
nation about the implemented methods is confusing. For that reason,
the third specific objective of this thesis tries to bring to the scientist
community a way of carrying out differential expression analysis to-
gether with assessment, encapsulated in an advanced software R
package. KnowSeq is the first R/Bioc package that allows executing
the necessary steps to perform analysis from transcriptomic RAW file
to biomarkers assessment and biological enrichment under the
same tool and language. Moreover, KnowSeq is not only available at
Bioconductor, the most important bioinformatics repository, but also at
Docker and Github with the purpose of reaching as many scientists as
possible. To sum up, this third specific objective has been accomplished
and KnowSeq has kept an important number of downloads in the last
months and is climbing up in Bioconductor packages ranking.

Finally, the last proposed objective was the application of ap-
proaches for the optimisation of the heaviest steps in this type of
analysis. Nowadays, with the massive available transcriptomic data
and the size per sample, it is becoming impossible to process and
analyse them without architectures or dedicated hardware. In this
thesis, two different clusters have been used for the parallelization
of the RNA-Seq RAW data alignment, as the alignment is the most
computational exhaustive process in the whole pipeline. Although, the
use of could not be implemented and included in this doctoral
thesis, partially due to the current time limitations of the PhD program,
the implementation with of algorithms has already begun
in the search for optimization of the intelligent biomarkers assessment
process.

This doctoral thesis was proposed with the end of designing a new
unified and automatic pipeline to analysis and integrate heterogeneous
transcriptomic sources. For that, an early complete experimentation
using Microarray and RNA-Seq series from Breast cancer was done,
taking into account only two classes (Cancer vs Control). Then, per-
forming a more advanced version of the pipeline, a new experiment
that involved a larger amount of heterogeneous data and different
types of Leukemia was addressed. In this experiment, a new parameter
named "Coverage" for an efficient selection of multiclass biomarkers
was also proposed. At the end of the Leukemia study, the pipeline was
sufficiently mature and tested for its encapsulation in a public tool. At
that point, the pipeline was expanded with new functionalities and
KnowSeq was born as a new public R/Bioc package for the scientist
community. Finally in Appendix /A, KnowSeq was applied to a Lung
Cancer multiclass study containing only Microarray data in order to
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show the validity of KnowSeq for Microarray analysis too. Further-
more, a first version of a new Biologically-based 'S method has been
proposed. It is named and tries to provide to the scientists a
method with biological sense. This overview has showed how the main
milestones accomplished in this thesis, successfully achieving all the
established objectives.

8.2 LOOKING TO THE FUTURE

Bioinformatics is an emerging field with a very promising future ahead.
In this sense, there is a countless number of new experiments and of
important advances to discover in the fight against genetic diseases in
general, and against cancer in particular. The contributions of this thesis
to the trancriptomic heterogeneous data analysis at gene expression
level, will help the development of new studies in a more automatic
and straightforward way .

It is well-known however, that there are many factors that can alter
gene expression, rising the possibility of producing cancer. For that, as
a future work, the integration of new biological sources different from
transcriptomic sources will be addressed. Besides, the creation of a set
of synchronised predictive models, working together to predict and find
hidden relationships among the integrated data will be performed too.
In the stay at Institute of Bioinformatics WWU Muenster, a prototype
for the integration of Copy Number Variation information and Gene
Expression from the same patients was carried out. This prototype
will be continued and finished as soon as possible. Furthermore, this
new integration will be added as a new process in KnowSeq R/Bioc
package.

Other important future works will be the continuous development
and update of KnowSeq with the aim of improving and adding new
functionalities to the software package. For example, optimised version
of the classification techniques via are now under develop-
ment and is intended to be added to KnowSeq during the next year.
Furthermore, a new biological enrichment function to retrieve drugs
related to is expected to be added soon.

To conclude, the integration of slides tissue images and clinical in-
formation with the gene expression information is now under devel-
opment. This integration has the aim of merging as many biological
and histopathological information sources as possible to improve the
diagnosis, taking advantages of techniques.
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present study is a reorganised and extended version of the
international conference published manuscript "Feature Selection
and Assessment of Lung Cancer Sub-types by Applying Predictive
Models" [219]. This study was designed to evaluate the impact of
techniques in selection and assessment. This extension introduces
several changes with respect the original published paper, and it is
intended to be sent to a Journal with Impact factor when RNA-Seq
data is also added to the study. The whole study was repeated using
KnowSeq R/Bioc package and the selection of is different from
the original paper. The most important improvement in this presented
work is the introduction of a new Biologically-based 'S method (
), which allows including biological information of the for
creating a new feature ranking.
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A IMPACT OF FEATURE SELECTION FOR LUNG CANCER DIAGNOSIS

A.1 BACKGROUND

This first Appendix emerged with the aim of showing a more complex
study designed and implemented with KnowSeq, drawn from a previ-
ous published manuscript [219]. Furthermore, all the 'S and classifiers
implemented in KnowSeq are evaluated with the purpose of measuring
their impact in the discernment capability of the candidate

Along this study, a huge number of Microarray samples have been used
to identify a robust set of , having the capability of discerning
among the different sub-types of lung cancer: , , and
. To achieve this goal, an overall analysis was performed
by using data from gene expression microarrays publicly stored at
platform and the usage of the KnowSeq R/Bioc package.
Furthermore, a novel Biological-Based 'S method named as Diseases
Association feature selection ( ) is proposed and included into
KnowSeq.

As a reminder, a gene signature is a single or combined group of
genes in a cell with a uniquely characteristic pattern of gene expression
that occurs as a result of an altered or unaltered biological process or
pathogenic medical condition [241]. Discovering these gene signatures
can lead to an early diagnose and to understand the root cause for
developing a multifactorial disease such as cancer. Henceforth, by their
usage, a discrimination between a patient suffering from cancer and
a healthy one can be performed. This discrimination can not only be
performed within healthy or cancer patients but also between different
states or sub-types of the same cancer disease.

Lung cancer is the most common cancer and the main cause of death
by cancer in men, followed by prostate cancer and colorectal. In women,
lung cancer has the second and third position in mortality and inci-
dence, respectively [242]. There are two main types of lung cancer:

. :In , the cells contain dense neurosecretory granules
(vesicles containing neuroendocrine hormones), which give this
tumor an endocrine or paraneoplastic syndrome association [243].
Most cases arise in the larger airways (primary and secondary
bronchi).

. : has three differentiated sub-types, namely:

- : The signs and symptoms of this specific type of lung
cancer are similar to other forms of lung cancer, and patients
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most commonly complain of persistent cough and short-
ness of breath. Adenocarcinoma is more common in patients
with a history of cigarette smoking, and is the most common
form of lung cancer in younger women and Asian popula-
tions. The pathophysiology of adenocarcinoma is compli-
cated, but generally follows a histologic progression from
cells found in healthy lungs to distinctly dysmorphic, or
irregular cells [244].

- : It is the second most prevalent type of lung cancer
after lung adenocarcinoma and it originates in the bronchi.
Its tumor cells are characterized by a squamous appearance,
similar to the one observed in epidermal cells. Squamous-
cell carcinoma of the lung is strongly associated with tobacco
smoking, more than any other form of [244].

- : is a heterogeneous group of undifferentiated
malignant neoplasms that lack the cytologic and architec-
tural features of small cell carcinoma and glandular or squa-
mous differentiation [245].

The identification of genetic biomarkers associated with lung cancer
allows the early prognostic and the right treatment. This is critical
nowadays, as this could be the difference between the recovery of the
patient or his decease. For that, it is crucial to know what genes could
be promoting disorders in one or more biological process that finally
cause, in this case, any of the different sub-types of lung cancer.

For several decades, Microarray technology has allowed studying the
alteration at gene expression level with the purpose of finding genes
involved in pathologies of genetic source. This technology is highly
widespread and known and is based on the capability of the com-
plementary molecules to hybridise among themselves to determine
the gene expression values of each studied gene in the analysed sam-
ples [85]. Through this process, the over-expressed or inhibited genes
can be identified in tumor samples when comparing to normal samples.

Previous studies performed by Sanchez-Palencia A. et al. have used
this technique in the identification of biomarkers for the sub-types

and , for a reduced number of patients [246]. Others like Yanaihara
N. et al. have studied the molecular profiles of lung cancer by using
microRNA data [247].

This work is aimed to identify a reduced set of genes that has the ability
to discern among the five contemplated states ( , , ,
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and Control). This set was later used to design and compare a number
of predictive models. These models can perform the prediction of the
state of samples not seen before in the learning process, with a great
reliability.

A.2 DATA GATHERING

All lung cancer samples have been obtained from the

public repository [248]. Specifically, 13 series has been used which are
publicly available in this repository. These series have samples from
the different lung cancer sub-types described above as well as healthy
ones. A total of 851 samples from the different series constitute the
final dataset. In Table , information from each of the used series
is presented. The ID Microarray platform is presented in
order to identify the series used in this work. The index of the exclude
outliers and the number of samples from the different lung cancer
types for each series are shown. The total of samples within each class
in the final dataset is also indicated.

The total amount of lung cancer samples have been obtained from the
public repository . Concretely, 13 series stored and publicly available
in this repository have been used. These series have samples from
the different sub-types of lung cancer addressed in the study, as well
as healthy samples. A total of 851 samples from the different series
conform the final dataset. Table shows certain information about
each of the 13 series. For each series, the information about the

ID Microarray platform, the excluded outliers and the number
of samples from the different lung cancer types is shown. Finally, the
table includes the total sum of samples that conform each lung cancer
and control states.

A.3 METHODOLOGY

The methodology followed to carry out the study can be sub-divided
and presented in two subsections. The first one is focused on the

extraction that will help discern later among the addressed
pathological states (lung cancer sub-types and control). The second
one comprehends the application and explanation of the Computer
Intelligence-based predictive models proposed for this research. Fig-
ure shows the whole pipeline. All the study has been carried out
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Table A.1: Table with the information about the 13 series used in this
study. For each series, the information about the GEO ID, the platform
used, the removed outliers and the number of samples from different

subtypes that each series has, is shown.

linclex Omilies | SCLC | ILCOLC | SCEC | ACC
GSEy670 Iﬁg}_/{?le;;l; 61,46,34 - 2 o 29 2 33
GSEg99316 ﬁfé}j[r?f;lg 36 23 - - - - 23
cotio | jomen uendmn | | w | p| -
GSE73160 AGl:ll;{Tf;;;( 1,10,21,32,42,63 62 - - - - 62
GSE3268 ﬁg}_’{]ng?; _ - - 10 - - 10
GSE40275 H}iﬁ:ryl g);’(:;;g(;fT 10,18 15 3 5 14 41 78
GSE18842 HG%gfgiglizs_z 60,63,74,84,85 - - - - 42 42
Nl R G R
GSE41271 Mumina 8138,58,1’(??,’21328,’21235,’ = 3 74 180 = 257
HumanWG-6 v3.0 -

GSE12771_1 Iclilligg;; 5,8,13 - - - - 24 24
Gt | e [ mmmaA e
GSE39345 g?ﬁgﬁi 21,23,24/25,39 ] ; ] ] N 2
GSE21933 Phalé;i 61_21;1;1811 2,4,22,30 = = 9 10 19 38

Total 100 29 231 303 188 851

by using KnowSeq R/Bioc package. A new tool to address complex
RNA-seq analyses that its also prepared to tackle Microarray data [5].

A.3.1 Pre-processing and DEGs Extraction

The aim of this study is to gather/put together the information from a
large number of Microarray samples with the purpose of having sta-
tistical significance in the lung cancer detection and assessment.
To this end, different Microarray series are needed, becoming the pre-
processing step very sensitive and crucial. For that, each series must
be treated with the utmost care in order to ensure the right harmony
among them. Taking this into account, a series integration without
losing biological information can be achieved.

This pre-processing step, as well as the posterior integration and
extraction, correspond to the first three steps in Figure /A.1. The pre-
processing step comprises a set of sub-steps that are explained herein.
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Figure A.1: Pipeline designed for this study, to first analyse and inte-
grate the addressed series and to finally evaluate the extracted DEGs
by using predictive models.

Firstly, it is required to verify the existence of outliers in the series
in order to remove those samples that could distort the final results.
Then, it is very important to apply the same logarithmic transformation
to reach the right cohesion of the data. Furthermore, a correction of
the bit depth of the data is performed in order to equalise the series.
The last consideration for an appropriate pre-processing is the batch
effect study and correction. The batch effect is a deviation effect in
the gene expression values due to several external technical factors
(origin, sequencing hour, lab technician, among others) and it is very
hard to treat [159]. For the batch effect treatment in this study, the SVA
algorithm was applied in order to remove batch effect when the batches
are unknown [226]. Once the pre-processing step is finished, all the
series are merged into one integrated series.

Once the integrated series is obtained, analysis step can be car-
ried out. It will determine which genes are differentially expressed
in lung cancer samples in contrast with control samples. For
extraction, KnowSeq makes use of limma package to statistically com-
pare the expression of the selected samples to detect among the
compared classes. This process is performed by leaving the 20% of
the data out in order to have a test dataset to verify the suitability of
the with data no seen before. extraction for this multi-
class problem was carried out by performing different bi-class
extraction considering the following 5 comparisons:
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o vs. Rest
o vs. Rest
o vs. Rest
o vs. Rest

e Control vs. Rest

For each of the comparisons, extraction is carried out fixing
the restriction values in limma package. The first restrictive parameter
that allows to know if a gen is or not expressed, is the P-value (the
value of statistic significance according to the statistical test t-Student).
Moreover, the is used as restrictive parameter (existing differences
among the mean expression of the analysed conditions) in conjunction
with the P-value to decide the candidates. Applying a P-value
lower or equal than o0.05 and a greater or equal than ,log2(1.1), an
amount of between 50 and 60 for each of one the comparisons
proposed before were extracted.

Finally, with the aim of identifying the common among the five
comparisons, an intersection was carried out and 37 common

were detected. Those are selected no matter the combination
chosen, so in theory they have the capability to discern among all the
addressed lung cancer sub-types. However, the 37 final will be
assessed afterwards to corroborate their discerning potential.

A.3.2 Predictive Models development & Assessment

The genes identified as relevant in the previous comparisons, determine
the features in the dataset used in the development of the predictive
models. Due to the randomly generated global splitting implemented
in the preprocessing step, there is a training dataset, formed by the 80%
of the total amount of samples and a test dataset with the 20% of the
remaining samples.

A.3.2.1  Feature selection

Feature selection techniques are widely applied in the machine learn-
ing scope to reduce the curse of dimensionality, specially in those
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presenting a large number of features in comparison with the number
of samples [2419]. Concretely, after applying the two previous steps,
feature selection can be used to identify a more reduced gene signature.
Also, a removal of redundant information and a preservation of the
one that allows discerning among the classes is achieved in this new
reduced gene signature. In the feature selection process carried out,
two stages can be clearly distinguished:

* Feature selection: In general these algorithms measure the rela-
tionship among all the features, generating a ranking of these in
function of their relevance with the objective class. In this study,
four methods to select features are implemented to achieve four
rankings. The first method simply sorts the final by their

, placing the with the greater in the first positions
(LEC-FS). Then, two widely known feature selection algorithms
in the literature were used. These algorithms are , and

as 'S (RF-FS) [139, ]. Furthermore, the study has a novel
biological feature selection method explained in detail in the next
subsection.

* Wrapper selection: , and R classifiers are used in an
incremental manner, in the search for the optimal set of genes [126,
—233]. This technique consists in creating as many models as
number of features in the dataset, following the ranking given
by the feature selection algorithm, in order to identify the subset
bringing the best performance.

The identification of the optimal number of genes is thus supported
by the performance of the classifiers in the training dataset, trying
always to achieve a reduced number of genes without losing relevant
information. If the feature selection is carried out right, the would
be optimal for the approached problem and, they are expected to be
related to a greater or lesser extent with the pathology.

A.3.2.2 Disease Association Feature Selection

For this study, a novel feature selection method was designed. This
method makes use of targetValidation webplatform to acquire an as-
sociation score for each with the required disease, lung cancer
in our case [240]. This score takes values between 1 and o, meaning
1 a total association and o no association. Therefore, the are
sorted by this score, achieving a ranking in which the first places are
occupied by those with more biological relation to lung cancer.
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This novel feature selection method is named as Disease Association
feature selection (DA-FS), and it is already included inside KnowSeq
R/Bioc package.

Benefits can be obtained from using this biological based feature selec-
tion algorithm upon those based on heuristics. For clinicians, it would
be easier to understand a ranking based on the evidence in literature
of the relation between those genes and the studied cancer than those
based on information theory.

A.3.2.3 Predictive Models Validation

To perform the assessment of the , 12 alternative approaches were
compared. Each approach was formed by the combination of one of
the three classifiers with one of the four feature selection algorithms,
performing all the possible combinations. The test dataset was used
for the predictive model testing. For each combination the accuracy,
the f1-score, the sensitivity and the specificity were measured. These
metrics were chosen based on their importance when evaluating the
performance of a model in a multiclass classification problem [250].

Moreover, through the use of the web platform targetValidation, which
provides information about the biological background of the ,
the relationship between those and the pathology addressed
can be inspected [251]. As a reminder, the whole methodology has
been completed with KnowSeq R/Bioc package, including the
biological relations with lung cancer.

A.4 RESULTS & DISCUSSION

As previously stated, different combinations of 'S and predictive mod-
els algorithms were taken into account and analysed by using the
KnowSeq module. Firstly, results using a 10-fold was imple-
mented in order to analyse the behaviour of the for the training
dataset and the different combinations. Although all the executions
revealed outstanding results, the combination of with

was the best one. In this context, Figure shows the results obtained
by 10-folds and on the training dataset. For every
fold, each I'S algorithm was used in order to determine the best number
of for classification. With only 5 genes selected by , the
classifier reached almost 90% of accuracy in several folds.
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Given this behaviour in the training dataset, 5 genes were selected
as candidate size for create the models and testing all of them in the
search of a possible multiclass gene signature.
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Figure A.2: 10 folds CV k-NN results by using mRMR and the final
37 DEGs candidates. The results show the potential of those DEGs as
DEGs with a strong discerning capability for the addressed lung cancer

types.

Once the validation was carried out, the test dataset was assessed in
order to corroborate if the models maintain the same trend than in
, facing an unused data in the process. For that purpose, Figure
exposes a classification plot that contains the results of in con-
junction with each of the feature selection methods in the study. In the
plot, clearly achieves better results with 5 or less genes than the
rest of the 'S methods. Thus confirm the validity of the pro-
cess previously performed. Furthermore, the attains significant
better results than LFC-FS and RF-FS with 5 genes. This is, therefore,
very interesting because reorder the in function of their
direct correlation with the disease. Consequently, the top 5 for
are the most related in the list with lung cancer. This
novel feature selection methods achieves lower precision than
but, uses biological information instead heuristic approaches,
which can bring to the clinicians and experts a very powerful and
comprehensible feature selection method. LFC-FS and RF-FS obtain
worse results with 5
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Figure A.3: k-NN test results achieved by using all the DEGs and the
four different feature selection algorithms. The figure shows the mRMR
gains with a lower number of genes in comparison with the other three
algorithms.

With the purpose of comparing results with both SVM and RF
results, Table collects the numerical outcome for all the combina-
tions addressed in the study selecting always the top 5 . This
table not only shows the accuracy but also the sensitivity, the specificity
and the fi-score. In view of these results, a two behaviours can be
clearly distinguished. Firstly, the best results for all the measures are
always reached in those combination with whichever been the
classifier implemented. As with the accuracy achieved by and

, this feature selector slightly gets worse results than in
all the combinations and measures. Although slightly losses
information in classification in comparison with , on the con-
trary gains biological relevance with regards to the top selected
Secondly, while the combination of and is the best one,
in general achieves worse results than those obtained with RFE
However, it still outperform SVM results in general. To sum up, the
best combination ( with ) achieves an accuracy equal to
86.5%, a sensitivity equal to 79.3%, a specificity equal to 96.1% and a
f1-score equal to 80.3%.

At this point, the test dataset was assessed and the classification metrics
calculated. Metrics show a great discerning capability of the selected
by and DA feature selector. However, it is interesting
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Table A.2: Multi-class test classification results for each combination of
the feature selection algorithms with the classifiers, by using the top
5 DEGs. The table shows the accuracy, the mean sensitivity, the mean
specificity and f1-score.

Acaurgy Sensitiviyy Spadiiciy IEESCore

NN | SV | RE | NN | SYM RE | NN | SUMT | RE | NN | ST | IRE
GRS | 73.6% | 70.1% | 74.2% | 64.3% | 60.8% | 66.9% | 92.5% | 91.6% | 92.7% | 62.0% | 58.2% | 67.5%
DALES | 79.2% | 77.7% | 76.6% | 66.7% | 67.0% | 71.8% | 94.0% | 93.5% | 93.3% | 66.7% | 65.9% | 65.5%
ARVIR | 86.5% | 84.7% | 84.2% | 79.3% | 72.3% | 77.1% | 96.1% | 95.5% | 95.5% | 80.3% | 70.8% | 78.1%
IRESES | 68.4% | 71.3% | 72.5% | 59.5% | 60.5% | 62.6% | 90.8% | 91.7% | 92.1% | 58.2% | 59.2% | 61.6%

Control - 6 ° 1 0 0
scLc 0 20 o 0 0
3
3 Acc 2 2 52 0 5
£
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Control scLe acc LeLe scc
Actual
DETAILS
Accuracy F1 Sensitivity Specificity
86.55 80.361 79.346 96.198

Figure A.4: 5-class Confusion matrix that shows the test results attained
by k-NN with the top 5 DEGs of mRMR. Moreover, the accuracy,
sensitivity, specificity and fi-score are listed. LCLC, ACC and SCC are
confounded among them.

to observe between which classes were more difficult to discern and
those that were easily identifiable. Figure shows the confusion
matrix for the five classes for the samples in the test dataset. In the
Figure, , and are not easily discernible. The origin of
this lack of discernment could the fact that the three classes belong
to the super-class and, the differences at gene level among
these classes seem not to be enough to attain a complete separation and
recognition of them. The rest of the classes are well classified achieving
outstanding results for both the accuracy and the specificity (86.55%
and 96.19% respectively). The fi-score and the sensitivity are lower
than the other two metrics due to the bad classification results for the
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Figure A.5: 3-class Confusion matrix that shows the test results attained
by k-NN with the top 5 DEGs of mRMR. This matrix joins LCLC, ACC
and SCC in the super-class NSCLS. The accuracy, sensitivity, specificity
and f1-score significantly improve due to this classes fusion.

confounded classes, achieving a 80.36% the fi-score and a 79.34% the
sensitivity.

Relying on the results of the previous figure, the . C1.C, ACC and 5CC
classes were joined in the NSCLC super-type in order to corroborate
if classification metrics are increased. Figure /.5 shows the confusion
matrix for 3 classes classification (Control, NSCL.C and 5CL.C) by using
lk-INN with the top 5 DEGs from mRME. As was mentioned above,
LCLC, ACC and 5CC were confounded among them. When these
classes were joined and the predictive model applied again, the stats
significantly raised, failing only in 4 samples. With three classes, the
accuracy is equal to 97.07%, the f1-score achieves 96.33%, the sensitivity
obtains 97.93% and the specificity attains a total of 98.47% of recognition
rate.

Finally, as a last simulation, all the sub-classes that belong to Lung
Cancer (ACC, SCC, LCLC, 5CLC) were joined under the same class (LC)
with the aim of corroborating the behaviour of those DEGs to discern
among tumour or control. Figure A.6 shows how these DECs improve
the results acquired classifying with 5 and 3 classes. An accuracy equal
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Control

Predicted

LC

Actual

DETAILS

Accuracy Sensltivity Specificity

98.246 97.297 98.507

Figure A.6: 2-class Confusion matrix that shows the test results attained
by k-NN with the top 5 DEGs of mRMR. This matrix joins SCLC,
LCLC, ACC and SCC in the super-class LS. The classifier only fails in 3
predicitions.

to 98.24% is obtained together with a sensitivity equal to 97.29% and
a specificity equal to 98.50%. It is to be highlighted that only three
samples were confounded.

At sight of these results, there is clear it exists relationship of those
genes with lung cancer to the point of discerning at 5, 3 and 2 levels
the different addressed states with a great precision.

Moreover, with the aim of seeing what classes each DECGs can discern,
Figure A.7 contains 5 genes boxplots, which 5 boxplot (One per class)
inside each of them. These boxplot shows how each gene has the
capability to discern among different but not all the lung cancer sub-
types. It is seems to be clear that thanks to the 5 DECs, the samples are
correctly classified because each gene contributes to discern concrete
sub-types or classes.

Once the predictive models and DECs assessment process has been
completed, it is of utmost importance to corroborate if those DECs
are truly related with lung cancer. For that, Table /.3 shows the brief
biological information for the top 5 DEGs from mRME and DA fea-
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Figure A.7: 5 first selected differentially expressed genes by mRMR
algorithm (order from left to right and from top to bottom: NONO,
DSG3, SH2D3C, CHEK1, PAFAH1B2), with the expression levels for
each sub-type of lung cancer and for control.

ture selector. Although, according to the results previously presented,

attains the best results, achieves great performance, in-
cluding in its operation biological information with the related disease.
Henceforth, an overview about the importance of those in lung
cancer from both selection methods is of great interest. As would be
expected, the association score in the table is higher in the top 5
selected by than in those selected by . However, both
have the CHEK1 gene in common. According to the literature, the top
5 selected by are strongly related with lung cancer and its
development. Concretely, they are associated with and
Conversely, selected by do not have a clear or dlrect
relation with lung cancer, excepting CHEK1 gene. In the light of the
results of this section, the ranking proposed by achieves results
very close to , being the in the first positions are robustly
related with the disease (Lung cancer in our case).
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Table A.3: mRMR and DA-FS top 5 DEGs related with lung cancer. For
each DEGs, its name, brief description and targetValidation Association

Score are showed.

ESYViethod! ‘ Gene ‘ Description ‘ A'SSoRScorel
No exist evidences that probe the relationship of
this gene with lung cancer. However, the protein

codified by this gene interacts with a robust biomarker

of NSCLC [252].

Exists studies that correlate SCC with a differential
DSG3 expression of this gene in both miRNA and 0.3705
RNA [253, 254].

There are evidences that this gene is a gene
SH2D3C regulator of the transcription factor ELFs5, 0.0450
that is related with lung cancer [255].
High expression of CHEK1 in lung tumors was

NONO 0.3213

SRS associated with poor overall survival [256]. RS
There are no evidences that related this gene with
PAFAH1B2 lung cancer. However, recent profiling studies have e

revealed that these enzyme may be dysregulated
broadly across many types of cancers [257].
CA12 is an important clinical prognostic Serum
CA12 Tumor Biomarker. Studies correlate that gene with 1
NSCLC and its sensitivity to chemotherapy [258, 259].
This gene is related with lung cancer. In a study about
PPIA seven endogenous control genes in NCSLC, this 0.9311
gene was the gene with higher expression in tumours [260].
High expression of CHEK1 in lung tumors was
associated with poor overall survival [256].
This gene might promote the apoptosis of NSCLC cells,
and serve as a target for NSCLC’s treatment [261].

The gene is closely related to lung cancer. FLI1 promoted
FLIx tumorigenesis of small cell lung cancer cells. The gene may 0.6762
serve as target for therapeutic intervention of SCLC [262].

CHEK1 0.8983

HTRA2 0.7337
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A.5 CONCLUSIONS OF THE STUDY

Along this Appendix, a new study in which four different feature
selection methods and three classifiers, for extraction and assess-
ment respectively, have been addressed and compared. All the possible
combinations between the feature selection methods (LFC-FS, ,
RF-FS and ) with the classification algorithms ( , SVM and
RF) were assessed. Also, an integration of heterogeneous microarray
datasets belonging to 5 different lung sub-type tissues was performed,
leading to the identification of 37 multiclass

Then, when using a 10-fold cross validation, with in
validation achieved the best results, using only 5 genes and nearly
a 90% of accuracy. The with test results support the
selection of these 5 by reaching similar ones to those obtained in
training assessment but on unseen data. Our novel Disease Association
feature selection method ( ) reaches very similar results than

but with the novelty of using with a strong biological
relation with lung cancer, in this case. ranking can provide
clinicians and experts with a way of selecting based on their
biological relevance instead of an heuristic. The top 5 selected
by keep strong relation with lung cancer and its development
based on the results presented in literature.

To sum up, this study addresses a multiclass lung cancer problem
from different machine learning methodologies. Furthermore, a novel
biological-based feature selection method is proposed. Finally, it is
important to highlight than all the study has been performed by using
KnowSeq R/Bioc package and, is already included in the tool.
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KnowSeq user guide is presented in this Appendix together

with example code to carry out a complete experiment with two

public series from . This documentation is also available at
Bioconductor.
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B.1 INSTALLATION

To install and load KnowSeq package in R, it is necessary the previous
installation of BiocManager from Bioconductor. The next code shows
how KnowSeq installation can be performed:

if (!'requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("KnowSeq")
library(KnowSeq)

Furthermore, KnowSeq is also available through Docker, removing
the necessity of dependencies installation just by running the next
command in a terminal:

Docker run -it casedugr/knowseq

B.2 INTRODUCTION

KnowSeq proposes a whole pipeline that comprises the most relevant
steps in the RN A-Seq gene expression analyses, with the main goal of
extracting biological knowledge from raw data ( , enrichment,
pathway visualisation and related diseases). In this sense, KnowSeq
allows aligning raw data from the original fastq or sra files, by us-
ing the most renowned aligners such as tophatz, hisat2, salmon and
kallisto. Nowadays, there is no package that only from the information
of the samples to align -included in a text file-, performs automati-
cally the download and alignment of all of the samples. Furthermore,
the package includes functions to: calculate the gene expression val-
ues; remove batch effect; extraction; plot different graphs; and
perform the biological enrichment with the information,
pathways visualisation and related diseases information retrieval. More-
over, KnowSeq is the only package that allows applying both a and
biological enrichment processes just after the extraction. To
achieve these objectives, there are functions that allows performing a
process as well as a process using well-known supervised classifiers
algorithms as , or . Similarly, there are functions allowing
the retrieval of biological knowledge of the candidates. This idea
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emerged with the aim of proposing a complete tool to the research
community containing all the necessary steps to carry out complete
studies in a simple and fast way. To achieve this goal, the package uses
the most relevant and widespread tools in the scientific community for
the aforementioned tasks. The current version of the aligner functions
works under Unix, but further version will be extended to MAC_OS
and to Windows (if the tools were available).

The whole pipeline included in KnowSeq has been designed carefully
with the purpose of achieving a great quality and robustness for each

of the steps that conform the pipeline. Thus, the pipeline has four
fundamental processes:

¢ Automatic data gathering
¢ RNA-Seq RAW data processing
e Biomarkers identification & assessment

J enrichment methodology

B.3 AUTOMATIC DATA GATHERING

The first step in the pipeline is the automatic data gathering process.

KnowSeq allows automatically downloading series and datasets from
three databases ( , ArrayExpress and Portal). To carry
out the automatic downloads, the function downloadPublicSeries has
to be executed with the Series ID for or Arrayexpress or
with a samples manifest for Portal. It is important to know the
format of the downloaded tile, which will be used in next step
for the RAW alignment. Each of the repositories has its own format in
the file that contains the information to download and process the
desired samples. The format for each repository is explained herein.

B.3.0.1 NCBI/GEO CSV format

Series belonging to RNA-Seq have a SRA identifier. By calling the
function downloadPublicSeries with the GSE ID of the
wanted series to automatically, the with the required information
about the serie will be downloaded.
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This tile contains a number of columns with information about
the samples. However, in order to running the alignment step only the
three columns shown at Table are necessaries (although the rest of
the columns can be kept).

Table B.1: NCBI/GEO CSV Format

IRunt IEibrasylfayout
SRR2753177 | sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/0026... SINGLE
SRR2753178 | sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/0026... SINGLE
SRR2753179 | sra-download.ncbi.nlm.nih.gov/traces/sra21/SRR/0026... SINGLE

B.3.0.2 ArrayExpress CSV format

The process for ArrayExpress is very similar to . The only
change is that the IDs for the series from ArrayExpress are different
than the IDs from . As with the , the

of ArrayExpress requires only three columns as is shown at Table

Table B.2: ArrayExpress CSV Format

ComnmnenilENA IRUN] Commen{lBAST U] Commmnen{ILIIBRAIRY LAY
ERR1654640 ftp.sra.ebi.ac.uk/vol1/fastq/ ... PAIRED
ERR1654640 ftp.sra.ebi.ac.uk/vol1/fastq/ ... PAIRED

B.3.0.3 GDC Portal CSV format

portal has the tiles access restricted or controlled for the

user who has access to them. However, the count files are open and can
be used directly in this package as input of the function countsToMatrix.
If there exist the possibility to download the controlled files, the
tile that this package uses to convert them into count files is the

file generated when the button Sample Sheet is clicked in the cart.

As in the other two repositories, there are a lot of columns inside the
tiles but this package only needs two of them. Furthermore, if the
download is carried out by the gdc-client or the web browser,
the has to be moved to the path ReferenceFiles/Samples/RNAse-
q/BAMFiles/Sample.ID/File. Name/ where Sample.ID and File.Name
are the columns with the samples information in the tile. How-
ever, portal has public access to count files that can be used in a
posterior step of the KnowSeq pipeline to merge and analyse them.
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B.3.0.4 Downloading automatically GDC Portal controlled files (GDC per-
mission required)

It exists the possibility to download automatically the raw data from

portal. In order to carry this out, the function needs the parame-
ters downloadSamples and fromGDC set to *TRUE*, the path to the
token in order to obtain the authentication to download the controlled
data and the path to the manifest that contains the information to
download the samples. This step needs the permission of portal
to the controlled data.

# GDC portal controlled data processing with automatic raw
data download

rawAlignment (x, downloadRef=TRUE, downloadSamples=TRUE,
fromGDC = TRUE, tokenPath = "~/pathToToken", manifestPath
= "~/pathToManifest")

B.4 RNA-SEQ PROCESSING

The RNA-Seq RAW data treatment step has the purpose of extracting
a set of count files from raw files stored in the repositories supported
by our package ( , ArrayExpress and Portal). The
second one comprises the identification and extraction, and
the assessment of those by applying advanced techniques
(FS process and supervised classification). The last process, once the

were assessed, is the enrichment methodology which
allows retrieving biological information from the . In this process,
relevant information (such as related diseases, biological processes
associated and pathways) about the is retrieved by using very
well-known tools and databases. The three types of enrichment are
study, pathways visualisation taking into account the gene expression,
and related diseases.

With the pipeline designed and addressed by KnowSeq, researchers
can convert RAW RNA-Seq data into real knowledge, helping to the
identification of possible gene signatures related to the studied diseases.
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B.4.1 Aligners Preparation

In order to avoid version incompatibilities with the aligners and the
required external tools, pre-compiled versions of them will be used to
run the R functions. Consequently, all the tools were compressed and
stored in an external server to be downloaded whenever it is required
by the users (http://iwbbio.ugr.es/utils/unixUtils.tar.gz). If the
tools are directly downloaded from the link, the compressed files
must be decompressed in the current project folder in R or RStudio.
The name of the resultant folder must be utils. Nevertheless, this
file will be automatically downloaded just by calling the function
rawAlignment, in case the utils folder will not be detected in the
project folder. This is all needed to run the different aligners through
the function rawAlignment. It is not possible to run the alignment
without the utils folder. It is also important to note that the different
files included in the compressed .tar.gz are not only the aligners but
also functions needed in the raw alignment process. The tools included
are the following;:

¢ Bowtie2

e Hisat2

¢ Htseq-count
e Kallisto

e Salmon

e Samtools

¢ Sratoolkit

¢ Tophat2

o GDC-client

B.4.2 Launching Raw Alignment step

The rawAlignment function allows running different aligners, chosen
by the user. The function takes as single input a from GEO or
ArrayExpress. There is the possibility to process data from portal,
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but a previous authorization (token file) from this platform is required.
Then, the user has to select with the seq parameter which aligner
he wants to run (tophatz by default). Furthermore, there is a set of
logical parameters to edit the default alignment pipeline. With these
parameters, users can select if the BAM/SAM/Count files are created
or not.Users can also choose if they want to download the reference
genome, the , and which version. Even if the users have custom
FASTA and files, they can specify them by setting the parameter
referenceGenome to custom and using the parameters customFA and
customGTF to indicate the paths to the custom files. Other functionality

is the possibility to process tiles from the Portal database
by setting to TRUE the parameter fromGDC. Then, the function will
download the specific genome reference from , processing the

files to Count files. Furthermore, if users have access to the
controlled data, with the token and the manifest acquired from
Portal web platform, samples can be automatically downloaded. An
example to run the function with hisat2 aligner is showed herein:

# Downloading one series from NCBI/GEO and one series from
ArrayExpress
downloadPublicSeries(c("GSE74251"))

# Using read.\gls{acr:csv} for NCBI/GEO files (read.\gls{acr
:csv}2 for ArrayExpress files)

GSE74251\gls{acr:csv} <- read.\gls{acr:csv}("ReferenceFiles/
GSE74251.\gls{acr:csv}")

# Performing the alignment of the samples by using hisat2
aligner

rawAlignment (GSE74251\gls{acr:csv},seq="hisat2",downloadRef=
TRUE,downloadSamples=TRUE,BAMfiles = TRUE, SAMfiles =
TRUE, countFiles = TRUE, referenceGenome = 38, fromGDC =
FALSE, customFA = "", customGTF = "", tokenPath = "",
manifest = "",tx2Counts = "")

To run the function with salmon or kallisto, it is necessary to use the pa-
rameter tx2Counts. The quantification files of these aligners contain the
identification of the transcriptions, but for the count files it is necessary
to convert these transcriptions IDs to gene IDs. To perform that, the
tx2Counts parameter needs a matrix with two columns. One column
with the transcription IDs and a second column with the correspondent
gene IDs for each transcription. The package tximportData has a set
of files that contain different transcript conversion that can be used to
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achieve the tx2Counts matrix. An example to run the function with
kallisto aligner is showed below:

# Downloading one series from NCBI/GEO and one series from
ArrayExpress
downloadPublicSeries(c("GSE74251"))

# Using read.\gls{acr:csv} for NCBI/GEO files (read.\gls{acr
:csv}2 for ArrayExpress files)

GSE74251\gls{acr:csv} <- read.\gls{acr:csv}("ReferenceFiles/
GSE74251.\gls{acr:csv}")

# Loading the transcripts to genes converter variable

dir <- system.file("extdata", package="tximportData")

tx2gene <- read.\gls{acr:csv}(file.path(dir, "tx2gene.
ensembl.v87.\gls{acr:csv}"))

# Performing the alignment of the samples by using kallisto
aligner

rawAlignment (GSE74251\gls{acr:csv},seq="kallisto",
downloadRef=TRUE, downloadSamples=TRUE,BAMfiles = TRUE,
SAMfiles = TRUE, countFiles = TRUE, referenceGenome = 38,
fromGDC = FALSE, customFA = "", customGTF = "", tokenPath
= "", manifest = "",tx2Counts = tx2gene)

RawAlignment function creates a folder structure in the current project
folder which will store all the downloaded and created files. The main
folder of this structure is the folder ReferenceFiles but inside of it there
are more folders that allows storing the different files used by the
process in an organised way.

B.4.3 Preparing count files

From now on, the data that will be used for the documentation are
real count files, but with a limited number of genes (around 1000).
Furthermore, to reduce the computational cost of this example, only
5 samples from each of the two selected series will be taken into
account. With the next code, two RNA-Seq series from

are automatically downloaded and the existing count files prepared to
be merged in one matrix with the purpose of preparing the data for
further steps:
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From now on, the data that will be used for the documentation are
real count files, but with a limited number of genes (around 1000).
Furthermore, to reduce the computational cost of this example, only
5 samples from each of the two selected series will be taken into

account. With the next code, two RNA-Seq series from

are downloaded automatically and the existing count files prepared to
be merged in one matrix with the purpose of preparing the data for

turther steps:

# Downloading one series from NCBI/GEO and one series from
ArrayExpress
downloadPublicSeries(c("GSE74251", "GSE81593"))

# Using read.csv for NCBI/GEO files and read.csv2 for
ArrayExpress files

GSE74251 <- read.csv("ReferenceFiles/GSE74251.csv")

GSE81593 <- read.csv("ReferenceFiles/GSE81593.csv")

GSE74251 <- GSE74251[1:5,]
GSE81593 <- GSE81593[8:12, ]

dir <- system.file("extdata", package="KnowSeq")

# Creating the CSV file with the information about the
counts files location and the labels

Run <- GSE74251%Run

Path <- paste(dir,"/countFiles/",GSE74251%Run,sep

Class <- rep("Tumor", length(GSE74251%$Run))

")

GSE74251CountsInfo <- data.frame(Run = Run, Path = Path,
Class = Class)

Run <- GSE81593%Run

Path <- paste(dir,"/countFiles/",GSE81593$Run,sep = "")

Class <- rep("Control", length(GSE81593%Run))

GSE81593CountsInfo <- data.frame(Run = Run, Path = Path,
Class = Class)

mergedCountsInfo <- rbind(GSE74251CountsInfo,
GSE81593CountsInfo)

write.csv(mergedCountsInfo, file = "ReferenceFiles/

mergedCountsInfo.csv")
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However, the user can run a complete example by coding the following
code:

dir <- system.file("script", package="KnowSeq")

# Code to execute the example script
source(paste(dir, "/KnowSeqExample.R",sep=""))

# Code to edit the example script
file.edit(paste(dir,"/KnowSeqExample.R",sep=""))

B.4.3.1 Processing count files

After the raw alignment step, a list of count files of the samples is
available at ReferenceFiles/Samples/RNAseq/CountFiles. The next
step in the pipeline implemented in this package is the processing of
those count files in order to obtain a gene expression matrix by merging
all of them.

B.4.3.2 Merging all count files

After the alignment, there has to be as many count files as samples in
the used for the alignment. In order to prepare the data for the
analysis, it is important to merge all these files in one matrix
that contains the genes Ensembl ID (or other IDs) in the rows and the
name of the samples in the columns. To carry this out, the function
countsToMatrix is available. This function reads all count files and
joints them in one matrix by using edgeR package. To call the function
it is only necessary a with the information about the count files
paths. The required has to have the format shown at Table

Table B.3: Counts information CSV Format
IRumn| IRathl
SRR2753159 | /ReferenceFile/Count/SRR2753159/ | TUMOUR
SRR2753162 | /ReferenceFile/Count/SRR2753162/ | TUMOUR
SRR2827426 | /ReferenceFile/Count/SRR2827426/ | HEALTHY
SRR2827427 | /ReferenceFile/Count/SRR2827427/ | HEALTHY
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The column Run is the name of the sample without .count, the column
Path is the Path to the count file and the Class column is the labels of
the samples. Furthermore, an example of this function is shown below:

# Merging in one matrix all the count files indicated inside
the CSV file
countsInformation <- countsToMatrix("ReferenceFiles/
mergedCountsInfo.\gls{acr:csv}")

# Exporting to independent variables the counts matrix and
the labels

countsMatrix <- countsInformation$countsMatrix

labels <- countsInformation$labels

The function returns a list that contains the matrix with the merged
counts and the labels of the samples. It is very important to store
the labels in a new variable because as it will be required in several
functions of KnowSeq.

B.4.3.3 Getting the annotation of the genes

This step is only required if the user wants to get the gene names and
the annotation is retrieved with ensembl biomaRt package. Normally,
the counts matrix has the Ensembl Ids as gene identifier, but with this
step, the Ensembl Ids are change by the gene names. However, the
user can decide to keep its own annotation or the Ensembl Ids. For
example, to achieve the gene names the function needs the current
Ensembl Ids and the number of the reference genome to use for the
annotation (37 or 38). If the user wants a different annotation than the
human annotation, the parameter notHSapiens has to be set to TRUE
and the desired specie dataset from ensembl indicated in the parameter
notHumandataset (i.e. mmusculus_gene_ensembl). An example can be
seen below:

# Downloading human annotation or MusMusculus
myAnnotation <- getAnnotationFromEnsembl(rownames (
countsMatrix), referenceGenome=37)

myAnnotationMusMusculus <- getAnnotationFromEnsembl(rownames
(countsMatrix), notHSapiens = TRUE,notHumandataset = "
mmusculus_gene_ensembl")
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B.4.3.4 Converting to gene expression matrix

Finally, once both the countsMatrix and the annotation are ready, it
is time to convert those counts into gene expression values. For that,
the function calculateGeneExpressionValues uses the cqn package to
calculates the equivalent gene expression. This function performs a
conversion of counts into gene expression values, and changes the
Ensembl Ids by the gene names if the parameter geneNames is equal
to TRUE. An example of the use of this function is showed next:

# Calculating gene expression values matrix using the counts
matrix

expressionMatrix <- calculateGeneExpressionValues (
countsMatrix,myAnnotation, genesNames = TRUE)

At this time of the pipeline, there is a function that plots the expression
data and allows verifying if the data is well normalised. This function
has the purpose of join all the important graphical representation of
the pipeline in the same function and is called dataPlot. It is very
easy to use because as only by changing the parameter method many
different representations can be achieved. In this case, in order to see the
expression boxplot of each sample, the function has to be called with
the parameter mode equal to boxplot. The labels are necessary to colour
the different samples depending on the class of the samples. These
colours can be selected by the user, by introducing in the parameter
colours a vector with the name of the desired colours. The function
also allows exporting the plots as PNG and PDF files.

# Plotting the boxplot of the expression of each samples for
all the genes

dataPlot(expressionMatrix, labels,mode = "boxplot", toPNG =
TRUE, toPDF = TRUE)




B.5 BIOMARKERS IDENTIFICATION & ASSESSMENT 183

B.5 BIOMARKERS IDENTIFICATION & ASSESSMENT

B.5.1 Quality analysis and batch effect removal

Before the extraction process, it is important to detect and re-
moves any possible outlier that can be present in the samples. The
outliers are samples numerically different with respect to the rest
of samples, introducing noise in the study. In order to achieve that,
the function RNAseqQA performs different statistical test by using
arrayQualityMetrics bioc package. This package was designed for mi-
croarrays but it has been adapted in our function to allow RNA-Seq
data as input. The output of this function is the same as the output
of the arrayQualityMetrics package, creating a new folder with an
index.html file including a report about the results of the different
statistical tests and the possible detected outliers.

1|# Performing the quality analysis of the samples
2| RNAseqQA(expressionMatrix)

The other important step in this section is the batch effect treatment. It
is widely known that this is a crucial step in the omics data processing
due to the intrinsic deviations that the data can present due to its origin,
sequencing design, i.e. Besides, when working with public data it is
very difficult to know if exists a real batch effect among the selected
datasets. This package provides a way of detecting possible clusters
implying possible batch effect groups and correcting them. If there
are batch effects in the data, it will present clusters formed because
of the batch effect influence. For that, first, the function dataPlot with
the parameter mode equal to optimalClusters has to be run with the
purpose of detecting the optimal number of clusters existing in the
samples. Furthermore, this clusters can be represented graphically by
calling the function dataPlot again but this time with the parameter
method equal to knnClustering. Once the optimal number of clusters
is calculated, the second and final step to remove the batch effect is
by calling the function batchEffectRemoval, that makes use of
package, with the parameter mode equal to combat and the parameter
clusters equal to the optimal number of clusters calculated before. This
step allows obtaining an expression matrix with the batch effect treated
by combat method. An example to do this is below:

1|# Calculating the optimal number of clusters presented in
the samples in order to
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# try to identificate the batch effect groups to remove it
by combat method

dataPlot(expressionMatrix, labels,mode = "optimalClusters",
toPNG = TRUE, toPDF = TRUE)

dataPlot(t(expressionMatrix), labels,mode = "knnClustering",
clusters = 9,toPNG = TRUE, toPDF = TRUE)

expressionMatrixCorrected <- batchEffectRemoval(
expressionMatrix, labels, clusters = 9, method = "combat"

)

There is another method in the function that removes the batch effect
and it is by using surrogate variable analysis or . To use this
method, it is not necessary to calculates the optimal number of clusters,
the only requirement to use it is to set the parameter method equal
to . This method does not return a matrix with the batch effect
corrected, instead of this, the function returns a model that has to be
used as single input parameter of the function limmaDEGsExtraction.

# Calculating the surrogate variable analysis to remove
batch effect

svaMod <- batchEffectRemoval (expressionMatrix, labels,
method = "sva")

B.5.2 Differential Expressed Genes extraction and visualisation

There is a long way between the raw data and the extraction, for
that in this step the samples have to have had a strong pre-processing
step applied. At this point of the pipeline the existing among

two or more classes will be extracted using the most extended library
for that called limma. The function limmaDEGsExtraction receives an
expression matrix, the labels of the samples and the restriction imposed
for considering a gene as differential expressed gene. The function
returns a list containing the table with statistical values of each

and the expression matrix of the instead all of the genes. The
well-known limma package is used internally to perform the
extraction. The call to the function is listed below:
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# Extracting DEGs that pass the imposed restrictions

DEGsInformation <- limmaDEGsExtraction(
expressionMatrixCorrected, labels,

1fc = 1.0, pvalue = 0.01, number = 100)

topTable <- DEGsInformation$Table

DEGsMatrix <- DEGsInformation$DEGsMatrix

Furthermore, if in the batch effect step the method used was ,
this function has two parameters to indicate that the model of limma
would take into account the model calculated previously for the
expression matrix. To achieve this, svaCorrection parameter has to be
setted to TRUE and the model has to be passed in the parameter
svaMod. An example of this is the following;:

# Extracting DEGs that pass the imposed restrictions but
using sva model calculated before to remove batch effect

DEGsInformation <- limmaDEGsExtraction(expressionMatrix,
labels, lfc = 2.0,

pvalue = 0.01, number = Inf, svaCorrection = TRUE, svaMod =
svaMod)

topTable <- DEGsInformation$Table

DEGsMatrix <- DEGsInformation$DEGsMatrix

The function also detects automatically if the labels have more than
two classes and calculates the limma multiclass extraction in this
case. In order to do that correctly, there is a parameter called that
represents the number of different pathologies that a certain gen is able
to discern. By default, the parameter is set to 1, so all genes that has the
capability to discern among the comparison of two classes would be
selected as . To understand better this parameter, our multiclass
study applied to different leukemia sub-types introduces it, and it is
publicly available.

are genes that have a truly different expression among the studied
classes, for that it is important to try to see graphically if those
comply with this requirement. In order to provide a tool to perform
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this task, the function dataPlot encapsulate a set of graphs that allows
plotting in different ways the expression of the

dataPlot function also allows representing an ordered boxplot that
internally orders the samples by class and plots a boxplot for each
samples and for the first top 12 in this example. With this plot,
the difference at gene expression level between the classes can be seen
graphically. The code to reproduce this plot is the following:

# Plotting the expression of the first 12 DEGs for each of
the samples in an ordered way

dataPlot (DEGsMatrix[1:12,],labels,mode = "orderedBoxplot",
toPNG = FALSE, toPDF = FALSE)

In the previous boxplot the expression of a set of for each sample
its showed, however it is interesting to see the differentiation at gene
expression level for each of the top 12 genes used before separately. It
is recommendable to use this function with a low number of genes,
because with a larger number the plot it is difficult to distinguish
the information provided and R would not have enough memory
to calculate the plot. For that, the function dataPlot with the mode
genesBoxplot allows to do that by executing the next code:

# Plotting the expression of the first 12 DEGs separatelly
for all the samples

dataPlot (DEGsMatrix[1:12,],labels,mode = "genesBoxplot",
toPNG = FALSE,toPDF = FALSE)

Finally, it is possible to plot one of the most widespread visualization
methods in the literature, the heatmap. By setting the parameter method
to heatmap, the function calculates the heatmap for the given samples
and classes. The code to do this is the same than for the previous
boxplot but changing the method parameter:

# Plotting the heatmap of the first 12 DEGs separatelly for
all the samples

dataPlot (DEGsMatrix[1:12,], labels,mode = "heatmap",toPNG =
FALSE, toPDF = FALSE)
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B.5.3 Performing the machine learning processing: classifier design and
assessment and gene selection

Normally, in the literature, the last step in the pipeline for differential
gene expression analysis is the extraction step. However, in
this package a novel machine learning step is implemented with the
purpose of giving to the user an automatic tool to assess the ,
and evaluate their robustness in the discernment among the studied
pathologies. This library has three possible classification methodologies
to take into account. These options are , and RF, three of the
most popular classifiers in the literature. Furthermore, it includes two
different working procedures for each of them. The first one implements
a process, in order to assess the expected accuracy with different
models and samples the with a specific number of folds. The
second one is to assess a specific test dataset by using a classifier
trained using the training dataset separately. Moreover, the function
featureSelection allows performing a I'S process by using either

or (as feature selector instead of classifier) algorithms with the
purpose of finding the best order to assess the data. The functions
return a list with 4 objects that contain the confusion matrices, the
accuracy, the sensitivity and the specificity.

To invoke these functions, it is necessary an expression matrix with the
samples in the rows and the genes in the columns and the labels of the
samples, the genes that will be assessed and the number of fold in the
case of the cross-validation function. In the case of the test functions, it
is necessary the matrix and the labels for both the training and the test
datasets:

DEGsMatrixML <- t(DEGsMatrix)

# Feature selection process with mRMR and RF

mrmrRanking <- featureSelection(DEGsMatrixML, labels, colnames
(DEGsMatrixML), mode = "mrmr")

rfRanking <- featureSelection(DEGsMatrixML, labels, colnames (
DEGsMatrixML), mode = "rf")

# CV functions with k-NN, SVM and RF
results_cv_knn <- knn_CV(DEGsMatrixML, labels, colnames (
DEGsMatrixML)[1:10],5)

results_cv_svm <- svm_CV(DEGsMatrixML, labels, rfRanking
[1:10],5)
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12| results_cv_rf <- rf_CV(DEGsMatrixML, labels,names(mrmrRanking

)[1:10],5)

It is important to show graphically the results of the classifiers and
for that purpose, the function dataPlot implements some methods.
Concretely, to plot the accuracy, the sensitivity or the specificity reached
by the classifiers, the function dataPlot has to be run with the parameter
method equal to classResults. This method generated as many random
colours as folds or simulations in the rows of the matrix passed to the
function but, through the parameter colours a vector of desired colours
can be specified. For the legend, the function uses the rownames of
the input matrix but these names can be changed with the parameter
legend. An example of this method is showed below:

# Plotting the accuracy of all the folds evaluated in the CV

process
dataPlot(results_cv_knn$accMatrix,mode = "classResults",
main = "Accuracy for each fold with k-NN", xlab = "Genes"

, ylab = "Accuracy")

# Plotting the sensitivity of all the folds evaluated in the

CV process
dataPlot(results_cv_knn$sensMatrix,mode = "classResults",
main = "Sensitivity for each fold with k-NN", xlab = "
Genes", ylab = "Sensitivity")

# Plotting the specificity of all the folds evaluated in the
CV process
dataPlot(results_cv_knn$specMatrix,mode = "classResults",
main = "Specificity for each fold with k-NN", xlab = "
Genes", ylab = "Specificity")

Furthermore, the function dataPlot counts with another similar mode to
the previous but this time to represents confusion matrices. This mode
is called confusionMatrix and allows creating graphically a confusion
matrix with the most important statistical measures. The following
code allows doing this:

1|# Plotting the confusion matrix with the sum of the

confusion matrices of each folds evaluated in the CV
process
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allCfMats <- results_cv_knn$cfMats[[1]]$table + results_cv_
knn$cfMats[[2]]$table +

results_cv_knn$cfMats[[3]]$table + results_cv_knn$cfMats
[[4]]1$table +

results_cv_knn$cfMats[[5]]%$table

dataPlot(allCfMats, labels,mode = "confusionMatrix")

Once the validation is done, a test process can be carried out and the
results plotted by executing the code herein:

# Test functions with k-NN, SVM and RF
trainingMatrix <- DEGsMatrixML[c(1:4,6:9),]
traininglLabels <- labels[c(1:4,6:9)]
testMatrix <- DEGsMatrixML[c(5,10),]
testlLabels <- labels[c(5,10)]

results_test_knn <- knn_test(trainingMatrix, traininglLabels,
testMatrix,
testLabels, names(mrmrRanking)[1:10])

results_test_svm <- svm_test(trainingMatrix, trainingLabels,
testMatrix,
testLabels, rfRanking[1:10])

results_test rf <- rf_test(trainingMatrix, trainingLabels,
testMatrix,
testlLabels, colnames(DEGsMatrixML)[1:10])

# Plotting the accuracy achieved in the test process

dataPlot(results_test_knn$accVector,mode = "classResults",
main = "Accuracy with k-NN", xlab = "Genes", ylab ="
Accuracy")

dataPlot(results_test_svm$accVector,mode = "classResults",
main = "Accuracy with SVM", xlab = "Genes", ylab = "
Accuracy")

dataPlot(results_test_rf$accVector,mode = "classResults",
main = "Accuracy with RF", xlab = "Genes", ylab = "
Accuracy")
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B.6 DEGS ENRICHMENT METHODOLOGY

The main goal of the previous pipeline is the extraction of biological
relevant information from the . For that, this package provides a
set of tools that allows doing it. The last step of the pipeline conformed
by all the available tools in KnowSeq is the enrichment and this
enrichment has three different points of view. The information,
the pathway visualisation and the relationship between the and
diseases related to the studied pathologies.

B.6.1 Gene Ontology

provide information about the biological functions of the genes.
In order to complete this pipeline, it is important to know if the
have functions related with the studied pathologies. In this sense,
this package brings the possibility to know the from the three
different ontologies (BI’r, and CC) by using the function geneOn-
tologyEnrichment that internally used the packaged topGO. The only
requirement is to put the label of first class to 1 and the label of the
second class to o. Furthermore, with the parameter nGOs, the number
of resultant that are returned can be modified. The function re-
turns a list that contains a matrix for each ontology and a matrix with
the of the three ontologies together. Moreover, the matrices have

different statistical measures and the description of the functionality of
each GO.

# Retrieving the GO information from the three different
ontologies
labelsGo <- gsub("Control",0,labels)

labelsGo <- gsub("Tumor",1,labelsGo)

GOsMatrix <- geneOntologyEnrichment(DEGsMatrix, labelsGo,nGOs
= 20)
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B.6.2 Pathways Visualisation

Another important step in the enrichment methodology in this pipeline
is the pathway visualisation. The function uses the to show
graphically the expression of the samples in the pathways in which
those genes appear. For that, the function makes use of a DEGsMatrix
with the expression of the and the annotation of those in
which appear the pathway or pathways of each . Internally, the
function DEGsPathwayVisualization uses pathview package to retrieve
and colour the pathways, but a maximum number of 24 samples can
be used, for that, if the input matrix has more than 24 samples, only
the first 24 will be used by the operation. Furthermore, the function
needs the expression matrix with all the genes in order to use them
to colour the rest of the elements in the pathways. It is important to
retrieve the annotation from Ensembl for both the DEGsMatrix and the
expressionMatrix because the entrezgene IDs and the enzyme
of each gene are necessary.

# Downloading and filling with expression the pathways of
the DEGs

myDEGsAnnotation <- getAnnotationFromEnsembl (rownames (
DEGsMatrix)[1:3], referenceGenome=38,attributes = c("
external_gene_name", "entrezgene_id"), filters = "external
_gene_name")

allMyAnnotation <- getAnnotationFromEnsembl(rownames (
expressionMatrix), referenceGenome=38,attributes = c("
external_gene_name", "entrezgene_id"), filters = "external
_gene_name")

DEGsPathwayVisualization(DEGsMatrix[1:3,], myDEGsAnnotation,
expressionMatrix, allMyAnnotation, labels)

B.6.3 Related Diseases

Finally, the last enrichment method implemented is the related diseases
enrichment. In this step, the function DEGsToDisease searches the
diseases related to a list of genes or indicated as parameter. The
function returns a list of diseases only for genes and also for group
of genes with several statistical values to know the relation between
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the diseases and the gene or group of genes. This information can be
retrieved from two different web platforms: the first one is the Gene
Set to Diseases and the second one targetValidation. The web platform
to use can be chosen by changing the method parameter.

# Downloading the information about the DEGs related

diseases
diseasesGenes2Diseases <- DEGsToDiseases(rownames (DEGsMatrix
), method = "genes2Diseases", minCitation = 2)

diseasesTargetValidation <- DEGsToDiseases(rownames (
DEGsMatrix), method = "targetValidation", size = 5)
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