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Abstract
In the “digital conservation” age, big data from Earth observations and from social

media have been increasingly used to tackle conservation challenges. Here, we com-

bined information from those two digital sources in a multimodel inference frame-

work to identify, map, and predict the potential for nature’s cultural contributions to

people in two contrasting UNESCO biosphere reserves: Doñana and Sierra Nevada

(Spain). The content analysis of Flickr pictures revealed different cultural contribu-

tions, according to the natural and cultural values of the two reserves. Those contri-

butions relied upon landscape variables computed from Earth observation data: the

variety of colors and vegetation functioning that characterize Doñana landscapes, and

the leisure facilities, accessibility features, and heterogeneous landscapes that shape

Sierra Nevada. Our findings suggest that social media and Earth observations can

aid in the cost-efficient monitoring of nature’s contributions to people, which under-

lie many Sustainable Development Goals and conservation targets in protected areas

worldwide.

K E Y W O R D S
big data, crowdsourced photos, cultural values, Doñana, ecosystem services, multimodel inference, pro-

tected areas, participatory sensing, remote sensing, Sierra Nevada

1 INTRODUCTION

The Anthropocene is characterized by fast environmen-

tal changes, calling for new approaches to conservation
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planning and management (Palomo, Montes, et al., 2014).

Conservation mechanisms, such as the establishment and

management of protected areas, have been reshaped to

accommodate social–ecological perspectives on biodiversity
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(García-Llorente et al., 2018). The UNESCO’s network of

biosphere reserves is an emblematic effort in this regard, aim-

ing to reconcile nature conservation with the achievement of

a good quality of life (Van Cuong, Dart, & Hockings, 2017),

namely, through ecotourism and recreation (Reed, 2016).

Nature-based recreational experiences may, however, hold

unintended consequences for ecosystems and biodiversity

(Van Cuong et al., 2017). Understanding how such nature’s

contributions to people (Díaz et al., 2018) are shaped inside

biosphere reserves is thus key to promote conservation pol-

icy, management, and communication (Turnhout, Waterton,

Neves, & Buizer, 2013).

Nature-based experiences and preferences have tradi-

tionally been analyzed from revealed and stated preference

methods (e.g., social surveys), which are often costly and lack

adequate spatial and temporal coverage (Di Minin, Tenkanen,

& Toivonen, 2015). To overcome these limitations, digital

technology and public data from large audiences have

been increasingly used by conservationists to support the

surveillance and management of nature’s contributions to

people at several scales (Richards & Friess, 2015). Under

this “digital conservation” paradigm (Arts, van der Wal,

& Adams, 2015; van der Wal & Arts, 2015), the use of

social media data have received particular attention (Sherren,

Smit, Holmlund, Parkins, & Chen, 2017). Examples include

the content analysis of georeferenced photos from social

media platforms (e.g., Flickr and Instagram) to infer on

aspects of nature appreciation (Oteros-Rozas, Martín-López,

Fagerholm, Bieling, & Plieninger, 2018), monitor visitors’

movements (Tenkanen et al., 2017), or identify visitors’

preferences in protected areas (Hausmann et al., 2018).

Earth observation technology, including Geographic Infor-

mation Systems (GIS) and multisource remote sensing, has

also emerged as a powerful tool to describe nature-based

experiences and preferences. Examples include the identi-

fication of nighttime lights to identify hiking trails from

satellite imagery (Braun, Damm, Hein, Petchey, & Schaep-

man, 2018) or viewshed analysis to model landscape aesthet-

ics (Swetnam, Harrison-Curran, & Smith, 2016). Combining

georeferenced photos from social media with Earth obser-

vations provides opportunities to advance our understand-

ing of nature’s cultural contributions to people. For instance,

grounded on a set of GIS variables and Flickr photoseries,

Tenerelli, Demšar, and Luque (2016) revealed social pref-

erences for several cultural ecosystem services; Van Berkel

et al. (2018) assessed landscape quality underlying cultural

recreation using Panoramio photos and high-resolution Light

Detection And Ranging (LiDAR); and Vaz et al. (2019) used

a combination of satellite imagery and Flickr photographs to

infer on recreational and aesthetic preferences associated to

trees.

Despite the potential of Earth observations and social

media for addressing conservation challenges, their combined

application is still in its infancy. This study combines freely

available data from those two digital sources to assess nature’s

cultural contributions to people in biosphere reserves. We

aim to (a) identify which nature’s cultural contributions pre-

vail in the biosphere reserves; (b) understand if and how

those contributions relate with biophysical and landscape fea-

tures evaluated through GIS and satellite Earth observations;

and (c) predict the potential for nature’s cultural contribu-

tions in a spatially explicit way. We use two contrasting bio-

sphere reserves in Spain, Doñana (coastal wetland), and Sierra

Nevada (mountain) as test areas to infer on the whole-reserve

potential of different nature’s cultural contributions, based on

social media photographs and a multimodel inference frame-

work fed with different sets of Earth observation predictors.

2 METHODS

2.1 Methodological framework
Our methodological framework included three main steps

(Figure 1a–c). First (a), we compiled a georeferenced dataset

of in-field photographs from the social media platform Flickr.

We analyzed the content of the dataset through manual classi-

fication of the main type of nature’s cultural contributions dis-

played in each photograph. Second (b), we compiled a set of

spatially explicit variables (related to environmental context,

landscape biophysical properties, points of leisure interest,

and landscape visual-sensory attributes) potentially explain-

ing those cultural contributions. Finally (c), we applied a mul-

timodel inference to evaluate the explanatory power of our

variables regarding the several nature’s cultural contributions

to people (inferred from the social media content).

2.2 Test areas
Our approach was tested in two contrasting UNESCO bio-

spheres reserves included in the biodiversity hotspot of the

Mediterranean region, Doñana and Sierra Nevada, at south-

ern Spain (Figure 1). Doñana (ca. 2,687 km2) is a Ramsar

wetland, spreading over a 26-km coastal system. Its dynamic

hydrological cycle results in a high diversity of habitats and

species, including several endemic and threatened taxa (e.g.,

marbled teal, imperial eagle, and Iberian lynx). Key socioeco-

nomic activities comprise agriculture, ecotourism, and beach

recreation. Sierra Nevada (ca. 1,722 km2) spreads over a

mountainous region (elevation between 860 and 3,482 m),

presenting several species listed in the European Union Habi-

tats and Birds directives. Its socioeconomy relies mostly on

rural tourism and sports. Both areas hold several protection

regimes (Natural and National Parks, Natura 2000 Special

Protection Area and Special Area of Conservation, Biosphere

Reserve) and are part of the European Long-Term Ecosystem

Research Infrastructure.
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F I G U R E 1 Methodological framework adopted to evaluate nature’s cultural contributions to people in Doñana and Sierra Nevada: (a) content

analysis of social media photographs, as proxies for cultural contributions; (b) Earth observation predictors, from satellite and Geographic

Information Systems (GIS) data; (c) multimodel inference, assessing the explanatory power of different groups of predictors on those contributions

T A B L E 1 Categories used in the content analysis of Flickr photographs

Category Description
Landscape and nature The photograph is focused on wide views of nature (e.g., land/seascape with visible horizons)

Flora and fauna Fauna and/or flora are the main topic of the photograph (e.g., close-up shots of species)

Recreation and sports Human activities related to sports and recreation prevail in the photograph (e.g., beach or ski activities)

Cultural heritage The photograph is dominated by cultural elements and religious places (e.g., monuments and churches)

Rural tourism Elements associated to rural tourism are the main topic (e.g., lodges and rural infrastructures)

2.3 Social media data
Nature’s cultural contributions to people were evaluated

through the screening of social media photographs from

Flickr (Gosal, Geijzendorffer, Václavík, Poulin, & Ziv, 2019;

Richards & Friess, 2015). We collected georeferenced pho-

tographs up to 2018 using the Application Programming

Interface together with Python collection tools. Pictures were

obtained through a stratified sampling strategy that cap-

tured the diversity of prevailing land-use regimes in each

reserve. We classified each individual photograph manually

in one of five categories (following Hausmann et al., 2018;

Vaz et al., 2019; see Table 1). Photographs with irrelevant

subjects (e.g., advertisements) were excluded. The final set

included 907 and 761 photographs for Doñana and Sierra

Nevada, respectively. Appendix 1 in the Supporting Informa-

tion shows details on sampling procedure, data mining, and

classification.

2.4 Earth observation data
We computed 85 candidate predictors for modeling nature’s

cultural contributions, derived from the most updated satellite
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T A B L E 2 Predictors considered in each competing model (see Table S1 for details)

Groups of predictors Predictors (related to…) Input data
Model 1 | Environmental context

Visual accessibility Viewshed dimension Digital elevation model (20 m2

resolution)

Physical accessibility Elevation; slope

Distance to/density of trails and rivers Local trails and hydrographic

networks

Model 2 | Landscape biophysical properties

Landscape structure and configuration Shape; isolation and proximity; contagion and

interspersion; area and density

Land cover map 2018 (1:10,000

resolution)

Landscape heterogeneity Patch richness, evenness, and diversity

Model 3 | Points of leisure interest

Recreation features Density and distance to beaches, ski resorts, and lakes Local distribution map

Tourist attractions Density and distance to public facilities, villages, and

protected sites

Model 4 | Landscape visual-sensory attributes

Landscape functioning Normalized Difference Vegetation Index (NDVI);

Ecosystem Services Provision Index (ESPI)

Sentinel-2 MSI L1C images (10 m;

2015–2018)

Color diversity Reflectance for red (R), green (G), and blue (B) bands;

diversity of RGB clusters per meteorological season

and GIS data available (Table 2). GIS data included infor-

mation on: (a) environmental context (visual and physical

accessibility), (b) biophysical properties (landscape structure,

configuration, and heterogeneity), and (c) points of leisure

interest (recreation and touristic features). Satellite data

(Sentinel-2a/b L1C images) were used to obtain predictors

expressing (d) visual-sensory attributes, namely, landscape

functioning and color diversity, with the latter being com-

puted separately for each season of the year (Vaz et al., 2019).

Seasonal variations in landscape functioning were calculated

from time-series data (2015–2018) based on the Normalized

Difference Vegetation Index (NDVI; Tucker, 1979) and the

Ecosystem Services Provision Index (ESPI), which provide

information on the spatial and temporal changes in the supply

of ecosystem services (Paruelo et al., 2016). Spatial autocor-

relation tests with increasing moving-window sizes were used

to determine the suitable cell size for subsequent analyses

(Vicente et al., 2014). A regular grid of 1,000 × 1,000 m and

500 × 500 m was established for Doñana and Sierra Nevada,

respectively. Appendices 2 and 3 in the Supporting Infor-

mation show details on autocorrelation tests and grid size

selection.

2.5 Multimodel inference
For each grid cell, the number of photographs from each cate-

gory of cultural contributions (Table 1) was used as response

variables in a multimodel inference framework (Burnham

& Anderson, 2002). We considered four competing mod-

els (M1–M4) to test the hypotheses that nature’s cultural

contributions were mostly explained by: M1—environmental

context; M2—biophysical properties; M3—points of leisure

interest; or M4—visual-sensory attributes. Generalized Lin-

ear Models with Poisson distributions were fitted separately

for each category of cultural contributions, following Burn-

ham and Anderson (2002) and Wisz and Guisan (2009), in

R software (R Core Team, 2019). Due to our relatively small

sample size, the maximum number of predictors per model

was set to four. To avoid correlation and multicollinearity,

only predictors with a pairwise Spearman value lower than

0.6 and Variance Inflation Factor lower than 5 were consid-

ered (Fox & Weisberg, 2018).

To overcome dependence on sample size and allow compa-

rability among models, we calculated the Akaike Information

Criterion difference (∆AICc; Burnham & Anderson, 2002;

Shono, 2000). We further considered the weight (wi) of

each competing model, which represents the proportion of

evidence from a competing model in relation to the total

evidence from all models. We used Nagelkerke deviance

D2, based on null model testing from an extra competing

model (M5) as goodness-of-fit measures (Dormann et al.,

2018). Finally, we weighted all competing models based

on their wi and used the averaged model for predicting the

areas with the highest and lowest potential for cultural con-

tributions to people inside each biosphere reserve (Burnham

& Anderson, 2002; Dormann et al., 2018). Appendix 4

in the Supporting Information shows details on model

implementation.
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F I G U R E 2 Number of Flickr photographs from

each category of nature’s cultural contributions to

people in Doñana and in Sierra Nevada

3 RESULTS

3.1 Nature’s cultural contributions in the
two reserves
“Landscape and nature” was the most frequently represented

category in both Doñana (38% of all photographs) and Sierra

Nevada (27%; Figure 2). “Cultural heritage” and “fauna and

flora” photographs were more frequently found in Doñana

(33% and 24%, respectively) than in Sierra Nevada (both

with ca. 6%). Conversely, photographs associated with “rural

tourism” as well as “recreation and sports” were more fre-

quent in Sierra Nevada (25% and 21%, respectively) compared

to Doñana (3% and 2%, respectively).

3.2 Predictors of nature’s cultural
contributions
The most parsimonious model to explain the distribution of

nature’s cultural contributions in Doñana was based on land-

scape visual-sensory attributes (M4; Figure 3). The distribu-

tion of “recreation and sports” and “cultural heritage” pho-

tographs was also explained (to a minor extent) by landscape

biophysical properties (M2).

In Sierra Nevada, the model based on landscape visual-

sensory attributes (M4) also showed high explanatory power

over the various categories, being the most parsimonious

model only for “fauna and flora” (Figure 3). The remaining

categories were primarily explained by leisure features (M3).

The environmental context also contributed to explain “land-

scape and nature,” “cultural heritage,” and “rural tourism.”

The distribution of the last two categories also related with

landscape biophysical properties.

3.3 Potential for nature’s cultural
contributions
The spatial projections of the average models for Doñana

and Sierra Nevada reflect the prevailing influence of distinct

F I G U R E 3 Multimodel inference Akaike weights (wi) and explained adjusted deviance (D2). A gray shading (D2 > 0.10) is used in the figure

to highlight the first (dark gray) and second (light gray) best models for each category of cultural contributions
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F I G U R E 4 Spatial projections of average models for the categories of nature’s contributions to people in Doñana (a) and Sierra Nevada (b).

Darker colors on the maps indicate a higher potential for cultural contributions

predictors on nature’s cultural contributions (Figure 4; see

Table S2 for details). In Doñana, higher potential for nature’s

contributions was found in areas with higher spatial hetero-

geneity of vegetation functioning, higher landscape contigu-

ity, and lower shape complexity (Figure 4a). These correspond

to transition areas between natural forests and beaches (south-

west part of the reserve) and to marshlands and rice fields

neighboring the Guadalquivir river (eastern part; Figure 4a).

In Sierra Nevada, the heterogeneity of vegetation function-

ing was also an important predictor for “fauna and flora”

photographs, which are potentially more common in the

upper hills and mountain headwaters (south and west parts;

Figure 4b). The potential distribution of the remaining cate-

gories prevailed around villages, public infrastructures (e.g.,

viewpoints), and ski facilities. With the exception of “recre-

ation and sports,” there was also an association with the prox-

imity to roads and trails as well as to structurally complex

landscapes (Figure 4b).

4 DISCUSSION

This study describes an approach to assess the potential

for nature’s cultural contributions to people, combining

information from social media and Earth observations in a

multimodel inference framework. Our approach was tested in

two contrasting biosphere reserves and allowed the evaluation

of nature’s cultural contributions and their key predictors.

The analysis of Flickr content showed contrasting numbers

of photos assigned to each category of nature’s cultural

contributions in Doñana and Sierra Nevada (Figure 2).

“Landscape and nature” prevailed in both reserves, being

congruent with the natural values that typically dominate

protected areas (Hausmann et al., 2018; Richards & Friess,

2015). “Cultural heritage” and “fauna and flora” were also

widely represented in Doñana, whereas “rural tourism” and

“recreation and sports” were more common in Sierra Nevada.

These patterns also reflect the natural and cultural capital

of the two reserves: Doñana includes natural wetland land-

scapes and a diversity of species that are attractive for many

visitors (especially birdwatchers), while also holding popular

cultural and religious traditions, whereas Sierra Nevada

offers mountain-related activities (e.g., skiing), alongside

rural villages of touristic importance (e.g., Alpujarras).

Multimodel inference revealed that nature’s cultural

contributions from the two biosphere reserves relate with

different Earth observation predictors (Figure 3). In Doñana,

those contributions were primarily explained by landscape

visual-sensory attributes expressing the heterogeneity of

vegetation functioning (based on NDVI and ESPI). These

results converge with previous studies highlighting the

importance of remotely sensed visual-sensory attributes

(related to vegetation functioning) for the assessment of
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ecosystem benefits (Krishnaswamy, Bawa, Ganeshaiah, &

Kiran, 2009; Paruelo et al., 2016). However, despite the

potentialities of considering the seasonality of color diversity

in the evaluation of landscape appreciation (Vaz et al., 2019),

no significant relation was found between nature’s cultural

contributions and predictors expressing landscape color

diversity. Nevertheless, landscape biophysical attributes (i.e.,

shape complexity and patch contiguity) explained nature’s

cultural contributions oriented to “recreation and sports”

(e.g., beach activities) and “cultural heritage” (e.g., monu-

ment visitation). This agrees with the previous work from

Tengberg et al. (2012), Tieskensa, Van Zanten, Schulp, and

Verburg (2018), or Tveit, Ode, and Fry (2006) on which land-

scape patterns shape the character of the landscape enrolled

in the supply of recreation, aesthetic, and heritage values.

In contrast to Doñana, the different categories of nature’s

cultural contributions of Sierra Nevada were driven by a

larger number of predictors. Due to its topographic hetero-

geneity and land-use diversity, Sierra Nevada is a complex

territory with potential to deliver a variety of nature’s con-

tributions to people (Zamora, Pérez Luque, Bonet, Barea-

Azcón, & Aspizua, 2016). The distribution of “fauna and

flora” contributions was the only one primarily determined

by landscape visual-sensory attributes. The remaining contri-

butions, however, were mostly associated to the presence of

recreation features (i.e., ski sites) and tourist attractions (i.e.,

villages), particularly in accessible areas (e.g., near trails).

These results are congruent with previous studies showing a

relevant role of leisure facilities and terrain accessibility in

explaining nature’s preferences by people in mountain land-

scapes (Schirpke, Timmermann, Tappeiner, & Tasser, 2016;

Tenerelli et al., 2016; Vaz et al., 2019). Conversely to previ-

ous studies (Schirpke et al., 2016; Van Berkel et al., 2018), no

significant relation was found with visual accessibility (i.e.,

viewshed dimension), suggesting other factors as most rele-

vant for nature’s enjoyment and preferences by people in the

test areas.

The spatial projection of the predictive models allowed

to identify and map the potential distribution of nature’s

cultural contributions in both biosphere reserves (Figure 4).

In Doñana, this potential seems to match with transition areas

between natural forests and beaches, as well as with nearby

marshlands and rice fields along the river. In Sierra Nevada,

nature contributions appear to be most prevalent in the neigh-

borhood of villages, public infrastructures, and ski facilities,

as well as along hiking trails and roads. An exception is found

for the cultural appreciation of “fauna and flora,” particularly

evident in upper hills and headwaters, where most endemic

species typically occur (Blanca, Cueto, Martínez-Lirola, &

Molero-Mesa, 1998). The maps produced for the two reserves

generally agree with those obtained for nature tourism based

on the attribution of land-use scores (Palomo, Martín-López,

Alcorlo, & Montes, 2014), adding detail on the potential

location of different nature’s cultural contributions. Our spa-

tial projections can inform management decisions, for exam-

ple, on prioritizing land planning efforts and resources (Krish-

naswamy et al., 2009). They can also be used to maximize

synergies between biodiversity conservation and cultural val-

ues (Turnhout et al., 2013), identify conflicting areas between

tourism and strictly protected zones (Van Cuong et al., 2017),

support the monitoring of the natural and cultural capital

through remote observations (Arts et al., 2015), and assist on

data collection and dissemination for scientific research and

evidence-based conservation (Sherren et al., 2017).

Our approach does justify some methodological consid-

erations. First, social media users make decisions on which

photos they share in social networks, not necessarily mean-

ing that those photos express their most preferred and val-

ued elements from nature (e.g., Malik, Dhir, & Nieminen,

2016). The process of cultural evaluation of nature differs

across social–ecological contexts, individuals, and time (Di

Minin et al., 2015). Future research should focus on under-

standing the motivations underlying people’s choices and per-

ceptions toward nature, for instance by using complemen-

tary sources of social media content (e.g., tags and platforms;

Gosal et al., 2019; Oteros-Rozas et al., 2018). Second, Earth

observation (satellite and GIS) data were available at different

spatial scales, potentially biasing comparisons among them.

However, this was likely insignificant in our study, due to the

aggregation of photographs and predictors at coarser resolu-

tions. Nevertheless, considering time series data could be a

useful approach in the future to further understand seasonal

variations (e.g., Summer vs. Winter) in nature-based contribu-

tions and preferences (Vaz et al., 2019). In addition, improve-

ments could also be made by considering additional sources

of predictors in the models (e.g., demography and economy;

Tenerelli et al., 2016), whenever available.

Our study considered the most relevant available spatial

data to assess the cultural contributions from nature and bio-

diversity in the biosphere reserves of Doñana and Sierra

Nevada. We combined Earth observations and social media

data to identify the major nature’s cultural contributions in

the two reserves, to understand how they relate with distinct

Earth observation predictors, and to evaluate the potential

for nature’s cultural contributions in a spatially explicit way.

The content analysis of social media photographs showed a

dominance of different categories of nature’s cultural con-

tributions, in agreement with the natural and cultural capital

of these biosphere reserves. Those contributions also related

with different Earth observation predictors, being mostly

shaped by visual-sensory attributes that characterize Doñana

landscapes, and by points of leisure interest, landscape het-

erogeneity, and environmental accessibility that shape Sierra

Nevada.

The analytical framework proposed in this study is

reproducible in other (protected) areas. Inevitably, some
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adjustments are required, such as different image categories

(for social media content) or devising other image features

from satellite data. Current advances in automated satellite

processing (Fu & Rui, 2017) and social media content anal-

ysis (Gosal et al., 2019), together with increasing availability

of satellite data with enhanced coverage (e.g., Guanter et al.,

2015) and developments in powerful geospatial analysis plat-

forms (e.g., Gorelick et al., 2017), will boost the assessment

of nature’s cultural contributions to people and the monitoring

of conservation targets in wider areas.
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