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Abstract. 233U is of key importance among the fissile nuclei in the Th-U 

fuel cycle. A particularity of 233U is its small neutron capture cross-section, 

which is on average about one order of magnitude lower than the fission 

cross-section. The accuracy in the measurement of the 233U capture cross-

section depends crucially on an efficient capture-fission discrimination, thus 

a combined set-up of fission and γ-detectors is needed. A measurement of 

the 233U capture cross-section and capture-to-fission ratio was performed at 

the CERN n_TOF facility. The Total Absorption Calorimeter (TAC) of 

n_TOF was employed as γ-detector coupled with a novel compact ionization 

chamber as fission detector. A brief description of the experimental set-up 

will be given, and essential parts of the analysis procedure as well as the 

preliminary response of the set-up to capture are presented and discussed.  

1 Introduction  

The Th-U fuel cycle [1,2] has been proposed as an alternative to the U-Pu fuel cycle for 

nuclear power. As one of the key nuclei, 233U influences many parts of the design of a nuclear 

power plant like neutronics performance, economics, nuclear safety, etc. The available data 

for the 233U capture cross section are scarce, as shown in Fig. 1, because the measurement is 

challenging due to the competing fission reaction which is on average one order of magnitude 

more likely than the capture cross section, see Fig. 2. The first measurement [3] at the n_TOF 

facility [4] at CERN was successfully performed but proved to be challenging due to the need 
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to accurately distinguish between capture and fission γ-rays without any additional 

discrimination tool. 

 

Fig. 1. Existing data sets and evaluations for the 233U capture cross section. 

 

Fig. 2. 233U fission and capture cross section in comparison. 

A new measurement [5] was proposed at n_TOF and performed at the end of 2016, aiming 

to provide a higher level of discrimination between the competing capture and fission 

channels and to obtain more precise and accurate data up to 10 keV neutron energy. As the 

accuracy in the measurement of the 233U capture cross-section essentially relies on an 

efficient capture-fission discrimination, a combined set-up of γ-detectors and fission 

detectors was used, described in sections 2.3 and 2.4, respectively. A similar methodology of 

extracting the capture cross-section of fissile actinides has been under development at the 

DANCE facility at the Los Alamos National Laboratory [6,7]. 

2 Experimental Setup  

2.1 The n_TOF facility  

At the n_TOF facility neutrons are produced by spallation reactions of 20 GeV/c protons 

provided by CERN’s Proton Synchrotron impinging on a lead target. The target is surrounded 

by water acting as a coolant and moderator for the initially fast neutron spectrum resulting in 

a white neutron beam with neutron energies ranging from sub-thermal up to GeV, see Fig. 3. 
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The high intensity pulsed proton beam with a maximum frequency of 0.83 Hz results in a 

high instantaneous neutron flux in the experimental area. The measurement was performed 

at the experimental area 1 (EAR1), located at 185 m from the neutron-producing target. The 

neutron beam intensity in EAR1 is constantly monitored with four out-of-beam silicon 

detectors (SiMon) [8] measuring the outgoing particles of the standard reaction 6Li(n,t) 

reaction from a 600 µm/cm2 thick 6Li foil intersecting the beam. 

 

Fig. 3. Neutron Flux at n_TOF EAR1. The dashed lines indicate the region of 800 keV < En < 7 MeV 

corresponding to 5 µs < TOF < 15 µs (see discussion in section 3.1). 

2.2 233U targets  

The 233U deposits for the measurement have been prepared by JRC-Geel by molecular 

plating. The base material was 99.936 % enriched in 233U with the largest contaminant being 

0.0496 % 234U (Lot 2146, TP2015-10). Samples 4 cm in diameter covering the full neutron 

beam were deposited on 10 µm thick aluminium backings. A total mass of 46.5 mg 233U was 

distributed over 14 samples with an average areal density of about 250 µg/cm2 and an average 

activity of about 1 MBq per sample. 

2.3 Gamma-Detector  

The Total Absorption Calorimeter (TAC) [9] is designed as a high efficiency calorimeter to 

detect the complete prompt γ-ray cascade emitted in nuclear reactions. It consists of 40 BaF2 

crystals forming a hollow sphere with an inner radius of 10.6 cm covering almost 4π solid 

angle minus two opposite channels which are left open for entrance and exit of the neutron 

beam, see Fig. 4. The fission detector was placed at the centre of the TAC surrounded by the 

so-called absorber, a spherical neutron shielding aiming to reduce the background introduced 

by scattered neutrons into the crystals. The absorber is made out of polyethylene and 7.5 % 

natural lithium salt.  
The digitised waveforms are analysed offline with a dedicated pulse shape analysis 

routine [10], and the individual signals are grouped together in events by setting an adequate 

coincidence window of 12 ns between signals. Each of those events is characterised by its 

time-of-flight TOF, determining the neutron energy En, the total deposited energy in the TAC 

ESum, and the number of hit crystals mcr. One of the main advantages of the TAC is the use of 

the quantities mcr and ESum to discriminate between different types of reactions. For example, 

background events from the sample activity or ambient background usually deposit a few 

MeV of energy in the TAC and are characterised by small crystal multiplicities. On the other 
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hand, electromagnetic cascades from neutron capture events will deposit energies up to the 

neutron separation energy of the compound nucleus with larger average multiplicities. Hence, 

selecting the right subset of events with respect to mcr and ESum will result in an improved 

capture-to-background ratio. 

 

Fig. 4. The n_TOF Total Absorption Calorimeter. 

2.4 Fission Detector  

A previous experiment [11] at n_TOF using MicroMegas (MGAS) detectors as fission 

detector showed that the copper mesh of the MicroMegas is a significant source of 

background for neutron energies above 100 eV. Thus, a novel fission detector was designed, 

see Fig. 5, respecting the main constraints namely a) the restricted space inside the absorber 

of the TAC (maximum diameter of 10 cm); b) the fast response needed to reduce pile-up due 

to the high α-activity of the 233U targets; c) the hosting of the maximum number of 233U 

targets possible for sufficient statistics in a reasonable beam time. The housing of the fission 

chamber FICH is made of 1.5 mm thick aluminium with an outer diameter of 66 mm and a 

length of 78 mm. Two stacks of simple axial ionization cells are mounted directly on their 

respective motherboards and are inserted from each end of the chamber. The 3 mm inter-

electrode gap in each cell is biased with 420 V and filled with the fast ionizing gas CF4. Pre-

amplifier and shaper modules are directly mounted on the motherboards of each stack to 

reduce signal attenuation and to improve the signal to noise ratio.  

 

Fig. 5. The fission chamber: prototype in the lab (left panel); fully operational chamber mounted 

inside the white absorber in the TAC (right panel). 
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3 Performance of the FICH 

3.1 Discrimination between fission and alpha activity  

Fig. 6 shows the performance of the chamber in terms of separation between fission 

fragments (FF) and α-particles for various conditions on TOF, hence En. Looking at the full 

neutron energy range of interest the separation is limited due to the poor FF/α-ratio. This ratio 

is drastically improved in resonances of the fission cross section, for example in the energy 

range 1.6 eV < En < 1.9 eV, corresponding to the first large resonance dominated by fission. 

The ratio can be further improved when exploiting the shape of the neutron flux at n_TOF, 

namely the region between 800 keV < En < 7 MeV or 5 µs < TOF < 15 µs respectively. In 

this region the neutron flux has a maximum, see Fig. 3, further improving the fission rate, 

hence the FF/α-ratio.  

 

Fig. 6. Amplitude spectra of the fission chamber: various contributions for 0.02 eV < En < 10 keV 

(left panel); α-FF separation for various conditions on En or TOF (right panel). 

3.2 Fission Tagging 

The purpose of the fission chamber is to allow identification of the TAC response to fission 

events by looking at coincidences between FICH and TAC. In Fig. 7 the comparison between 

the amplitude spectra of the FICH without and with coincidence (tagged) is shown. The 

tagged spectrum follows the fission fragment shape perfectly even below amplitudes of 3000 

channels of the ADC where the main contribution is from α-particles. In the top left panel of 

Fig. 8 the response of the TAC to fission events is shown.   
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Fig. 7. Comparison of the amplitude spectra of the FICH and tagged counts: for 

20 meV < En < 10 keV (left panel), α-FF separation for various conditions on En or TOF (right panel). 

4 TAC response 

4.1 Sources of Background 

In Fig. 8 the contributions to the total measured spectrum are shown separately. It can be seen 

that the background consists mostly of low energy events with ESum < 3 MeV and mcr < 3. 

The γ-rays from fission are the main source of background in the region of interest for the 

capture measurement, i.e. from 3 MeV < ESum < 7.5 MeV (Sn(234U) = 6.84 MeV). Thus, a 

precise subtraction of this component is crucial to minimise the uncertainty in the capture 

cross section. 

 

Fig. 8. TAC response for various background contributions. 

4.2 FICH efficiency  

The efficiency of the fission detector can be determined under the assumption that mostly 

fission events deposit energies higher than 10 MeV in the TAC. With the extra assumption 
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that a fission event is detected independently by the TAC and the FICH the tagging efficiency 

εTagg equals the fission chamber efficiency εFICH 

 

𝜀𝑇𝑎𝑔𝑔 =
𝑐𝑇𝑎𝑔𝑔

𝑐𝑇𝐴𝐶
= 𝜀𝐹𝐼𝐶𝐻                                                      (1) 

 

with cTagg and cTAC the tagged and total TAC counts respectively with 10 < ESum < 20 MeV.  

The removal of the background contributions can be further improved by gating on high 

crystal multiplicities. The calculated fission chamber efficiency for fission amplitudes bigger 

than 3000 channels of the ADC is shown in Fig. 8 for various neutron energy regions. It can 

be seen that the data points are in a good agreement with a constant value of 0.867 ± 0.002, 

see fitted red line in Fig. 9. 

 

Fig. 9. Efficiency of the fission chamber as a function of neutron energy for events with fission 

amplitudes bigger than 3000 channels of the ADC and 10 MeV < ESum < 20 MeV and mcr > 6. The 

red line is a fitted constant function and the blue dashed line indicates the error band of the fit. The 

solid blue and green line at the bottom illustrate the shape of the ENDF/B-VIII.0 fission and capture 

cross section respectively. 

4.3 Response to Capture  

In Fig. 10 the total measured deposited energy spectrum compared to the various 

contributions can be seen in the case of neutrons absorbed in the large capture resonance at 

2.1 eV < En < 2.5 eV. The lower cut-off is defined by the 200 keV threshold set per 

individual detector and a minimum measured multiplicity mcr > 2. It is evident that the largest 

contribution are the fission events in the region of interest. The peak in the capture response 

at the neutron separation energy Sn(234U) = 6.84 MeV is clearly visible and followed by a 

smooth bump towards lower energies. Below 2.5 MeV the background subtraction has to be 

investigated further, because a smooth shape going to zero is expected in the capture 

response. Above 7.5 MeV there is still some remaining background possibly due to capture 

of scattered neutrons in the TAC.  
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Fig. 10. Contributions to the deposited energy spectra in the TAC in the capture resonance at 

2.1 eV < En < 2.5 eV for 2 < mcr < 7. 

5 Summary & Conclusion 

The experiment aiming to measure the 233U capture cross section has been performed 

successfully at the n_TOF facility (CERN) using the Total Absorption Calorimeter for the 

detection of the γ-rays. A fission detector was used in veto to properly remove the 

contribution from the fission γ-rays. Preliminary analysis of capture results have been 

presented and are promising.  

Two background contributions, namely the scattered neutrons by the 233U layers and the 

response of the experimental set-up to fission neutrons are still under investigation. In the 

next step extensive Monte Carlo simulations will be used to calculate the detection efficiency 

for the applied analysis cuts regarding deposited energy and crystal multiplicity. For this 

purpose, the capture cascades will be generated with DICEBOX [12] and fed into Geant4 

where the full detector geometry has been reproduced. Furthermore, dead time corrections 

and pile-up effects [13, 14] will be taken into account. 
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