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Abstract: In this paper, we study the one-dimensional homogeneous stochastic Brennan–Schwartz
diffusion process. This model is a generalization of the homogeneous lognormal diffusion process.
What is more, it is used in various contexts of financial mathematics, for example in deriving a
numerical model for convertible bond prices. In this work, we obtain the probabilistic characteristics
of the process such as the analytical expression, the trend functions (conditional and non-conditional),
and the stationary distribution of the model. We also establish a methodology for the estimation
of the parameters in the process: First, we estimate the drift parameters by the maximum
likelihood approach, with continuous sampling. Then, we estimate the diffusion coefficient by
a numerical approximation. Finally, to evaluate the capability of this process for modeling real data,
we applied the stochastic Brennan–Schwartz diffusion process to study the evolution of electricity
net consumption in Morocco.

Keywords: Brennan–Schwartz diffusion model; stochastic differential equation; inference in diffusion
processes; stationary distribution; application; electricity net consumption in Morocco

1. Introduction

Stochastic diffusion models, such as continuous-time Markovian processes, are used to describe
the evolution of phenomena in diverse fields. They have extensive domains of application in many
areas of science, including biology, mathematical finance, growth phenomena, and energy consumption,
especially electricity. For example, in mathematical finance, Vasicek presented a global form of the
term structure of interest rates [1]; Brennan and Schwartz established an arbitration model concerning
the term structure of interest rates [2]; thus, Albano and Giorno advised a stochastic diffusion
process suitable for modeling the interest rate progress regarding time [3]. Furthermore, Nafidi et al.
applied the square of the Brennan–Schwartz model to population growth; see [4]. Indeed, in growth
phenomena, various authors have introduced stochastic versions of classical deterministic growth
models especially in animal or cell populations, birth-death, energy, survival populations, life-testing
experiments, and environmental studies. See, for example: Saha and Chakrabarti [5], Nafidi et al. [6],
Di Crescenzo and Paraggio [7], Gutiérrez et al. [8], and Skiadas and Giovanis [9]. Diffusion processes
are also examined in the field of electricity; in fact, many studies have been focused on the consumption
of electrical energy; diverse works suggested a means of using stochastic diffusion processes to model
the total consumption of electrical power and to forecast the consumption of electrical energy in
relation to particular economic or climatologic variables, using statistical techniques. In this respect,
see the works of Gutiérrez et al., who proposed a means of using stochastic diffusion processes to
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model the total consumption of electrical power in Morocco [10], and Nafidi et al., who modeled
electric power consumption throughout a period of economic crisis [11].

In most cases, the methodology used in statistical inference is obtained from the likelihood
function, which is a product of transition densities, and these are only known in special cases.
Therefore, various authors studied and developed several methods to deal with this problem: Bibby
and Sorensen [12], Kloeden and Platen [13], and Singer [14], without overlooking the wide-ranging
review of the results given by Prakasa-Rao [15], who procured an extended list of references with
respect to the subject.

The process examined in this paper is the stochastic Brennan–Schwartz Diffusion Process (BSDP),
which is in financial mathematics used for example, by [16] in developing a model of discount bond
option prices. In this work, we study the capability of applying the stochastic BSDP in another field, to
describe the evolution of the electricity net consumption in Morocco and to predict future trends, by
using the statistical inference in fitting and forecasting, from observed data.

In this study, we obtain the probabilistic characteristics of the stochastic BSDP like the solution,
the trend functions, and the stationary distribution of the process, after which the drift coefficient
is estimated by applying the likelihood approach, with continuous sampling. Then, the diffusion
coefficient is estimated by a numerical approximation. Finally, in order to evaluate the capability of
this process for modeling real data in the field of electricity, we apply the stochastic BSDP to study the
evolution of electricity net consumption in Morocco.

2. The Model and Its Basic Probabilistic Characteristics

2.1. The Proposed Model

Let {x(t); t ∈ [t0, T]; t0 ≥ 0} be the one-dimensional homogeneous diffusion process, which is
defined as the unique solution to the following Stochastic Differential Equation (SDE) (see [17]):

dx(t) = (αx(t) + β) dt + σx(t)dw(t), x(t0) = xt0 , (1)

where σ > 0, α, and β are real parameters, w(t) is a one-dimensional standard Wiener process, and
xt0 > 0 is a fixed real value.

Note that when β = 0, the homogeneous lognormal diffusion process is acquired as a specific case.
This process has been studied in depth by [18,19].

2.2. The Analytical Expression of the Process

The analytical expression of the process can be obtained by referring to [13]. Remember that if:

dy(t) = (a1y(t) + a2) dt + (b1y(t) + b2) dw(t), y(t0) = yt0 ,

thus the solution of the previous equation has the following form:

y(t) = Φ(t)
{

yt0 + (a2 − b1b2)
∫ t

t0

Φ(τ)−1dτ + b2

∫ t

t0

Φ(τ)−1dw(τ)

}
,

where:

Φ(t) = exp
{

a1(t− t0)−
1
2

b2
1(t− t0) + b1(w(t)− w(t0))

}
.

Therefore, in our case, by applying the previous result, the SDE Equation (1) has a unique solution x(t),
which is known in the field of stochastic finance (see for example [13]). Consequently, this solution has
the following expression:



Mathematics 2019, 7, 1062 3 of 16

x(t) =

(
xt0 + β

∫ t

t0

exp
[
−
(

α− σ2

2

)
(τ − t0)− σ (w(τ)− w(t0))

]
dτ

)
(

exp
[(

α− σ2

2

)
(t− t0) + σ (w(t)− w(t0))

])
.

2.3. The Trend Functions of the Process

Since the probability transition density function (ptdf) of the model is not known, we will use the
following method described in [13] for obtaining the conditional and non-conditional trend functions
of the process. The SDE in Equation (1) can be written in integral form as:

x(t) = x(s) +
∫ t

s
(αx(θ) + β) dθ + σ

∫ t

s
x(θ)dw(θ),

from which we obtain:

E (x(t) | x(s) = xs) = xs + β(t− s) + α
∫ t

s
E (x(θ) | x(s) = xs) dθ.

Denoting this by g(t) = E (x(t) | x(s) = xs), we then have:

g(t) = xs + β(t− s) + α
∫ t

s
g(θ)dθ,

and deriving with respect to t, we conclude that the conditional trend function of the BSDP solves the
following Ordinary Differential Equation (ODE):

g
′
(t) = α g(t) + β, g(s) = xs,

the solution of the latter ODE without a second member has the following form:

g(t) = k(t)eαt,

and by using the variation of the constant, we can deduce that:

k(t) =
−β

α
e−αt + cte.

To determine the constant denoted as cte in the previous equation, we use the initial condition g(s) = xs,
then we conclude that the unique solution of our ODE is given by:

g(t) = xseα(t−s) +
β

α

(
eα(t−s) − 1

)
.

Eventually, the conditional trend function of the model is given by:

E(x(t) | x(s) = xs) = xseα(t−s) +
β

α

(
eα(t−s) − 1

)
, (2)

and by assuming the initial condition P (x(t0) = xt0) = 1, the trend function of the process is:

E(x(t)) = xt0 eα(t−t0) +
β

α

(
eα(t−t0) − 1

)
. (3)
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2.4. Ergodicity and Stationary Distribution

We shall now determine the stationary distribution of the process, the density function, and the
asymptotic moments.

In general (see [20,21]), a stochastic diffusion process {x(t), t ≥ 0}, with state space I = (l, r),
is led by the ensuing SDE:

dx(t) = a(x(t))dt + b(x(t))dw(t), x0 = x,

where w(t) is a standard Wiener process and the constant value x is independent of w(t). We suppose
that a(x) and b(x) are continuously differentiable.

Let s(z) = exp
{
−
∫ z

z0

2a(u)
b2(u)

du
}

be the scale density function (z0 is an arbitrary point inside I).

The speed density function is given by m(u) =
(

b2(u)s(u)
)−1

. We denote by:

S[x, y] =
∫ y

x
s(u)du, S(l, y] = lim

x→l

∫ y

x
s(u)du and S[x, r) = lim

y→r

∫ y

x
s(u)du,

where l < x < y < r. Then, if:

S(l, y] = S[x, r) = ∞ and
∫ r

l
m(u)du < ∞,

the process {x(t), t ≥ 0} is ergodic, and its stationary density function is found to be:

f (x) = m(x)/
∫ r

l
m(u)du.

In our case, the drift and diffusion coefficient have the following form:

a(x) = αx + β and b2(x) = σ2x2,

and I = (0, ∞). It follows that:

s(z) = kz−
2α
σ2 e

2β

σ2z , with k = z
2α
σ2
0 e
− 2β

σ2z0 ,

and we have, for 0 < x < y < ∞:

S[x, y] =
∫ y

x
s(u)du = k

∫ y

x
u−

2α
σ2 e

2β

σ2u du.

With the variable change v = u−1, the previous expression is given by:

S[x, y] = 2k
∫ 1/x

1/y
v

2α
σ2−2e

−2β

σ2 vdv. (4)

Then, taking the limit as x tends to zero in Equation (4), we conclude that, for β > 0, S(0, y] = ∞.

Taking the limit when y tends to ∞ in Equation (4), we have, for α ≤ σ2

2
, S[x, ∞) = ∞.

Consequently, we have for α ≤ σ2

2
and β > 0,

S[x, ∞) = S(0, y] = ∞.
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The speed density is given by:

m(x) =
1

kσ2 x
2α
σ2−2e

−2β

σ2x ,

then we obtain: ∫ ∞

0
m(x)dx =

1
kσ2

∫ ∞

0
x

2α
σ2−2e

−2β

σ2x dx

=
1

kσ2

∫ ∞

0
v
−2α
σ2 e−

2β

σ2 vdv,

and according to Gradstien et al. [22], for ν > 0 and µ > 0,∫ ∞

0
xν−1e−µxdx = µ−νΓ(ν);

for α <
σ2

2
and β > 0, we have:

∫ ∞

0
m(x)dx =

1
kσ2

(
2β

σ2

)( 2α
σ2−1

)
Γ
(

1− 2α

σ2

)
< ∞.

Thus, by joining the two previous conditions, we conclude that for α <
σ2

2
and β > 0, the process

is ergodic. Finally, for α < σ2

2 and β > 0, the density function of the stationary distribution of the
proposed model exists and is given by:

f (x) =

(
2β

σ2

)1− 2α
σ2 x

2α
σ2−2 exp(− 2β

σ2x )

Γ
(

1− 2α
σ2

) . (5)

where Γ(.) is the Gamma function. It can be easily demonstrated that the function f is the density of

the inverse of the Gamma distribution with the parameters 1− 2α

σ2 and
σ2

2β
.

The expression (5) can be used to calculate the asymptotic moment of order k, then we have for

1− 2α

σ2 > k and β > 0:

E[Xk
∞] =

∫ ∞

0
xk f (x)dx =

(
2β

σ2

)k Γ(1− 2α
σ2 − k)

Γ(1− 2α
σ2 )

.

The asymptotic trend function of the process is obtained by using the properties of the Euler function,
(k = 1), for β > 0 and α < 0:

E[X∞] = − β

α
.

By taking the limit when t tends to ∞ in Equation (3), we get for β > 0 and α < 0:

lim
t→∞

E(x(t)) = E(X∞).

This implies that the limit of the trend function in Equation (3) (when t tends to ∞) corresponds to the
asymptotic trend function.

3. Statistical Inference in the Model

We will now estimate the parameters of the proposed model. The drift parameters (α and β) are
estimated by the maximum likelihood method, with continuous sampling. Then, for the parameter
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of the diffusion coefficient, we shall apply the approximation method considered by Chesney and
Elliot [23].

3.1. Likelihood Estimation of Drift Parameters

Consider the one-dimensional diffusion process defined by the following vectorial form:

dx(t) = At(x(t))θ + Bt(x(t))dw(t), t0 ≤ t ≤ T,

where θ ∈ Rk, At is a k-dimensional vector, and Bt is R-valued depending only on the sample path up
to a given instant. Suppose that the latter equation has a unique solution for every θ. The maximum
likelihood estimator of the vector θ is (see [9,24–27]):

θ̂ = S−1
T HT ,

where HT is the following k-dimensional vector:

HT =
∫ T

t0

A∗t (x(t))(Bt(x(t))Bt(x(t)))−1dx(t),

ST is the k × k matrix:

ST =
∫ T

t0

A∗t (x(t))(Bt(x(t))Bt(x(t)))−1 At(x(t))dt,

and ∗ denotes the transposition.
The SDE of our process can be expressed in the vectorial form as follows:

At(x(t)) = (x(t), 1), θ∗ = (α, β), Bt(x(t)) = σx(t);

the corresponding vector HT in this case is two-dimensional and is given by:

H∗T =
1
σ2

(∫ T

t0

dx(t)
x(t)

,
∫ T

t0

dx(t)
x2(t)

)
,

and ST is the following square matrix:

ST =
1
σ2


T − t0

∫ T

t0

dt
x(t)

∫ T

t0

dt
x(t)

∫ T

t0

dt
x2(t)

 .

After some calculation (not shown), the expressions of the estimators are:

α̂ =

∫ T
t0

dt
x2(t)

∫ T
t0

dx(t)
x(t) −

∫ T
t0

dt
x(t)

∫ T
t0

dx(t)
x2(t)

(T − t0)
∫ T

t0
dt

x2(t) −
(∫ T

t0
dt

x(t)

)2 ,

β̂ =
(T − t0)

∫ T
t0

dx(t)
x2(t) −

∫ T
t0

dt
x(t)

∫ T
t0

dx(t)
x(t)

(T − t0)
∫ T

t0
dt

x2(t) −
(∫ T

t0
dt

x(t)

)2 .
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To transform the stochastic integrals in the previous expressions into Riemann integrals, we use Itô’s
formula, and thus, we have:

∫ T

t0

dx(t)
x(t)

= log(xT)− log(xt0) +
σ2

2
(T − t0) ,∫ T

t0

dx(t)
x2(t)

=
1

xt0

− 1
xT

+ σ2
∫ T

t0

dt
x(t)

.

Finally, the expressions of the maximum likelihood estimators are found to be:

α̂ =

∫ T
t0

dt
x2(t)

(
log(xT/xt0) +

σ2

2 (T − t0)
)
−
(

1
xt0
− 1

xT
+ σ2

∫ T
t0

dt
x(t)

) ∫ T
t0

dt
x(t)

(T − t0)
∫ T

t0
dt

x2(t) −
(∫ T

t0
dt

x(t)

)2 , (6)

β̂ =
(T − t0)

(
1

xt0
− 1

xT
+ σ2

∫ T
t0

dt
x(t)

)
−
(

log(xT/xt0) +
σ2

2 (T − t0)
) ∫ T

t0
dt

x(t)

(T − t0)
∫ T

t0
dt

x2(t) −
(∫ T

t0
dt

x(t)

)2 . (7)

3.2. Approximation of the Diffusion Coefficient σ

Various methods have been proposed to estimate the diffusion process in SDE. Then, in order
to approximate the parameter in the diffusion coefficient, we used a method close to that described
in [23,27,28]. We can summarize this method as follows:

From the Itô formula, we obtain:

d
(

1
x(t)

)
= −dx(t)

x2(t)
+

σ2

x(t)
dt. (8)

By utilizing the following approximations between t− 1 and t, the differentials shown in the latter
equation can be approximated by:

d
(

1
x(t)

)
' 1

x(t)
− 1

x(t− 1)
and d(x(t)) ' x(t)− x(t− 1).

By inserting these approximations into Equation (8), we obtain an estimator of the σ parameter between
the latter observations as follows:

σ̂(t−1,t) =
| x(t)− x(t− 1) |√

x(t)x(t− 1)
.

For n observations of a sample path of the process, an estimator of σ is provided by the
following expression:

σ̂ =
1

n− 1

n

∑
t=1

| x(t)− x(t− 1) |√
x(t)x(t− 1)

. (9)

3.3. Asymptotic Normality of Likelihood Estimators

As shown above, for α <
σ2

2
and β > 0, we can confirm the conditions of ergodicity (see for

example [29,30]), and the proposed model has ergodic proprieties. Therefore, we have, for a known σ

and for θ = (α, β) ∈ (α1, α2)× (β1, β2), with α2 <
σ2

2
and β1 > 0,

Lθ

(√
T(θ̂ − θ)

)
→ N2

(
0, I−1(θ)

)
, when T → ∞, (10)
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where I(θ) = Eθ

(
ȧ(X)ȧ∗(X)

b2(X)

)
and ȧ(x) =

(
∂a(x, θ)

∂α
,

∂a(x, θ)

∂β

)∗
.

Thus, after calculation, we obtain:

I(θ) = 1
σ2Eθ

 1 1
X

1
X

1
X2

,

Moreover, it can be demonstrated that the random variable
1
X

has a Gamma distribution Γ(λ, µ) with

parameters λ and µ where λ = 1− 2α

σ2 and µ =
2β

σ2 . Thus, we obtain:

E
(

1
X

)
=

λ

µ
.

Additionally, we have

E
(

1
X2

)
=

λ(1 + λ)

µ2 ,

from which we conclude that the information matrix I(θ) has the following form:

I(θ) = 1
σ2

 1 λ
µ

λ
µ

λ(1+λ)
µ2

,

and the inverse is:

I−1(θ) = σ2

 λ + 1 −µ

−µ
µ2

λ

. (11)

The substitution of Equations (10) and (11) provides an approximated and asymptotic
confidence region of θ and approximated and asymptotic marginal confidence intervals of α̂ and
β̂. The above-mentioned region is given, for a large T, by:

P
[

T
(
θ − θ̂

)∗ Î(θ) (θ − θ̂
)
≤ χ2

2,γ

]
= 1− γ, (12)

where Î(θ) is obtained by replacing the parameters by their estimators in the expression (11) and χ2
2,γ

is the upper 100γ percent points of the chi squared distribution with two degrees of freedom.
The γ% confidence (marginal) intervals for the parameters α and β are given, for a large T, by:

P
(

α ∈
[

α̂± ξγσ
√(

λ̂ + 1
)

/T
])

= 1− γ, (13)

P
(

β ∈
[

β̂± ξγσµ̂

√
1/λ̂T

])
= 1− γ. (14)

where ξγ is the 100γ percent points of the normal standard distribution.
In expression Equations (12)–(14), it is assumed that σ is known with a value σ = σ̂.
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4. Computational Aspects

4.1. Approximate Likelihood Estimators

• In order to estimate the parameters by the use of the expressions obtained in Equations (6) and (7),
we need continuous observations. However, in practice, it remains difficult to estimate continuous
time processes because of the unavailability of a continuous sample of observations. To resort to
this problem, the model is discretized, after which estimation methods can be applied.
The state of the diffusion process is observed at a finite number of time instances (0 = t0 <

t1 < · · · < tn = T), then the alternative estimation procedure that is frequently utilized (see
for example [27,28]) for such data is to use the continuous time maximum likelihood estimators
with suitable approximations of the integrals that appear in the expression Equations (6) and (7);
specifically, the Riemann–Stieltjes integrals are approximated by means of the trapezoidal formula.

• An approximation of the standard error of the estimator of σ̂ is given by:

es(σ̂) =
1

n− 1

n

∑
t=1

(
σ̂(t−1,t) − σ̂

)2
.

4.2. Estimated Trend Functions

According to Zehna’s theorem [31], the Estimated Trend Function (ETF) and Estimated
Conditional Trend Function (ECTF) of the proposed model are obtained by replacing the parameters
in Equations (2) and (3) by their estimators given in Equations (6), (7) and (9). Then, the ECTF and ETF
have the following expressions:

Ê(x(t) | x(s) = xs) = xseα̂(t−s) +
β̂

α̂

(
eα̂(t−s) − 1

)
. (15)

Under the initial condition P (x(t0) = xt0) = 1, the trend function of the process is:

Ê(x(t)) = xt0 eα̂(t−t0) +
β̂

α̂

(
eα̂(t−t0) − 1

)
. (16)

4.3. Approximate Asymptotic Confidence Interval of the Trend Functions

Asymptotic and approximate confidence intervals of the ETF of the model can be obtained by
replacing in Equations (2) and (3) the parameters α and β by the extreme values of those confidence
intervals: the lower limit of α and β (αll and βll , respectively) and the upper limit of α and β (αul and
βul , respectively), which are given in expression Equations (13) and (14). Then, the lower limit of the
ETF (ETFll) is given by:

Êll(x(t)) = xt0 eα̂ll(t−t0) +
β̂ll
α̂ll

(
eα̂ll(t−t0) − 1

)
, (17)

and the upper limit of the ETF (ETFul) is:

Êul(x(t)) = xt0 eα̂ul(t−t0) +
β̂ul
α̂ul

(
eα̂ul(t−t0) − 1

)
. (18)

These functions are utilized in the last section to fit and predict the future evolution of the stochastic
diffusion process under consideration.

5. Application and Results

In this application, we examined the variable x(t) defined by total electricity net consumption
expressed in 109 kWh in Morocco, such that the total electricity net consumption = total net electricity
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generation + electricity imports − electricity exports − electricity transmission and distribution losses.
Note that the net consumption excludes the energy consumed by the generating units.

Indeed, the analysis of the consumption of electrical energy, as well as other energy products
(gas, petroleum products, etc.), represents a complicated problem. This is due to the fact that
the consumption intended for the domestic, industrial, agricultural, or other possible sector
depends on a large number of variables of different natures (economic, demographic, sociological,
geographical, or climatological variables), in other words, depending on the type of consumption of
the energy considered.

In this situation, it is difficult, for example, to reach functional models associating energy
consumption, in particular electricity, with such a large number of variables. This is because, in many
cases, these variables are also dependent on each other by multiple linear and nonlinear regression
models or by special econometric models. However, even if this modeling is carried out, its practical
utility and its degree of adjustment to the observed data do not guarantee a sufficient level of efficiency
of such a model, for example to predict the future evolution of the consumption considered.

One possible way to solve this basic problem of modeling that we want to obtain is to accumulate
this large number of variables that influence electricity consumption in a “random effect”. This can
be done, on the one hand, by considering a stochastic model to describe the electric consumption in
question; on the other hand, by describing this consumption by means of an appropriate stochastic
process that “globalizes” or “accumulates” the electric consumption to eliminate the random effect
produced by the influence of a large number of variables that affect the evolution of consumption and
whose influence cannot be described analytically in the final model.

The methodology used in this work, for the modeling of electricity consumption in the
geographical region considered, the “consumption of electricity accumulated in annual periods”,
according to a duration of one year, was modeled by a stochastic diffusion process, of the
Brennan–Schwartz type, the variable x(t, ω) defined as the random value of the “total electricity
consumption accumulated during the one-year period ending at time t”, where t ∈ [0, T].

All the data, shown in Table 1, are annual and were extracted from the U.S. Energy Information
Administration that provides data for Morocco from 1980–2014. The data, available by year and
country accessed at: https://www.theglobaleconomy.com/.

Table 1 summarizes the observed values and those estimated for the trend functions, i.e., the ETF
and the ECTF, respectively for the corresponding years.

The estimators calculated together with the upper and lower limits of the 95% confidence intervals
for the parameters of the drift and the diffusion coefficient of the proposed model are given in Table 2.

The data corresponding to 2013 and 2014, which were not applied for fitting data, were applied to
forecast the future values of the model, with the trend functions and the confidence interval of 95%,
and are given in Table 3.

Figures 1 and 2 illustrate the fits and the predictions obtained from the ETF and the ECTF.

https://www.theglobaleconomy.com/
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Figure 1. The real data versus those fitted by the Estimated Trend Function (ETF), the ETFll , and
the ETFul .
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Figure 2. The data observed versus those fitted by the Estimated Conditional Trend Function (ECTF).

Table 1. Fit from 1980–2012.

Years Data in 109 kWh ETF ECTF

Observed Values

1980 4.4000 4.4000 4.4000
1981 4.8000 4.7717 4.7717
1982 5.1000 5.1573 5.1867
1983 5.6000 5.5574 5.4979
1984 5.8000 5.9724 6.0167
1985 5.9000 6.4031 6.2242
1986 6.6000 6.4898 6.3279
1987 7.0000 7.1343 7.0542
1988 7.7000 7.7943 7.4662
1989 7.7000 8.2932 8.1954
1990 8.4000 8.8108 8.1954
1991 8.9000 8.3479 8.9216
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Table 1. Cont.

Years Data in 109 kWh ETF ECTF

Observed Values

1992 9.8000 9.9050 9.4404
1993 10.0000 10.4831 10.3741
1994 10.0000 11.0828 10.5816
1995 11.0000 11.7050 10.5816
1996 12.0000 12.3505 11.6191
1997 12.0000 13.0203 12.6566
1998 13.0000 13.7551 12.6566
1999 13.0000 14.4360 13.6941
2000 13.0000 15.1839 13.6941
2001 14.0000 15.9599 13.6941
2002 15.0000 16.7649 14.7316
2003 16.0000 17.6001 15.7691
2004 17.0000 18.4666 16.8065
2005 18.0000 19.3657 17.8815
2006 20.0000 20.2984 18.8440
2007 21.0000 21.2661 20.9565
2008 22.0000 22.2700 21.9940
2009 22.0000 23.3116 23.0315
2010 24.0000 24.3922 23.0315
2011 26.0000 25.5134 25.1064
2012 27.0000 26.6766 27.1814

Table 2. Parameters’ estimation and the limits of the 95% confidence intervals.

Parameters’ Estimation Lower Limit Upper Limit

α̂ = 0.036802278990569 0.031722514789153 0.041882043191985
β̂ = 0.202955446503311 0.172968793593128 0.232942099413494
σ̂2 = 0.056710443868538 0.054267898965168 0.059152988771908

Table 3. Predictions from the trend functions of the proposed model.

Years Data ETFll ETF ETFul ECTF

2013 28.1167 22.6139 27.8833 34.1191 28.2189
2014 29.1350 23.5185 29.1354 35.8163 29.2564

5.1. Goodness of Fit of the Model

MAPE and Symmetrical MAPE (SMAPE) were used to compare the prediction accuracy. SMAPE
is an average measure of the forecast accuracy across a given forecast horizon, and it provides a global
measurement of the goodness of fit. In general, as long as the values of MAPE and SMAPE were small
(<10), we concluded that the model was accurate and efficient; see [32]. In addition, some authors have
proposed SMAPE as the best performance measure to select among models (see [33]).

We denote by yi the actual value, by ŷi the forecast value, and by n the total number of predictions.
These two measures of error are defined as:

MAPE is a measure of prediction accuracy that provides reliability, ease of interpretation, and
independence of the units. It is expressed as a percentage and can be defined by the following expression:

MAPE =
1
n

n

∑
t=1

|ŷi − yi|
yi

× 100.

According to Lewis [32], the typical MAPE values and their interpretation are shown in Table 4:
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Table 4. Interpretation of typical MAPE values.

MAPE Interpretation

<10 Highly-accurate forecasting
20–30 Good forecasting
30–50 Reasonable forecasting
>50 Inaccurate forecasting

SMAPE is an accuracy measure based on relative errors. It is used to show that the geometric-mean
combination of different forecasts produces a better forecast. It is usually defined by:

SMAPE =
100
n

n

∑
t=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

.

After calculating the two measures of error (as shown in Table 5), we can conclude that the
stochastic BSDP is reliable and efficient.

Table 5. Goodness of fit of the model. SMAPE, Symmetrical MAPE.

Measures of Forecasting Accuracy Error Values

MAPE 0.44115148
SMAPE 0.441732605

5.2. The Comparison between the Goodness of Fit of the Stochastic BSDP and the Lognormal Model

Since the stochastic BSDP is an extension of the stochastic Lognormal Diffusion Process (LDP), we
compare, in this section, the MAPE and SMAPE of these two models in order to evaluate the results
obtained using the stochastic BSDP in studying our data series (see Appendix C in [4]).

The results obtained using the stochastic BSDP in the data series were compared with those
obtained by the stochastic LDP, as shown in the following Figures 3 and 4.
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Figure 3. The data observed versus those fitted by the stochastic Brennan–Schwartz Diffusion
Process (BSDP).



Mathematics 2019, 7, 1062 14 of 16

1980 1985 1990 1995 2000 2005 2010 2015

Years

0

5

10

15

20

25

30

35

T
o

ta
l 
E

le
c
tr

ic
it

y
 N

e
t 

C
o

n
s
u

m
p

ti
o

n
.

Rea Data

ETF

Figure 4. The real data versus those fitted by the stochastic Lognormal Diffusion Process (LDP).

These figures show that the stochastic BSDP was more suitable than the stochastic LDP.
As shown with respect to the stochastic BSDP, the data for the period 2012–2014, which were not

used for the statistical fit, were used to forecast the future values of the process.
Table 6 shows that the forecasts obtained by the stochastic BSDP for 2012–2014 were better than

those obtained by the stochastic LDP.

Table 6. Predictions from trend functions of the stochastic BSDP and LDP processes.

Years
Stochastic BSDP Stochastic LDP

Data ETF Data ETF

2013 28.1167 27.8833 31.7717 31.8884
2014 29.1350 29.1354 33.6662 33.8012

In our study, the results obtained by the MAPE and the SMAPE as defined in Section 5.1 were
compared with those obtained by the stochastic LDP.

We calculated these two measures of error (as shown in Table 7) and then compared the results
with those obtained by the stochastic BSDP.

Table 7. Goodness of fit of the two models.

Measures of Forecasting Accuracy Error Values of BSDP Values of LDP

MAPE 0.44115148 14.78035099
SMAPE 0.441732605 13.75629617

6. Conclusions

• In this paper, the Brennan–Schwartz diffusion process showed its capability for modeling real data
in the field of energy. The proposed methodology was applied to the real case of the evolution of
the net consumption of electricity in Morocco and provided a good fit.

• The forecasts and the real data for the period 2013 and 2014 were situated within the confidence
interval of the ETF. However, the conditioned trend provided a better accurate fit and forecast
than those obtained by the trend alone.

• Finally, by the inclusion of exogenous factors in the process, the fit using ETF could be ameliorated;
see for example [11].
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• In order to compare the forecasting accuracy of the two models, we calculated two measures of
error, MAPE and SMAPE. The values obtained for these two measures of error showed that the
stochastic BSDP was more reliable than the stochastic LDP.
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