
International Journal of Computational Intelligence Systems
Vol. 12(2), 2019, pp. 795–808

DOI: https://doi.org/10.2991/ijcis.d.190711.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

A Novel Memetic Framework for Enhancing Differential
Evolution Algorithms via Combination With Alopex Local
Search

Miguel Leon1,*, Ning Xiong1, Daniel Molina2, Francisco Herrera2

1IDT School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
2DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada, Spain

ART I C L E I N FO
Article History

Received 15 Oct 2018
Accepted 22 May 2019

Keywords

Differential evolution
L-SHADE
Memetic algorithm
Alopex
Local search
Optimization

ABSTRACT
Differential evolution (DE) represents a class of population-based optimization techniques that uses differences of vectors to
search for optimal solutions in the search space. However, promising solutions/regions are not adequately exploited by a tradi-
tional DE algorithm. Memetic computing has been popular in recent years to enhance the exploitation of global algorithms via
incorporation of local search. This paper proposes a new memetic framework to enhance DE algorithms using Alopex Local
Search (MFDEALS). The novelty of the proposed MFDEALS framework lies in that the behavior of exploitation (by Alopex
local search) can be controlled based on the DE global exploration status (population diversity and search stage). Additionally,
an adaptive parameter inside the Alopex local search enables smooth transition of its behavior from exploratory to exploita-
tive during the search process. A study of the important components of MFDEALS shows that there is a synergy between them.
MFDEALS has been integrated with both the canonical DE method and the adaptive DE algorithm L-SHADE, leading to the
MDEALS andML-SHADEALS algorithms, respectively. Both algorithms were tested on the benchmark functions from the IEEE
CEC’2014 Conference. The experiment results show that Memetic Differential Evolution with Alopex Local Search (MDEALS)
not only improves the original DE algorithm but also outperforms othermemetic DE algorithms by obtaining better quality solu-
tions. Further, the comparison between ML-SHADEALS and L-SHADE demonstrates that applying the MFDEALS framework
with Alopex local search can significantly enhance the performance of L-SHADE.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Memetic computing is a hot research topic that has received increas-
ing attention for more than one decade [1]. Memetic algorithms
(MAs) are essentially global optimization methods such as evolu-
tionary algorithms (EAs) that have been hybridized with some local
search (LS) techniques. Inspired by Dawkin’s notion of memetic
units capable of local refinements, MAs usually apply an improve-
ment scheme like a LS method on members of the population after
evolutionary operators, with the purpose of exploiting the most
promising search regions gathered during the global sampling by
EA. A very important advantage of MAs is that they provide an
effective and efficientway inwhichEAs andLS techniques can com-
plement each other to compensate for both the deficiency of EAs
in local exploitation and the inadequacy of LS in global exploration
[2]. Some successful MAs [3] were proposed that exhibited their
strength in obtaining reliable and precise solutions in complex and
high dimensional spaces for continuous optimization problems.

Differential evolution (DE) represents a class of EAs that per-
form metaheuristic and population-based searches to solve many
optimization problems [4]. In DE, the direction and magnitude of

*Corresponding author. Email: miguel.leonortiz@mdh.se

search is determined by the distribution of solutions in the popula-
tion rather than a predefined probability density function. DE has
been shown to offer a competitive tool for handling complex and
high dimensional solution spaces, especially in real-parameter opti-
mization tasks. Interesting surveys on recent advances in DE are
given in [5].
Over the years, the usage of DE to solve real world problems is
increasing. One reason for this is that unlike traditional optimiza-
tion methods that utilize gradient information (that is not always
available), DE only requires fitness values, thereby being applicable
to a wider range of problems [6]. DE has shown its good perfor-
mance in different real world scenarios like designing optimal har-
monic filters [6], process modeling for greenhouses [7], as well as
enhancing the contrast and brightness of satellite images [8]. How-
ever, DE also encounters two problems in some practical applica-
tions: slow convergence speed and stagnation in local optima [9].
To overcome these problems, a number of adaptive DE algorithms
have been developed by adapting mutation strategies and control
parameters in the optimization processes [10–15]. An alternative
way of improving the performance of DE is to merge it with LS for
enhancing the exploitation capability, leading to memetic DE.

Memetic DE algorithms have been proposed in recent years as
enhancement of standard DE technique by incorporation of LS

Pdf_Folio:795

https://doi.org/10.2991/ijcis.d.190711.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/

796 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

[9,16,17]. Some LS techniques and hybridization of them [18] have
been introduced and utilized in this context to strengthen local
refinement of individuals in the global search procedure. A suc-
cessfully incorporated LS function is expected to not only speed
up the convergence but also produce results of higher precision
in situations when a traditional DE algorithm suffers from local
stagnation [19].

Alopex (algorithm of pattern extraction) was originally proposed
by Harth and Tzanakou for optimization and pattern matching
in visual receptive fields [20]. Alopex can be considered as a
derivative-free gradient descent method since it utilizes the corre-
lation between changes of variables and changes in objective func-
tion values to estimate the gradient of the landscape. Alopex also
adopts the similar idea of simulated annealing by using a tempera-
ture parameter to adaptively control the stochasticity of the moves.

This paper proposes a new memetic framework referred to as
MFDEALS, which uses Alopex as the basic LS mechanism in coop-
eration with a DE algorithm. Unlike conventional memetic com-
puting paradigms which implement exploration and exploitation
independently, the novelty of the proposed work lies in its bridge in
which the behavior of exploitation (by Alopex LS) can be controlled
by the status (population diversity and search stage) of the global
exploration by a DE algorithm.We believe that a seamless coupling
of Alopex search with the DE cycle will offer valuable guidance to
adapt the LS characteristics in favor of more cooperative perfor-
mance of exploitation and exploration functions, which share lim-
ited computing resources in an evolutionary optimization process.

MFDEALS has been applied with the canonical DE and the adap-
tive DE algorithm L-SHADE [15] (the winner of the CEC’14 com-
petition), leading to theMDEALS andML-SHADEALS algorithms,
respectively. Both algorithms were tested on the set of benchmark
problems from IEEE CEC’2014 [21]. The results demonstrate that
the MDEALS algorithm not only improves the canonical DE but
also achieves superiority to other memetic DE algorithms employ-
ing LS. Moreover, ML-SHADEALS has been shown to outperform
L-SHADE, indicating the benefit of the proposed framework when
integrated with an adaptive DE algorithm.

The remainder of the paper is organized as follows. Section 2
explains the basis of Differential Evolution and L-SHADE. In
Section 3, a review of memetic computing in DE is given. The
description of the proposed MFDEALS framework is given in
Section 4. The results of evaluations and comparison with other
related algorithms are presented in Section 5. Finally, Section 6
gives the conclusion and future work.

2. BACKGROUND

In this section, we are going to briefly describe the original DE and
L-SHADE algorithms, in Subsections 2.1 and 2.2, respectively.

2.1. Differential Evolution

DE is a stochastic algorithm maintaining a population with Np
individuals. Every individual in the population stands for a pos-
sible solution to the problem. An individual in the population is
represented by vector Xi,g with i = 1, 2,⋯ ,N and g referring to

the index of the generation. A cycle in DE consists of three consec-
utive steps of operations: mutation, crossover, and selection which
are described as follows:

2.1.1. Mutation

In this first step,Nmutant vectors are created using individuals ran-
domly selected from the current population. Indeed there are a few
mutation strategies which can be used to generate mutant vectors,
but only the randommutation strategy will be explained below. The
other mutation strategies and their performance are discussed in
[22]. The calculation of the mutant vector Vi,G using the random
mutation strategy is given in Equation (1).

Vi,g = Xr1,g + F ⋅
(
Xr2,g – Xr3,g

)
(1)

where Vi,g represents the mutant vector, i stands for the index of
the vector, g denotes the generation, r1, r2, r3 ∈ {1, 2, … ,N} are ran-
dom integers and F is the mutation factor which usually lies in the
interval [0, 2].

2.1.2. Crossover

This operation combines each individual in the population with the
corresponding mutant vector created in the mutation stage. These
new solutions created are called trial vectors, and we use Ui,g to
represent the trial vector corresponding to individual i in genera-
tion g. Every parameter in the trial vector is decided in terms of
Equation (2).

Ui,g [j] = {Vi,g [j] if rand [0, 1] < CR or j = jrand
Xi,g [j] otherwise

(2)

where j stands for the index of a parameter in the vector, Jrand is a
randomly selected integer between 1 and N to ensure that at least
one parameter from the mutant vector will be included in the trial
vector, and CR is the probability of recombination.

2.1.3. Selection

This operation compares a trial vector and its parent solution in the
current population to decide the winner to be propagated into the
next generation. Therefore, if the problem of interest is minimiza-
tion, the individuals in the new generation are chosen according to
Equation (3).

Xi,g+1 = {Ui,g if f
(
Ui,g

)
< f

(
Xi,g

)
Xi,g otherwise

(3)

where Xi,g is an individual in the population, Xi,g+1 is the individ-
ual in the next generation, f

(
Ui,g

)
represents the objective value of

the trial vector and f
(
Xi,g

)
stands for the objective value of the indi-

vidual in the current population.

2.2. L-SHADE

L-SHADE is an adaptive DE algorithm proposed in 2014 by Tan-
abe and Fukunaga [15]. L-SHADE is based on its predecessor
SHADE [13], which adapts two of the main parameters in DE,Pdf_Folio:796

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 797

mutation factor (F) and crossover rate (CR). L-SHADE improves
SHADE by a linear reduction of population size during search.

In L-SHADE, the first operation of mutation is performed by fol-
lowing the mutation strategy termed as DE/current-to-pBest/1.
This mutation strategy was proposed in JADE [23] and it is
described in Equation (4).

Vi = Xi + Fi ∗
(
XpBest – Xi + Xr1 – Yr2

)
(4)

where Xi represents the ith individual in the population, XpBest is
an individual randomly selected from the p best individuals of the
population. p is a parameter that falls in the range [0, 1], represent-
ing the percentage of the best individuals from the population. Xr1
is a random individual from the population and Yr2 is randomly
selected from the combination of the population (X) and the archive
(A). This archive is used to store a group of several individuals that
were removed from the population, to enforce diversity in themuta-
tion. In cases the archive reaches the limit in size, it will be updated
with the replacement of a random entity in it by the new one. Addi-
tionally, Fi is the mutation factor that is calculated as follows:

Fi = randc
(
MF,ri , 0.1

)
(5)

where randc (mean, std) stands for a random number generated
using the Cauchy distribution with the mean equal toMF,ri and std
equal to 0.1. MF,ri is a random element selected from the memory
(MF) that reflects the experiences of successful F values.

The second and third steps, crossover and selection, follow
Equations (2) and (6), respectively. However, the parameter CRi is
not fixed in L-SHADE. It is generated according to a Normal distri-
bution as follows:

CRi = {
0 ifMCR,ri = ⊥
randn

(
MCR,ri , 0.1

)
otherwise

(6)

where randn (mean, std) represents a random value that is created
according to the Normal distribution with the mean equal toMCR,ri
and std equal to 0.1. MCR,ri is a random element selected from the
memory (MCR) that reflects the experiences of successful CR values.
If MCR,ri has been assigned with the terminal value ⊥, then CRi is
set to 0.

Initially all the entities in bothMF andMCR are set to 0.5 and then
they are updated based on successful experiences in the optimiza-
tion process. After each generation, one entity inMF is replaced by
the weighted Lehmer mean of the successful F values in the genera-
tion. Likewise, an entity inMCR is replaced by the weighted Lehmer
mean of the successful CR values in the generation. The calculation
of the weighted Lehmer mean is given in Equations (7–9).

meanWL (S) =
∑|S|

a=1 wa ⋅ S2a
∑|S|

a=1 wa ⋅ Sa
(7)

wa =
△fa

∑|S|
b=1△fb

(8)

△fa = |f
(
Ua,g

)
– f

(
Xa,g

)
| (9)

where S refers to the set of successful F or CR values depending
on which memory to update. Specifically in case of no success-
ful CR values from the generation, MCR,k is set to the terminal
value⊥. BesidesMF andMCR are updated cyclically with successive
generations.

Finally, the population size is linearly reduced, depending on the
status of the search. The population size is initialized to Ninit, then
it is reduced linearly with the number of evaluations. The popula-
tion size of the next generation (NG+1) is determined according to
Equation (10).

NG+1 = round
(
NFE ⋅ N

min – Ninit

MAX–NFE
+ Ninit

)
(10)

where Nmin is set to 4, which is the minimum number of individu-
als in a population, NFE is the number of fitness evaluations con-
ducted so far and MAX_NFE is the maximum number of fitness
evaluations. ForNG+1 < NG, the population is sorted and the worst
(NG – NG+1) individuals are deleted from the population.

3. MEMETIC COMPUTING WITH DE

When designing global search methods, exploration and exploita-
tion are the two major issues of consideration [3,9]. Algorithms
that explore too much will fail to find optimal solutions, while
algorithms with too much exploitation can get stuck into a
local optimum. A powerful algorithm is expected to explore the
search space effectively while fine-tuning some promising solutions
simultaneously.

Population based algorithms [24] such as DE usually trend to focus
more on the exploration of the search space, whereas their con-
vergence speed is not satisfying given limited computing resources
[9]. To overcome this problem, some investigations were conducted
by combining global search with various LS operators [3,25,26]
including the local surrogate model based search [27] to improve
the search performance. The LS operators, unlike population-based
algorithms, trend to exploit the promising regions inside a search
space.

Nevertheless, hybridization of global and LS algorithms is not a
trivial task and a number of different issues have to be addressed.
In Subsection 3.1, the computational expense allocated to LS algo-
rithm is discussed. In Subsection 3.2, the different types of LS oper-
ators are reviewed.

3.1. Strategies of Allocating Resources
to LS

Computational cost for LS, in this context of optimization, refers
to the number of fitness evaluations used by the LS operator. Evi-
dently, the amount of computation allocated to the LS operator will
affect the trade-off between exploration and exploitation. In [28],
the local/global search ratio

(
L
G

)
is defined as the the percentage

of the number of evaluations that have been used by the LS opera-
tor. This ratio is related to the following three factors that have to
be considered when designing a memetic algorithm.Pdf_Folio:797

798 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

The first factor concerns which individual(s) from the population
are going to be affected by LS. This is problem dependent, since the
convergence speed will change depending on the design. Applying
LS to a lot of individuals may increase the convergence speed, how-
ever, if not many individuals are actually modified, the whole pop-
ulation will not converge fast enough. Different methods have been
studied to handle this factor. The most commonly used scheme is
to modify only the best individual in the population [29–31]. An
alternative approach is to apply LS to a part of the population. In
[32], the LS operator was applied to a percentage of the best individ-
uals of the population. Poikolainen [25] proposed to apply LS to the
individuals with their fitness better than the average of the fitness
of the whole population. In [33], a different option was presented,
in which LS was applied with a certain probability to all individuals
in the population.

The second factor is about how often the LS operator is applied
in the DE cycle. Some works conducted LS after every generation
[29,32,33], while others applied LS after a specified number of gen-
erations [25,17].

The third factor is associated with the length of the LS operator,
which is defined as the number of trial solutions that are tested
before the termination of the LS. According to [9], the methods of
deciding search length can be divided into three groups:

• Fixed length LS: The length of LS is defined beforehand and it
remains unchanged through the whole search. In [29], the
length is set to dimension divided by 5. In the other algorithm
[33], the length of the LS is set to one.

• Dynamic length LS: A predefined rule is used to decide the
intensity of LS without using any feedback from the search. For
instance, it was suggested in [34] to apply LS more at the
beginning yet less at the end of the search.

• Adaptive length LS: Despite some similarity to the second
group, the approaches in this group utilize feedback from the
search in order to decide the intensity of the LS operator. Some
examples can be found in [9,31,35].

3.2. LS Methods in DE

Manydifferent LSmethods have been proposed for being integrated
into DE. Dominguez-Isidro et al. [36] tested some traditional LS
methods, such as Nelder-Mead method (NM) [37], Hooke-Jeeves
[38] and hill-climbing [39] within theDE framework. A hill climber
was also used by Mandal et al. [40]. Chaos search was proposed
by Jiang [41] as a LS method based on chaos theory. According to
[9,28], the various LS methods that have been applied in DE can be
divided into two categories:

• Local improvement process (LIP) oriented LS (LLS): Local
improvements are performed on one or more individuals from
the population. Some well-known techniques in this category
include gradient descent and hill-climbing.

• Crossover-based LS (XLS): A predefined number of individuals
from the population are recombined in order to create new
trial solutions. XLS methods have an attractive property of
self-adaptation [42], since the population is evolving as the
search progresses.

The LS methods that belong to the categories LLS and XLS are
reviewed in the following:

LLS in DE: There are many methods that belong to this cate-
gory. One of the trends is to apply Chaos search [41], in which
local perturbations are made. Pei-Chong proposed DECH [32], a
memetic algorithm that hybridizes Chaos search together with DE.
In DECH, small perturbations are made to 20% of the individuals
of the population. A new generated solution will replace the orig-
inal one if the new one is better. In a similar work conducted by
Jia et al. [29], chaotic LS was only applied to the best individual of
the population after each generation.

A different strategy was addressed in [25] with the proposal of
the algorithm called DE with concurrent fitness-based local search
(DEcfbLS). The mechanism of LS used therein is very similar to
Hooke-Jeeves algorithm [38]. The basic idea is to perform separated
searches on single variables with iterations. If the search fails (with-
out finding improvement) in one direction or after one iteration,
the step size of search will be halved for subsequent trials. This LS
method was applied in [25] to multiple promising solutions of the
population, following a fitness-based selection rule.

Random perturbation based strategies were proposed in [31] for
applying LS on partial dimensions of the best individual in the
population. The Uniform, Normal and Cauchy distributions were
employed there for generating random moves, leading to the fol-
lowing three variant DE algorithms, respectively: DE with random
local search (DERLS), DE with Normal local search (DENLS), and
DE with Cauchy local search (DECLS).

XLS in DE: Crossover-based LS has attracted much attention.
Ali et al. [30] proposed two LS strategies: Trigonometric Local
Search (TLS) and Interpolated Local Search (ILS) for being used
in a basic DE cycle. TLS is based on the Trigonometric Mutation
Operator [43], which shifts the center point of a hyper geometric
triangle along the three legs (of the same triangle). ILS attempts to
build a parabolic curve to fit into the randomly selected points from
the population and then to identify the point on the curve with the
minimumobjective value. It was shown in the paper that using these
LS schemes in DE could improve the quality of obtained solutions
while not affecting the convergence speed.

Differential Evolution with Orthogonal Local Search (OLSDE) was
proposed in [44], inwhich orthogonal design (OD) is used to gener-
ate a set of trial solutions around two randomly selected parents and
the best trial solution then replaces the worst individual in the pop-
ulation. Prior to performing OD, the variables have to be divided
into groups based on statistic information from the population and
a set of discrete levels are determined for each variable in order to
construct the orthogonal array. A similar method, called Taguchi
LS (TLS) was proposed in [16]. In TLS, two random individuals are
taken from the population and the middle point between them is
calculated. These three individuals are divided into four different
parts, then, nine new individuals are created as a combination of
these parts. Using the fitness of the nine new individuals the effect
of each parent on each part is calculated. A final offspring is created
combining the parts from the parents that has a better effect.

Noman and Iba [9] proposed an enhanced DE algorithm with
crossover-based adaptive LS, which is called DEachSPX. Simplex
search is used in DEachSPX as the LS method, and the length
of the LS is adapted by using a hill-climbing heuristic. IndeedPdf_Folio:798

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 799

DEachSPX is an improvement of the previous algorithm DEfirSPX
[45], which uses a fixed length for the crossover-based LS. An even
earlier work in this direction was presented in [28], in which the
DExhcSPX algorithm was developed with the use of hill-climbing
search for DE.

4. ALOPEX BASED MEMETIC FRAMEWORK
TO ENHANCE DE ALGORITHMS

In this paper we propose a new Memetic framework, referred to as
MFDEALS, to enhance DE algorithms using Alopex Local Search
(ALS). First, theALSmechanismused inside aDE cycle is described
in Subsection 4.1, which is followed by the presentation of the pro-
posedMFDEALS framework together with its differences from our
preceding work in Subsection 4.2.

4.1. ALS in DE

Alopex is originally an algorithm to solve combinatorial optimiza-
tion and pattern matching problems. This method measures the
local correlation between changes in variables and the change of the
objective function value, in order to decide the direction of move in
search. The ALS function that is integrated into the DE cycle will be
described in the following.

Let Ai =
(
ai,1, ai,2, … , ai,N

)
be the ith solution in generation g that

will undergo LS, we first select a reference solution
Bi =

(
bi,1, bi,2, … , bi,N

)
from the population as the reference

point. Bi is selectedas either the best individual or a random indi-
vidual from the population, with the probabilities 𝛾 and (1 – 𝛾),
respectively. Then the correlations between the variable and objec-
tive value changes for Ai with respect to Bi are calculated according
to Equation (11) as follows:

Cg
i,j =

(
ai,j – bi,j

)
⋅ [f (Ai) – f (Bi)] for j = 1, 2… ,D (11)

where f denotes the objective function to optimize,D is the number
of variables.Cg

i,j measures the relation of the local change in variable
j and the change in the objective function. A positive correlation
indicates that a move of the variable toward the selected individual
would lead to an increase of the objective value, and vice versa.

The next step is to decide the probabilities of move directions for all
variables using the derived correlations. Considering a minimiza-
tion problem without loss of generality, the probability for a posi-
tive move on the jth variable in Ai is yielded as

Pi,j =
1

1 + e

Cg
i,j

Tg

(12)

where Tg is an evolving parameter as temperature to reflect the
diversity of the population. Tg is set to 1 in the first generation
and later it is calculated as the mean of correlations in the previ-
ous generation. Hence the temperature for Generation g (g > 1) is
written as

Tg =
1
D ⋅ 1

|PS|
⋅ ∑
i∈PS

N

∑
j=1

|Cg–1
i,j | (13)

where PS denotes the set of indices of individuals that received LS
in Generation g – 1.
The ratio of the correlation between one variable and the tem-
perature controls the stochasticity of search in the corresponding
dimension. A very small ratio will give a probability near to 0.5,
so that the search is substantially biased toward a completely ran-
domized walk in that dimension. On the contrary, a large corre-
lation (relative to the temperature) will make the search to have a
more deterministic nature on the associated variable. It follows that,
large T in the early generations of the DE cycle will contribute to
increase the stochasticity of the LS, while small T when the popula-
tion tends to converge will enforce the chance to move in the direc-
tion to decrease the objective value.

The trial solution Qi =
(
qi,1, qi,2, … , qi,D

)
, which is hopefully to be

superior to Ai, is generated by

qi,j = ai,j + 𝛿i,j ⋅ |bi,j – ai,j| ⋅ 𝛼 for j = 1, 2, … ,D (14)

where 𝛼 is a scaling factor generated by the normal distribution
N (0, 𝜆)with its standard deviation being 𝜆. In the implementation,
𝛼 is truncated or regenerated, respectively if the generated value is
larger than one or negative. 𝛿i,j represents the direction of the move
as given by

𝛿i,j = {1 if Pi,j ⩾ rand (0, 1)
–1 otherwise

(15)

where rand(0,1) is a uniform random number between 0 and 1.
If this generated random number is smaller than the probability
Pi,j, set 𝛿i,j = +1meaning a positive move in variable j, otherwise a
negative movein the variable is decided.

If the trial solutionQi is better thanAi, it will replaceAi and become
amember of the population.Otherwise the search proceduremoves
on to the next individual selected for local improvement. The
ALS function: ALS (OldT, Population) is formally described in
Algorithm 1, where OldT represents the temperature calculated
from the previous generation.

According to the categories of LS as described in Subsection 3.2,
ALS employed in DE can be considered as a crossover-based
method. The reason is that ALS takes two individuals from the pop-
ulation and the new trial solution is created via recombination of
both. This method also has a self-adaptive property, as individuals
of the population are evolving such that the magnitude of pertur-
bations will vary depending on the current state of the search.

4.2. Combining ALS With DE

In this subsection, we illustrate how ALS can be combined with a
DE algorithm in the proposed MFDEALS framework. There are
four parameters that have to be set with this framework. The first
one is the parameter 𝛾, which defines the probability of selecting
the best individual of the population as the reference point for ALS.
It controls the greediness of the LS. If 𝛾 is close to 1, there will be
a high chance to move toward the best individual and exploit the
region nearby, while if 𝛾 is close to 0, a random search will be per-
formed instead. The other three parameters correspond to the threePdf_Folio:799

800 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

different factors that affect the Local/Global ratio, as mentioned in
Subsection 3.1:

• The amount of individuals affected by ALS

• The frequency to apply ALS

• The length of the ALS operator

Regarding the first factor, the main idea in MFDEALS is to apply
ALS to a part of promising individuals in the population to promote
their further refinements. In order to decide which individuals will
receive ALS, we introduce a variable parameter threshold, which is
defined based on fitness of the individuals of the population. We
suggest five alternative ways to set the value of this parameter :

• threshold = f (Xbest)

• threshold= average(fitnesses)+f(Xbest)
2

• threshold = average
(
fitnesses

)
• threshold= average(fitnesses)+f(Xworst)

2
• threshold = f (Xworst)

where f (Xbest) is the fitness of the best individual of the popula-
tion, f (Xworst) is the fitness of the wort individual of the population,
and average

(
fitnesses

)
stands for the average of all the individuals

of the population. The parameter frequencyLS is used to determine
after how many generations ALS will be applied. If, for instance,
frequencyLS is set to 1, then ALS will be applied at each generation.
lengthLS controls the third factor, indicatingthe number of itera-
tions when ALS is applied to a generation.

Additionally, in the ALS function there is a special parameter 𝜆,
which is the standard deviation (std) of the normal distribution that
generates the scaling factor used in Equation (14). 𝜆 is designed to
be adaptive to the current state of the search by DE. At early stages,
𝜆 is a value slightly smaller than 0.5 such that the LS operator will
have an exploratory ability, while in the later stages 𝜆 will be close
to 0 leading to more fine-tuning ability of ALS. lambda is adapted
according to Equation (16).

𝜆 = 0.5 – currentEval
maxEval

⋅ 0.5 + 0.0001 (16)

where currentEval is the current number of evaluations and
maxEval denotes the maximum number of evaluations, and 0.0001
is a tiny constant added to ensure that the standard deviation is
alwaysmore than 0. The pseudo-code of thewholeMFDEALS algo-
rithm is given in Algorithm 2.

There are several clear differences betweenMFDEALS and the pre-
ceding algorithm Differential Evolution with Alopex Local Search
(DEALS) [46]. These differences can be outlined in two aspects: dif-
ferences in the LS schemes and differences in the choices on the fac-
tors related to the L

G
ratio. In the first aspect, there are three points

of differences that need to noted.

• In relation to parameter 𝛼: This parameter is used in Equation
(14). In DEALS, the parameter 𝛼 is calculated by creating a
random number following a uniform distribution in the range
(0, 1) (rand (0, 1)), while in MFDEALS 𝛼 is generated using a
Normal distribution with 0 as the mean and 𝜆 as the std.
Further, the variation of the 𝜆 parameter will make the
magnitude of the move adaptable to the state of the search. To
be known, ALS will exploremore at the beginning of the search,
while it will focus more on exploitation of promising regions in
the later stages.

• In relation to the temperature (T): In MFDEALS the
temperature is derived from correlations from the preceding
generation using Equation (13). However, in DEALS, T is
calculated at each iteration as the mean of the local correlations
along all dimensions. Obviously more correlations are involved
in MFDEALS for the temperature calculation.

• In relation to the choice of reference solution for ALS:
DEALS always selects a random individual from thePdf_Folio:800

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 801

population as the reference point for LS, while in MFDEALS a
probabilistic chance will decide whether the best individual or
a random individual from the population is selected.

Regarding the L
G
ratio, MFDEALS is different from DEALS in the

following two issues:

• In relation to the number of individuals to be improved by
LS: DEALS applies LS only to the best individual in the
population, while MFDEALS applies ALS to all the individuals
that have their fitness better than a threshold. This change
means that more individuals will undergo local improvement
in MFDEALS.

• In relation to the length of the LS operator: In DEALS, the LS
operator is assigned with a minimum search length. But the
counter will restart when an improvement is found within this
minimum length, resulting in the possibility of over-long
search lengths in practice. MFDEALS attempts to avoid
excessive usages of resources in LS by setting the length of ALS
to a fixed value.

5. RESULTS OF EXPERIMENTS

To evaluate the efficacy of the proposed framework, we have com-
bined it with the canonical DE and L-SHADE algorithms, with
the latter being the winner of the CEC’2014 competition. The
new memetic DE algorithms yielded from such combinations are
termed as MDEALS and ML-SHADEALS, respectively.

A number of experiments have been carried out. First, the impor-
tant components of MDEALS were studied together with its
parameters. Second, MDEALS was compared with the canonical
DE algorithm as well as our previous work (DEALS algorithm).
Third, MDEALS was compared with the state-of-the-art memetic
DE algorithms. Lastly, ML-SHADEALS was compared with
L-SHADE to demonstrate the potential of our framework to further
improve top DE algorithms.

5.1. Experimental Settings

The CEC’2014 benchmark [21] is used here to examine the perfor-
mance of our proposed framework. The benchmark is composed
of 30 functions, which are grouped into four categories: Unimodal
functions (F1–F3), multimodal functions (F4–F16), Hybrid Func-
tions (F17–F22), and Composition functions (F23–F30).

The various DE variants that were tested on the benchmark
includes:MDEALS andML-SHADEALS (created due to our frame-
work), canonical DE, DEALS, L-SHADE, as well as the other nine
memetic DE algorithms. Every algorithm was run 30 independent
times on each of the 30 functions. The maximum number of func-
tion evaluations (FEs) is set to 300 000 given the dimension of the
problems as 30. If the objective value obtained by an algorithm is
better than 1.00E-08, it is considered that the optimal solution of
the function is found.

5.2. Parameter Study Inside MDEALS

To perform the parameter study, the DE parameters were set as: F =
0.5,CR = 0.5, andN = 100. The proposedMDEALS algorithm has
one important parameter to study: 𝛾 (probability of selecting the
best individual from the population when applying ALS). Eleven
different values of 𝛾 have been tested and the results are shown in
Table 1. In this table comparisons are given in terms of two different
metrics: the average of the ranks on all the functions (avg. rank) and
the sums of the relative errors with respect to the worst option on
each function (s.r.e.). It can be observed that values close to 0 or 1
do not give good results. The reason is simple: the values close to 1
make all the different individuals converge to the best one such that
the population will gradually get stuck. On the other hand, values
close to 0will makeALS focus on exploring the search space instead
of exploiting promising regions. The test results also show that the
best values for 𝛾 are in the interval [0.3, 0.4].

Table 1 Study of the parameter gamma (𝛾).

Metrics 𝛾= 0 𝛾= 0.1 𝛾= 0.2 𝛾= 0.3 𝛾= 0.4 𝛾= 0.5 𝛾= 0.6 𝛾= 0.7 𝛾= 0.8 𝛾= 0.9 𝛾= 1
avg. rank 7.35 5.82 5.15 4.28 4.02 4.88 4.62 5.92 7.05 7.75 9.17
s.r.e. 20.41 18.06 17.03 16.74 17.59 17.96 16.74 17.94 20.06 21.49 25.01

Pdf_Folio:801

802 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

We also conducted tests on the three factors that are related to the
ratio between local and global searches. In order to study the first
factor about the amount of individuals that are affected by the LS
operator, different methods of deciding the value for thresholdwere
used and tested inMDEALS. This means that ALS has been applied
to different parts of the population as suggested in Subsection 4.2,
for example, the best individual, individuals with the fitness better
than the averaged fitness, individuals with the fitness better than
the average between the best and averaged fitness, individuals with
the fitness better than the average between the worst and averaged
fitness, as well as the whole population. The results are shown in
Table 2. It can be observed from the table that applying ALS to the
individualswith the fitness better than the average is the best option.
If ALS is applied to a small number of individuals, the population
does not converge properly and only a few solutions progress fast.
On the other hand, applyingALS to all the individualsmay consume
too many resources for LS and result in an improper local/global
ratio.

The second factor is about how often the LS operator is applied,
that is, after how many generations the LS operator is to be applied
(frequencyLS). The results obtained from testing different genera-
tion intervals are shown in Table 3. It can be observed that applying
ALS after every generation gives the best results. Performing ALS
with a lower frequency will make the population converge slowly.

The third factor concerns the length of LS (lengthLS).Wedid tests of
LSwith different numbers of iterations and the results are illustrated
in Table 4. It can be seen that a small length of LS is the proper
choice. If the LS operator has a higher search length, it will use too
many resources and consequently the global search by DE will not
be able to evolve through enough generations.

The appropriate choices concerning the different factors in our
MDEALS algorithm are stated below:

• 𝛾 ∶ [0.3, 0.4] .
• threshold = average

(
fitnesses

)
• frequencyLS = 1
• lenghtLS = {1, 2}

5.3. Comparison of MDEALS With DEALS

In this subsection, a comparison is made between the proposed
MDEALS algorithm and our preceding method DEALS [46].
In the experiments the DE parameters were set as: F = 0.5, CR =
0.5, and N = 100. Additionally, 𝛾 was set to 0.3, frequencyLS set

to 1, lengthLS set to 1, and threshold set to average
(
fitnesses

)
in

MDEALS as the best parameter values obtained from the experi-
ment results as shown in Subsection 5.2. Table 5 shows the results
of MDEALS, DEALS, and Basic DE, respectively, where the num-
bers are themean errors from the 30 independent runs of each algo-
rithm. Sum. rel. error stands for the sum of the relative errors and
average rank is the mean of the ranks of an algorithm across all
the benchmark functions. The bottom part of the table shows the
one-to-one comparisons of MDEALS with respect to DEALS and
DE, respectively. It is evident that MDEALS outperforms the other
two methods in 24 out of the 30 functions. In Table 6, the results
of the Wilcoxon’s statistical tests are indicated. We can see clearly
that MDEALS is statistically better than basic DE and DEALS
algorithms.

Apart from the aforementioned experiments, we also checked the
effectiveness of ALS in comparison with DE. This was done by cal-
culating the success rates of the two parts (DE and ALS) of the
MDEALS algorithm. The results are shown in Table 7. In this table,
Columns 1 and 4 represent the number of evaluations that DE and
ALS used, respectively, Columns 2 and 5 represent how many tri-
als were successful and Columns 3 and 6 show the success rates for
DE and ALS, respectively. It can be observed that the success rates
of ALS were higher in all the functions except F14, on which the
success rates of both were similar.

5.4. Comparison of MDEALS With Other
Memetic DE Algorithms

In this subsection, we present the experimental evaluations of com-
parison of MDEALS with the state-of-art memetic DE algorithms.
They are summarized in the following:

• DE [4]: The canonical DE algorithm introduced in Section 2.1.

• DETLS [30]: A variant DE algorithm that uses a trigonometric
mutation operator by calculating the center point of a triangle.

• DEILS [30]: A variant DE algorithm that builds a parabolic
curve in order to yied a new solution.

• LSDE [33]: A DE variant employing LS operator as a weighted
combination of an individual with the best individual from the
population to produce a new solution.

• DEachSPX [9]: A DE algorithm using NM as the LS operator.

• DEChaosLS [29]: A memetic algorithm hybridizing DE with a
LS operator based on chaos search.

Table 2 Study of the variable threshold.

Metrics f
(
Xbest

) average
(
fitnesses

)
+ f

(
Xbest

)
2 average

(
fitnesses

) average
(
fitnesses

)
+ f (Xworst)

2 f (Xworst)

avg. rank 4.08 2.90 2.15 2.90 2.97
s.r.e. 25.41 19.43 17.53 19.43 19.75

Table 3 Study of the parameter frequencyLS.

Metrics 1 2 3 4 5 6 7 8 9
avg. rank 3.08 3.45 3.75 4.52 5.02 5.10 6.20 6.70 7.18
s.r.e 20.54 20.54 21.41 22.62 23.50 23.76 24.95 26.04 25.87

Pdf_Folio:802

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 803

Table 4 Study of the parameter lengthLS.

Metrics 1 2 3 4 5 6 7
avg. rank 3.47 3.43 3.57 3.83 4.07 4.83 4.80
s.r.e. 22.32 21.94 23.34 23.42 23.01 24.54 25.77

Table 5 Results of MDEALS, DEALS, and DE on the benchmark problems from CEC 2014 with dimension 30.

Func. MDEALS DEALS DE
avg. rank 1.3 2 2.7
s.r.e. 17.46 25.87 27.35
Better than (+) - 24 24
Similar to (=) - 2 2
Worse than (−) - 4 4
DE, differential evolution.

Table 6 Wilcoxon’s statistical test (p value = 0.05) of MDEALS against DEALS and DE.

MDEALS vs R+ R− Exact P-value Diff.?
DEALS 381.5 53.5 1.651E-04 Yes
DE 381.5 53.5 1.651E-04 Yes
DE, differential evolution.

Table 7 Comparison of the success rates between two parts (DE and ALS) within MDEALS.

Func. DE Eval DE Succ DE Succ Rate
(%)

ALS Eval ALS Succ ALS Succ Rate
(%)

F1 169220 1422.8 0.84 130878.4 15292.8 11.68
F2 116600 20536.2 17.61 67336.6 21211.2 31.50
F3 124900 9818.4 7.86 77469.6 10062.8 12.99
F4 193720 58040.8 29.96 106337.2 50385.8 47.38
F5 206960 720.0 0.35 93103.0 345.2 0.37
F6 191920 16277.4 8.48 108137.2 19137.0 17.70
F7 56000 16008.4 28.59 31730.6 11801.2 37.19
F8 196640 2119.4 1.08 103394.6 4987.2 4.82
F9 201100 1306.2 0.65 98984.6 4632.4 4.68
F10 198980 1627.4 0.82 101097.4 3114.8 3.08
F11 209240 725.2 0.35 90804.6 2217.4 2.44
F12 200200 701.8 0.35 99898.0 594.8 0.60
F13 202060 1753.0 0.87 98020.8 931.8 0.95
F14 191620 2014.6 1.05 108485.8 1097.2 1.01
F15 203580 2079.4 1.02 96524.0 3703.6 3.84
F16 208820 788.4 0.38 91234.2 1052.0 1.15
F17 165640 790.2 0.48 134438.8 6278.4 4.67
F18 163340 2473.2 1.51 136719.4 6494.0 4.75
F19 196760 3374.8 1.72 103324.6 4856.4 4.70
F20 183940 1611.4 0.88 116120.8 3279.6 2.82
F21 168380 1075.6 0.64 131670.0 5247.0 3.98
F22 201020 1754.8 0.87 99016.2 2257.4 2.28
F23 171400 14978.2 8.74 128668.8 13934.6 10.83
F24 191100 4246.0 2.22 108948.0 3984.4 3.66
F25 168280 1345.0 0.80 131810.4 18604.2 14.11
F26 200900 1763.4 0.88 99159.6 1406.8 1.42
F27 193880 4968.4 2.56 106261.6 11053.4 10.40
F28 222080 11951.4 5.38 77966.0 13418.8 17.21
F29 173600 2300.0 1.32 126507.4 8297.6 6.56
F30 187240 2947.6 1.57 112836.6 11142.2 9.87
ALS, Alopex local search; DE, differential evolution.

• DETaguchiLS [16]: A DE variant that combines different parts
of individuals to create new solutions.

• DEcfbLS [25]: A DE variant that uses the deterministic
Hooke-Jeeves algorithm as the LS operator.

• DENM [36]: A DE algorithm employing the NM for LS.

A more detailed description of the above algorithms can be found
in Section 3 or the corresponding references.

The parameters of DE were set as follows: F = 0.5, CR = 0.5, pop-
ulation size (N) = 100. Then various LS methods were adopted
and integrated into DE by following the respective papers and the

recommended parameter values. The extra parameters for some of
the algorithms are given below:
• MDEALS: 𝛾 = 0.3, threshold = average

(
fitnesses

)
,

frequencyLS = 1 and lengthLS = 1.

• LSDE: p = 0.1.

• DEahcSPX: 𝜀 = 1 and np = 3.
• DEChaosLS: m = 1500.

• DEcfbLS: iter = 12 and 𝜌 = 0.4
The results of the experiments are given in Table 8, in which
the numbers are the average errors of the solutions found by the

Pdf_Folio:803

804 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

Ta
bl

e8
Re

su
lts

of
M
D
EA

LS
an
d
ot
he
rm

em
et
ic
D
E
al
go
rit
hm

so
n
th
eb

en
ch
m
ar
k
su
it
fro

m
CE

C
20
14
.

Fu
nc

.
M

D
EA

LS
D
Ea

ch
SP

X
D
EC

ha
os

LS
D
Ec

fb
LS

D
EI

LS
D
ET

LS
D
EN

M
D
ET

ag
uc

hi
LS

LS
D
E

F1
1.
76

E+
06

1.
27
E+

07
(+
)

3.
48
E+

07
(+
)

2.
81
E+

07
(+
)

2.
86
E+

07
(+
)

1.
75
E+

07
(+
)

1.
81
E+

07
(+
)

1.
88
E+

07
(+
)

5.
85
E+

07
(+
)

F2
0.
00

E+
00

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

0.
00

E+
00
(=
)

F3
0.
00

E+
00

9.
62
E-
08
(+
)

5.
35
E-
06
(+
)

2.
72
E-
05
(+
)

7.
71
E-
07
(+
)

1.
13
E-
07
(+
)

6.
45
E-
06
(+
)

4.
92
E-
07
(+
)

1.
26
E-
05
(+
)

F4
6.
73

E+
01

6.
84
E+

01
(+
)

7.
09
E+

01
(+
)

7.
27
E+

01
(+
)

7.
00
E+

01
(+
)

6.
92
E+

01
(+
)

7.
11
E+

01
(+
)

6.
84
E+

01
(+
)

7.
10
E+

01
(+
)

F5
2.
07

E+
01

2.
09
E+

01
(+
)

2.
09
E+

01
(+
)

2.
07
E+

01
(+
)

2.
09
E+

01
(+
)

2.
09
E+

01
(+
)

2.
09
E+

01
(+
)

2.
09
E+

01
(+
)

2.
09
E+

01
(+
)

F6
2.
16
E+

00
9.
27
E+

00
(+
)

9.
47
E+

00
(+
)

1.
77
E+

01
(+
)

1.
12
E+

01
(+
)

4.
06
E+

00
(+
)

4.
47
E+

00
(+
)

9.
47

E-
01
(−
)

2.
53
E+

01
(+
)

F7
1.
64
E-
03

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

0.
00

E+
00
(−
)

F8
1.
92
E+

01
8.
69
E+

01
(+
)

7.
73
E+

01
(+
)

3.
26
E+

01
(+
)

8.
90
E+

01
(+
)

9.
01
E+

01
(+
)

2.
32
E+

01
(+
)

1.
40

E+
00
(−
)

9.
02
E+

01
(+
)

F9
4.
82

E+
01

1.
66
E+

02
(+
)

1.
21
E+

02
(+
)

5.
60
E+

01
(+
)

1.
68
E+

02
(+
)

1.
66
E+

02
(+
)

7.
41
E+

01
(+
)

1.
56
E+

02
(+
)

1.
67
E+

02
(+
)

F1
0

1.
51
E+

03
3.
28
E+

03
(+
)

2.
90
E+

03
(+
)

1.
52
E+

03
(+
)

3.
26
E+

03
(+
)

3.
33
E+

03
(+
)

4.
82
E+

02
(−
)

4.
74

E+
01
(−
)

3.
30
E+

03
(+
)

F1
1

3.
84
E+

03
6.
41
E+

03
(+
)

5.
44
E+

03
(+
)

3.
26

E+
03
(−
)

6.
46
E+

03
(+
)

6.
47
E+

03
(+
)

4.
20
E+

03
(+
)

6.
50
E+

03
(+
)

6.
36
E+

03
(+
)

F1
2

1.
07
E+

00
1.
97
E+

00
(+
)

1.
58
E+

00
(+
)

8.
79

E-
01
(−
)

1.
95
E+

00
(+
)

1.
98
E+

00
(+
)

1.
54
E+

00
(+
)

1.
98
E+

00
(+
)

1.
96
E+

00
(+
)

F1
3

2.
25

E-
01

3.
63
E-
01
(+
)

3.
03
E-
01
(+
)

3.
03
E-
01
(+
)

3.
75
E-
01
(+
)

3.
46
E-
01
(+
)

3.
36
E-
01
(+
)

3.
57
E-
01
(+
)

3.
79
E-
01
(+
)

F1
4

2.
16

E-
01

2.
77
E-
01
(+
)

2.
48
E-
01
(+
)

2.
51
E-
01
(+
)

2.
65
E-
01
(+
)

2.
63
E-
01
(+
)

2.
62
E-
01
(+
)

2.
67
E-
01
(+
)

2.
66
E-
01
(+
)

F1
5

6.
97

E+
00

1.
51
E+

01
(+
)

1.
43
E+

01
(+
)

9.
90
E+

00
(+
)

1.
57
E+

01
(+
)

1.
52
E+

01
(+
)

1.
55
E+

01
(+
)

1.
53
E+

01
(+
)

1.
56
E+

01
(+
)

F1
6

1.
12
E+

01
1.
23
E+

01
(+
)

1.
18
E+

01
(+
)

1.
12

E+
01
(−
)

1.
23
E+

01
(+
)

1.
23
E+

01
(+
)

1.
20
E+

01
(+
)

1.
22
E+

01
(+
)

1.
24
E+

01
(+
)

F1
7

8.
70

E+
04

4.
13
E+

05
(+
)

6.
86
E+

05
(+
)

6.
03
E+

05
(+
)

8.
03
E+

05
(+
)

4.
63
E+

05
(+
)

5.
39
E+

05
(+
)

1.
12
E+

06
(+
)

1.
55
E+

06
(+
)

F1
8

1.
10
E+

03
8.
68

E+
02
(−
)

2.
56
E+

03
(+
)

3.
91
E+

03
(+
)

1.
11
E+

03
(+
)

1.
13
E+

03
(+
)

4.
53
E+

03
(+
)

2.
01
E+

03
(+
)

2.
80
E+

03
(+
)

F1
9

5.
43

E+
00

5.
95
E+

00
(+
)

6.
16
E+

00
(+
)

6.
18
E+

00
(+
)

6.
12
E+

00
(+
)

5.
74
E+

00
(+
)

6.
19
E+

00
(+
)

5.
93
E+

00
(+
)

6.
14
E+

00
(+
)

F2
0

6.
11
E+

01
7.
40
E+

01
(+
)

1.
20
E+

02
(+
)

1.
49
E+

02
(+
)

1.
11
E+

02
(+
)

5.
59

E+
01
(−
)

1.
51
E+

02
(+
)

7.
76
E+

01
(+
)

1.
37
E+

02
(+
)

F2
1

6.
88

E+
03

1.
95
E+

04
(+
)

5.
44
E+

0(
+)

6.
18
E+

04
(+
)

4.
40
E+

04
(+
)

2.
75
E+

04
(+
)

3.
97
E+

04
(+
)

3.
34
E+

04
(+
)

8.
53
E+

04
(+
)

F2
2

9.
76
E+

01
1.
84
E+

02
(+
)

1.
17
E+

02
(+
)

7.
84

E+
01
(−
)

1.
71
E+

02
(+
)

1.
56
E+

02
(+
)

1.
21
E+

02
(+
)

1.
62
E+

02
(+
)

2.
14
E+

02
(+
)

F2
3

3.
15
E+

02
3.
15
E+

02
(=
)

3.
15
E+

02
(=
)

3.
15
E+

02
(−
)

3.
15
E+

02
(=
)

3.
15
E+

02
(=
)

3.
15
E+

02
(−
)

3.
15
E+

02
(=
)

2.
00

E+
02
(−
)

F2
4

2.
26
E+

02
2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
23
E+

02
(−
)

2.
00

E+
02
(−
)

F2
5

2.
04
E+

02
2.
11
E+

02
(+
)

2.
04
E+

02
(−
)

2.
14
E+

02
(+
)

2.
14
E+

02
(+
)

2.
11
E+

02
(+
)

2.
12
E+

02
(+
)

2.
13
E+

02
(+
)

2.
00

E+
02
(−
)

F2
6

1.
00

E+
02

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

1.
00
E+

02
(+
)

F2
7

3.
33
E+

02
3.
00
E+

02
(−
)

3.
01
E+

02
(−
)

3.
00
E+

02
(−
)

3.
00
E+

02
(−
)

3.
00
E+

02
(−
)

3.
01
E+

02
(−
)

3.
00
E+

02
(−
)

2.
00

E+
02
(−
)

F2
8

8.
66
E+

02
7.
82
E+

02
(−
)

7.
82
E+

02
(−
)

7.
83
E+

02
(−
)

7.
94
E+

02
(−
)

7.
83
E+

02
(−
)

7.
89
E+

02
(−
)

7.
88
E+

02
(−
)

2.
46

E+
02
(−
)

F2
9

1.
90

E+
03

3.
97
E+

03
(+
)

6.
18
E+

03
(+
)

5.
19
E+

03
(+
)

3.
70
E+

03
(+
)

2.
21
E+

03
(+
)

6.
03
E+

03
(+
)

4.
82
E+

03
(+
)

6.
46
E+

03
(+
)

F3
0

1.
92

E+
03

2.
47
E+

03
(+
)

2.
72
E+

03
(+
)

2.
92
E+

03
(+
)

2.
58
E+

03
(+
)

2.
72
E+

03
(+
)

2.
78
E+

03
(+
)

1.
96
E+

03
(+
)

2.
92
E+

03
(+
)

s.r
.e.

16
.8
6

21
.5
8

22
.3
9

21
.4
2

22
.8
6

21
.1
6

20
.8
1

20
.1
3

25
.2
0

av
g.
ra
nk

2.
8

4.
9

4.
9

4.
8

6.
0

4.
9

5.
3

5.
1

6.
3

Be
tte

rt
ha
n
(+
)

-
23

23
20

24
23

23
21

23
Si
m
ila
rt
o
(=
)

-
2

2
1

2
2

1
2

1
W
or
se

th
an

(−
)

-
5

5
9

4
5

6
7

6
D
E,

di
ffe

re
nt
ia
le
vo
lu
tio

n.

Pdf_Folio:804

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 805

algorithms in 30 independent runs for each function. The best
result on each function is marked with boldface. The bottom of
this table summarizes the results by giving the sums of relative
errors, the average rank, as well as the numbers of functions on
which MDEALS is better(+), equal(=) or worse(−). Table 9 shows,
for every group of functions, the numbers of functions in which
MDEALS is better than, equal to or worse than its counterparts.
From these two tables, we can claim that MDEALS is the best
algorithm for all the unimodal functions. Regarding the composite
functions, MDEALS outperforms the other methods in almost all
the functions. In the multimodal functions, MDEALS is better than
its counterparts in between 69% and 92% of the functions. On the
hybrid functions, LSDE is the best algorithm and MDEALS is sim-
ilar to all other algorithms.

In addition, the Friedman’s statistical test, using Holms correction,
has been performed to compare the proposed MDEALS algorithm
against its counterparts. The results are given in Table 10. It can be
observed that, according to this statistical test, MDEALS achieved
significant superiority to each of the approaches in comparison,
with a maximum statistical error of 5%.

Moreover, the convergence speeds of the compared algorithms are
shown in Figure 1. This figure illustrates the evolution of the aver-
aged fitness of the population vs. the numbers of evaluations for
each of the algorithms in comparison. It can be observed that
MDEALS converges much faster than the other memetic DE algo-
rithms on the majority of the functions.

Table 9 MDEALS vs other memetic DE algorithms in terms of function
groups.

Unimodal Functions Multimodal Functions
Algorithm Better Equal Worst Better Equal Worse
DEachSPX 2 1 0 12 0 1
DEChaosLS 2 1 0 12 0 1
DEcfbLS 2 1 0 9 0 4
DEILS 2 1 0 12 0 1
DETLS 2 1 0 12 0 1
DENM 2 1 0 11 0 2
TETaguchiLS 2 1 0 9 0 4
LSDE 2 1 0 12 0 1

Composite Functions Hybrid Functions
Algorithm Better Equal Worst Better Equal Worse
DEachSPX 5 0 1 4 1 3
DEChaosLS 6 0 0 3 1 4
DEcfbLS 5 0 1 4 0 4
DEILS 6 0 0 4 1 3
DETLS 5 0 1 4 1 3
DENM 6 0 0 4 0 4
TETaguchiLS 6 0 0 4 1 3
LSDE 6 0 0 3 0 5
DE, differential evolution.

Table 10 Friedman’s statistical test and Post-Hoc Holm’s Test (𝛼 = 0.05)
between MDEALS and other memetic DE algorithms.

Algorithm p Value pHolm Statistical Difference?
LSDE 1.00E-06 5.00E-06 Yes
DEILS 1.00E-05 7.30E-05 Yes
DENM 3.72E-04 0.002233 Yes
DEChaosLS 0.002361 0.011807 Yes
DEDLS 0.002979 0.011918 Yes
DETaguchiLS 0.004033 0.012099 Yes
DETLS 0.005821 0.012099 Yes
DEachSPX 0.010909 0.012099 Yes

5.5. Combining MFDEALS With L-SHADE

This subsection shows the results of combining MFDEALS with
L-SHADE [15], the winner of the CEC’2014 competition. We use
ML-SHADEALS to denote this new combined DE variant.

Owing to the L-SHADE characteristics such as large initial popula-
tion and greedy mutation strategy, a different parameter setting is
needed. The number of individuals affected by ALS is reduced such
that less exploitation is performed at the beginning of the search.
For the same reason, ALS is applied less often in ML-SHADEALS.
The parameter specification within ML-SHADEALS is given as
follows:

• 𝛾 = 0.3

• threshold= average(fitnesses)+f(Xbest)
2

• frequencyLS = 4
• lengthLS = 1
• Parameters in L-SHADE [15]: Ninit = 540, Narc = 78, p = 0.11

and H = 6, as specified in their paper.

We compared the performance of ML-SHADEALS with L-SHADE
on the CEC’2014 benchmark functions. The results, given in
Table 11, show that combining MDEALS with L-SHADE can pro-
duce even better solutions than L-SHADE. This is also verified by
the results of the Wilcoxon’s statistical test, as shown in (Table 12),
demonstrating that the performance of ML-SHADEALS is signifi-
cantly better than that of L-SHADE.

Table 11 Results of ML-SHADEALS and L-SHADE on the benchmark
suit from CEC 2014.

Func. ML-SHADEALS L-SHADE
F1 0.00E+00 0.00E+00
F2 0.00E+00 0.00E+00
F3 0.00E+00 0.00E+00
F4 0.00E+00 0.00E+00
F5 2.01E+01 2.01E+01
F6 0.00E+00 0.00E+00
F7 0.00E+00 0.00E+00
F8 0.00E+00 0.00E+00
F9 7.46E+00 7.62E+00
F10 5.55E-03 3.47E-03
F11 1.18E+03 1.23E+03
F12 1.56E-01 1.57E-01
F13 1.19E-01 1.20E-01
F14 2.36E-01 2.32E-01
F15 2.02E+00 2.08E+00
F16 8.41E+00 8.51E+00
F17 2.89E+02 2.07E+02
F18 7.57E+00 8.06E+00
F19 3.72E+00 3.73E+00
F20 3.00E+00 2.84E+00
F21 1.13E+02 1.19E+02
F22 2.38E+01 2.47E+01
F23 3.15E+02 3.15E+02
F24 2.24E+02 2.24E+02
F25 2.03E+02 2.03E+02
F26 1.00E+02 1.00E+02
F27 3.00E+02 3.00E+02
F28 8.44E+02 8.49E+02
F29 7.20E+02 7.18E+02
F30 1.73E+03 2.07E+03
Better than - 12
Similar than - 13
Worse than - 5

Pdf_Folio:805

806 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

Figure 1 Mean converge characteristics of MDEALS, LSDE, DETLS, DETaguchiLS, DENM, DEILS, DEChaosLS, DEachSPX on 12 functions
from CEC2014 benchmark set. All results are mean values of 30 runs.

Table 12 Wilcoxon’s statistical test (𝛼 = 0.05) between ML-SHADEALS and L-SHADE.

ML-SHADEALS vs. R+ R- Exact P-value Statistical difference?
L-SHADE 319 116 0.0274 Yes

Pdf_Folio:806

M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808 807

6. CONCLUSION

DE is a powerful population-based optimization technique, and
its hybridization with LS can improve the results. This paper pro-
poses a new MFDEALS. MFDEALS contains an adaptable param-
eter enabling more exploration at the beginning of the search while
more exploitation at a later stage.Moreover,MFDEALS adopts tem-
perature as an internal parameter to affect the directions of moves
in ALS based on the correlations of individuals in the population.
As information from the global search (by DE) is well utilized to
control the behavior of ALS, MFDEALS is deemed to bring a better
balance between exploration and exploitation in the overall opti-
mization process.

MFDEALS has been combined with the canonical DE and
L-SHADE algorithms. These two algorithms have been tested in
the set of benchmark functions proposed in CEC’2014. The results
show that the combination between our memetic framework and
DE outperformed other memetic DE algorithms in a large majority
of the benchmark functions. Additionally, the power of our frame-
work has been demonstrated by improving the results of L-SHADE
by combining L-SHADE with our memetic framework.

CONFLICT OF INTEREST

There no conflict of interest.

AUTHORS’ CONTRIBUTIONS

Miguel Leon have proposed the main idea of the paper, imple-
mented the algorithm, performed the experiments and wrote the
major draft of the paper. Ning Xiong, Daniel Molina and Francisco
Herrera have contributedwith somewritting and helpful comments
to further enhance the quality of the paper.

ACKNOWLEDGMENTS

This researchwas supported by grants fromboth Swedish ResearchCouncil
(project number 2016-05431) and Spanish Ministry of Science TIN2016-
8113-R.

REFERENCES

[1] F. Neri, C. Cotta, Memetic algorithms and memetic computing
optimization: a literature review, Swarm Evol. Comput. 2 (2012),
1–14.

[2] S. Kumar, V.K. Sharma, R. Kumari, Memetic search in differential
evolution algorithm, Int. J. Comput. Appl. 90 (2014), 40–47.

[3] D. Molina, M. Lozano, C. Garcia-Martinez, F. Herrera, Memetic
algorithms for continuous optimization based on local search
chains, Evol. Comput. 18 (2010), 27–63.

[4] R. Storn, K. Price, Differential evolution - a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces, Tech report tr-95-012, Computer Science Institute, Berke-
ley, 1995.

[5] S.S. Mullick, P.N. Suganthan, S. Das, Recent advances in differ-
ential evolution - an updated survey, Swarm Evol. Comput. 27
(2016), 1–30.

[6] M. Leon, Y. Zenlander, N. Xiong, F. Herrera, Design optimal har-
monic filters in power systems using greedy adaptive differen-
tial evolution, in IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Berlin, 2016,
pp. 1–7.

[7] A. Perez-Gonzalez, O. Begovich-Mendoza, J. Ruiz-Leon, Model-
ing of a greenhouse prototype using PSO and differential evolu-
tion algorithms based on a real-time lab view application, Appl.
Soft Comput. 62 (2018), 86–100.

[8] D. Suresh, S. Lal, Modified differential evolution algorithm for
contrast and brightness enhancement of satellite image, Appl. Soft
Comput. 61 (2017), 622–641.

[9] N. Noman, H. Iba, Accelerating differential evolution using an
adaptative local search, IEEE Trans. Evol. Comput. 12 (2008),
107–125.

[10] M. Leon, N. Xiong, Adapting differential evolution algorithms for
continuous optimization via greedy adjustment of control param-
eters, J. Artif. Intell. Soft Comput. Res. 6 (2016), 103–118.

[11] L. Cui, G. Li, Q. Lin, J. Chen, N. Lu, Adaptive differential evo-
lution algorithm with novel mutation strategies in multiple sub-
populations, Comput. Oper. Res. 67 (2016), 155–173.

[12] G. Li, Q. Lin, L. Cui, Z. Du, Z. Liang, J. Cheng, Z. Ming, A novel
hybrid differential evolution algorithm with modified code and
jade, Appl. Soft Comput. 47 (2016), 577–599.

[13] R. Tanabe, A. Fukinga, Success-history based parameter adapta-
tion for differential evolution, in IEEE Congress on Evolutionary
Computation (CEC), Cancun, 2013, pp. 71–78.

[14] L. Cui, G. Li, Z. Zhu, Q. Lin, K.-C. Wong, J. Chen, N. Lu, J. Lu,
Adaptive multiple-elites-guided composite differential evolution
algorithmwith a shift mechanism, Info. Sci. 422 (2018), 122–143.

[15] R. Tanabe, A.S. Fukunaga, Improving the search performance of
shade using linear population size reduction, in IEEECongress on
Evolutionary Computation (CEC), Beijing, 2014, pp. 1658–1665.

[16] H. Peng, Z. Wu, Heterozygous differential evolution with taguchi
local search, Soft Comput. 19 (2015), 3273–3291.

[17] A.K. Qin, K. Tang, H. Pang, S. Xia, Self-adaptive differential evo-
lution with local search chains for real-parameter single-objective
optimization, in IEEE Congress on Evolutionary Computation
(CEC), Beijing, 2014, pp. 467–474.

[18] A. Caponio, F. Neri, V. Tirronen, Super-fit control adaptation in
memetic differential evolution, Soft Comput. 13 (2009), 811–831.

[19] J. Lampinen, I. Zelinka, On stagnation of the differential evolution
algorithm, in Proceedings of MENDEL, Brno, 2000, pp. 76–83.

[20] E. Harth, E. Tzanakou, Alopex: a stochastic method for determin-
ing visual receptive fields, Vis. Res. 14 (1974), 1475–1482.

[21] J.J. Liang, B. Qu, P.N. Suganthan, Problem definitions and eval-
uation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization, Tech-
nical report, Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang
Technological University, Singapore, 2013.

[22] M. Leon, N. Xiong, Investigation of mutation strategies in differ-
ential evolution for solving global optimization problems,in Arti-
ficial Intelligence and Soft Computing, Springer, Zakopane, 2014,
pp. 372–383.

[23] J. Zhang, A.C. Sanderson, Jade: adaptive differential evolution
with optional external archive, IEEE Trans. Evol. Comput. 13
(2009), 945–958.

[24] NXiong, D.Molina,M. Leon, F. Herrera, A walk intometaheuris-
tics for engineering optimization: principles, methods, and recent
trends, Int. J. Comput. Intell. Syst. 8 (2015), 606–636.

Pdf_Folio:807

https://doi.org/10.1016/j.swevo.2011.11.003
https://doi.org/10.1016/j.swevo.2011.11.003
https://doi.org/10.1016/j.swevo.2011.11.003
https://doi.org/10.5120/15582-4406
https://doi.org/10.5120/15582-4406
https://doi.org/10.1162/evco.2010.18.1.18102
https://doi.org/10.1162/evco.2010.18.1.18102
https://doi.org/10.1162/evco.2010.18.1.18102
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/ETFA.2016.7733571
https://doi.org/10.1109/ETFA.2016.7733571
https://doi.org/10.1109/ETFA.2016.7733571
https://doi.org/10.1109/ETFA.2016.7733571
https://doi.org/10.1109/ETFA.2016.7733571
https://doi.org/10.1016/j.asoc.2017.10.023
https://doi.org/10.1016/j.asoc.2017.10.023
https://doi.org/10.1016/j.asoc.2017.10.023
https://doi.org/10.1016/j.asoc.2017.10.023
https://doi.org/10.1016/j.asoc.2017.08.019
https://doi.org/10.1016/j.asoc.2017.08.019
https://doi.org/10.1016/j.asoc.2017.08.019
https://doi.org/10.1109/TEVC.2007.895272
https://doi.org/10.1109/TEVC.2007.895272
https://doi.org/10.1109/TEVC.2007.895272
https://doi.org/10.1515/jaiscr-2016-0009
https://doi.org/10.1515/jaiscr-2016-0009
https://doi.org/10.1515/jaiscr-2016-0009
https://doi.org/10.1016/j.cor.2015.09.006
https://doi.org/10.1016/j.cor.2015.09.006
https://doi.org/10.1016/j.cor.2015.09.006
https://doi.org/10.1016/j.asoc.2016.06.011
https://doi.org/10.1016/j.asoc.2016.06.011
https://doi.org/10.1016/j.asoc.2016.06.011
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1016/j.ins.2017.09.002
https://doi.org/10.1016/j.ins.2017.09.002
https://doi.org/10.1016/j.ins.2017.09.002
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1007/s00500-014-1482-7
https://doi.org/10.1007/s00500-014-1482-7
https://doi.org/10.1109/CEC.2014.6900636
https://doi.org/10.1109/CEC.2014.6900636
https://doi.org/10.1109/CEC.2014.6900636
https://doi.org/10.1109/CEC.2014.6900636
https://doi.org/10.1007/s00500-008-0357-1
https://doi.org/10.1007/s00500-008-0357-1
https://doi.org/10.1016/0042-6989(74)90024-8
https://doi.org/10.1016/0042-6989(74)90024-8
https://doi.org/10.1007/978-3-319-07173-2_32
https://doi.org/10.1007/978-3-319-07173-2_32
https://doi.org/10.1007/978-3-319-07173-2_32
https://doi.org/10.1007/978-3-319-07173-2_32
https://doi.org/10.1109/TEVC.2009.2014613
https://doi.org/10.1109/TEVC.2009.2014613
https://doi.org/10.1109/TEVC.2009.2014613
https://doi.org/10.1080/18756891.2015.1046324
https://doi.org/10.1080/18756891.2015.1046324
https://doi.org/10.1080/18756891.2015.1046324

808 M. Leon et al. / International Journal of Computational Intelligence Systems 12(2) 795–808

[25] I. Poikolainen, F. Neri, Differential evolution with concurrent fit-
ness based local search, in Proceeding of 2013 IEEE Congress on
Evolutionary Computation (CEC), Cancun, 2013, pp. 384–391.

[26] X. Chen, T.S. Ong, M.H. Lim, K.C. Tan, A multi-facet survey
on memetic computation, IEEE Trans. Evol. Comput. 15 (2011),
591–607.

[27] A. Zhou, J. Sun,Q. Zhang, An estimation of distribution algorithm
with cheap and expensive local searchmethods, IEEE Trans. Evol.
Comput. 19 (2015), 807–822.

[28] M. Lozano, F. Herrera, N. Krasnogor, D. Molina, Real-coded
memetic algorithms with crossover hill-climbing, Evol. Comput.
12 (2004), 273–302.

[29] D. Jia, G. Zheng, M.K. Khan, An effective memetic differen-
tial evolution algorithm based on chaotical search, Info. Sci. 181
(2011), 3175–3187.

[30] M. Ali, M. Pant, A. Nagar, Two local search strategies for differ-
ential evolution, in Proceeding of Bio-Inspired Computing: The-
ories and Applications (BIC-TA), 2010 IEEE Fifth International
Conference, Changsha, 2010, pp. 1429–1435.

[31] M. Leon, N. Xiong, Differential evolution enhanced with eager
random search for solving real-parameter optimization problems,
Int. J. Adv. Res. Artif. Intell. 4 (2015), 49–57.

[32] W. Pei-chong, Q. Xu, H. Xiao-hong, A novel differential evolu-
tion algorithmbased on chaos local search, in Proceeding of Inter-
national Conference on Information Engineering and Computer
Science, ICIECS 2009, Wuhan, 2009, pp. 1–4.

[33] J. Gu, G. Gu, Differential evolution with a local search operator, in
2nd International Asia Conference on Informatics in Control and
Robotics, Wuhan, 2010, pp. 480–483.

[34] T. Back, Introduction to the special issue: self-adaptation, IEEE
Trans. Evol. Comput. 9 (2001), 3–4.

[35] A. LaTorre, S.Muelas, Amos-based dynamicmemetic differential
evolution algorithm for continuous optimization: a scalability test,
Soft Comput. 15 (2011), 2187–2199.

[36] S. Dominguez-Isidro, E. Mezura-Montes, G. Leguizamon,
Performance comparison of local search operators in differential
evolution for constrained numerical optimization problems, in
Differential Evolution (SDE), 2014 Symposium, Orlando, 2014,
pp. 1–8.

[37] J. A. Nelder, R.A. Mead, A simplex for function minimization,
Comput. J. 7 (1965), 308–313.

[38] K. Deb, Optimization for Engineering Design Algorithms and
Examples, New Delhi, Prentice Hall of India, 1995.

[39] S. Russell, P. Norvig, Artificial Intelligence, Pearson Education
Limited Prentice-Hall, Malaysia, 2016.

[40] A. Mandal, A.K. Das, P. Mukherjee, S. Das, P.N. Suganthan, Mod-
ified differential evolution with local search algorithm for real
world optimization, in Proceeding of the 2011 IEEE Congress
on Evolutionary Computation (CEC), New Orleans, 2011,
pp. 1565–1572.

[41] B. Jiang. Optimizationion complex functions by chaos search,
Cybern. Syst. 29 (1998), 409–419.

[42] H.G. Beyer, K. Deb, On self-adaptive feature in real-parameter
evolutionary algorithms, IEEE Trans. Evol. Comput. 5 (2011),
250–270.

[43] H.Y. Fan, J. Lampinen, A trigonometricmutation operation to dif-
ferential evolution, J. Global Optim. 27 (2003), 105–129.

[44] Z. Dai, A. Zhou, A diferential ecolution with an orthogonal local
search, in Proceeding of the 2013 IEEE congress on Evolutionary
Computation (CEC), Cancun, 2013, pp. 2329–2336.

[45] N. Noman, H. Iba, Enhancing differential evolution performance
with local search for high dimensional function optimization, in
Proceedings of the 2005 Conference on Genetic and evolutionary
computation, GECCO’05, Washington, 2005, pp. 967–974.

[46] M. Leon, N. Xiong, A new differential evolution algorithm with
alopex-based local search, in International Conference in Artifi-
cial Intelligence and Soft Computing (ICAISC), Zakopane, 2016,
pp. 420–431.

Pdf_Folio:808

https://doi.org/10.1109/CEC.2013.6557595
https://doi.org/10.1109/CEC.2013.6557595
https://doi.org/10.1109/CEC.2013.6557595
https://doi.org/10.1109/TEVC.2011.2132725
https://doi.org/10.1109/TEVC.2011.2132725
https://doi.org/10.1109/TEVC.2011.2132725
https://doi.org/10.1109/TEVC.2014.2387433
https://doi.org/10.1109/TEVC.2014.2387433
https://doi.org/10.1109/TEVC.2014.2387433
https://doi.org/10.1162/1063656041774983
https://doi.org/10.1162/1063656041774983
https://doi.org/10.1162/1063656041774983
https://doi.org/10.1016/j.ins.2011.03.018
https://doi.org/10.1016/j.ins.2011.03.018
https://doi.org/10.1016/j.ins.2011.03.018
https://doi.org/10.1109/BICTA.2010.5645285
https://doi.org/10.1109/BICTA.2010.5645285
https://doi.org/10.1109/BICTA.2010.5645285
https://doi.org/10.1109/BICTA.2010.5645285
https://doi.org/10.14569/IJARAI.2015.041208
https://doi.org/10.14569/IJARAI.2015.041208
https://doi.org/10.14569/IJARAI.2015.041208
https://doi.org/10.1162/106365601750190361
https://doi.org/10.1162/106365601750190361
https://doi.org/10.1007/s00500-010-0646-3
https://doi.org/10.1007/s00500-010-0646-3
https://doi.org/10.1007/s00500-010-0646-3
https://doi.org/10.1109/SDE.2014.7031530
https://doi.org/10.1109/SDE.2014.7031530
https://doi.org/10.1109/SDE.2014.7031530
https://doi.org/10.1109/SDE.2014.7031530
https://doi.org/10.1109/SDE.2014.7031530
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1109/CEC.2011.5949802
https://doi.org/10.1109/CEC.2011.5949802
https://doi.org/10.1109/CEC.2011.5949802
https://doi.org/10.1109/CEC.2011.5949802
https://doi.org/10.1109/CEC.2011.5949802
https://doi.org/10.1080/019697298125678
https://doi.org/10.1080/019697298125678
https://doi.org/10.1109/4235.930314
https://doi.org/10.1109/4235.930314
https://doi.org/10.1109/4235.930314
https://doi.org/10.1023/A: 1024653025686
https://doi.org/10.1023/A: 1024653025686
https://doi.org/10.1145/1068009.1068174
https://doi.org/10.1145/1068009.1068174
https://doi.org/10.1145/1068009.1068174
https://doi.org/10.1145/1068009.1068174
https://doi.org/10.1007/978-3-319-39378-0_37
https://doi.org/10.1007/978-3-319-39378-0_37
https://doi.org/10.1007/978-3-319-39378-0_37
https://doi.org/10.1007/978-3-319-39378-0_37

	A Novel Memetic Framework for Enhancing Differential Evolution Algorithms via Combination With Alopex Local Search
	1. INTRODUCTION
	2. BACKGROUND
	2.1. Differential Evolution
	2.1.1. Mutation
	2.1.2. Crossover
	2.1.3. Selection

	2.2. L-SHADE

	3. MEMETIC COMPUTING WITH DE
	3.1. Strategies of Allocating Resources to LS
	3.2. LS Methods in DE

	4. ALOPEX BASED MEMETIC FRAMEWORK TO ENHANCE DE ALGORITHMS
	4.1. ALS in DE
	4.2. Combining ALS With DE

	5. RESULTS OF EXPERIMENTS
	5.1. Experimental Settings
	5.2. Parameter Study Inside MDEALS
	5.3. Comparison of MDEALS With DEALS
	5.4. Comparison of MDEALS With Other Memetic DE Algorithms
	5.5. Combining MFDEALS With L-SHADE

	6. CONCLUSION

