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ABSTRACT The usage of linguistic information involves computing with words, a methodology assuming
linguistic values as computational elements, in group decision-making environments. In recent times, a new
methodology founded on a framework of granular computing has been employed to manage linguistic
information. An advantage of this methodology is that the distribution and the semantics of the linguistic
values, in place of being initially established, are defined by the optimization of a certain criterion. In this
paper, different from the existing approaches, we present a novel approach build on the basis of a granular
computing framework that is able to cope with group decision-making problems defined in multi-criteria
contexts, that is, those in which different criteria are considered to evaluate the possible alternatives for
solving the problem. In particular, it models group decision-making problems in a more realistic way by
taking into account that each criterion has an importance weight and by considering that each decision maker
has a different importance weight for each criterion. This approachmakes operational the linguistic values by
associating them with intervals via the optimization of an optimization criterion composed of two important
aspects that must be taken into account in this kind of decision problems, that is, the consensus at the level
of group of decision makers and the consistency at the level of individual decision makers.

INDEX TERMS Consensus, consistency, granular computing, linguistic information, multi-criteria group
decision making.

I. INTRODUCTION
In a group decision making (GDM) setting, a group of agents
(usually called decision makers) must evaluate the suitability
of different alternatives as a possible solution to a given
problem [1], [2]. Considering the evaluations articulated by
the decision makers, the purpose is to arrive at a ranking of
the alternatives as possible solutions to the problem.

As decision making is a cognitive process carried out
by humans that leads to the selection of a choice between
some different ones, the computing with words (CW)
methodology [3]–[5], which narrows the differences between

The associate editor coordinating the review of this manuscript and
approving it for publication was Omar Khadeer Hussain.

computing and human reasoning, has been applied to enrich
and create decisionmodels manipulating information of qual-
itative nature [3]. In CW, linguistic values drawn from a nat-
ural language are the computation objects [5]. For instance,
linguistic values like ‘‘hot’’, ‘‘cool’’, or ‘‘nice’’, could be used
to evaluate the temperature of a room.

In the setting of GDM, each individual decision maker
generally evaluates how good an alternative is regard-
ing other one, that is, the decision makers perform
pairwise comparisons [6]–[8]. When linguistic values are
used to make comparisons, a key point is how mak-
ing them operational. To deal with this issue, several
computational models of linguistic information have been
developed [3], [4], [9].
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Recently, information granulation [10], which is a key
concept of granular computing [11], has been used in deci-
sion making to deal with linguistic information [12]–[14].
Information granulation is about the process of forming
something into granules [11], [15], which are complex enti-
ties of information that must be handled in an efficient way
in the computing setting that is relevant to a certain granu-
lation framework. In particular, in the approaches presented
in [12]–[14], the information granulation has been applied
to associate the linguistic values with a family of inter-
vals, which act as information granules, via an optimization
process.

In the approaches proposed in [12]–[14], the decisionmak-
ers evaluate the preference of an alternative over other one
as a whole. However, this should be evaluated according to
different criteria. For instance, to evaluate the best library
among a group of them, several criteria as ‘‘library mate-
rials’’ or ‘‘community space for group study and learning’’
should be considered [16]. In addition, it must be considered
that each decisionmaker participating in the decision problem
could play a different role, that is, some decision makers
should be more influential than others in some criteria as
their knowledge degree, experience, and relevance, could
be different among them. As a consequence, it cannot be
supposed that each decision maker has the same importance
concerning the decision being adopted. Continuing with the
above example, the evaluations given by the professors on
‘‘community space for group study and learning’’ should be
less relevant than the opinions given by the students because
the students usually spend more time in the community space
than the professors.

In this study, we aim to present a new approach modeling
and supporting GDM processes in which linguistic informa-
tion is employed. This new approach is able to deal with
GDM scenarios in which different criteria are taken into
account to evaluate the alternatives considered to solve the
problem. In addition, to model GDM processes in a more
realistic way, this approach is able to deal with heterogeneous
contexts [17] from two points of view: (i) the criteria consid-
ered to assess the alternatives can have different importance
weights, and (ii) each decision maker may have a different
importance weight for each criterion. This new approach is
structured into the following three stages:
• The first stage is devoted to gathering the linguis-
tic pairwise comparisons expressed by the decision
makers. In particular, the linguistic pairwise com-
parisons are modeled through linguistic preference
relations [8].

• The second stage is vital to produce the ranking of
the alternatives. This stage converts the linguistic val-
ues to formal constructs of information granules via
an optimization process in which two optimization cri-
teria are maximized. In particular, the linguistic val-
ues are converted to meaningful intervals so that the
final solution is that of highest consensus [18]–[20]
and consistency [21], two important aspects that must

be considered in GDM scenarios. To address this
optimization process, we make use of the particle
swarm optimization (PSO) algorithm [22] because it
has been proved as a viable technique to solve similar
problems [12]–[14].

• The third, and final, stage consists in obtaining the final
ranking of alternatives by considering the information
contained in the linguistic preference relations (it is usu-
ally called selection process [23]). It takes into account
that the criteria have different importance weights and
that each decision maker has a different importance
weight for each criterion.

This study is structured into five sections. In Section II,
we recall in a concise way the granulation process of linguis-
tic information, the PSO algorithm, and some aggregation
operators. Section III focuses on the core part of this study,
that is, the novel approach modeling and supporting GDM
processes defined in multi-criteria and linguistic contexts.
Section IV illustrates the proposed approach and analyzes
its results. In Section V, we cover future research and main
conclusions.

II. PRELIMINARIES
We start this section with a brief introduction to the granu-
lation process of the linguistic information. Next, we recall
some basic concepts of the PSO algorithm and, finally,
we describe some aggregation operators.

A. GRANULATION OF LINGUISTIC INFORMATION
As aforementioned, linguistic values from a linguistic term
set, S = {s1, s2, . . . , sg} (being g its granularity [3]), are used
for evaluating the degree of preference between alternatives if
a domain of linguistic information is assumed. In this setting,
a linear order ≺ between the linguistic values is generally
supposed in which ∀si, sj ∈ S, if si ≺ sj (j > i), then sj
indicates a higher preference degree than si. For instance, let
us suppose a linguistic term set S formed by these linguistic
values: s1 = ‘‘Much Worse’’ (MW), s2 = ‘‘Worse’’ (W),
s3 = ‘‘Equal’’ (E), s4 = ‘‘Better’’ (B), and s5 = ‘‘Much
Better’’ (MB). The granularity g of this linguistic term set is
five, and ‘‘Much Better’’ indicates a higher preference degree
than ‘‘Equal’’.

The linguistic values themselves are not operational, which
means that no further processing may be performed. There-
fore, the linguistic values require a granulation [10], [24], that
is, a process of forming them into information granules. For
example, and just to refer to some options, shadowed sets,
rough sets, intervals, or fuzzy sets, may be considered as
formalisms of information granulation [25].

To arrive at the operational version of the linguistic values
as information granules, an optimization process may be for-
mulated to optimize an optimization criterion. For example,
the consistency of individual decision makers was employed
as an optimization criterion in [14] and [12], whereas both the
consistency of individual decision makers and the consensus
among the group were employed in [13].
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B. PSO ALGORITHM
The PSO algorithm is a population based optimization
method introduced by Kennedy and Eberhart in 1995 [22].
The social behavior of a flock of birds or a school of fish
inspired them to develop this algorithm.

Let us suppose an only piece of food in a certain area and
a flock of birds randomly looking for it. The birds are aware
how far the piece of food is in each iteration, but they do not
know its location. Here, to locate the piece of food, the best
approach is to move behind the bird nearest to it.

PSO learns from the environment and employs that knowl-
edge to solve optimization problems. Here, a candidate solu-
tion represents a bird, called particle, in the problem space.
Each particle possesses a velocity directing its flying and a
fitness value that is assessed by the fitness function to be
optimized. Every particle flies through the search space by
moving behind the current optimum particles.

The PSO algorithm starts initializing in a randommanner a
collection (swarm) of m particles, which symbolize solutions
in the n-dimensional search space, and then explores for
optima in every new iteration of the algorithm. Each particle
i is composed of two n-dimensional vectors: (i) the velocity
vector vi = (vi,1, vi,2, . . . , vi,n), and (ii) the position vector
xi = (xi,1, xi,2, . . . , xi,n). In each iteration of the algorithm,
the particle’s velocity and position are updated based on two
best values: (i) the individual best fitness value the particle has
obtained up to this point, called ‘‘pbest’’, and (ii) the global
best fitness value achieved up to this point by any particle,
called ‘‘gbest’’. To control the velocity, the inertia weight
ω balancing the exploitation and exploration of the particles
was introduced by Shi and Eberhart [26]. A lower value of ω
speeds up the convergence to optima, and a higher value of ω
encourages exploration of the total search space.

In iteration t , after finding the two best values, the update
equations of the velocity and the position are [22], [27]:

vi,j(t + 1) = ω(t) · vi,j(t)+ c1 · r1,j · (x
pbest
i,j (t)− xi,j(t))

+ c2 · r2,j · (x
gbest
j (t)− xi,j(t)) (1)

xi,j(t + 1) = xi,j(t)+ vi,j(t + 1) (2)

where vi,j represents the velocity of the particle i in the jth
dimension, xi,j represents the position of the particle i in
the jth dimension, and i = 1, 2, . . . ,m, j = 1, 2, . . . , n,
being m the swarm size and n the dimension of the search
space. The vector xgbest = (xgbest1 , xgbest2 , . . . , xgbestn ) cor-
responds to the global best position of the particle that has
achieved the global best fitness value so far, and the vector
xpbesti = (xpbesti,1 , xpbesti,2 , . . . , xpbesti,n ) corresponds to the indi-
vidual best position achieved so far by the particle i. The
values r1,j and r2,j are two random values regenerated for each
iteration from the uniform distribution on the unit interval.
The value c1 is the cognitive coefficient affecting the step
size the particle takes in the direction of its individual best
position, whereas the value c2 is the social coefficient rep-
resenting the step size the particle takes in the direction of
the global best position the swarm has achieved up until now.

Finally, the decrease ofω ensures the ability of a strong global
exploration at the initial iterations of the search process and
the ability of a strong local exploitation at the last iterations.
Therefore, its value is usually decreased linearly according to:

ω(t) = (ωstart − ωend ) ·
tmax − t
tmax

+ ωend (3)

where ωstart is the initial value of ω and ωend is its final value,
the current iteration number and the maximum iteration num-
ber are represented by t and tmax , respectively, and ω(t) is the
value of ω in the current iteration.
Among the advantages of the PSO algorithm we can men-

tion that there are few parameters to adjust and its ease of
implementation [27].

C. AGGREGATION
For all types of knowledge-based systems, fusion and aggre-
gation of information are fundamental matters of interest,
in particular, for GDM. Aggregation has for purpose, from
a general perspective, the concurrent usage of various pieces
of information (obtained from different sources) so as to
come to a decision or a conclusion. To perform an intelligent
aggregation, numerical aggregation operators are employed,
which are mathematical objects having the role of reducing a
collection of numbers to an only significant one.

As GDM consists in expressing and fusing evaluations
associated with some predetermined alternatives in order to
rank them, aggregation operators are required for fusing the
evaluations. Therefore, we recall two families of aggregation
operators due to the fact that they are used by our approach.

1) ORDERED WEIGHTED AVERAGING OPERATORS
The family of the Ordered Weighted Averaging (OWA) oper-
ators was at first introduced by Yager to make available a
means to aggregate assessments related to the satisfaction of
multiple criteria. It unifies in one operator the disjunctive and
conjunctive behavior.
Definition 1 [28]: A mapping φ from Rn

→ R is an
OWA operator of dimension n if, related to φ, there exists a
weighting vector w = (w1,w2, . . . ,wn) such that wi ∈ [0, 1],∑n

i=1 wi = 1, and where:

φ(a1, a2, . . . , an) =
n∑
j=1

wj · bj (4)

being bj the jth largest component in the collection
a1, a2, . . . , an.
The OWA operators make available a parametric family

of aggregation operators, including many of the well-known
operators such as the median, the minimum, the arithmetic
mean, and the maximum, which are obtained by choosing
appropriate weights [29]. In fact, one issue of considerable
interest related to the use of these operators is the develop-
ment of an appropriate methodology for the derivation of the
weights used in the OWA aggregation [28]–[31].

One approach to do so is by drawing upon the linguistic
quantifiers proposed by Zadeh [32] and the application of
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this idea to multi-criteria decision making [28], [33]. OWA
operators play a fundamental role in modeling linguistic
quantifiers such as ‘‘most’’, ‘‘almost all’’, ‘‘few’’, or ‘‘nearly
half’’, which are modeled by the weighting vector w. On the
basis of this kind of quantifiers, Yager proposed to compute
the weights using:

wi = Q
(
i
n

)
− Q

(
i− 1
n

)
, i = 1, . . . , n (5)

where Q is the linguistic quantifier being
modeled [28]–[31].

If the weights associated with the OWA operator are
determined by using this approach, this is represented
by φQ.

2) INDUCED WEIGHTED AVERAGING OPERATORS
A family of aggregation operators more general than the
OWA operators is that of the Induced Ordered Weighted
Averaging (IOWA) operators. The arguments taken by these
operators are pairs, called OWA pairs, in which the first
components bring about an arrangement of the second com-
ponents that are then aggregated.
Definition 2 [34]: Amapping8 fromRn

×Rn
→ R is an

IOWA operator of dimension n if, related to 8, there exists a
weighting vectorw = (w1,w2, . . . ,wn), such thatwi ∈ [0, 1],∑n

i=1 wi = 1, and where:

8(〈u1, a1〉, 〈u1, a2〉, . . . , 〈un, an〉) =
n∑
j=1

wj · bj (6)

being bj the ai component of the OWA pair 〈ui, ai〉 that has
the jth largest ui value. Due to the role of the components of
the OWA pairs, ai is known as the argument variable and ui
is known as the order inducing variable.

The same approach based on linguistic quantifiers can be
also applied to generate the weights related to the IOWA
operator, which is represented by 8Q.

III. A MULTI-CRITERIA GDM APPROACH IN LINGUISTIC
CONTEXTS
In this section, we introduce a novel approach modeling
and supporting GDM processes defined in multi-criteria and
linguistic contexts.

A multi-criteria GDM problem can be formalized as one
where a collection of n alternatives, A = {a1, a2, . . . , an},
is evaluated by a group of m decision makers,
DM = {dm1, dm2, . . . , dmm}, who are taking into account
q criteria, C = {c1, c2, . . . , cq}, to arrive at a ranking
of the alternatives as possible solutions to the problem
under study [35]–[37]. In a linguistic context, the evaluations
are modeled via linguistic values from a linguistic term
set [3], [38].

To allow the modeling of real world problems in
a more realistic way, we consider that each criterion,
ck (k = 1, . . . , q), has an importance weight, αk , and each
decision maker, dmh (h = 1, . . . ,m), has a different impor-
tance weight, βhk , for each criterion, ck (k = 1, . . . , q).

This is done by representing the importance weights as lin-
guistic values. In particular, we make use of three different
linguistic term sets, one to represent the decision makers’
evaluations, S1, one to represent the importance of the crite-
ria, S2, and one to represent the decision maker’s importance
for each criterion, S3. In addition, both the semantics and the
number of the linguistic values can be different for each one
of these three linguistic term sets.

In particular, the proposed approach carries out its activity
in three stages that are elaborated on in the next subsections:
(i) articulation of evaluations, (ii) granulation of the linguistic
values, and (iii) selection process.

A. ARTICULATION OF EVALUATIONS
The first stage is devoted to gathering the evaluations artic-
ulated by the decision makers. Pairwise comparisons, util-
ity values, or preference orderings, are usually employed to
articulate evaluations in GDM [39]. In [7], the author ana-
lyzed different preference elicitation methods and came to
the conclusion that a pairwise comparison is more accurate
than a nonpairwise one (for example, a utility value or a
preference ordering). Therefore, pairwise comparisons are
assumed here.

In a pairwise comparison between alternatives: (i) the deci-
sion maker cannot compare the alternatives, (ii) the decision
maker treats the alternatives as indifferent, or (iii) the decision
maker selects one alternative to the other. Two mathematical
approaches founded on the concept of a preference relation,
a structure of preference on the collection of alternatives, have
been proposed to model these situations. First, a preference
relation can be determined for each one of the above three
states. Second, an only one preference relation can integrate
the above three states [40]. The last one has been widely used
in GDM and, therefore, this study deals with this kind of
preference relations.
Definition 3: A preference relation PR on a collection of

alternatives A = {a1, a2, . . . , an} is characterized by a func-
tion µPR : A×A→ D, where D is the representation domain
of preference degrees.

A preference relation PR is generally modeled by a n × n
matrix PR = (prij). In this representation, the degree in which
ai is preferred to aj is represented by prij = µPR(ai, aj),
and the elements of the principal diagonal, that is, prii, are
commonly written as ‘-’ because they are not important in
this context [41]. According to the representation domain of
preference degrees D, there exist several kinds of prefer-
ence relations (refer to [8] for an exhaustive survey). Here,
we make use of linguistic preference relations [42] due to the
fact that we handle linguistic information.

In this stage, the linguistic term set S1 that contains the
linguistic values used to articulate the evaluations is provided
to the group of decision makers prior to making any evalua-
tion. Then, each decision maker dmh (h = 1, . . . ,m) offers
a linguistic preference relation PRhk for each criterion ck

(k = 1, . . . , q).
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B. GRANULATION OF THE LINGUISTIC VALUES
Prior to carrying out the selection process, the linguistic
values that come from the linguistic preference relations must
be made operational via a granulation process. This second
stage is devoted to do this.

The granular definition of the linguistic values is related
to the realization of a family of information granules. In this
study, similar to the approaches presented in [12]–[14],
the granulation process is formulated in the language of
intervals. It means that the granules of information come
in the form of intervals over the unit interval. As a con-
sequence, if we consider a linguistic term set consist-
ing of g linguistic values, the vector of cut-off points,
p = (p1, p2, . . . , pg−1) forms and completely defines a fam-
ily of intervals, I1, I2, . . . , Ig, where 0 < p1 < p2 < . . . <

pg−1 < 1 and I1 = [0, p1), I2 = [p1, p2), . . ., Ij = [pj−1, pj),
. . ., Ig = [pg−1, 1].

This process presents the following three important
characteristics:
• It retains the semantics of the linguistic values dis-
tributed in the granulation.

• The allocation of the corresponding intervals on the
scale is not uniform, that is, the mapping is not
linear.

• It arrives at the operational version of the linguistic val-
ues modeled as intervals by formulating an optimization
task.

Next, we introduce the optimization criterion and the opti-
mization process of this optimization criterion.

1) OPTIMIZATION CRITERION
In the setting of GDM, both the consensus and the consistency
play an important role:
• To adopt a consensus decision by the group of deci-
sion makers is a major objective in GDM. If a con-
sensual decision is not reached, some decision makers
could think their evaluations have not been taken into
account in a proper way and they might refuse the final
decision. Therefore, the consensus has obtained a great
attention in the development of GDM approaches (refer
to [19], [43], and [44], for a better understanding of the
meaning of consensus).

• Pairwise comparisons have as a principal advantage
that of paying attention on merely two alternatives at
once. This helps decision makers to verbalize evalua-
tions in a better way [7]. However, pairwise comparisons
generate more information than is actually needed and
limit decision makers in the global understanding of
the alternatives. Consequently, the evaluations could be
inconsistent, leading to illogical decisions. Therefore,
it is very important to analyze conditions satisfying
consistency [21].

Given these two facts, the higher the consistency and the
consensus achieved, the better the decision made. As a result,
a weighted averaging of the consensus and the consistency is

used as optimization criterion:

O = O1 · γ + (1− γ ) · O2 (7)

where γ represents a parameter located in the unit
interval [45], which establishes a tradeoff between the con-
sensus, O1, and the consistency, O2.

2) OPTIMIZATION PROCESS
Considering the form of the optimization criterion, we may
take into account several options to optimize it. However,
as the PSO [22] has been proved as a good choice to solve this
kind of optimization task [12]–[14], it is also used here. In this
algorithm, as it is known, the two most essential parts are the
definition of the particle and the fitness function employed to
measure the quality of the particle.

Concerning the definition of the particle, we model it by
means of a vector of cut-off points located in the unit interval,
that is, the cut-off points specify the intervals into which the
linguistic values are transformed. As an illustration, let us
suppose the decision makers’ evaluations are represented by
the linguistic term set S1 = {s11 = ‘‘Much Worse’’ (MW1),
s12 = ‘‘Worse’’ (W1), s13 = ‘‘Equal’’ (E1), s14 = ‘‘Better’’
(B1), s15 = ‘‘Much Better’’ (MB1)}, the importance of the
criteria are represented by the linguistic term set S2 = {s21 =
‘‘Less Important’’ (LI2), s22 = ‘‘Important’’ (I2), s23 = ‘‘Very
Important’’ (VI2)}, and the decision makers’ importance for
each criterion are represented by the linguistic term set S3 =
{s31 = ‘‘Less Important’’ (LI3), s32 = ‘‘Important’’ (I3),
s33 = ‘‘Very Important’’ (VI3)}. Then, the mapping formed is:
MW1: [0, p11), W

1: [p11, p
1
2), E

1: [p12, p
1
3), B

1: [p13, p
1
4), MB1:

[p14, 1], LI
2: [0, p21), I

2: [p21, p
2
2), VI

2: [p22, 1], LI
3: [0, p31),

I3: [p31, p
3
2), and VI3: [p32, 1], being p11, p

1
2, p

1
3, p

1
4, p

2
1, p

2
2,

p31, and p32, the cut-off points that define the vector p =
(p11, p

1
2, p

1
3, p

1
4, p

2
1, p

2
2, p

3
1, p

3
2), which models each particle in

this example. If the granularities of S1, S2, and S3, are g1, g2,
and g3, respectively, each particle is composed of (g1 + g2 +
g3 − 3) cut-off points.
Concerning the definition of the fitness function, we need

to consider that intervals form the entries of the linguis-
tic preference relations. However, the fitness function must
return numeric values. That is, we have intervals as infor-
mation granules that represent the linguistic values of the
linguistic preference relations. Therefore, we form the entries
by randomly producing numeric values coming from the
intervals. We do this by sampling the linguistic preference
relations PRhk (h = 1, . . . ,m; k = 1, . . . , q) to generate
the preference relations Rhk (h = 1, . . . ,m; k = 1, . . . , q),
which are composed of entries whose values are drawn from
the uniform distribution defined over the interval associated
with the linguistic value that corresponds to each particular
entry. As an illustration, let us suppose that, based on the
preference degree expressed by the decision maker dm1,
the altenative a4 is ‘‘Better’’ than the alternative a2 over
the criterion c3. According to this evaluation, the linguistic
value associated with the entry pr1342 of PR13 is ‘‘Better’’.
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Assuming that the interval related to ‘‘Better’’ is [0.71, 0.80),
the entry of R13, r1342 , is calculated by the uniform distribution
defined over [0.71, 0.80). Similarly, the importance weights,
αk (k = 1, . . . , q) and βhk (h = 1, . . . ,m; k = 1, . . . , q), are
also sampled to generate the weights uk and vhk , respectively,
which are represented by numbers drawn from the uniform
distribution defined over the corresponding interval related
to the linguistic value representing the importance weight.

In summary, each linguistic preference relation and each
importance weight are sampled N times and the average of
the values assumed by the optimization criterion O over each
collection of N samples determines the fitness function f :

f =
1
N

N∑
i=1

Oi (8)

In each sample i, the optimization criterionOi is calculated
using (7). Therefore, we must describe how to compute the
consensus,O1, and the consistency,O2. Because the entries of
the preference relations, PRhk (h = 1, . . . ,m; k = 1, . . . , q),
contain values belonging to the closed interval [0, 1], we can
adapt the approaches existing in the literature to measure
the consensus and the consistency when fuzzy preference
relations are used.

On the one hand, we propose a new methodology, which is
based on the coincidence concept [46] and the three levels of
a preference relation [47], to compute O1 in a multi-criteria
GDM setting. It is as follows:
• First, we determine a similarity matrix SMhlk

= (smhlkij )
for each critetion ck and for each pair of decision makers
dmh and dml :

smhlkij = 1− |rhkij − r
lk
ij | (9)

• Second, for each criterion ck , we aggregate all the sim-
ilatity matrices SMhlk to determine a consensus matrix
CM k

= (cmkij):

cmkij =
1

(m− 1) · (m− 2)

m−1∑
h=1

m∑
l=h+1

smhlkij (10)

• Third, for each criterion ck , we compute three consen-
sus measures related to the three levels of a preference
relation:
– Consensus degree associated with pairs of alterna-

tives, cpkij, evaluating the consensus achieved on a
given pair of alternatives (ai, aj):

cpkij = cmkij (11)

– Consensus degree associated with alternatives, caki ,
evaluating the consensus achieved on a given alter-
native ai:

caki =
1

2 · (n− 1)

n∑
j=1; j 6=i

(cpkij + cp
k
ji) (12)

– Consensus degree associated with the relation, crk ,
evaluating the global consensus achieved on a given
criterion ck :

crk =
1
n

n∑
i=1

caki (13)

• Fourth, the consensus, O1, is computed as the weighted
average of the consensus degrees on the criteria:

O1 =
1∑q

k=1 u
k

q∑
k=1

uk · crk (14)

On the other hand, O2 is computed as the average of the
consistency degrees related to each decision maker:

O2 =
1
m

m∑
h=1

cdh (15)

being cdh the consistency degree related to the decision
maker dmh that is computed as the weighted average of the
consistency degrees related to the decision maker for each
criterion ck :

cdh =
1∑q

k=1 v
hk

q∑
k=1

vhk · cdhk (16)

being cdhk the consistency degree related to the decision
maker dmh for the criterion ck , which is computed by using
the methodology introduced by Herrera-Viedma et al. (refer
to [23] for a detailed description of the procedure).

C. SELECTION PROCESS
The third stage is devoted to obtaining the ranking of
alternatives via a selection process that is structured into
two steps [23]: (i) aggregation, and (ii) exploitation. Next,
we elaborate on both steps.

1) AGGREGATION
This step obtains a collective preference relation summariz-
ing the evaluations verbalized by the decision makers. To do
so, it must take into account that the criteria have different
importance weights and that the decision makers also have
different importance weights for each criterion, which can be
modeled by an IOWA operator [34]. Again, as each linguistic
value is formed as an interval, the entries of the linguistic
preference relations, PRhk (h = 1, . . . ,m; k = 1, . . . , q),
the importance weights associated with the criteria,
αk (k = 1, . . . , q), and the importance weights associated
with each decision maker for each criterion, βhk (h =
1, . . . ,m; k = 1, . . . , q), are sampled N times. Then,
the average is used as value for the associated entry in
the preference relations, R̄hk = (r̄hkij ) (h = 1, . . . ,m;
k = 1, . . . , q), for the importance weights associated with the
criteria, ūk (k = 1, . . . , q), and for the importance weights
associated with each decision maker for each criterion,
v̄hk (h = 1, . . . ,m; k = 1, . . . , q).

VOLUME 7, 2019 54675



E. A. Callejas et al.: GDM Based on a Framework of Granular Computing for Multi-Criteria and Linguistic Contexts

The process of obtaining the collective preference relation
is as follows:
• For each criterion, ck , a collective preference relation,
R̄ck = (r̄ckij ), is obtained by using an IOWA operator
in which the importance weight associated with each
decision maker for the criterion ck is the order inducing
variable:

r̄ckij = 8Q(〈v̄1k , r̄1kij 〉, 〈v̄
2k , r̄2kij 〉, . . . , 〈v̄

mk , r̄mkij 〉) (17)

• The final collective preference relation, R̄c = (r̄cij),
is computed by using an IOWA operator in which the
importance weights associated with the criteria are the
order inducing variable:

r̄cij = 8Q(〈ū1, r̄c1ij 〉, 〈ū
2, r̄c2ij 〉, . . . , 〈ū

k , r̄ckij 〉) (18)

2) EXPLOITATION
This step, using the information contained in R̄c, ranks the
alternatives in order to get the best one to solve the problem.
To do so, we make use of two well-known choice degrees of
alternatives [23], which are based on OWA operators and the
concept of fuzzy majority:
• The quantifier-guided dominance degree,QGDDi, mea-
suring the dominance that the alternative ai has over the
reamining ones in a fuzzy majority sense:

QGDDi = φQ(r̄ci1, r̄
c
i2, . . . , r̄

c
i(i−1), r̄

c
i(i+1), . . . , r̄

c
in)

(19)

• The quantifier-guided nondominance degree, QGNDDi,
measuring the degree in which the alternative ai is not
dominated by a fuzzy majority of the reamining ones:

QGNDDi = φQ(1− r̄s1i, 1− r̄
s
2i, . . . , 1− r̄

s
(i−1)i,

1− r̄s(i+1)i, . . . , 1− r̄
s
ni) (20)

where the degree in which the alternative ai is strictly
dominanted by the alternative aj is represented by
r̄sji = max{r̄cji − r̄

c
ij, 0}.

In particular, the selection process applies these two choice
degrees of alternatives as follows:
• First, we obtain the following two collections of alter-
natives by applying each choice degree of alternatives
to A:

AQGDD =
{
ai ∈ A |QGDDi = sup

aj∈A
QGDDj

}
(21)

AQGNDD =
{
ai ∈ A |QGNDDi = sup

aj∈A
QGNDDj

}
(22)

• Second, we obtain a new collection of alternatives as the
intersection of these two collection of the alternatives:

AQG = AQGDD
⋂

AGQNDD (23)

If AQG 6= ∅, then this is the solution set of alternatives.
Otherwise, continue.

• Third, if #(AQGDD) = 1, then this is the solution set
of alternatives. Otherwise, we select the alternative of
this set with the best quantified-guided nondominance
degree.

IV. ILLUSTRATIVE EXAMPLE
This section aims to illustrate the proposal presented in this
study and to discuss its results. Let us suppose that a group of
four decision makersDM = {dm1, dm2, dm3, dm4

}, in which
the decision makers, dm1 and dm2, are students, the decision
maker, dm3, is a professor, and the decision maker, dm4,
is a staff member, evaluate five academic libraries at the
University of Granada:
• Academic library at the School of Architecture (a1).
• Academic library at the Faculty of Sciences (a2).
• Academic library at the Faculty of Law (a3).
• Academic library at the Faculty of Medicine (a4).
• Academic library at the Faculty of Psychology (a5).
The decision makers evaluate the five academic libraries

according to three criteria:
• The library space inspires study and learning (c1).
• Collections of electronic journals (c2).
• Willingness to help users (c3).
We also suppose that the decision makers’ evaluations are

represented by the linguistic term set S1 = {s11 = ‘‘Much
Worse’’ (MW1), s12 = ‘‘Worse’’ (W1), s13 = ‘‘Equal’’ (E1),
s14 = ‘‘Better’’ (B1), s15 = ‘‘Much Better’’ (MB1)}; the
importance of the criteria is represented by the linguistic term
set S2 = {s21 = ‘‘Less Important’’ (LI2), s22 = ‘‘Impor-
tant’’ (I2), s23 = ‘‘Very Important’’ (VI2)}; and the decision
makers’ importance for each criterion is represented by the
linguistic term set S3 = {s31 = ‘‘Less Important’’ (LI3),
s32 = ‘‘Important’’ (I3), s33 = ‘‘Very Important’’ (VI3)}.
In addition, the importance weights associated with the cri-
teria are: α1 = I2, α2 = LI2, and α3 = VI2; the impor-
tance weights associated with the decision maker dm1 are:
β11 = VI3, β12 = LI3, and β13 = VI3; the impor-
tance weights associated with the decision maker dm2 are:
β21 = VI3, β22 = LI3, and β23 = VI3; the impor-
tance weights associated with the decision maker dm3 are:
β31 = LI3, β32 = VI3, and β33 = I3; and the impor-
tance weights associated with the decision maker dm4 are:
β41 = I3, β42 = I3, and β43 = LI3.
In the following three subsections, we provide the param-

eter settings of the PSO algorithm, we show the results
achieved by our proposal, and we analyze its performance.

A. PARAMETER SETTINGS
The parameters of the PSO algorithm, as a consequence of an
intense experimentation, were set as follows:
• The swarm was composed of 200 particles. Similar
results were reached in different runs of the PSO. There-
fore, this size was found to produce steady results.

• The maximum iteration number was set to 400 because,
after this number of iterations, the same values reported
by the fitness function were observed.
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• c1 and c2 were set to 2 as this value is usually used in the
existing literature [48].

• ω was set to decrease linearly from 0.9 to 0.4 [49]:

ω(t) = (0.9− 0.4) ·
tmax − t
tmax

+ 0.4 (24)

where t and tmax represent the current iteration number
and the maximum iteration number, respectively.

• Because we want to give more importance to the con-
sensus, γ was set to 0.75 in (7).

• In (8), N was set to 500 as similar results were reported
by higher values of N .

B. RESOLUTION PROCESS
The decision makers must compare the possible alternatives
according to three criteria. Therefore, each decision maker
must provide three linguistic preference relations:

PR11 =


− W E E B
B − B B E
E W − B W
E W W − MW
MW E B MB −



PR12 =


− B B B W
MW − MB W B
E W − MB MW
E E W − E
MB W B E −



PR13 =


− W W B B
E − E B W
W E − E W
W B MB − B
MW MB W MW −



PR21 =


− E W MB E
E − MB MB MW
B MW − E MB
MW MW E − MW
E B MW MB −



PR22 =


− MB MB B W
W − B E B
W MW − B W
W E W − B
MB MW MB MW −



PR23 =


− MW MW MB B
E − B E E
B W − MW B
MW E B − E
MW E B E −



PR31 =


− MW B W MB
B − E W W
W E − E MW
B B E − B
MW B MB W −



FIGURE 1. Plot of the values that the PSO algorithm returns.

PR32 =


− W W B B
MB − W W E
MB B − W B
E B MB − B
W E MW B −



PR33 =


− E E W B
E − MW MW E
E W − MB MB
B B B − W
MW E W B −



PR41 =


− W MB MB B
B − MW MW E
MW MB − B MW
MW MB W − MB
W E B MW −



PR42 =


− E E W W
E − E B W
E E − E E
MB MW E − B
MB B E W −



PR43 =


− MB MB W MB
W − E W W
MW E − B E
E MB W − MB
W B E W −


Once the four decision makers have communicated the lin-

guistic preference relations, we run the approach introduced
in Section III-B to make operational the linguistic values.
Fig. 1 displays the performance of the PSO with regard to
the values that the fitness function reports in consecutive
iterations. The PSO returns 0.826 as the best value of the
optimization criterion, being 0.005 its standard deviation.
The vector of cut-off points reported by the PSO is

p = (0.56, 0.64, 0.72, 0.80, 0.06, 0.14, 0.62, 0.88). Accord-
ing to this vector of cut-off points, the intervals corresponding
to the linguistic values of the sets S1, S2, and S3, are:
• MW1: [0, 0.56), W1: [0.56, 0.64), E1: [0.64, 0.72),
B1: [0.72, 0.80), and MB1: [0.80, 1].

• LI2: [0, 0.06), I2: [0.06, 0.14), and VI2: [0.14, 1].
• LI3: [0, 0.62), I3: [0.62, 0.88), and VI3: [0.88, 1].
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Once we have obtained the intervals associated with the
linguistic values, the last step consists in ranking the alterna-
tives by means of the selection process.

First, the preference relations R̄hk = (r̄hkij ) (h =

1, . . . , 4; k = 1, . . . , 3), the importance weights associated
with the criteria, ūk (k = 1, . . . , 3), and the importance
weights associated with each decision maker for each crite-
rion, v̄hk (h = 1, . . . , 4; k = 1, . . . , 3), are obtained:

R̄11 =


− 0.60 0.68 0.68 0.76
0.76 − 0.76 0.76 0.68
0.68 0.60 − 0.76 0.60
0.68 0.60 0.60 − 0.28
0.28 0.68 0.76 0.90 −



R̄12 =


− 0.76 0.76 0.76 0.60
0.28 − 0.90 0.60 0.76
0.68 0.60 − 0.90 0.28
0.68 0.68 0.60 − 0.68
0.90 0.60 0.76 0.68 −



R̄13 =


− 0.28 0.28 0.76 0.76
0.68 − 0.68 0.76 0.60
0.60 0.68 − 0.68 0.60
0.60 0.76 0.90 − 0.76
0.28 0.90 0.60 0.28 −



R̄21 =


− 0.68 0.60 0.90 0.68
0.68 − 0.90 0.90 0.28
0.68 0.28 − 0.68 0.90
0.28 0.28 0.68 − 0.28
0.68 0.76 0.28 0.90 −



R̄22 =


− 0.90 0.90 0.76 0.60
0.60 − 0.76 0.68 0.76
0.60 0.28 − 0.76 0.60
0.60 0.68 0.60 − 0.76
0.90 0.28 0.90 0.28 −



R̄23 =


− 0.28 0.28 0.90 0.76
0.68 − 0.76 0.68 0.68
0.76 0.60 − 0.28 0.76
0.28 0.68 0.76 − 0.68
0.28 0.68 0.76 0.68 −



R̄31 =


− 0.28 0.76 0.60 0.90
0.76 − 0.68 0.60 0.60
0.60 0.68 − 0.68 0.28
0.76 0.76 0.68 − 0.76
0.28 0.76 0.90 0.60 −



R̄32 =


− 0.60 0.60 0.76 0.76
0.90 − 0.60 0.60 0.68
0.90 0.76 − 0.60 0.76
0.60 0.76 0.90 − 0.76
0.60 0.68 0.28 0.76 −



R̄33 =


− 0.68 0.68 0.60 0.76
0.68 − 0.28 0.28 0.68
0.68 0.60 − 0.90 0.90
0.76 0.76 0.76 − 0.60
0.28 0.68 0.60 0.76 −



R̄41 =


− 0.60 0.90 0.90 0.76
0.76 − 0.28 0.28 0.68
0.28 0.90 − 0.76 0.28
0.28 0.90 0.60 − 0.90
0.60 0.68 0.76 0.28 −



R̄42 =


− 0.68 0.68 0.60 0.60
0.68 − 0.68 0.76 0.60
0.68 0.68 − 0.68 0.68
0.90 0.28 0.68 − 0.76
0.90 0.76 0.68 0.60 −



R̄43 =


− 0.90 0.90 0.60 0.90
0.60 − 0.68 0.60 0.60
0.28 0.60 − 0.76 0.68
0.68 0.90 0.68 − 0.90
0.60 0.76 0.68 0.60 −


ū1 = 0.10 ū2 = 0.03 ū3 = 0.57

v̄11 = 0.94 v̄12 = 0.31 v̄13 = 0.94

v̄21 = 0.94 v̄22 = 0.31 v̄23 = 0.94

v̄31 = 0.31 v̄32 = 0.94 v̄33 = 0.75

v̄41 = 0.75 v̄42 = 0.75 v̄43 = 0.31

Second, the collective preference relation R̄c1 for the cri-
terion c1 is obtained by aggregating the preference relations
R̄11, R̄21, R̄31, and R̄41. This aggregation is carried out by
means of the IOWA operator in which the linguistic quan-
tifier ‘‘most’’ defined as Q(r) = r1/2 is used to generate
the weights associated with the IOWA operator. The result
obtained is:

R̄c1 =


− 0.57 0.71 0.75 0.76
0.74 − 0.70 0.70 0.54
0.61 0.59 − 0.73 0.57
0.54 0.60 0.63 − 0.44
0.41 0.71 0.68 0.76 −


The same procedure is applied to obtain the collective

preference relations R̄c2 and R̄c3 for the criteria c2 and c3,
respectively:

R̄c2 =


− 0.68 0.68 0.73 0.68
0.72 − 0.69 0.64 0.69
0.78 0.65 − 0.69 0.65
0.68 0.64 0.77 − 0.75
0.75 0.63 0.52 0.65 −



R̄c3 =


− 0.42 0.42 0.74 0.78
0.67 − 0.63 0.65 0.63
0.60 0.64 − 0.64 0.69
0.57 0.76 0.82 − 0.74
0.32 0.80 0.64 0.48 −


Third, the final collective preference relation R̄c is obtained

by aggregating R̄c1, R̄c2, and R̄c3, using again the IOWA
operator in which the same linguistic quantifier ‘‘most’’ is
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FIGURE 2. Plots of O1 and O2 for chosen values of γ . (a) O1 for chosen values of γ . (b) O2 for chosen values of γ .

employed to produce the weights:

R̄c =


− 0.50 0.54 0.74 0.76
0.70 − 0.66 0.66 0.62
0.64 0.63 − 0.67 0.65
0.58 0.70 0.77 − 0.67
0.42 0.75 0.62 0.58 −


Fourth, the quantifier-guided dominance degrees and the

quantifier-guided nondominance degrees are calculated by
means of the OWA operator that makes use of the same
linguistic quantifier ‘‘most’’ to generate its weights:

QGDD1 = 0.69 QGDD2 = 0.67

QGDD3 = 0.65 QGDD4 = 0.71

QGDD5 = 0.65

QGNDD1 = 0.96 QGNDD2 = 0.97

QGNDD3 = 0.98 QGNDD4 = 0.98

QGNDD5 = 0.93

Therefore, AQGDD = {a4} and AQGNDD = {a3, a4}, being
AQG = {a4}. According to it, the academic library at the
Faculty of Medicine (a4) is the best one.

C. DISCUSSION
A comparison of the results generated by a GDM approach
with others is not a simple task. Frequently, the linguistic
values are represented in a different way or the context
in which these approaches are defined is also different.
Therefore, a quantitative comparison would not be mean-
ingful. However, as mentioned previously, the proposed
approach presents some important advantages concerning
other approaches:
• In comparison with the traditional CWW approaches

[3], [4], it makes operational the linguistic values via
information granulation so that their distribution and
semantics, in place of being defined a priori, are estab-
lished by an optimization process. This allows the for-
mation of linguistic values so that the solution to the
problem is that of highest consensus and consistency.

• It increases the flexibility and richness of the GDM
approaches based on granular computing [12]–[14] by
allowing to cope with multi-criteria contexts in which
each criterion has an importance weight and each deci-
sion maker has a different importance weight for each
criterion. Therefore, it allows to model GDM problems
in a more realistic way.

Anyway, with the intention of analyzing the performance
of the proposed approach, we consider an approach in which
the cut-off points are uniformly distributed over [0, 1], that is,
p = (0.20, 0.40, 0.60, 0.80, 0.33, 0.66, 0.33, 0.66). There-
fore, the intervals corresponding to the linguistic values of
the sets S1, S2, and S3, are:
• MW1: [0, 0.20), W1: [0.20, 0.40), E1: [0.40, 0.60), B1:
[0.60, 0.80), and MB1: [0.80, 1].

• LI2: [0, 0.33), I2: [0.33, 0.66), and VI2: [0.66, 1].
• LI3: [0, 0.33), I3: [0.33, 0.66), and VI3: [0.66, 1].
In this case, the optimization criterion takes a value

of 0.722, being 0.010 its standard deviation. If we compare
this value with the one reported by our proposal (0.826),
we note that the optimization criterion achieves now a lower
value.
We also analyze the impact of the values of γ stand-

ing in the optimization criterion O on the performance of
the proposed approach (see Fig. 2). The optimization pro-
cess focuses completely on the consistency when γ = 0,
and, therefore, a higher value of O2 is achieved, whereas it
achieves lower values when γ assumes nonzero values (see
Fig. 2b). This is not surprising as O is not O2 itself but O also
incorporates the effect of the consensus. In particular, when
γ = 1, the optimization process focuses exclusively on the
consensus and, therefore, higher values of O1 are achieved.
Different from O2, the higher the value of γ , the higher the
value of O1 (see Fig. 2a). This is expected because more
importance is given to the consensus.

V. CONCLUDING REMARKS AND FUTURE RESEARCH
We have presented an approach based on a framework
of granular computing to cope with GDM scenarios in
which linguistic values are used to evaluate the alternatives.
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Different from the existing approaches founded on granular
computing, it allows to deal with GDM scenarios in which
different criteria are considered to evaluate the alternatives
(multi-criteria contexts) and in which each criterion has an
importance weight and each decision maker has a different
importance weight for each criterion (heterogeneous con-
texts). We have shown that this proposal is able to formalize
the linguistic values as intervals so that the final solution
obtained is that of highest consistency and consensus.

We propose to continue this research in two directions.
First, we have considered a joint treatment of the linguis-
tic values, that is, the distribution and the semantics of the
linguistic values are the same for all the decision makers.
However, it should be considered that same words mean
different things to different people [50], [51], especially in
decision problems defined in scenarios like social networks,
in which thousands of users could be involved in the decision
problem and it is usual that the same word means a different
thing to different users [52]. Second, we have considered all
the decision makers employ the same linguistic term set.
However, multi-granular linguistic contexts should be also
considered [53], that is, scenarios in which the decision mak-
ers use different linguistic term sets.
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