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A B S T R A C T

Engaging in a demanding activity while holding in mind another task to be performed in the near future requires
the maintenance of information about both the currently-active task set and the intended one. However, little is
known about how the human brain implements such action plans. While some previous studies have examined
the neural representation of current task sets and others have investigated delayed intentions, to date none has
examined the representation of current and intended task sets within a single experimental paradigm. In this fMRI
study, we examined the neural representation of current and intended task sets, employing sequential classifi-
cation tasks on human faces. Multivariate decoding analyses showed that current task sets were represented in the
orbitofrontal cortex (OFC) and fusiform gyrus (FG), while intended tasks could be decoded from lateral prefrontal
cortex (lPFC). Importantly, a ventromedial region in PFC/OFC contained information about both current and
delayed tasks, although cross-classification between the two types of information was not possible. These results
help delineate the neural representations of current and intended task sets, and highlight the importance of
ventromedial PFC/OFC for maintaining task-relevant information regardless of when it is needed.
1. Introduction

The selection and maintenance of relevant information is critical for
our ability to pursue complex and hierarchically organized goals. In cases
where we hold delayed intentions that need to be fulfilled later on (also
known as prospective memory; Kliegel et al., 2008) or when we perform
sequential tasks, it is necessary to represent the currently-active task and,
in addition, the one to be performed later on. It is also important to
switch flexibly from one task set to another (e.g. Monsell, 2003). Some
studies have examined the neural representation of currently-active task
sets in frontoparietal areas (e.g. Waskom et al., 2014; Woolgar et al.,
2011b), while others have investigated the representation of delayed
intentions suggesting a key role of medial prefrontal cortex (mPFC) in
combination with posterior areas (e.g. Gilbert, 2011; Haynes et al., 2007;
Momennejad and Haynes, 2013). However, no previous study has
examined the representation of current and intended task sets within a
single experimental paradigm. This combination allows to investigate the
extent to which currently-active and intended future task sets are rep-
resented in overlapping versus distinct brain networks, and also to
contrast their activation patterns directly. Furthermore, previous studies
have focused on representations of rather simple stimuli (i.e. geometric
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figures, objects, words, etc.; Crittenden et al., 2015; Waskom et al., 2014;
Woolgar et al., 2011b), so it is not clear how well these findings gener-
alize to more complex stimuli, such as human faces. In this study, we
employed social categorization dual-sequential judgments on human
faces to investigate the common and differential representation of cur-
rent and delayed tasks.

The influence of maintaining an intended task-set on current task
performance has previously been investigated with behavioural
methods. These studies highlight how performance declines with an
increment of the number of tasks that need to be maintained, showing
that the representation of two tasks simultaneously is more demanding
compared to one task only. For instance, Smith (2003) found that par-
ticipants performed an ongoing task more slowly when they held in mind
a pending intention, compared with performing the ongoing task alone.
This behavioural effect is accompanied by changes in pupil dilation
(Moyes et al., 2019), which also serves as an indicator of task demands
(see van der Wel and van Steenbergen, 2018). Further, dual-task costs
have also been manifested in task switching paradigms, where partici-
pants must switch between two active task-sets (Monsell, 2003; Rogers
and Monsell, 1995). Even when the same task is repeated from the pre-
vious trial, responses are slower and less accurate during mixed blocks
anada, 18071, Granada, Spain.
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(where more than one task is relevant) compared with pure blocks con-
sisting of just one task (Marí-Beffa et al., 2012).

Results at the neural level also indicate that the maintenance of two
tasks compared with one alters activity in specific brain regions. Several
studies have shown that a set of “task-positive” regions increases their
activation during demanding tasks (also known as the Multiple Demand
network, MD; Duncan, 2010). This network is also sensitive to cognitive
load, increasing its sustained activation as task complexity is raised
(Dumontheil et al., 2011; Palenciano et al., 2019; but see Tschentscher
et al., 2017). Among these, the lateral prefrontal (lPFC) and parietal
cortices play a prominent role during dual-task performance. Both in-
crease their activation during task-switching trials while anterior PFC
shows sustained activation during task-switching blocks (Braver et al.,
2003). Similarly, others (Szameitat et al., 2002) have shown the
involvement of the lPFC during dual-task blocks, proportionally to task
difficulty, during simultaneous and interfering task processing. Further,
some studies have employed multivoxel pattern analysis (MVPA) to show
how these frontoparietal (FP) regions code current task sets (Palenciano
et al., 2019; Qiao et al., 2017; Waskom et al., 2014; Woolgar et al.,
2011b) and how the representation of task-relevant information in these
areas increases with task demands (Woolgar et al., 2011a).

Traditionally, the role of FP regions has been opposed to “task-
negative” areas, initially linked to decreased activity during effortful task
performance (Fox et al., 2005), although recent studies suggest that they
have a much broader role. This Default Mode Network (DMN) includes
the ventro/dorsomedial PFC, orbitofrontal cortex (OFC), pre-
cuneus/posterior cingulate, inferior parietal lobe (IPL), lateral temporal
cortex, and hippocampal formation (Buckner et al., 2008; Raichle, 2015).
However, recent studies have qualified this view, showing that these
regions also represent task-relevant information in different contexts
(e.g. Crittenden et al., 2015; Gonz�alez-García et al., 2017; Palenciano
et al., 2019b; Smith et al., 2018). Moreover, the strength of connectivity
among task-negative regions during a working memory task is associated
with better performance (Hampson et al., 2006). Similarly, Elton and Gao
(2015) observed that the dynamics of connectivity among DMN regions
during task performance were also related to behavioural efficiency.
Altogether, the literature suggests a clear involvement of FP areas in the
representation of current task-related information and highly demanding
tasks. Conversely, the role of the DMN is less clear. Although it shows
decreased activation during demanding tasks, its dynamics are also
related to behaviour, and contain task information in different contexts.
This suggests that these regions play a role in the representation of
task-relevant knowledge.

Further, one of the main nodes of the DMN, the medial prefrontal
cortex (mPFC), has an important role in the representation of intended
behaviour during both task-free situations (Haynes et al., 2007) and
delays concurrent with an ongoing task (Gilbert, 2011; Momennejad &
Haynes, 2012, 2013). This area also plays a role when holding decisions
before they reach consciousness (Soon et al., 2008). The evidence from
studies of delayed intentions has led to suggested dissociations between
the role of lateral and medial PFC (associated with task-positive and
task-negative networks, respectively). Momennejad and Haynes (2013)
directly compared the representation of future intentions during delays
with and without an ongoing task, and found that while the lPFC had a
general role of encoding intentions regardless of whether there was or
not an ongoing task during the delay, the mPFC was involved when the
delay period was occupied by an ongoing task. Alternatively, Gilbert
(2011) could not find encoding of delayed intentions in the lPFC but they
did in the mPFC, suggesting that the former may play a content-free role
in remembering delayed intentions while the latter would represent their
specific content. However, these studies vary in the abstraction of the
task rules employed. While Gilbert (2011) aimed to decode specific vi-
sual cues and responses, others focused on the anticipation of abstract
task sets, such as arithmetic operations (addition vs. subtraction; Haynes
et al., 2007), or parity vs. magnitude judgements (Momennejad & Hay-
nes, 2012, 2013). This difference in abstraction could impact the brain
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region (lPFC vs. mPFC) maintaining information about future intentions
(Momennejad and Haynes, 2013). Further, these studies also vary in
whether the retrieval of the intended task was cued (Gilbert, 2011) or
self-initiated (Momennejad & Haynes, 2012, 2013). Therefore, although
the representation of intentions has been studied in a variety of experi-
mental settings, these have not directly addressed how the representation
of a future task set may differ from the representation of an ongoing task
that is currently being performed.

In addition, the studies so far have employed mainly non-social
stimuli. In this context it is worth noting that the DMN has also been
related to processes relevant for the social domain (Buckner and Carroll,
2007; Mars et al., 2012; Spreng et al., 2008). For instance, the engage-
ment of the DMN during rest is related to better memory for social in-
formation (Meyer et al., 2018). Facial stimuli are an important source of
social knowledge, which is represented in a set of regions including the
fusiform gyrus (FG; Haxby et al., 2000; Kanwisher and Yovel, 2006). The
FG also shows different neural patterns distinguishing social categories
(Kaul et al., 2014; Stolier and Freeman, 2017). Similarly, the represen-
tational structure of social categories is altered by personal stereotypes
both in the FG and in higher-level areas such as the OFC (Stolier and
Freeman, 2016), which is also linked to the representation of social
categories such as gender, race, or social status (Gilbert et al., 2012; Kaul
et al., 2011; Koski et al., 2017) and the integration of contextual
knowledge during face categorization (Freeman et al., 2015). Likewise,
during predictive face perception, the FG coactivates with and receives
top-down influences from the dorsal and ventral mPFC (e.g. Summerfield
et al., 2006), which in turn have also been implicated on judgements
about faces (Mitchell et al., 2006; Singer et al., 2004). Therefore, given
the special properties and influence of social information gathered from
faces, understanding how task-relevant current and delayed information
may be represented when it pertains to social information is important to
extend and complement previous findings.

In the current fMRI study, we employed a dual-sequential categori-
zation task, where participants had to discriminate between features of
three dimensions of facial stimuli and had to maintain for a period of time
both the initial ongoing task and an intended one. In particular, we
studied how demands (one vs. two sequential tasks) influence perfor-
mance, and hypothesized that high demand would be associated with
worse performance alongside with activation in frontoparietal regions,
especially the lPFC. To examine the brain regions containing fine-grained
information about both current and intended tasks we employed MVPA.
Unlike traditional univariate methods, where the mean activation in a set
of voxels is compared between conditions, MVPA focuses on the spatial
distribution of activations. Here, a classifier is trained to distinguish
response patterns associated with different experimental conditions (i.e.
stimuli categories, cognitive states, etc.) in a certain brain region. If the
trained classifier is able to predict the patterns of independent data, there
is indication that the brain area under study represents specific infor-
mation about those conditions. Thus, MVPA allows to examine finer-
grained differences in how information is represented in the brain (for
reviews see Haxby et al., 2014; Haynes, 2015). In this work, we aimed to
study how an intended task set might be represented differently from a
currently-active ongoing task. For that reason, we focused on an initial
pre-switch period, when a current task was being performed before
switching to the intended task. Specifically, we performed separate an-
alyses to decode: 1) the task currently being performed, regardless of the
intended future task; 2) the task intended for the future, regardless of the
current task (henceforth: “initial task” and “intended task”, respectively).
Given the extensive literature associating FP areas to the representation
of task-relevant information (Qiao et al., 2017; Waskom et al., 2014;
Woolgar et al., 2011a, 2011b), we expected to decode the initial relevant
task in MD regions and the intended one in “task-negative” regions,
especially the mPFC, in line with previous studies showing its role on
prospective memory (Gilbert, 2011; Haynes et al., 2007; Momennejad &
Haynes, 2012, 2013).
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2. Methods

2.1. Participants

Thirty-two volunteers were recruited through adverts addressed to
students of the University of Granada (range: 18–28, M¼ 22.5,
SD¼ 2.84, 12 men). All of them were Caucasian, right-handed with
normal or corrected-to-normal vision and received economic remunera-
tion (20–25 Euros, according to performance) in exchange for their
participation. Participants signed a consent form approved by the Ethics
Committee for Human Research of the University of Granada.
2.2. Apparatus and stimuli

We employed 24 face photographs (12 identities, 6 females, 6 black; 3
different identities per sex and race) displaying happy or angry emotional
expressions, extracted from the NimStim dataset (Tottenham et al.,
2009). E-Prime 2.0 software (Schneider et al., 2002) was used to control
and present the stimuli on a screen reflected on a coil-mounted mirror
inside the scanner.
2.3. Design and procedure

Participants had to perform a series of categorization tasks where they
judged either the emotion (happy vs. angry), the gender (female vs. male)
or the race (black vs. white) of series of facial displays. These tasks were
arranged in miniblocks, which could each contain one (Pure Miniblock;
PM) or two sequential categorization tasks (Mixed Miniblock; MM). At
the beginning of each miniblock, participants received instructions
indicating the number of tasks to perform (1 vs. 2) and their order and
nature (Emotion, Gender and/or Race), as well as the key-response
mappings. Thus, for PMs, the initial instruction indicated the one task
that had to be performed during the whole miniblock. Conversely, for
Fig. 1. Display of the paradigm. Example of a miniblock and se
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MMs, the instruction indicated two tasks, where the participant had to
change from the first to the second task at a certain point of the mini-
block. After the instruction, a coloured (blue or red) fixation point
appeared on the screen, followed by a facial display (see Fig. 1). Partic-
ipants were told that, during MMs, they had to switch tasks when the
fixation changed its colour (from blue to red or vice versa). Once it
switched, they had to continue doing the second task until the end of the
miniblock. To equate the perceptual conditions across blocks, the fixation
colour also changed during PMs, although participants were told to
ignore this change.

Hence, in each MM there was an initial task (first task to perform), an
intended task (second task to perform) and an ignored task (non-relevant
for that miniblock). Importantly, our main fMRI analyses focused on the
period before the switch, while participants needed to represent both the
initial task and the intended one. Task switches were evenly spaced
across the miniblock, from trial 1 to 12. This allowed us to decorrelate
brain activity associated with the pre-switch period, post-switch period,
and the switch itself. In total, there were 9 different types of miniblocks: 3
pure (emotion[EE], gender[GG], race[RR]) and 6 mixed (emotion-
gender[EG], emotion-race[ER], gender-emotion[GE], gender-race[GR],
race-emotion[RE], race-gender[RG], see Fig. 2). Across the experiment,
pure miniblocks appeared 8 times each, while every type of mixed
miniblock was repeated 12 times. The presentation order of the mini-
blocks and the assignment of response options (left or right index) were
counterbalanced within each run. Additionally, to avoid response con-
founds in the analyses, response mappings changed between runs. Thus,
for each participant odd and even runs had the opposite response
mappings.

Participants performed a practice block to learn the different tasks
and the response mappings. They were required to obtain a minimum of
80% accuracy at this practice block prior to entering the scanner. The
sequence of each miniblock was as follows: First, the instruction slide
presented the task/s to perform (Pure: 1, Mixed: 2), and the response
quence of trials. Inter-trial-interval (ITI) duration¼ 2–2.5 s.



Fig. 2. Top: All possible combinations of miniblocks, depending on the initial
and intended tasks, and their abbreviation (Abv). Bottom: Example of interfer-
ence between initial and intended categories in a Gender-Emotion
(GE) miniblock.
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mappings (right/left index), during 5 s. Then, a sequence of 12 trials
appeared. In each of them, a fixation point (blue or red, counterbalanced)
lasting 2–2.5 s (inter-trial-interval; ITI; in units of 0.25 s, randomly
assigned to each fixation) was followed by a facial display of 0.5 s. The
fixation for the switch trial lasted on average 2.24 s (SD¼ 0.022; all
participants within a range of�2.5 standard deviations). The experiment
consisted of 1152 trials, arranged in 96 miniblocks (72 mixed and 24
pure), distributed in 12 scanning runs. Hence, each run consisted of 8
miniblocks (6 mixed and 2 pure). Each type of miniblock was repeated 12
times, once per run, and each time the switch occurred on a different
trial. Presentation order and switch point were counterbalanced through
the experiment, to ensure that each switch occurred on every possible
trial for each type of miniblock and that each identity was associated the
same number of times with the switch. In total, the fMRI task lasted
60.8 min.

In addition, we also studied the interference between tasks. Since in
MMs the participant had to perform two tasks sequentially, the estab-
lished stimulus-response association could be compatible or incompatible
between the current and intended tasks, depending on the specific target
face. For instance, the gender task could have a stimulus-response (S-R)
association of female-left/male-right and the S-R in the emotion task
might be happy-left/angry-right. Therefore, in a GE miniblock, during the
gender task, participants could encounter happy female faces (both the
initial gender and intended emotion tasks would require the same
response: left) or angry female faces (the initial gender task would lead to
response with the left index and the emotion with the right one). Thus, the
former would be an example of compatibility between initial and intended
tasks, whereas the latter would entail incompatibility (see Fig. 2).
2.4. Image acquisition and preprocessing

Volunteers were scanned with a 3T Siemens Magnetom Trio, located
4

at the Mind, Brain and Behavior Research Center (CIMCYC) in Granada,
Spain. Functional images were obtainedwith a T2*-weighted echo planar
imaging (EPI) sequence, with a TR of 2.210 s. Forty descending slices
with a thickness of 2.3 mm (20% gap) were extracted (TE ¼ 23 ms, flip
angle ¼ 70�, voxel size of 3x3x2.3 mm). The sequence was divided into
12 runs, consisting of 152 volumes each. Afterwards, an anatomical
image for each participant was acquired using a T1-weighted sequence
(TR ¼ 2500 ms; TE ¼ 3.69 ms; flip angle ¼ 7�, voxel size of 1 mm3). MRI
images were preprocessed and analysed with SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12). The first 3 images
of each run were discarded to allow the stabilization of the signal. The
volumes were realigned, unwarped and slice-time corrected. Then, the
realigned functional images were coregistered with the anatomical image
and were normalized to 3mm3 voxels using the parameters from the
segmentation of the anatomical image. Last, images were smoothed using
an 8mm Gaussian kernel, and a 128 high-pass filter was employed to
remove low-frequency artefacts. Multivariate analyses used non-
normalized and non-smoothed data (Bode and Haynes, 2009; Gilbert
and Fung, 2018; Woolgar et al., 2011a, 2011b).

2.5. fMRI analyses

2.5.1. Univariate
First, we employed a univariate approach to examine the effect of

context demands (one vs. two sequential tasks) and task switching. Our
model contained, for each run, one regressor for the instruction of each
miniblock, four regressors corresponding to the two types of miniblock
(pure/mixed) with separate regressors for the pre-switch and post-switch
periods, one for the change in fixation colour during mixed miniblocks
(indicating a switch event), one for the change in fixation colour during
pure miniblocks (serving as a baseline for the switch events), and another
one for the errors. Both instruction and miniblock regressors were
modelled as a boxcar function with the duration of the entire pre/post
switch period or instruction duration (5 s). Errors were modelled
including the duration of the face of that trial and the following fixation
(2.5–3 s). Switch trials were modelled as events, with stick functions with
zero duration locked at the switch in colour of the fixation point. This
provided a model with a total of 8 regressors per run. At the group level,
t-tests were carried out for comparisons related to the effect of task de-
mands (one vs. two tasks) at the period prior to the switch, and also to
compare switching cost effects (switch trial in the mixed block> switch
trial in pure blocks). We report clusters surviving a family-wise error
(FWE) cluster-level correction at p< .05 (from an initial uncorrected
threshold p< .001). Additionally, we also performed nonparametric
inference (see Supplementary Materials).

2.5.2. Multivariate analysis
We performed multivoxel pattern analyses (MVPA) to examine the

brain areas maintaining the representation of A) current-active initial
tasks, and B) intended tasks. These analyses examined brain activity
during the pre-switch period only. Following a Least-Squares Separate
Model approach (LSS; Turner, 2010) we modelled each miniblock (EG,
ER, GE, GR, RE, RG) during the period prior to the switch separately. This
method helps to reduce collinearity between regressors (Abdulrahman
and Henson, 2016), by fitting the standard hemodynamic response to two
regressors: one for the current event (a type of miniblock prior to the
switch) and the second one for all the remaining events. As in the uni-
variate approach, each miniblock regressor was modelled as a boxcar
function with the duration of the entire pre-switch period duration.

The binary classification analyses were performed as follows. First,
we classified a) between any two initial tasks while holding the intended
task constant, then b) between any two intended tasks while holding the
initial task constant. For instance, in case a) we contrasted initial gender
task vs. initial race task when the intended task was emotion (GE vs. RE),
and also intended gender vs. intended emotion task when the intended
task was race (ER vs. GR), and intended emotion task vs. intended race

http://www.fil.ion.ucl.ac.uk/spm/software/spm12


Fig. 3. Influence of the type of block on performance. Error bars represent
within-subjects 95% confidence intervals (Cousineau, 2005).
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task when the intended task was gender (EG vs. RG). We then averaged
decoding accuracies across these analyses, which indicate whether a
particular brain region shows different patterns of activity depending on
what the initial, currently-active task set is, holding the intended task
constant. Conversely, in case b), we compared intended gender vs.
intended race when the initial, currently-active task was emotion (EG vs.
ER), intended gender vs. intended emotion when the initial, currently-
active task was race categorization (RE vs. RG) and intended emotion
vs. intended race when the initial, currently-active task was gender (GE
vs. GR). As above, we averaged across these analyses, which indicate
whether a particular brain region shows different patterns of activity
depending on what the intended task set is, holding the currently-
performed task constant.

To carry out these analyses, we performed a whole brain searchlight
(Kriegeskorte et al., 2006) on the realigned images employing the
Decoding Toolbox (TDT; Hebart et al., 2015) and custom-written MAT-
LAB code. We created 4-voxel radius spheres and for each sphere, a linear
support vector machine classifier (C¼ 1; Pereira et al., 2009) was trained
and tested using a leave-one-out cross-validation. Due to the nature of the
paradigm and the counterbalancing, once in each block the switch took
place at the first trial (here participants only performed the intended
task). Thus, there was an example of each type of miniblock before the
switch in only 11 runs, differently for each participant andminiblock (i.e.
a participant could lack miniblock EG in run 4 and miniblock RG in run
11). To avoid potential biases in the classifier for having only one of the
classes in a run, for each participant and comparison, we performed the
classification only in the 10 runs where there was an example of both
miniblocks. Resulting from this procedure, we employed the data from
10 scanning runs (training was performed with data from 9 runs and
tested on the remaining run, in an iterative fashion). In the exceptional
case (twice for each contrast in the total sample) where the two mini-
blocks in the classification were absent in the same run, classification was
performed on the remaining 11 runs (training with data from 10 runs and
testing on the remaining run). In addition, we observed biases in the
decoding estimates when the switch trial from one of the conditions in
the test set matched the opposite class in the training set, which
happened for every comparison in approximately half of the
cross-validation steps. To avoid the biases resulting from this, we addi-
tionally removed those runs where the switch position matched the test
from the training set for that specific cross-validation step.

Next, we averaged the accuracy maps for a) and b) to obtain a mean
classification map collapsing across initial and intended tasks. This
allowed us to detect regions that contained information about either
initial or intended tasks (or both). It also allowed us to define ROIs that
could be used to compare decoding accuracies for initial versus intended
task-sets, in a manner that was unbiased between the two types of in-
formation. We additionally conducted whole-brain analyses investi-
gating decoding of the initial task only, decoding of the intended task
only, and the comparison between the two.

Afterwards, group analyses were performed by doing one-sample t-
tests after normalising (same as for the univariate analyses) and
smoothing the individual accuracy maps (4mm Gaussian kernel,
consistent with earlier MVPA studies such as Gilbert, 2011; Gilbert and
Fung, 2018). Results were considered significant if they passed an FWE
cluster-level correction at p< .05 (based on an uncorrected forming
threshold of p< .001). This statistical approach is consistent with recent
MVPA studies (Gilbert and Fung, 2018; Loose et al., 2017). We addi-
tionally carried out nonparametric inference (see Supplementary
Materials).

3. Results

3.1. Behaviour

First, to study how the number of tasks influenced performance, we
performed a paired t-test on both accuracy and reaction times (RTs),
5

between the two types of Miniblock (Mixed/Pure), collapsing over pre-
and post-switch periods (see Fig. 3). Here, responses were more accurate
for pure (M¼ 95.7%, SD¼ 4.3), than for mixed miniblocks (M¼ 92.3%,
SD¼ 3.6), t31¼ 5.39, p< .001, whereas they were faster for pure
(M¼ 671.12ms, SD¼ 126.3) than for mixed (M¼ 709.18ms,
SD¼ 142.39) miniblocks, t31¼ 4.83, p< .001.

In addition, we examined if the intended task influenced initial task
performance, and vice versa. For this, we selected only the mixed mini-
blocks and entered them into a repeated measures (rm) ANOVA, with
Task (Emotion/Gender/Race), Period of the miniblock (Prior to/Post
Switch), and Interference (Compatible/Incompatible) between initial
and intended tasks. Note here that even if we did not have any specific
hypothesis about the influence of the variable Task on performance, we
included it as a factor in this second ANOVA to examine whether the Task
modulated the effect of the other two variables of interest: Period of the
block and Interference. Moreover, we refer to initial and intended as the
tasks performed before and after the switch, respectively, to preserve
consistency in the terminology throughout the entire manuscript. In
addition, we refer as compatible trials when the correct response for the
initial task-relevant dimension was associated with the same response for
the intended dimension (see an example in Fig. 2, bottom), and incom-
patible trials when the response associated with the initial task-relevant
dimension interfered with the responses associated with the intended
one. Similarly, after the switch, when the intended task was being per-
formed, compatible trials referred to those where the correct responses
for this task were associated with the same response for the previous
initial task, and incompatible trials when the response associated with
both dimensions differed. This way we could use interference effects as
an indicator of the maintenance of the intended response dimensions
during performance.

Accuracy (see Fig. 4) did not show any main effect of Task (F< 1).
However, we observed a main effect of Period of the miniblock,
F1,31¼ 58.215, p< .001, ηp2¼ 0.653, where participants responded more
accurately before (M¼ 94.86%, SD¼ 3.6) than after the task switch
(M¼ 90.05%, SD¼ 5.4). There was also a main effect of Interference,
F1,31¼ 101.83, p< .001, ηp2¼ 0.767, where accuracy was higher for
compatible (M¼ 94.91%, SD¼ 4.76) than for incompatible trials
(M¼ 90%, SD¼ 6.79). The interaction Task x Period was significant,
F2,62¼ 3.831, p¼ .029, ηp2¼ 0.110, showing that performance was better
before than after the switch for all three tasks (all Fs> 15, ps< .001), but
this difference was larger for the gender task (ηp2¼ 0.679). Similarly, the
interaction of Period x Interference was significant, F1,31¼ 52.244,
p< .001, ηp2¼ 0.106, where accuracy was worse for incompatible
compared to compatible trials (both Fs> 19, ps< .001), but this pattern
was more pronounced after (F1,31¼ 107.08, p< .001) than before the
switch (F1,31¼ 19.21, p< .001). No other interactions reached signifi-
cance (ps> .061).

RTs showed (see Fig. 4) a main effect for Task (F2,62¼ 24.08,
p< .001, ηp2¼ 0.437), were race was performed faster (M¼ 691.16,
SD¼ 150.07), followed by gender (M¼ 709.29, SD¼ 147.11), and
emotion (M¼ 728.59, SD¼ 144.14). In addition, we also observed a



Fig. 4. Interference effects between initial and intended tasks before and after
the switch (MMs). Top: Accuracy rates. Bottom: Reaction times (ms). Error bars
represent within-subjects 95% confidence intervals (Cousineau, 2005).

Fig. 5. Univariate results. Effect of task demands (one vs. two) and task
switching. Scales reflect peaks of significant t-values (p< .05, FWE-corrected for
multiple comparisons).
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main effect of Period (F1,31¼ 32.83, p< .001, ηp2¼ 0.514), as participants
were faster after (M¼ 690.94, SD¼ 143.38) than prior to the switch
(M¼ 728.42, SD¼ 155.72). Further, we found a main effect of Interfer-
ence, F1,31¼ 4.829, p¼ .036), where participants were faster for
compatible (M¼ 705.51, SD¼ 147.79) than incompatible trials
(M¼ 713.65, SD¼ 146.42). An interaction Period x Interference
(F1,32¼ 24.08, p¼ .033, ηp2¼ 0.437) showed that this interference effect
was significant before the switch (F1,31¼ 8.15, p¼ .008), but not after
(F1,31¼ 0.178, p> .67). None of the other interactions were significant
(ps> .2).

During mixed blocks we observed higher accuracies and reaction
times during the period before the switch and the opposite pattern (low
accuracies and faster responses) after it, which could indicate a trade-off
in the data. To address this possibility, we performed Pearson correla-
tions between mean accuracy and reaction times during both periods of
the miniblock. Results show no association between the two measures,
neither before (r¼ 0.07; p> .35) or after (r¼ 0.17, p> .17) the switch.
3.2. fMRI

3.2.1. Univariate

3.2.1.1. Pure vs. mixed blocks. Before the switch (see Fig. 5), the right
middle frontal gyrus (k¼ 56; MNI coordinates of peak voxel: 42, 44, 23)
showed higher activation when participants had to maintain two tasks vs.
one (Mixed> Pure blocks). Conversely, in this scenario, we observed
decreased activation (Pure>Mixed blocks) in a set of regions. These
included the bilateral middle cingulate cortex (k¼ 251; �3, �10, 33),
bilateral medial prefrontal cortex (mPFC; k¼ 80; �6, 44, 41), left orbi-
tofrontal cortex (OFC; k¼ 117;�33, 32,�16), right inferior frontal gyrus
(IFG)/OFC (k¼ 168; 54, 32, �1), left lingual and parahippocampal gyri
(k¼ 148; �9, 52, 5) and left superior temporal gyrus (k¼ 62; �57, �1,
�4).
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3.2.1.2. Switch vs. non-switch trials. Transient activity during task
switching (see Fig. 5) was observed in the bilateral brainstem and thal-
amus (k¼ 291; �3, �28, �22) as well as in a cluster including the left
inferior/middle frontal gyrus (IFG/MFG) and precentral gyrus (k¼ 160;
�51, 11, 17).

3.2.1.3. Interference effects. We assessed whether the interference effects
observed on behaviour were matched at a neural level, by comparing
incompatible vs. compatible trials before and after the switch. For this
model, we included in each run one regressor for the instruction of each
miniblock, one regressor corresponding to all Pure Miniblocks, four re-
gressors corresponding to Compatible/Incompatible trials in Mixed
Miniblocks, with separate regressors for the pre-switch and post-switch
periods (onset at face presentation) and a last regressor for errors. In-
structions and errors were modelled as described in section 2.5.1. Pure
Miniblocks were modelled as a boxcar function with the duration of the
entire pre/post switch period, while the four remaining regressors
(Compatible Pre, Compatible Post, Incompatible Pre, Incompatible Post)
were modelled as events with zero duration. This provided a model with
a total of 7 regressors per run.

At the group level, t-tests were carried out for comparisons related to
the effect of Interference before and after the switch. No effect survived
multiple comparisons. However, at a more lenient threshold (p< .001,
uncorrected), data showed higher activation in the left IFG (k¼ 22; �48,
35, 20) for incompatible> compatible trials. The opposite comparison
(compatible> incompatible before the switch) or incompatible vs.
compatible contrasts after the switch did not yield any significant results.

3.2.2. Decoding results
First, we averaged all individual classification maps to examine the

regions sensitive to any kind of task (initial or intended) during the
period prior to the switch (see Fig. 6). We found that the rostromedial
PFC/orbitofrontal cortex (OFC) presented significant accuracies above
chance (k¼ 68; 15, 56, �10). To further examine whether one of the
tasks dominated the classification, we extracted the decoding values from
the initial and intended classification from the general decoding ROI
above. A paired t-test between the initial and intended task decoding
values showed no differences between decoding accuracy for the two
types of information, t31¼ 0.846, p¼ .404. To further test this idea, we
ran an ROI analysis in this region to see whether decoding accuracy was
significant for both the initial and intended tasks. To avoid non-
independency, we employed a Leave-One-Subject-Out (LOSO) cross-
validation approach (Esterman and Yantis, 2010) to select the ROI per
participant. That is, data from each participant was extracted from an
ROI that was defined based on the data from all the other participants, to
avoid ‘double dipping’ (Kriegeskorte et al., 2009). After this, both the



Fig. 6. Multivariate results during the period prior to the switch. Top left:
General decoding (cyan) of the region sensitive to any kind of task (initial or
intended). Top right: Decoding of the initial (green) and intended (blue) task
separately. Bottom: Decoding of initial> intended task (violet). Scales reflect
peaks of significant t-values (p< .05, FWE-corrected for multiple comparisons).
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initial and intended decoding values showed significant accuracy above
chance (1-tailed, t31¼ 3.018, p¼ .0025 and t31¼ 2.299, p¼ .0145,
respectively). This suggests that the mPFC/OFC region, prior to the
switch, carries information about the relevant tasks to perform, regard-
less of whether they are initial or intended.

To further characterise the information represented in the mPFC/OFC
region, we additionally examined whether we could cross-classify be-
tween the initial and intended tasks, which speaks to the potential
overlap between these representations. Therefore, we performed ROI
cross-classification analysis (Kaplan et al., 2015) in the mPFC/OFC re-
gion from the general decoding. We followed the same classification
procedure as described in the methods section, but training the classifier
on the initial task and testing on the intended task, and vice versa. Note
that in this scenario the cross-classification was carried out in a totally
independent and orthogonal analysis to that employed to define the OFC
region. However, results showed no significant cross-classification in this
region, t31¼ 1, p> .3, which suggests that the initial vs. intended nature
of the tasks may change their representational format.

Moreover, we examined the initial and intended individual classifi-
cation maps separately to examine the regions sensitive to each type of
task (initial or intended; see Fig. 6). With this, the classification of the
initial task alone showed a different cluster in the left OFC (k¼ 52; �15,
17,�13). Conversely, we observed the right IFG (k¼ 53; 45, 41,�16) for
the classification of the intended task alone. Last, when comparing
decoding accuracies between the initial and intended tasks (subtracting
initial – intended accuracy maps), we observed significantly higher ac-
curacies for the representation of the initial (vs. intended) in the right FG
and the hippocampus (k¼ 148; 39, �13, �25) and also in left OFC
(k¼ 44; �18, 17, �16). However, the opposite contrast (intended vs.
initial) did not show any cluster with significant differences. Importantly,
these MVPA results were unlikely to be due to differences in response
times (see Supplementary Materials “RT analyses between miniblock pairs
and correlation with decoding accuracies”).

Last, although the main focus of this work is the period before the
switch, we performed exploratory classification analysis in the period
after the switch to obtain further understanding about how information is
represented once the initial task is no longer active. Following the same
procedure as in section 2.5.2 , we carried out the decoding analysis with
regressors of interest corresponding to the period after the switch. As in
the previous analyses, we first averaged all individual classification maps
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to examine the regions sensitive to any kind of task during the period
after the switch. Here, we observed a cluster in left middle frontal/pre-
cental gyrus (k¼ 61; �36, 11, 35) with significant accuracies above
chance. Next, we averaged the classification maps separately for the
currently-active post-switch task and the previously-performed initial
task, to examine the regions sensitive to each type of task. The initial task
could be decoded from bilateral IFG (left; k¼ 48; �54, 29, 26/right;
k¼ 45; 54, 32, 5). Conversely, decoding of the currently-active post-
switch task could only be observed at a more liberal threshold (p< .01,
k¼ 100) in a cluster including the FG/cerebellum (k¼ 109; 15, �52,
�19) and in left middle/inferior frontal gyrus (k¼ 122; �45, 8, 35).

4. Discussion

The present work aimed to examine the representation of A)
currently-active, initial task sets, and B) intended task sets applied to
social stimuli during a dual-sequential social categorization of faces. We
found some regions from which we could decode only the currently-
active or the intended task set, along with a region of vmPFC/OFC con-
taining both types of information, although cross-classification between
the two was not possible.

The paradigm employed revealed behavioural costs due to the
maintenance of intended task sets. Here, mixed blocks presented slower
responses and lower accuracies, compared to pure ones, in line with
previous studies (Los, 1996; Marí-Beffa et al., 2012). Response times
were slower before than after the switch, when the intended task needed
to be held while performing the initial one, in line with Smith (2003).
These results reflect the higher demands associated with the mainte-
nance of two relevant task sets. In addition, people need more time to
respond when they hold the intention while performing the initial task,
but not after, when they only need to focus on a single task. Further, we
aimed to examine the activation of both initial and intended task sets
before the switch by looking at the possible interference between them.
Behavioural results showed incompatibility effects in performance when
participants needed to hold the intended task set while performing the
ongoing task. These results point to the maintenance of intended task
settings, showing that information about the pending set is maintained
online during performance of the ongoing task.

Turning to brain activation data, the costs we observed during the
maintenance of two task sets during mixed blocks were accompanied by
increased activation in the right MFG, while regions such as the left IFG
and the thalamus increased their activation during switch trials. Incom-
patible trials during this period were also related to activation in the left
lPFC, but only at an uncorrected statistical threshold. These results fit
with previous work that associate the lPFC with sustained control during
dual tasks (Braver et al., 2003; Szameitat et al., 2002) and the mainte-
nance of delayed intentions (Gilbert, 2011). Lateral PFC has also an
important role in rule representation and the selection of correct rules
(Brass and Cramon, 2002; Crone et al., 2006), while the thalamus has
also shown a role in cognitive flexibility during task switching (Rikhye
et al., 2018). Overall, this pattern reflects the cognitive demands of
holding two tasks in mind, extending the results to the maintenance of
social categorization sets.

In addition, we observed a set of task-negative regions including the
mPFC, middle cingulate, OFC, IFG and temporal cortex, which showed
reduced signal when participants needed to hold an intended task set.
Similarly, Landsiedel & Gilbert (2015) carried out an
intention-offloading paradigm where participants had to remember a
delayed intention, which they had to fulfil after a brief filled delay.
During the maintenance of such intention they found a set of deactivated
regions including mPFC, posterior cingulate cortex, infero-temporal
cortex, and temporo-parietal cortex. Interestingly, these authors
showed that when participants had the opportunity to offload intentions
by setting an external reminder, this decrease of activation was amelio-
rated. This suggests that these task-negative areas play a role in the
representation of the delayed tasks. Pure blocks in our tasks are similar to
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the offloading condition in Landsiedel and Gilbert (2015), as participants
needed to sustain only the initial task set to perform the correct social
categorization. Therefore, taking these results into account, it seems
unlikely that task-negative regions reflect simply a “default mode” (Fox
et al., 2005), but rather that this deactivation is, to some extent, playing a
functional role during task performance (Spreng, 2012).

Currently, multivariate pattern analyses are one of the most powerful
approaches to study the information contained in different brain areas. In
this work, we employed MVPA to study the regions representing initial
and intended task sets. Importantly, a novelty of our approach was to do
so by employing three different tasks instead of just two, unlike most
previous studies (e.g. Haynes et al., 2007; Momennejad and Haynes,
2013). We were able to distinguish different regions representing initial
and intended task sets. The currently-active initial task was decoded from
left OFC, while information about the intended one was contained in the
right IFG. Also, comparing between these two, a nearby OFC region
together with the FG showed higher fidelity of the representation for the
initial vs. intended task set. The left OFC region found for the initial task
decoding has been previously associated with representations of facial
information related to social categories (Freeman et al., 2010) and it also
facilitates object recognition in lower level areas such as the FG (Bar
et al., 2006). In addition, the FG showed greater fidelity of the repre-
sentation of initial vs. intended task sets, which could indicate the allo-
cation of attentional resources to process current relevant information in
earlier perceptual regions. Besides having a prominent role in processing
faces (Haxby et al., 2000), previous studies have been able to decode
task-relevant information related to social categories (e.g. female vs.
male, black vs. white) in perceptual regions such as the FG (Gilbert et al.,
2012; Kaul et al., 2014, 2011; Stolier and Freeman, 2017). On top of this,
previous work using facial stimuli in the field of social perception and
prejudice has shown how the FG is influenced by stereotypical associa-
tions and evaluations of social categories associated with the OFC
(Gilbert et al., 2012; Stolier and Freeman, 2016). Our data fit and extend
this work, suggesting that both OFC and FG contain information about
the appropriate task set to perform the initial classification, pointing out
the role of both high and lower-level perceptual regions in the repre-
sentation of ongoing task sets performed on facial stimuli.

Conversely, decoding of the intended task was possible from the IFG.
Previous work has related lPFC with the representation of intentions
(Haynes et al., 2007; Momennejad & Haynes, 2012, 2013; Soon et al.,
2008) and it has also been linked to task-set preparation (e.g.
Gonz�alez-García et al., 2017; Gonz�alez-García et al., 2016; Sakai and
Passingham, 2003). This result, however, contradicts the proposal of
Gilbert (2011) in which lPFC would serve as a general store for delayed
intentions without information about their content. Nonetheless, while
Gilbert (2011) decoded simpler stimulus-response mappings, in our
study we classified abstract task-set information, as previous studies that
also decoded intention from lPFC did (e.g. Haynes et al., 2007;
Momennejad and Haynes, 2013). Therefore, our work agrees with
Momennejad and Haynes (2013), suggesting that lPFC may represent
delayed intentions when their content is abstract enough.

Interestingly, we found a region in vmPFC/OFC that contained in-
formation about both initial and intended task sets. We examined if this
vmPFC/OFC region contained overlapping representations of both initial
and intended task sets by performing a cross-classification analysis, and
observed a lack of generalization from the two sets of representations.
Our cluster is close to the mPFC region found by previous intention
studies (e.g. Gilbert, 2011), but located in a more ventral area. Notably,
in our paradigm both the initial and intended tasks that participant
performed were equally relevant and were based on the same set of
stimuli. Altogether, this suggests that mPFC may be recruited when
relevant task sets need to be held for a period of time, irrespective of
whether this information is being used at the moment or later. This result
also fits with a recent proposal (Schuck et al., 2016) characterising this
region as a repositoiry for cognitive maps of task states. Specifically, the
vmPFC/OFC would represent task-relevant states that are hard to
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discriminate based on sensory information alone (Schuck et al., 2016;
Wilson et al., 2014), similar to our study. Overall, this suggests a role for
this region in the maintenance of task-relevant information, regardless of
when it is needed. Given that cross-classification between initial and
intended task sets was not possible, this would be compatible with
multiplexed representations of the two types of information (i.e. repre-
sentations using orthogonal representational codes). It could also be
compatible with nonoverlapping populations of cells representing initial
and intended tasks within the voxels in this region. Further, it could be
argued that the lack of cross-classification between initial and intended
tasks could be explained by differential processes underlying their rep-
resentation. That is, the initial one could be represented simply by the
activation of the S-R associations, while the intended one could rely on
the maintenance of a general task set. Nonetheless, an explanation
relying solely on this distinction seems unlikely, since we observed
interference effects. Even though the interference for accuracy was
smaller before the switch, for reaction times we observed interference
only during this period. This indicates that the S-R association for both
tasks is active prior the switch, although there could be some distinctions
in the way these response representations are maintained. However, the
lack of significant cross-classification could also reflect simply a lack of
statistical power.

Despite our decoding results, we did not find the dissociation pattern
that we predicted for initial and intended task sets. Although we could
decode intended task sets from mPFC, consistent with previous studies
(Gilbert, 2011; Haynes et al., 2007; Momennejad&Haynes, 2012, 2013),
we did not find a frontoparietal representation of initial task sets as
previous studies have (Qiao et al., 2017; Waskom et al., 2014; Woolgar
et al., 2011b). This discrepancy could be explained by differences in the
stimuli and task employed. Previous studies have decoded task infor-
mation in the form of classification between different stimulus-response
mappings or different types of stimuli. In contrast, in our task we
employed the same stimuli for all tasks, and the differences between the
information to decode relied on the representation of the social category
relevant for the specific part of the miniblock, rather than perceptual
features (e.g. the colour or shape of target stimuli), which may be easier
to decode (Bhandari et al., 2018).

To conclude, in the present work we examined the representation of
A) currently-active initial task sets, and B) intended task sets during a
social categorization dual-sequential task. Crucially, we directly exam-
ined the common and differential representation of initial and delayed
task sets, extending previous experiments studying these mechanisms
separately. Moreover, we employed faces as target stimuli to complement
prior research. Apart from replicating previous findings in dual tasks with
social stimuli, we show how task set information was contained in
different regions, depending on when it was needed. Currently-active
initial tasks were represented in specialized regions related to face pro-
cessing and social categorization such as the OFC and FG, while intended
ones were represented in lPFC. On top of that, we showed a common
brain region in vmPFC/OFCmaintaining a general representation of task-
relevant information, irrespective of when the task was performed, albeit
it is not clear whether overlapping patterns of activation represent both
types of information. Moreover, the results from the classification after
the switch suggest that the representation of the two relevant tasks varies
once the switch takes place and the initial task is no longer active. Future
research should further characterise the representational format of
relevant task information depending on when it is needed and examine
the structure of the task set representation within these regions, for
instance using Representational Similarity Analysis (RSA, Kriegeskorte,
Mur,& Bandettini, 2008). Also, studying the interaction of sustained task
sets with specific conditions of each trial would extend our knowledge of
the representational dynamics of current and intended task-relevant in-
formation. Last, due to the social significance of faces, one step forward
would be to examine how their representation may vary in social sce-
narios, contexts in which faces and other social stimuli are particularly
relevant to guide behaviour (Díaz-Guti�errez et al., 2017).
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