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Abstract: Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources,
with the former amounting to almost half of the national production. Even though hydroelectric
power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water
reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis.
Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate
planning strategies and a good starting point for energy policy decisions. In this paper, we developed
a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used
production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the
Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX
(1,1,1) (1,0,0)12, which considers an exogenous variable precipitation in the Napo River basin and
can accurately predict monthly production values up to a year in advance. This model can provide
valuable insights to Ecuadorian energy managers and policymakers.
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1. Introduction

Between 1973 and 2016, the world gross electricity production increased from 6298 TWh to
25,082 TWh, an average annual growth rate of 3.3% [1,2]. In 1973, fossil sources generated 75.2% of
electric power, while in 2016, they accounted for 65.3% of the production. Although the proportion of
fossil fuels has decreased during this period, the absolute figures are very high due to the rising world
population and per capita energy consumption. As a matter of fact, the amount of CO2 emissions almost
doubled, from 15,460 to 32,316 Mt. Hence, several proposals have recently emerged to incorporate
CO2 reduction criteria to coal/biomass combustion systems [3–5]. Complementarily, the role of green
sources in the energy mix has gained relevance in the last decades.

Ecuador is located in a privileged zone with a huge potential in renewable energies: Sunbeams
fall almost perpendicular, rainfalls are abundant, and the Andes mountains provide large hydroelectric,
geothermal, and wind resources [6,7]. However, several impactful events, which occurred at the end
of the last century, prevented the proper exploitation of such resources. Economic events, such as the
beginning of oil extraction in 1972, the debt crisis in 1982, and natural disasters such as El Niño (1983,
1987, and 1998) and earthquakes (1987, 1995, and 1998) have caused a discontinuous and insufficient
development and deployment of renewable energy systems in Ecuador [8].
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This situation has been partially reverted in the last decades, since large hydroelectric projects
have been introduced as a key element of the national development plan. Hydropower offers multiple
advantages against other energy sources in Ecuador, since it is cheaper and cleaner despite the initial
investment that it requires [9]. Carvajal et al. [10] showed that Ecuador’s energy policy in the period
2007–2017 incentivized a doubling of its hydropower capacity.

However, as shown in Figure 1, the share of production originated by hydroelectric systems has
declined from 1990 to 2015: In 1990, 79% of the total energy production came from hydroelectric
sources, while in 2015, it was only 49%. This was caused by a misalignment between infrastructure
development and exploitation policies, resulting in an increase of the use of fossil fuels despite their
social, economic, and environmental costs. Given the considerable potential of Ecuadorian basins and
the large hydropower capacity installed, there is a common consensus that the decreasing contribution
of hydroelectric production should be reversed [11].
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Hence, Ecuador is currently implementing the National Master Plan for Electrification 2016–2025,
which aims at covering more than 90% of the national electrical demand with hydroelectric sources [12].
The plan is already having an impact in Ecuador’s energy production capability [13]. Ecuador
ranked third in the global list of countries that added more energy capacity in 2016, following China
and Brazil [14]. By the end of that year, the installed hydroelectric capacity in Ecuador (4400 MW)
represented 58% of the total capacity (7587 MW). Generation from hydroelectric systems in 2016
amounted to 57.9% (15,814.72 GWh) of the total production (27,313.86 GWh). In 2017, the installed
capacity of the Ecuadorian electrical system increased to 8036 MW [15]. This year, Ecuador achieved
energy sovereignty for the first time, i.e., the electricity production satisfied the national electricity
demand and even 210 GWh were exported. Despite this fact, the maximum demand used only 47%
of the produced electricity, i.e., 53% of the energy that can be generated is not used [16,17]. As a
consequence, the management and planning of energy in Ecuador has room for improvement.

Energy production forecasts are of great importance to the operators of the electrical system (to
optimize the processes) and the decisionmakers (to define better policies and manage risks). Besides,
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energy prices can be established considering the estimated future load demand. Therefore, it is crucial
for an optimized energy system to accurately model the energy production and the energy demand to
offer solutions at different levels of society [18].

The objective of this research work was to develop and apply forecasting models for predicting
hydroelectric production in Ecuador from historical data. We focused on statistical time series analysis
techniques, which have been successfully applied in the literature [19,20]. Since hydropower strongly
depends on the meteorological conditions, rainfall data played a key role in our study. This data was
easier to obtain than inflow, which was not available for the study. To the best of our knowledge, there
is no similar study in the literature focused on the Ecuador case.

The contribution of this paper is twofold. First, it describes a methodology to model the
production of hydroelectric plants through time series with the ARIMA univariate and ARIMAX
bivariate approaches. Then, we present the application of this methodology to build and compare
models for predicting production in Ecuador. Through the resulting model, the correlation between
hydroelectric generation and precipitation is demonstrated and quantified. Furthermore, the paper
shows that an ARIMAX model considering an exogenous variable (precipitation in one of the larger
basins) can accurately predict monthly production values up to a year in advance. That implies that
it is not necessary to use elaborated data to obtain a reliable prediction model. At the same time,
this study improves the results obtained in a previous work which only considered ARIMA [21].
Accordingly, the methodology can be used to develop planning strategies in the energy sector in
Ecuador. The applicability of the approach to other countries should be considered by future work.

The rest of the paper is organized as follow. Section 2 explains the methodology used in this work
and Section 3 describes the data. Section 4 shows the experiments and a discussion of the results.
Finally, Section 5 includes some concluding remarks and directions for future work.

2. Methods

2.1. Box-Jenkins and Box-Tiao Methods

Time series analysis comprises a wide collection of techniques for analyzing historical temporal
data in order to extract meaningful features or characteristics of the data. A forecast model encodes
a function that estimates the value of a prediction variable in the future from historical and other
relevant data [22]. This prediction variable is usually also used in the input. In our case, the input and
the prediction variable is energy production, and the additional variable is precipitation.

The accuracy of the model is measured as the difference between the predicted and the actual
values. Learning a forecast model means fitting the model parameters to minimize this difference for a
given dataset for which the input and the target values are known. It is expected that a forecast model
will perform well with values outside the learning dataset. More details about time series analysis
methods can be found in [23].

In the literature, we can find several methods to build forecast models from data. Among them,
autoregressive models based on moving averages have proved effective in several problems [24].
In particular, there are applications of autoregressive models to predict renewable energy (wind, solar,
hydro) production and demand [25–33].

Autoregressive models assume that observations are correlated through lagged linear relations
and capture this correlation into the model. These models assume that the time series are stationary,
i.e., the statistical properties, such as the mean, variance, and autocorrelation, are constant over time.

An autoregressive model of order p AR(p) is of the form:

Yt = ϕ1Yt-1 + ϕ2Yt-2 + . . . + ϕpYt-p + εt (1)

where: Yt is the value of the prediction variable at time t (energy production, in this case), εt is a
random variable with mean 0 and variance σ2

w (white noise), and ϕ1 are the parameters of the models
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(constants). If we define the backshift operator B as BYt = Yt-1 (and recursively, Bk
Yt = Yt-k), the equation

can be rewritten as follows:

εt = (1 − ϕ1B − ϕ2B2
−

. . .
− ϕpBp) Yt = ϕp(B) Yt (2)

The Box-Jenkins method identifies, adjusts, and checks a prediction model using an autoregressive
integrated moving average (ARIMA) [34]. Box-Jenkins estimates the parameters of the model by
applying the maximum likelihood. The model is formulated as follows:

ϕp(B)(1 − B)dYt = ϕ0 + θq(B)εt (3)

where ϕp(B) is the autoregressive polynomial of order p, B is the backshift operator, Yt is the forecast
variable which represents a white noise process with normal distribution N(0, σ2), d is the dth difference
operator, ϕ0 is a numerical constant, θq(B) is the regular moving average (MA) polynomial of order q,
and εt is the error of the model. These parameters (p, d, q) characterize the ARIMA model and must be
identified a priori by analyzing the stationarity of the time series.

If the stationarity (S) is strong, ARIMA is extended to have two components: (1) One with regular
structure ARIMA (p, d, q) that models the non-independence associated with the data, and (2) one
with ARIMA structure (P, D, Q) that models the seasonality component. In this latter model, P is the
autoregressive seasonal term, D is the seasonal term of difference, and Q corresponds to the seasonal
term of moving average. A SARIMA model is formalized as follows:

ϕp(B)ΦP (Bs)(1 − Bs)D(1 − B)d Yt = ϕ0 + θq(B) ΘQ (Bs)εt (4)

where ΦP (Bs) is the autoregressive polynomial of order p with seasonality, ΘQ (Bs) is the regular
moving average (MA) polynomial of order q with seasonality, D is the dth differential operator with
seasonality, and B is the backshift operator with seasonality.

The Box-Tiao method extends Box-Jenkins by incorporating the observations of the covariates,
also called explanatory or exogenous variables X (ARIMAX). The ARIMAX model is described
mathematically as follows:

ϕp(B)(1 − B)dYt = ϕ0 + Θ(B)Xt + θq(B)εt (5)

The difference with respect to Equation (3) is the term Θ(B)Xt is the observed one, while Θ(B) is
the polynomial operator of the exogenous variable Xt.

2.2. Time Series Analysis Process

In order to obtain the ARIMA and the ARIMAX models, we followed the methodology depicted
in Figure 2. First, the time series were transformed to comply with the requirement that they must
be stationary. Once the series were stationary, the parameters of the series were estimated through
correlogram functions, which were associated with statistical tests. Afterward, different models were
estimated to select the one that best fit the training data. The selected model was validated through
residue analysis and hypothesis testing. Then, this model was tested with additional unseen data to
calculate prediction accuracy. These steps are described in the following subsections.
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2.2.1. Series Transformation

The assumption of stationarity must be verified before the identification of a suitable model.
A time series can be considered stationary if the mean and variance are constant and if there are no
significant trends and seasonal variations. Usually, logarithm and derivative operations are applied to
eliminate the variability and decrease the trend, respectively [23,35].

2.2.2. Stationary Evaluation

The single autocorrelation function (ACF) and partial autocorrelation function (PACF) are
correlogram functions to determine the degree of correlation between two consecutive values of the
series. ACF and PACF provide an estimation of the p and q values of the ARIMA models [36,37].

First, the single ACF and PACF functions of the transformed series were calculated and plotted.
These functions are useful for diagnosing the p, d, q components of the ARIMA models.

The ACF of order k (k > 0) of a stationary process (Yt) measures the information that an observation
of a period transmits directly to the observation k periods ahead, i.e., (Y1, Y1+k), (Y2, Y2+k), . . . (Yn−k, Yn).
It is presented with the following equation:

ρk ≡
cov[Yt, Yt+k]

Var[Yt]
1
2 Var[Yt+k]

1
2

≡
γk

γo
(k = 1, 2, . . .) (6)

where γk is the self-covariance of order k, γo is the zero order self-covariance of a strictly stationary
process, and γo ≡ cov[Yt, Yt]≡ var[Yt].

The PACF measures the information that an observation of a period transmits directly to the
observation k periods ahead, eliminating the information Yt−1, . . .Yt−k+1 that both contain.

The PACF is denoted by ϕkk, for k = 1, 2, ... and represented with the following equations:

φ11 = corr([Yt+1, Yt] ≡ ρ1 (7)
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∅kk ≡ corr
(
Yt+k − Ŷt+k, Yt − Ŷt

)
, k ≥ 2 (8)

The first-order autocorrelation was formally tested with the Durbin-Watson statistic test [38],
which measures the linear association between adjacent residuals. The null hypothesis for this case is
that the series presents autocorrelation.

Second, the Augmented Dickey Fuller (ADF) test, also called the unit root test, was used to test
the stationarity properties of the series [39,40].

2.2.3. Model Identification

Once the parameters (p, d, q) and (P, D, Q) were identified in previous stages, auto-regressive (AR),
moving average (MA), seasonal auto-regressive (SAR), and eXogenous regressive (XREG) models were
determined. The Equations (3)–(5) were used to identify the model that best fits each series.

2.2.4. Model Estimation

After the models were designed and implemented, the best model was selected considering
penalized likelihood criteria, such as Akaike information criterion (AIC) and Bayesian information
criterion (BIC) [41]. The AIC and BIC were used here to compare of models’ performance [23]. The
AIC and BIC are described mathematically as follows:

AIC = log σ̂2
k +

n + 2k
n

(9)

BIC = log σ̂2
k +

k log n
n

(10)

where σ̂2
k is the maximum likelihood estimate of variance, n is the number of dates, and, k is the number

of parameters of the model.
The BIC strongly penalizes the number of involved parameters. High values of AIC mean that the

observed data does not fit the models, while lower values indicate strong evidence that the observed
data fit the models. Similarly, lower values of BIC indicate better fitting of the models.

2.2.5. Model Validation

In order to evaluate the prediction accuracy of the models of the Box-Jenkins and Box-Tiao, a
residual analysis was performed. Before that, a first plot was done to analyze if whether there were
atypical errors which indicated the need of an intervention.

In order for the ARIMA and ARIMAX models to be viable for the adjustments of the observed
data, the error term εt in Equations (1)–(3) should behave as white noise, i.e., zero mean, a constant
variance, and no correlation. In addition, the term εt must follow a normal distribution. To check these
assumptions, statistical tests should be applied to the residuals, as in [23,26].

The most widely used model is the Box-Ljung test [36], with the null hypothesis being that the
series is uncorrelated. Accordingly, a Box-Ljung test was applied to the (squared) residuals to verify
that the variance is constant. Afterward, the Jarque-Bera test [42] was applied to verify that the
residuals were normal. In our experiments, these tests were applied to the significance level of α = 0.05.

2.2.6. Model Forecast

Once the ARIMA and ARIMAX models have been validated, future time series values can be
forecasted. In our case, energy production was forecasted for a 12-month horizon corresponding to the
year 2015, with a typical 95% confidence interval (CI) [22].
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2.3. Measures of Accuracy

In order to evaluate the quality of forecasted data of the proposed models, statistical analysis of
errors was used. Three typical standards were selected in this research work: Mean absolute error
(MAE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE).

The MAE represents the average error value between the observed and the adjusted series.
The MAE is described mathematically as follows:

MAE =
1
n

n∑
i=1

∣∣∣vadj − vobs
∣∣∣ (11)

where vadj represents the individual value of the forecasted time series, vobs corresponds to the individual
value of the observed time series, and n is the order of the series. In this study, the MAE is measured in
gigawatt hours (GWh) since the predicted variable is hydroelectric production.

The mean absolute percentage error (MAPE) is another statistical parameter considered in this
study. The advantage of using this parameter is that it uses percentages (%) to show the data, which
allows an easy and quick evaluation of the predicted model [30]. The MAPE is described mathematically
as follows:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣vadj − vobs

vobs

∣∣∣∣∣× 100 (12)

Finally, the mean absolute scaled error (MASE) was considered in the analysis. This type of error
is independent of the data. Lower values of scaled error (qt) result in better forecasts [43,44]. The MASE
is described mathematically as follows:

qt =
et

1
n−1

∑n
i=2|Yi −Yi−1|

(13)

MASE = mean
(∣∣∣qt

∣∣∣) (14)

where et represents the error between adjusted and observed values.

3. Data

Data for the current study, corresponding to the 2000–2015 period, have been obtained from
official and governmental institutions of Ecuador, namely the Electricity Regulation and Control
Agency (ARCONEL) [11] and the National Institute of Meteorology and Hydrology (INAMHI) [45].
The modeling analysis considers the period from 2000 to 2014, and 2015 data were used to validate the
predictivity of the model.

In this section, we present information about the Ecuadorian hydroelectric system, the country’s
hydrographic basins, the regions and the dataset used in this work, and the time series used to build
the models.

3.1. Ecuadorian Hydroelectric System

The hydroelectric system in Ecuador is concentrated in a relatively small group of stations. In 2016,
the 13 largest power stations provided 89.57% of the total hydroelectric generation. Table 1 shows the
contributions of hydroelectric generation grouped by management company and geographical region
of watersheds in detail.

Coca Codo Sinclair is the largest hydroelectric power plant in the country. Over the next years, this
plant is expected to have 1500 MW of power and satisfy 35% of the country demand. The socioeconomic
and environmental impacts of this project have been largely studied [46–48], but its management and
planning has received less attention.
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Table 1. Electric production of the country’s 13 largest hydropower stations during 2016.

Electric Company Hydropower Station Watershed Production [GWh] Percentage of Total
Production [%]

CELEC
[49]–Hidropaute [50]

Mazar
Santiago 6851.61 43.32Molino

Sopladora

CELEC–Coca Codo
Sinclair [51]

Quijos
Napo 3264.01 20.64Manduriacu

Coca Codo Sinclair

CELEC–Hidroagoyán
[52]

Agoyán
Pastaza 2413.73 15.26Pucará

San Francisco

CELEC–Hidronación
[53] Baba Guayas 1209.89 7.65

Elecaustro [54]
Ocaña 1

Santiago 427.99 2.71Machángara
Saucay

TOTAL 89.58

3.2. Rainfall and Watersheds in Ecuador

The estimated water potential, at the level of river basins and sub-basins, is about 15,000 m3/s
distributed on the Ecuadorian continental surface. Its potential is geographically distributed in two
regions: Amazon (east) and Pacific (west), with a flow capacity of 71% and 29%, respectively, according
to the National Water Resources Council (CNRH) [55]. Twenty-four watersheds are inside the Pacific
area and seven watersheds are inside the Amazon area. The area of the latter is 131,726 km2, which
corresponds to 51% of the country’s hydrographic system.

In Ecuador, the following values of the hydroelectric potential have been identified: (i) Medium
theoretical hydroelectric potential, with an estimated average monthly flow of 91,000 MW; (ii) technically
feasible potential: 31,000 MW (in 11 watersheds); and (iii) economically feasible potential: 22,000 MW
(in 11 watersheds). Currently, Ecuador has used 24.55% of the economically feasible potential, i.e.,
5401 MW [12].

3.3. Regions of Study and Dataset

Evidently, water is the main resource to produce power hydroelectric. Therefore, water inflow is
a good predictor of hydroelectric performance [20,21]. In this study, we used precipitation data as a
proxy for hydropower stations water inflow. Precipitation data are relevant because the regions of the
study have a considerable rainfall variability, since they are located within a region with warm-humid
climate [56]. Besides, precipitation data are typically used in weather derivatives [57], which are
financial instruments that cover the effects of adverse or unexpected weather conditions. Consequently,
they are a usual input in the decision-making process.

Note that the precipitation value is not an estimation of the inflow, but a potential predictor.
In the literature, there are other works using streamflow data collected from sensors installed in the
reservoirs [58,59]. Such approaches provide more accurate water inflow estimations but are also more
costly to implement at a larger scale. At the time of this study, these data were not available in Ecuador.
An alternative to consider in the future is to use stochastic models to generate this data [60,61].

We considered precipitation data from the three main Amazon watersheds, namely:

1. Napo, with an area of 59,505 km2 fed by 15 rivers.
2. Pastaza, with an area of 23,190 km2 fed by 11 rivers.
3. Santiago with an area 24,920 km2 fed by four rivers.
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The three basins add up an area of 107,615 km2, which represent about 82% of the Amazon
hydrological system and 42% of the country’s total. They contain the 12 largest hydroelectric stations,
generating about 82% of the hydropower production, as shown in Table 1.

Following the aim of the paper, we wanted to improve production forecasts by considering
a minimum but significant amount of additional data, i.e., precipitation data. Precipitation data
corresponding to the period 2000–2015 were obtained from pluviometric stations (PS) located inside
the basins and managed by the INAMHI: Napo (13 PS), Pastaza (27 PS) and Santiago (28 PS). Figure 3
shows the geographical location of each PS inside their corresponding watersheds.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 19 
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Figure 3. Geographical location of conventional and automatic pluviometric stations.

The source data included a single data point per station and month, representing the total rainfall
measured by the station in the month. To obtain a single value per basin and month, we averaged
these values for each basin. In this way, we have a single value for each basin representing a rough
approximation of the expected monthly rainfall at any randomly selected point inside the basin.
Furthermore, we assumed that basins are independent and thus aggregated the three monthly values
to obtain the overall rainfall that can be potentially used to produce energy. Certainly, this entails a
considerable simplification of the problem, and other aggregation methods could be considered.

Figure 4 shows the water shortage that normally occurs on the Amazon region from October to
March [62]. The aggregated expected rainfall in the Napo, Pastaza, and Santiago basins is represented
by the blue bar chart. The average of the total precipitation during these two years was 466.5 mm (black
line). Precipitation in the months of October to March, in general, is below the average of the total
precipitation since these months correspond to the Ecuadorian dry season. This drought influences the
hydroelectric systems, which is evident in the curve of hydroelectric production.
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Figure 4. Monthly hydroelectric production and total precipitation of the three considered watersheds
during 2003–2004.

3.4. Time Series

The following five series have been considered during the period 2000–2014:

1. Monthly gross production (MGP) of hydroelectric systems [GWh];
2. Average monthly precipitation (AMP) in Napo watershed [mm];
3. AMP in Pastaza watershed [mm];
4. AMP in Santiago watershed [mm];
5. Total average monthly precipitation (TAMP) in the three considered watersheds [mm]

To know the behavior and better fit in the analysis of the modeling, an analysis of each one of
the five series was performed. Correlations between pairs of series were also studied, in particular,
MGP-AMPNapo, MGP-AMPPastaza, MGP-AMPSantiago, and MGP-TAMP.

4. Experiments and Discussion

4.1. Exploratory Data Analysis and Series Transformation

Figure 5 shows the AMP of the Napo, Pastaza, and Santiago watersheds and MGP series during
the period 2000–2014. All series show a direct correlation, i.e., as precipitation increases or decreases in
watersheds, the production of hydropower increases or decreases. Also, the AMP of the watersheds is
correlated with the MGP series. Moreover, the MGP series presents variability and trend over time, in
contrast to AMP series that show variability but no trend through the time.
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Figure 5. Time series of precipitation [mm] at river basins and hydroelectric production [GWh] in
Ecuador, 2000–2014.

The three series of precipitation data show stationarity and seasonality. The hydroelectric
production series that does not show stationarity but seasonality. As part of the study, the hydroelectric
production series was transformed to make it stationary.

Figure 6 depicts the cross-correlation function (CCF) between two series at lag k, estimated as
follows: If the simple cross-correlation is larger than the standard deviation error, CCF is considered
significantly different from zero. When the joint series show correlation, it is necessary to separate
the linear association to make them stationary. In the separation step, the residuals of the model are
transformed into white noise in a process known as (pre-)whitening. In ARIMA models, through the
correlogram functions ACF-PACF, the possible order values (p, d, q) are diagnosed to eliminate the
trend and variability. In contrast, the dynamic relationship between two series is analyzed through the
cross-correlation function adjusted to pre-whitened residuals [34], to estimate the best ARIMAX model.
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4.2. Hydroelectric Energy Generation Modeled with ARIMA

Now we can proceed to the model identification step described in Figure 2. First, we focused on
the ARIMA model.

Figure 7a presents the autocorrelation functions ACF and PACF used to evaluate stationary after
pre-whitening. Both functions decay exponentially in a delay or lag of 5, which is significant with
seasonal frequencies suggested by the SARIMA model. Figure 7b shows the same functions applied to
the series of differences. The value of the Durbin-Watson statistic parameter obtained is 1.98, so the
series presents evidence of weak positive autocorrelation.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 19 
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Figure 7. ACF and PACF autocorrelation functions (see Section 2.2.2). (a) Correlogram functions of the
monthly gross production (MGP) series; (b) correlogram functions of the differenced MGP series.

For the analysis of the stationarity of the MGP series, we obtained the ADF statistics, whose value
was t-ADF = −8.77 with a p-value of 0.01. There is significant evidence that the series is stationary and
has no unit roots, with a maximum delay of 13 months. To determine the variants, the regression test
was used to derive the ADF test which resulted to be significant with a value t = −15.06 at α = 0.05 of
significance level. This means that the series shows a random walk with mean zero.

Once we know that the series is stationary, we can step into the model identification stage.
Table 2 shows a summary of the results obtained by applying the Box-Jenkins method to the MGP
series. Figure 8 depicts comparison between actual and predicted values. The model minimizing
AIC and BIC was ARIMA (1,1,1) × (0,0,1)12 with random walk. The model was confirmed to satisfy
the assumptions of the SARIMA model. The validation results with the 2015 data were within the
designated confidence interval.

Table 2. Box-Jenkins method applied in MGP series.

Model Identification

AR(1) MA(1) SAR(1)

Coefficients 0.65 −0.98 0.38
Standard Deviation 0.06 0.02 0.07

Model Estimation

Penalized Likelihood Criteria AIC BIC
Values 2392.85 2405.86

Model Validation

The model presents atypical values? NO
Significance level α = 0.05
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Table 2. Cont.

Box-Ljung Test

H0 p-Values Validation

MGP series is uncorrelated 0.735 There is significant
evidence that MGP series

is uncorrelated

Box-Ljung Test with Squared Residuals

H0 p-Values Validation

MGP series residuals have constant variance 0.957 There is significant
evidence that MGP series
residuals have constant

variance

Jarque-Bera Test

H0 p-Values Validation

MGP series residuals have constant variance 0.215 There is significant
evidence that MGP series

residuals are normal

Equation of the Model

Xt = 0.65Xt−1 + εt − 0.98εt−1 + 0.38 Xt−12
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Figure 8. Comparison between actual and predicted values with the ARIMA model.

4.3. Hydroelectric Energy Generation Modelled with ARIMAX

Regarding the ARIMAX model, the amount of precipitation at each watershed was considered as
the exogenous variable. The steps described in Section 2 produced the results presented below.

Figure 9 shows the residual diagnosis of each pair of series. The following characteristics were
found: (i) Each series did not present outliers; (ii) each pair of series was uncorrelated; (iii) ACF lags
were not significant; and iv) the p-value of the Ljung-Box test was greater than 0.05, which indicates that
the squared residuals were uncorrelated over time, i.e., the standardized residuals were independent.

Table 3 shows the coefficients of the best ARIMAX models for hydroelectric production with the
exogenous variable. The model with the lowest AIC and BIC is the pair of MGP-AMPSANTIAGO series.
Figure 10 shows the forecasts of each ARIMAX model for the year 2015.
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Figure 9. Residual diagnosis of each pair of series. (a) Correlogram MGP-AMPPASTAZA average
monthly precipitation AMPPASTAZA; (b) series MGP-AMPNAPO; (c) Correlogram MGP-AMPSANTIAGO;
(d) series MGP-TAMP.
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Table 3. Box-Tiao method applied in MGP series with exogenous variable.

Model Identification

Models AR(1) MA(1) SAR(1) XREG

MGP-AMPPASTAZA
ARIMAX (1,1,1)(1,0,0)12

Coefficients 0.66 −0.96 0.40 0.80
Standard Deviation 0.06 0.02 0.07 0.28

MGP-AMPNAPO
ARIMAX (1,1,1)(1,0,0)12

Coefficients 0.66 −0.97 0.38 0.22
Standard Deviation 0.06 0.02 0.08 0.10

MGP-AMPSANTIAGO
ARIMAX (1,1,1)(1,0,0)12

Coefficients 0.66 −0.97 0.38 1.21
Standard Deviation 0.07 0.02 0.08 0.21

MGP-AMP
ARIMAX (1,1,1)(1,0,0)12

Coefficients 0.65 −0.96 0.37 0.25
Standard Deviation 0.07 0.02 0.08 0.06

Model Estimation

Penalized Likelihood
Criteria

MGP-AMPPASTAZA MGP-AMPNAPO MGP-AMPSANTIAGO MGP-AMP

AIC 2237.40 2237.85 2213.66 2230.85
BIC 2253.34 2256.36 2229.60 2246.78

Model Validation

Models Outliers Assumption Tests p-Values

MGP-AMPPASTAZA
AO and IO were

not detected

Box-Ljung 0.44
Box-Ljung test with squared residuals 0.74
Jarque-Bera 0.43

MGP-AMPNAPO
AO and IO were
not detected

Box-Ljung 0.50
Box-Ljung test with squared residuals 0.70
Jarque-Bera 0.38

MGP-AMPSANTIAGO
AO and IO were

not detected

Box-Ljung 0.55
Box-Ljung test with squared residuals 0.83
Jarque-Bera 0.35

MGP-TAMP AO and IO were
not detected

Box-Ljung 0.56
Box-Ljung test with squared residuals 0.69
Jarque-Bera 0.06

Equation of the Models

MGP-AMPPASTAZA Xt = 0.66Xt−1 + εt − 0.96εt−1 + 0.40Xt−12 +0.80XREG
MGP-AMPNAPO Xt = 0.66Xt−1 + εt − 0.97εt−1 + 0.38Xt−12 +0.22XREG

MGP-AMPSANTIAGO Xt = 0.66Xt−1 + εt − 0.97εt−1 + 0.38Xt−12 +1.21XREG
MGP-TAMP Xt = 0.65Xt−1 + εt − 0.96εt−1 + 0.37Xt−12 +0.25XREG

4.4. Comparison and Discussion

Table 4 shows the MAE, MAPE, and MASE of the forecasts of each model for the year 2015. It can
be seen that the best results (lower error) were obtained by the ARIMAX model of MGP-AMPNAPO.
This is corroborated in Figure 10, which indicates that MGP-AMPNAPO was better.
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Table 4. Forecast errors of each model.

Models MAE (GWh) MAPE (%) MASE

MGP-ARIMA 101.08 14.32 0.68
MGP-AMPPASTAZA ARIMAX 71.13 10.21 0.55

MGP-AMPNAPO ARIMAX 70.81 10.17 0.57
MGP-AMPSANTIAGO ARIMAX 91.63 13.31 0.62

MGP-TAMP ARIMAX 97.00 13.88 0.65

Figure 11 visually shows the forecast of hydroelectric production in Ecuador for 2015, considering
ARIMA and ARIMAX models. A better forecast was obtained with the ARIMAX models of
MGP-AMPNAPO.
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Although the ARIMAX model of MGP-AMPSATIAGO has the best estimation model considering
the AIC and BIC values, ARIMAX model MGP-AMPNAPO has the lower forecast error values. Hence,
ARIMAX model MGP-AMPNAPO was selected.

Figure 11 depicts that ARIMAX MGP-AMPNAPO (1,1,1)(1,0,0)12 model presented a better
predictivity of gross monthly hydroelectric energy production in Ecuador. This model estimated that
the occurrence of the production is for the parameter p = 1 and a suitable moving average of q = 1 for
the regular component. At the same time, for seasonal component, P = 1 and the strong seasonality
established as S = 12. The exogenous variable are precipitation values at Napo watershed. The value
of MAE is 70.81 GWh, MAPE is 10.17%, and MASE is 0.57.

5. Conclusions

This work shows that the ARIMAX models with an exogenous variable have better performance
than the univariate ARIMA models for predicting hydroelectric energy production in Ecuador. Our
analysis of the production and the precipitation of the Napo, Pastaza, and Santiago basins (alone and
aggregated) yielded that the ARIMAX MGP-AMPNAPO (1,1,1)(1,0,0)12 model adequately adjusts the
data of the hydroelectric energy production in Ecuador series.

This research helps to describe and predict hydropower generation, particularly in Ecuador.
Results obtained with the proposed model can be useful for the organizing and planning of the electric
sector, which are important for the energy policymaker sector. The methodology can be also extended
to use in other cases.

Further studies to improve the accuracy of the predictions can be performed including bioinspired
techniques and optimization algorithms. Besides, we plan to study the impact of incorporating
additional data sources to the model, e.g., synthetic streamflow data, as mentioned in Section 3.3, or
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other weather parameters, like wind, rain, etc. The applicability of the approach to other countries
remains as future work.
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