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Large-signal model of 2DFETs: compact modeling of terminal
charges and intrinsic capacitances
Francisco Pasadas 1*, Enrique G. Marin 2,3, Alejandro Toral-Lopez 2,4, Francisco G. Ruiz 2, Andrés Godoy 2,4, Saungeun Park5,
Deji Akinwande5 and David Jiménez 1

We present a physics-based circuit-compatible model for double-gated two-dimensional semiconductor-based field-effect
transistors, which provides explicit expressions for the drain current, terminal charges, and intrinsic capacitances. The drain current
model is based on the drift-diffusion mechanism for the carrier transport and considers Fermi–Dirac statistics coupled with an
appropriate field-effect approach. The terminal charge and intrinsic capacitance models are calculated adopting a Ward–Dutton
linear charge partition scheme that guarantees charge conservation. It has been implemented in Verilog-A to make it compatible
with standard circuit simulators. In order to benchmark the proposed modeling framework we also present experimental DC and
high-frequency measurements of a purposely fabricated monolayer MoS2-FET showing excellent agreement between the model
and the experiment and thus demonstrating the capabilities of the combined approach to predict the performance of 2DFETs.
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INTRODUCTION
Since the emergence of graphene, over a surprisingly short period
of time, an entire new family of two-dimensional materials (2DMs)
has been discovered.1 Some of them are already used as channel
materials in FETs, being promising candidates to augment silicon
and III–V compound semiconductors via heterogeneous integra-
tion for advanced applications. In this context, the development of
electrical models for 2D semiconductor-based FETs (2DFETs) is
essential to: (1) interpret experimental results; (2) evaluate their
expected digital/RF performance; (3) benchmark against existing
technologies; and (4) eventually provide guidance for circuit
design and circuit-level simulations.
Several compact models for three-terminal FETs based on

graphene and related 2D materials (GRMs) have been recently
published encompassing both static and dynamic regimes.2–10 In
particular, Suryavanshi et al.2 proposed a semi-classical transport
approach for the drain current combining the intrinsic FET
behavior with models of the contact resistance, traps and
impurities, quantum capacitance, fringing fields, high-field velocity
saturation and self-heating. However, the dynamic regime is
described using a charge model derived for bulk MOSFETs11 that
fails to capture the specific physics of the 2D channel, since it
considers that the channel is always in a weak-inversion regime
and therefore the channel charge can be assumed to be linearly
distributed along the device. Wang et al.3 reported on a compact
model restricted to the static regime of graphene FETs and based
on the “virtual-source” approach, valid for both the saturation and
linear regions of device operation. Also based on the “virtual-
source” approach, Rakheja et al.4 studied quasi-ballistic graphene
FETs. Nevertheless, they also employed the approximation derived
for bulk MOSFETs11 for the dynamic regime description even
though the channel material considered is graphene. Jiménez
early developed a model describing the drain current for single
layer transition metal dichalcogenide (TMD) FETs based on surface

potential and drift-diffusion approaches but the dynamic behavior
of the TMD-FETs was not treated.5 Also based on surface potential
and drift-diffusion arguments, Parrish et al.6 presented a compact
model for graphene-based FETs for linear and non-linear circuits,
but the dynamic regime description was roughly estimated by
equally splitting the total gate capacitance between gate-drain
and gate-source capacitances. A charge-based compact model for
TMD-based FETs only valid for the static regime but simulta-
neously including interface traps, ambipolar current behavior, and
negative capacitance was proposed by Yadav et al.7 Taur et al.8

presented an analytic drain current model for short-channel
2DFETs combining a subthreshold current model based on the
solution to 2D Poisson’s equation and a drift-diffusion approach to
get an all-region static description. Rahman et al.9 discussed a
physics-based compact drain current model for monolayer TMD-
FETs considering drift-diffusion transport description and the
gradual channel approximation to analytically solve the Poisson’s
equation. Unfortunately, none of them faced the dynamic regime
operation. Finally, Gholipour et al.10 proposed a compact model
that combines both the drift-diffusion and the Landauer–Buttiker
approaches to properly describe the long- and short-channel FETs
in flexible electronics, respectively. As a key feature, the
mechanical bending is considered by linearly decreasing the
channel material bandgap with respect to the applied strain.
However, the capacitance model was roughly approximated by
considering that the top (back) gate-drain and top (back) gate-
source capacitances are just the geometrical top (back) gate
capacitance. In summary, up to date the dynamic description of
2DFETs has been either roughly approximated or not specifically
addressed for such devices. Our aim is to develop an accurate and
physics-based compact model of the terminal charges and
corresponding intrinsic capacitances of four-terminal (4T) 2DFETs
valid for all operation regimes. In doing so, we present such a
model together with the drain current equation, developed by
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some of us,12 based on drift-diffusion theory where the surface
potential is the key magnitude of the model. So that, the
combination of both approaches gives rise to a compact large-
signal model suitable for commercial TCAD tools employed in the
simulation of circuits based on 2DFETs. The model has been
shown to reproduce with good agreement DC and high-frequency
measurements of a fabricated n-type MoS2-based FET, and has
been used to predict the output transient of a three-stage ring
oscillator.

RESULTS
Large-signal model of four-terminal 2DFETs
We first deal with the development of the large-signal model of 4T
2DFETs by the sequential formulation of the electrostatics, the
drain current equation, the terminal charge model, and the
corresponding intrinsic capacitance description.
The cross-section of the considered dual-gated 2DFET is

depicted in Fig. 1a. For the sake of brevity, we derive here the
expressions for an n-type device (the extension to a p-type
transistor can be obtained straightforwardly). Provided that the
semiconductor bandgap is not too small, we can assume that
p(x)≪ n(x) in all regimes of operation, where p(x) and n(x) are the
hole and electron carrier densities, respectively. Upon application
of 1D Gauss’ law to the double-gate stack shown in Fig. 1b, the
electrostatics can be described using the equivalent circuit
depicted in Fig. 1c:

QnetðxÞ þ QitðxÞ ¼ �Ct Vg � Vg0 � VðxÞ þ VcðxÞ
� �� Cb Vb � Vb0 � VðxÞ þ VcðxÞð Þ;

(1)

where Qnet(x)= q(p(x) – n(x)) is the overall net mobile sheet charge
density and q is the elementary charge. Ct= ε0εt/tt (Cb= ε0εb/tb) is
the top (back) oxide capacitance per unit area where εt (εb) and tt
(tb) are the top (back) gate oxide relative permittivity and
thickness, respectively; and Vg – Vg0 (Vb – Vb0) is the overdrive
top (back) gate voltage. These latter quantities comprise work-
function differences between the gates and the 2D channel and
any possible additional charges due to impurities or doping. The
energy qVc(x)= EC(x)− EF(x) represents the shift of the quasi-Fermi
level with respect to the conduction band edge and –qV(x)= EF(x)
is the quasi-Fermi level along the channel. This latter quantity
must fulfill the boundary conditions: (1) V(x= 0)= Vs (source
voltage) at the source end; (2) V(x= L)= Vd (drain voltage) at the
drain end.
2D crystals are far from perfect and suffer from diverse non-

idealities. In particular, interface traps are unavoidable in FETs,
even for those processed by state-of-the-art CMOS technology,13

impacting negatively the performance of 2DFETs.14 Therefore, it is

mandatory to include them in order to achieve an accurate
predictive TCAD tool. For n-type devices, acceptor-like traps
(which are negatively charged when occupied by electrons and
are energetically located in the upper half of the bandgap15)
contribute the most to the device electrical characteristics.16

Assuming the traps are situated at an effective energy Eit = – qVit
below the conduction band, the occupied trap density can be written
as nit=Nit/(1+ exp(Vc− Vit/Vth)), where Nit is the effective trap
density considered to be a delta function in energy. The trap
charge density is then Qit= –qnit and the interface trap
capacitance Cit at the oxide–semiconductor interface (taken as a
combination from both interfaces of the ultra-thin 2D channel)
can be computed as:

Cit ¼ dQit

dVc
¼ qNit

2Vth

1

1þ cosh Vc � Vit
Vth

� � ; (2)

where Vth= kBT/q is the thermal voltage, kB is the Boltzmann
constant, and T is the temperature. The term Cit adds to the
quantum capacitance Cq, as shown in Fig. 1c.
We can, thus, find an expression to calculate the overall net

mobile sheet density assuming a parabolic dispersion relationship
modeled in the effective mass approximation and using
Fermi–Dirac statistics12:

QnetðxÞ ¼ �qnðxÞ ¼ �CdqVthu Vcð Þ; u Vcð Þ ¼ ln 1þ e�
Vc
Vth

� �
; (3)

where Cdq= q2D0 is defined as the degenerated-quantum
capacitance, which corresponds to the upper-limit achievable
when the 2D carrier density becomes heavily degenerated.17

D0= gK(m
K/2πħ2)+ gQ(m

Q/2πħ2)exp[−ΔE2/kBT] is the 2D density of
states, with ħ being the reduced Planck’s constant, gK (gQ) the
degeneracy factor and mK (mQ) the conduction band effective
mass at the K (Q) band valley. In most TMDs, the second
conduction valley, labeled as Q valley, is non-negligible since the
energy separation between the K and Q conduction valleys, ΔE2, is
only around 2kBT.

18,19 Thus, two conduction band valleys may
participate in the transport process. The rest of valleys are, on the
contrary, far away in energy to contribute to the electrical
conduction,20 and hence can be neglected for practical purposes.
The quantum capacitance of the 2DM can be computed by

evaluating Cq= dQnet/dVc resulting in:

Cq ¼ Cdq 1� e�uð Þ: (4)

Due to the complexity of Eq. (1) and considering the relation
between Qnet and Vc given by Eq. (3), it is not possible to get an
explicit expression for Vc as a function of the applied bias.
However, an iterative Verilog-A algorithm can be implemented to
evaluate the chemical potential at the source and drain edges,

Fig. 1 a Cross-section of the 2DFET considered in the modeling framework. A 2DM plays the role of the active channel. b Scheme of the 2DM-
based capacitor showing the relevant physical and electrical parameters. c Equivalent capacitive circuit of the 2DFET.
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which are the relevant quantities determining the drain current. In
doing so, Vcs= Vc|V=Vs and Vcd= Vc|V=Vd are obtained, respectively,
from Eqs. (1) and (3) by a construct21,22 which lets the circuit
simulator to iteratively solve both equations during run-time.
In the diffusive regime, the drain current of a 2DFET can be

accurately computed by the following compact expression12:

Ids ¼ μ
W
L
CdqV

2
th 1þ Cdq

Ctb

� �
u2s � u2d

2

� �
þ e�ud � e�usð Þ

� 	
; (5)

where us= u(Vcs) and ud= u(Vcd); Ctb= Ct+ Cb; W and L are the
device width and length, respectively; and µ is the carrier mobility
which has been assumed to be dependent of the applied electric
field, carrier density, and temperature as in ref. 2 Once we have a
suitable expression for describing the static behavior of the
device, the dynamic response must be analyzed to build a large-
signal model. In doing so, the terminal currents in the time
domain can be computed as:

ikðtÞ ¼ dQk

dt
¼ Ckg

dvg
dt

þ Ckd
dvd
dt

þ Cks
dvs
dt

þ Ckb
dvb
dt

; (6)

where k stands for g, d, s, and b, i.e. top gate, drain, source and
back-gate, respectively. The terminal currents, thus, can be
obtained by either computing the time derivative of the
corresponding terminal charge or by the weighted sum of the
time derivative of the terminal voltages, where the weights are
given by the intrinsic capacitances.
The intrinsic capacitances of FETs are modeled in terms of the

terminal charges. Specifically, from the electrostatics given in Eq.
(1) the following relations are derived23:

Qgb ¼ Qg þ Qb ¼ �W
Z L

0
QnetðxÞdx; (7)

Qg ¼ Q0 �WCt
Ctb

Z L

0
QnetðxÞdx; (8)

Qb ¼ �Q0 �WCb
Ctb

Z L

0
QnetðxÞdx; (9)

where Q0=WLCtCb(Vg− Vg0− Vb+ Vb0)/Ctb. The charge con-
trolled by both the drain and source terminals is computed based
on the Ward–Dutton’s linear charge partition scheme,24 which
guarantees charge conservation:

Qd ¼ W
Z L

0

x
L
QnetðxÞdx; (10)

Qs ¼ � Qg þ Qb þ Qd
� � ¼ W

Z L

0
1� x

L

� �
QnetðxÞdx: (11)

The above expressions can be conveniently written using u as
the integration variable, as it was done to model the drain
current in Eq. (5). Based on the fact that the drain current is the
same at any point x along the channel (i.e. we are under the
quasi-static approximation framework), we get from the transport
model the following equations needed to evaluate the charges in
Eqs. (7)–(11):

dx ¼ μW
Ids

Qtot uð Þ dV
dVc

dVc
du du

x ¼ μW
Ids

R u
us
Qtot uð Þ dV

dVc
dVc
du du

h i : (12)

Replacing Eq. (12) in Eqs. (7) and (10), the following compact
expressions are obtained for the terminal charges Qgb and Qd:

Qgb ¼ Q2D
2 3Ctb eud 1þ usð Þ�eus 1þ udð Þð Þþ eus eud Cdq þ Ctbð Þ u3d � u3sð Þð Þ

6Ctb eud � eusð Þþ 3eus eud Cdq þ Ctbð Þ u2d � u2sð Þ
Qd � �Q2D

2
15

3u5d � 5u3du
2
s þ 2u5s

u2d � u2sð Þ2
; (13)

where Q2D=WLCdqVth. Equation (13) can be replaced in Eqs. (8),

(9) and (11) to get the terminal charges Qg, Qb, and Qs,
respectively. Qd in Eq. (13) has been simplified by assuming that
the term e(2ud+2us) is prevalent over other low-order terms, e.g., eud

and eus.
Once the terminal charges are evaluated, a four-terminal FET

can be modeled with 4 self-capacitances and 12 intrinsic
transcapacitances given by:

Cij ¼ � ∂Qi

∂Vj
i ≠ j Cij ¼ ∂Qi

∂Vj
i ¼ j i; j ¼ g; d; s; b;

(14)

where Cij describes the dependence of the charge at terminal i
with respect to a varying voltage applied to terminal j assuming
that the voltage at any other terminal remains constant. Due to
charge conservation and considering a reference-independent
model, only nine independent capacitances are needed to
describe the 4T device. In addition, taking advantage of the
relations between the top- and back-gate capacitances,25 the
computation of only four capacitances is enough; for instance, Cgg,
Cgd, Cdg, and Cdd can be chosen as the independent set.

Model validation
In order to validate the presented model, we perform the DC and
RF measurements of an experimental monolayer MoS2-FET. The
fabricated device consists of an n-type channel of a chemical
vapor deposited (CVD) MoS2 monolayer transferred onto 285 nm
intrinsic Si/SiO2 wafer. The 150-nm-long MoS2 channel is
contacted with a stack of 2/70 nm Cr/Au and electrostatically
controlled by an embedded gate formed by a 10-nm barrier of
atomic layer deposited Al2O3 and a gate metal stack consisting of
2/23 nm Ti/Au. More details on the fabrication and characteriza-
tion process can be found in the Methods section. Table 1
summarizes the input parameters used for simulating the device
under test. The extracted 2D semiconductor–metal contact
resistance for the device is 3.5 kΩ µm and has been included in
the simulation by connecting lumped resistors to the source and
drain terminals.
We first test our model by comparing the DC transfer

characteristics (TCs) obtained at two different drain voltages. A
good agreement between both, measurements and simulations,
has been achieved as shown in Fig. 2. The model predicts the DC
behavior accurately in all regimes of operation with current values
ranging between 10−3 up to 102 µA/µm. However, the experi-
mental device departs from the exponential trend for values in the
limit of the IRDS specification for low-power applications, being
the OFF current actually limited by the onset of hole current at
negative Vgs (see Supplementary Notes and Supplementary Fig. S1
for a detailed discussion). This small mismatch, however, does not
impact the dynamic operation prediction. Indeed, we have
assessed the expected RF performance of such device in Fig. 3
by benchmarking the simulated small-signal current gain (h21)
and unilateral power gain (U) against the results extracted from

Table 1. Input parameters of the 2DFET under test.

L 150 nm µ0 21.2 cm2/Vs

W 10 µm mK 26 0.48m0

Lt 10 nm mQ 26 0.57m0

Lb 285 nm m0 9.11 × 10−31 kg

εt 9 gK
27 2

εb 3.9 gQ
27 6

Vg0 0.42 V ΔE218 0.11 eV

Vb0 0 V Nit 1.8 × 1016 m−2

T 300 K Vit 0.085 eV
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the experimental S-parameters (after de-embedding) measured in
the range 0.1–15 GHz. Both, simulated h21 and U, are predicted
with excellent agreement to the experimental measurements. In
order to evaluate the RF performance, we calculate the intrinsic
capacitances, plotted in Fig. 4 (solid lines). The relative error
between the numerical solution of Eq. (14) by using the
expressions in Eqs. (8)–(11) and the analytical computation of
Eq. (14) by using the compact expressions in Eq. (13) is less than
2% for the bias window considered in Fig. 4. The results are
presented together with the intrinsic capacitances relying on the
well-known conventional charge model developed for bulk
MOSFETs11 and elsewhere used to model 2DFETs2. As can be
seen, the latter is accurate only either when a low drain bias is
applied or if the device is operated in the subthreshold regime
(see Supplementary Notes and Supplementary Fig. S2 for more
details).
The trends in the intrinsic capacitances can be better under-

stood looking at the overdrive gate and drain bias dependences of
both gate (Qg) and drain (Qd) charges, which are depicted in Fig.
5a, b, respectively. Figure 5c, d shows the same bias dependence
of a set of four independent intrinsic capacitances of the 4T 2DFET
under test. As the device is an n-type transistor, we have also
plotted the shift of the quasi-Fermi level with respect to the
conduction band edge at both the drain/source sides (corre-
sponding to the chemical potentials Vcd and Vcs) in Fig. 5e, f. For
the sake of clarity, we provide a separate discussion of the intrinsic
capacitances according to the transistor operation regime.
Subthreshold regime (OFF operation): If both Vcd and Vcs > 10Vth,

then Qg, Qd∼ 0 (see Fig. 5a). Therefore the channel is empty of

carriers and the device operates in the OFF state. This situation
happens for overdrive gate biases lower than the threshold
voltage, VA, according to Fig. 5e. Given the aforementioned
conditions then Cgg ≈ CtCbWL/Ctb and Cgd ≈ Cdg ≈ Cdd ≈ 0, see to
the left of A1 point in Fig. 5c.
Saturation regime (ON operation): On the other hand, when

Vcd > 10Vth while Vcs < 10Vth, the pinch-off is originated at the
drain side. This situation is produced for overdrive gate biases
between VA and VB in Fig. 5e (“A–B” section). Both Cgg (“A1–B3”
section) and Cdg (“A1–B2” section) jump because the channel
charge at the source side becomes very sensitive to the Fermi
level location when it is close to the conduction band edge.
However, Cgd and Cdd are negligible (“A1–B1” section) because the
depletion region close to the drain prevents this terminal to
control the channel charge. The saturation regime is also observed
at the right column of Fig. 5 for drain biases higher than VC (drain
saturation voltage) in Fig. 5f (right of C point). The intrinsic
capacitances Cgg (right of C3 point) and Cdg (right of C2 point),
shown in Fig. 5d, decrease with respect to the linear regime (left of
C point, explained below) because the channel is depleted at the
drain side, so both Qg and Qd become less sensitive to Vgs as
compared to the linear regime. On the other hand, Cgd and Cdd are
negligible (right of C1 point), as Qg and Qd cannot be controlled
anymore by the drain terminal after the depletion of the channel
drain side, which is confirmed in Fig. 5b.
Linear (ohmic) regime (ON operation): This regime takes place

when both Vcd and Vcs < 10Vth. This situation is produced for gate
overdrive voltages higher than VB in Fig. 5e (right of B point),
where the channel starts to leave the depletion scenario at the
drain side. Then a jump is observed in Cgg (right of B3 point), Cdg
(right of B2 point), Cgd and Cdd (right of B1 point) as a
consequence of the recovered electrical connection between
the channel and the drain terminal (see Fig. 5a, c). The linear
regime can be also observed at the right column of Fig. 5 for drain
biases lower than VC (see Fig. 5f). The negative value of Vcs means
that the channel is degenerated at the source side for the specific
bias considered in this study. In Fig. 5d, it can be seen that Cgg (left
of C3 point), Cdg (left of C2 point), Cgd and Cdd (left of C1 point)
decrease with Vds as the channel get closer to the drain depletion
condition reached at Vds= VC.
Finally, with the aim of showing the potential of the developed

TCAD tool, a relevant circuit commonly used to evaluate the
performance of a digital technology, namely, a ring oscillator (RO)
is simulated. The design of a three-stage based RO encompasses
both DC and transient simulations. Each device has been
described by the parameters shown in Table 1 that have been
demonstrated to accurately reproduce the fabricated MoS2-based

Fig. 2 Transfer characteristics for different drain voltages in a linear and b logarithmic scales. Simulations are plotted with solid lines, and
experimental measured data with symbols. Dashed lines in b highlight both the IRDS high-performance and low-power IOFF current limits.

Fig. 3 Simulated (solid line) and measured (symbols) RF perfor-
mance of the MoS2-based FET described in Table 1 (Vgs= 4.4 V;
Vds= 3.5 V). The device shows a cut-off frequency fT= 20.2 GHz and
a maximum oscillation frequency fmax= 11.3 GHz.

F. Pasadas et al.
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FET in Figs. 2 and 3. Specifically, we have designed the three-stage
RO to oscillate at a specific frequency fosc= 31/2/(2πRddC) ≈ 1 GHz
by using a resistor connected to each drain of Rdd= 20.4 kΩ and
capacitors connected to the output of each stage with C= 13.5 fF.
In doing so, each single stage has been designed to show a

voltage gain of 3.7 at fosc, upon biasing it at Vgs= 1.25 V and Vds=
3.5 V. Figure 6 shows how the technology assessed in this work
provides a suitable switching characteristic around 1 GHz. The
simulation predicts a distorted sinusoidal as the AC component
goes over a large range of bias with imperfect linearity. It is worth
noticing that a small-signal model (in contrast with a large-signal
model) could not predict that feature. Supplementary Fig. S3
provides a comparison of the compact model outcome against
experimental measurements of bilayer MoS2 FETs26 comprising
the assessment of transfer characteristics, output characteristics,
the performance of an inverter, and a five-stage ring oscillator
based on such devices, the latter validating the large-signal
prediction capability of the model.

DISCUSSION
A physics-based large-signal compact model of four-terminal 2D
semiconductor-based FETs, implemented in Verilog-A, has been
presented. The model captures the terminal charges and
capacitances covering all the operation regimes, so accurate time
domain simulations and frequency response studies at the circuit
level are feasible within the validity of the quasi-static approxima-
tion. The model can be incorporated to existing commercial circuit
simulators enabling the simulation of digital and RF applications
based on emerging 2D technologies. We have checked that the

Fig. 5 Gate and drain charges versus a overdrive gate bias (at Vds= 1 V) and b drain bias (at Vgs – Vg0= 3.4 V). Intrinsic capacitances versus c
overdrive gate bias (at Vds= 1 V) and d drain bias (at Vgs – Vg0= 3.4 V). Shift of the Fermi level with respect to the conduction band edge,
namely, the chemical potential at the drain (Vcd) and source (Vcs) sides versus e overdrive gate bias (at Vds= 1 V) and f drain bias (at Vgs – Vg0=
3.4 V).

Fig. 6 Three-stage ring oscillator switching at a frequency around
1 GHz based on the 2DFETs described in Table 1. The supply bias is
3.5 V.

Fig. 4 Intrinsic capacitances versus a overdrive gate bias (at Vds= 1 V) and b drain bias (at Vgs – Vg0= 3.4 V). Solid lines represent our model
outcome and dashed lines show the data calculated using the model adopted in ref. 2
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model outcome is consistent with our experimental measure-
ments of MoS2-FET devices targeting RF applications. Finally, a
design of a three-stage ring oscillator has been carried out to
exhibit the potential of the TCAD tool presented and showing the
feasibility of using this technology in switching applications in the
gigahertz range.

METHODS
Fabrication
The MoS2 FET reported in this paper belongs to the same batch as the
devices published in ref. 27 by some of the authors. The fabrication process
begins with patterning two embedded gate fingers on intrinsic Si/SiO2

(>20 kΩ cm). Then, the embedded 150-nm gate metal stack consisting of
2/23 nm Ti/Au was defined and deposited by using electron beam
lithography (EBL) and e-beam evaporation. Large area atomic single layer
CVD MoS2, grown by a standard vapor transfer process as described in
ref. ,27 was then transferred by poly(methyl methacrylate)-assisted wet
transfer. Phosphoric acid etching was used to connect the embedded gate
fingers and the gate pad. The active MoS2 channel was etched using Cl2/O2

plasma. Finally, source and drain (S/D) contacts consisting of 2/70 nm Cr/
Au were patterned through a final EBL step.

Electrical measurements
The electrical DC characterization was done on a Cascade Microtech
Summit 11000B-AP probe-station using an Agilent B1500A parameter
analyzer. Microwave performance was characterized using an Agilent two-
port vector network analyzer (VNA-E8361C). All measurements were taken
at room temperature, in ambient atmosphere, and in the dark. The intrinsic
microwave performance is obtained after de-embedding the measured
data using OPEN and SHORT structures. The OPEN de-embedding was
performed on the as-measured device-under-test by etching away the
MoS2 in the active regions. The SHORT de-embedding is subsequently
carried out by depositing a strip of metal across the channel region,
shorting out all pads.

Circuit simulations
The developed large-signal model of 4T 2DFETs is implemented in Verilog-
A and included as a separate module in Keysight© Advanced Design
System (ADS), a popular electronic design automation software for RF and
microwave applications. It calculates the electrostatics by iteratively
solving Eqs. (1) and (3) during run-time using a construct,21,22 and
computes the static and dynamic response of the device by evaluating Eqs.
(5) and (6), respectively, using the compact expressions derived in
this work.
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