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In this paper we prove that the k-th order metric-affine Lovelock Lagrangian is not a total derivative in 
the critical dimension n = 2k in the presence of non-trivial non-metricity. We use a bottom-up approach, 
starting with the study of the simplest cases, Einstein-Palatini in two dimensions and Gauss-Bonnet-
Palatini in four dimensions, and focus then on the critical Lovelock Lagrangian of arbitrary order. The 
two-dimensional Einstein-Palatini case is solved completely and the most general solution is provided. For 
the Gauss-Bonnet case, we first give a particular configuration that violates at least one of the equations 
of motion and then show explicitly that the theory is not a pure boundary term. Finally, we make a 
similar analysis for the k-th order critical Lovelock Lagrangian, proving that the equation of the coframe 
is identically satisfied, while the one of the connection only holds for some configurations. In addition to 
this, we provide some families of non-trivial solutions.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Lovelock gravities are a family of higher-curvature Lagrangian 
terms that form a natural extension to standard General Relativ-
ity. Introduced in the early 1970s by Lovelock [1,2] (though the 
easiest non-trivial case, Gauss-Bonnet gravity, was already identi-
fied by Lanczos in 1938 [3]), they are characterised as the unique 
higher-curvature terms that give rise to second-order differential 
equations after varying with respect to the spacetime metric. It 
is precisely this property that makes the theory such a natural 
extension, as it is guaranteed to be ghost-free [4,5]. In this way, 
Lovelock gravities are singled out with respect to all other higher-
curvature extensions, which generically do suffer this problem. In 
addition, Lovelock gravities appear as string corrections to super-
gravity [6–11] and over the years have attracted a lot of attention 
in cosmology and string theory as corrections to black hole so-
lutions and FRW models, as alternatives of dark matter or dark 
energy and to obtain corrections to holographic models (see for 
example [12–18]).
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In n dimensions, the (metric) Lovelock action is defined as

S̊(n)
Lov =

�n/2�∑
k=1

S̊(n)

k =
∫

dnx
√|g|

�n/2�∑
k=1

λkL̊(n)

k . (1.1)

Here �x� is the floor function, λk are certain dimensionful con-
stants and the Lagrangian densities L̊(n)

k are given by

L̊(n)

k = (2k)!
2k

δ
μ1ν1...μkνk
α1β1...αkβk

gα1ρ1 ... gαkρkR̊μ1ν1ρ1
β1 ... R̊μkνkρk

βk ,

(1.2)

where R̊μνρ
λ is the Riemann tensor constructed with the Levi-

Civita connection �̊μν
ρ ,

�̊μν
ρ = 1

2 gρλ
[
∂μgλν + ∂ν gμλ − ∂λgμν

]
, (1.3)

R̊μνρ
λ = ∂μ�̊νρ

λ − ∂ν�̊μρ
λ + �̊μσ

λ �̊νρ
σ − �̊νσ

λ �̊μρ
σ ,

(1.4)

and the multi-index delta represents the antisymmetrised product 
of Kronecker deltas,
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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δ
μ1ν1...μkνk
α1β1...αkβk

= δ
[μ1
α1 δ

ν1
β1

. . . δ
μk
αk

δ
νk]
βk

(1.5)

= 1
(2k)!(n−2k)! sgn(g) |g|
× εμ1ν1...μkνkσ1...σn−2k εα1β1...αkβkσ1...σn−2k ,

with εμ1...μn = n!δ1[μ1
...δn

μn] the totally alternating Levi-Civita sym-

bol.1

In this paper we focus our study on the dynamical properties 
of each of these terms separately,

S̊(n)

k = λk

∫
dnx

√|g| L̊(n)

k . (1.6)

From now on, we will refer to S̊(n)

k as the k-th order (metric) Love-
lock term. Working out the lowest order cases, it is easy to see that 
the first and second order Lovelock terms are the Einstein-Hilbert 
action and the Gauss-Bonnet term respectively,

S̊(n)
1 = λEH

∫
dnx

√|g| R̊ ,

S̊(n)
2 = λGB

∫
dnx

√|g|
[
R̊2 − 4R̊μνR̊μν + R̊μνρλR̊μνρλ

]
,

(1.7)

where λEH = (2κ)−1 and the Ricci tensor and scalar are defined as 
R̊μν = R̊μλν

λ and R̊ = gμνR̊μν .
The dynamical properties of each Lovelock term depend cru-

cially on the number n of dimensions in which the theory is for-
mulated. From the definition it is clear that the k-th order Lovelock 
term vanishes identically in any dimension n < 2k. Also it is well 
known [5] that in n = 2k it is a topological term, proportional to 
the 2k-dimensional Euler characteristic and hence does not con-
tribute to the equations of motion. Only in n > 2k the k-th order 
term is dynamical and yields non-trivial physics.

The proof that Lovelock terms in critical dimensions (i.e. the 
k-th order term in n = 2k) are proportional to the Euler char-
acteristic is traditionally done via the generalised Gauss-Bonnet 
Theorem (see for example [19,20] for a pedagogical introduction). 
Indeed, the action can be written as a surface term, i.e. as the 
integral of a total derivative Sk = ∫

d2kx ∂μ F μ of some functions 
F μ(g, ∂ g) [21].

An interesting question is how much of this picture remains 
true if one abandons the traditional Riemannian geometry and 
allows for general affine connections �μν

ρ . Remember that in dif-
ferential geometry the metric gμν and the affine connection �μν

ρ

are in principle two independent variables, that describe different 
geometrical properties of the manifold M: the metric measures 
distances between points and angles between vectors in the tan-
gent space T p(M) of a given point p, while the affine connection 
defines parallel transport of vectors between tangent spaces and 
hence determines the curvature of the manifold. Only in Rieman-
nian geometry, the affine connection is chosen to be the Levi-Civita 
connection (1.4), which is a function exclusively of the metric. 
Therefore, the geometrical properties of the manifold are com-
pletely determined by gμν . On the other hand, in general metric-
affine gravities, the affine connection �μν

ρ is considered an inde-
pendent variable, with its own equations of motion, that dictate 
the dynamics and hence the allowed solutions.

It is well known that within the space of affine connections, 
the Levi-Civita connection is identified as the only one that has 

1 In our signature convention (+ − ... −), we have sgn(g) = (−1)n−1.
both vanishing torsion Tμν
ρ = �μν

ρ − �νμ
ρ and vanishing non-

metricity Q μνρ = −∇μgνρ . In metric-affine gravity, the extra de-
grees of freedom come therefore from non-trivial torsion, non-
metricity, or both. The aim of this paper is to study how these 
additional degrees of freedom affect the dynamical properties of 
the Lovelock terms discussed above. In particular, whether metric-
affine Lovelock gravities in critical dimensions maintain their topo-
logical character, or whether the torsion and/or non-metricity give 
rise to non-trivial dynamics.

The metric-affine Lovelock terms (and hence the total metric-
affine Lovelock action) are defined in an analogous way as their 
metric counterparts (1.2)-(1.6), but using a general connection,

S(n)

k = λk

∫
dnx

√|g| L(n)

k , (1.8)

L(n)

k = (2k)!
2k

δ
μ1ν1...μkνk
α1β1...αkβk

× gα1ρ1 ...gαkρkRμ1ν1ρ1
β1(�) ...Rμkνkρk

βk (�) , (1.9)

where now the Riemann tensor Rμνρ
λ(�) = ∂μ�νρ

λ − ∂ν�μρ
λ +

�μσ
λ�νρ

σ −�νσ
λ�μρ

σ is constructed from the general affine con-
nection �μν

ρ and has in general less symmetries than its Levi-
Civita counterpart.

In principle the coefficients λk are arbitrary, but considering 
metric-compatible connections (i.e. Q μνρ = 0), it has been shown 
in [22] (see also [23]) that demanding the theory to have the max-
imum number of degrees of freedom, the relative coefficients are 
fixed in terms of the number n of dimensions and a parameter that 
can be interpreted as an (anti-)de Sitter radius. Furthermore, the 
coefficients are such that in odd dimensions the complete Lovelock 
action S(n)

Lov|Q =0 = ∑
k S(n)

k |Q =0 can be written as the Chern-Simons 
form of the n-dimensional (anti-)de Sitter group and in even di-
mensions in a Born-Infeld-like form. We are not aware whether 
the same properties hold when non-trivial non-metricity Q μνρ �= 0
is included.

We insist that in the action (1.8) both the metric and the con-
nection are considered to be dynamical fields, each with its own 
equation of motion. Some results are known about the space of al-
lowed connections in metric-affine Lovelock theories. In [24–26] it 
was shown that general metric-affine Lagrangians L(gμν , Rμνρ

λ)

allow the Levi-Civita connection (1.4) as a solution only if the La-
grangian is Lovelock. In this sense, the metric formalism is always 
a consistent truncation of metric-affine Lovelock theories [26]. On 
the other hand, there are indications that Levi-Civita is in general 
not the only allowed connection: in [27,28] it was proven that 
the most general connection for the metric-affine Einstein action 
in n > 2 is of the form

�̄μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν , (1.10)

for arbitrary vector fields Aμ . However it was also shown that this 
vector field is in fact unphysical and should be interpreted as the 
parameter of a projective symmetry

�μν
ρ → �μν

ρ + Aμδ
ρ
ν , (1.11)

of the Einstein-Palatini action [29,30]. In this sense, the metric and 
the metric-affine formalisms are physically completely equivalent 
for the Einstein action in n > 2.

In [31,32] it was shown that the projective symmetry (1.11) is 
present in any metric-affine Lovelock theory (1.9) and hence that 
the affine connection (1.10) is a solution (physically equivalent to 
Levi-Civita) in all these cases. However it is not known whether 



B. Janssen, A. Jiménez-Cano / Physics Letters B 798 (2019) 134996 3
(1.10) is the only allowed solution and hence whether the met-
ric and the metric-affine formalism are also equivalent for general 
Lovelock theories. In fact there are indications that this is not the 
case.

Recently, a first solution, physically inequivalent to (1.10), was 
presented for the k = 2 case. To be specific, in [32] it was shown 
that the projective Weyl connection2

�̃μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν + Bν δ

ρ
μ − Bρ gμν (1.12)

is a solution for the pure Gauss-Bonnet-Palatini gravity for arbi-
trary Bμ , but only in n = 4 (which is precisely the critical dimen-
sion corresponding to k = 2). It was argued that the existence of 
the solution is related to the conformal invariance (i.e. invariance 
under rescalings of the metric) of both the metric and the metric-
affine Gauss-Bonnet term in n = 4. Furthermore, it was shown that 
the transformation

�μν
ρ → �μν

ρ + Bν δ
ρ
μ − Bρ gμν (1.13)

is a symmetry of the four-dimensional Gauss-Bonnet-Palatini 
theory when it is restricted to metric-compatible connections, 
L(4)

2 |Q =0, but not of the full theory L(4)
2 with arbitrary connec-

tions. Since in the full theory there is no symmetry transformation 
that relates (1.12) to the known solutions (1.10), the new solution 
is interpreted as physically inequivalent to the Levi-Civita connec-
tion.3

The existence of a non-trivial solution and of a transformation 
that is a symmetry of the truncated, but not of the full Lagrangian, 
are the first hints that the four-dimensional Gauss-Bonnet theory 
might not be a total derivative in the metric-affine formulation. 
As these topological theories do not have dynamical equations 
of motion, there are no restrictions on its field content and any 
field configuration appears as an allowed solution. However, as this 
might be true for the truncated critical Gauss-Bonnet-Palatini term 
L(4)

2 |Q =0, it is clearly not the case for the full theory L(4)
2 . The 

idea is then that the non-metricity Q μνρ spoils the topological 
character of the critical Gauss-Bonnet-Palatini term. Moreover, as 
the solution (1.12) is conjectured to exist in all k-th order Lovelock 
terms in n = 2k [32], these properties would hold for all critical 
Lovelock theories.4

The aim of this paper is to prove that this is indeed the case. 
In Section 2 we will deal with the simplest of all critical Lovelock 
theories, namely the two-dimensional Einstein term in the metric-
affine formulation. We will compute the equations of motion of 
the metric and the affine connection and show that they do not 
impose any conditions on the metric or the torsion, but restrict 
the non-metricity in a non-trivial way. We will also show that the 
n = 2 Einstein-Palatini action can be written as a total derivative 
plus terms that depend on Q μνρ . In Section 3 we will perform 
a similar analysis for the four-dimensional Gauss-Bonnet-Palatini 
term. We will first show that the Lagrangian is not a total deriva-
tive in the presence of non-metricity. Afterwards, as this theory is 
too complicated to be solved in general, we present a field config-
uration the does not obey the equations of motion of the theory, 
proving that the latter impose non-trivial conditions. In Section 4

2 We call the projective Weyl connection the generalization of the Weyl connec-

tion �̃μν
ρ = �̊μν

ρ + Bμδ
ρ
ν + Bνδ

ρ
μ − Bρ gμν in presence of the projective symmetry 

(1.11).
3 It is well known that symmetries of a consistently truncated theory that do not 

leave the full Lagrangian invariant, act as solution generating transformations in the 
full theory.

4 From [22] it is clear that the torsionful metric-compatible connections still yield 
topological theories.
we study the general critical k-th order Lovelock term, deriving its 
equations of motion, and discussing examples of field configura-
tions that do and do not satisfy these. We will start our discussion 
in the language of affine connections, but gradually move to lan-
guage of differential forms, which turns out to be especially useful 
to treat with Lovelock Lagrangians and their equations of motion. 
A brief review of differential forms, general properties of connec-
tions and the derivations of the equations of motion can be found 
in the Appendices.

2. The Einstein-Palatini action in n = 2

2.1. Solving the Einstein-Palatini theory

The two-dimensional metric-affine Einstein-Palatini term is 
given by

S(2)
1 = 1

2κ

∫
d2x

√|g| δμν
αβ gαρ Rμνρ

β(�)

= 1

2κ

∫
d2x

√|g|R(g,�) , (2.1)

where R(g, �) = gμνRμν(�) = gμνRμλν
λ(�). The equations of 

motion for the metric and the connection are given by [28,32]

0 = R(μν) − 1

2
gμν R , (2.2)

0 = Q λ
μν − Q σ

σν δ
μ
λ − 1

2
Q λσ

σ gμν + 1

2
Q νσ

σ δ
μ
λ (2.3)

− Tσλ
σ gμν + Tσρ

σ gρν δ
μ
λ + Tσλ

μ gσν .

Note that the Einstein equation is automatically traceless in two 
dimensions and can not be further simplified. Similarly, in n = 2
only the δλ

μ trace of the connection equation is non-trivial and re-
lates the different traces of the non-metricity as

Q σ
σν = 1

2
Q νσ

σ . (2.4)

Substituting this condition into (2.2), we find

Q λμν − 1

2
Q λσ

σ gμν + Tλσ
σ gμν − Tνσ

σ gμλ − Tλνμ = 0 .

(2.5)

The connection equation (2.5) can be best solved dividing the 
torsion and the non-metricity into their irreducible components. 
As can be seen in Appendix A, in n = 2 the torsion is pure trace,

Tμν
ρ = 2 T [μ|σ |σ δ

ρ
ν] , (2.6)

as the other irreducible parts are identically zero. Plugging (2.6)
into the connection equation (2.5), it is easy to see that the torsion 
drops out of the equation, but that the non-metricity should obey 
the condition

Q λμν = 1

2
Q λσ

σ gμν. (2.7)

In other words, also the non-metricity is pure trace. The most 
general affine connection that satisfies both (2.6) and (2.7) is the 
projective Weyl connection (1.12),

�̃μν
ρ = �̊μν

ρ + Aμ δ
ρ
ν + Bν δ

ρ
μ − Bρ gμν, (2.8)

as the torsion and non-metricity are given by

Tμν
ρ = 2 (A[μ − B[μ) δ

ρ
, Q μνρ = 2Aμ gνρ. (2.9)
ν]
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Table 2.1
Splitting of the degrees of freedom of the affine connection in general dimension 
and in n = 2. The last column shows the conditions imposed by the equations of 
motion of the two-dimensional Einstein-Palatini theory. Observe that the indeter-
mination of the trace of the non-metricity holds in arbitrary n due to projective 
symmetry.

Tensor d.o.f. in n dim. d.o.f. in 2 dim. Condition imposed by EoM

Tμν
ρ 1

2 n2(n − 1) 2 (pure trace) None

Q μλ
λ n 2 None

Q̌ μνρ
1
2 n(n + 2)(n − 1) 4 They are zero

This connection (2.8) was conjectured in [32] to be a solution of 
any critical Lovelock theory and indeed we find it here as the most 
general solution of the n = 2 metric-affine Einstein-Palatini action.

Once the most general connection is known, let us look at 
the Einstein equation. The two-dimensional Ricci tensor and scalar 
constructed from (2.8) are given by

Rμν(�̃) = R̊μν + Fμν(A) + ∇̊λBλ gμν,

R(g, �̃) = R̊ + 2∇̊λBλ, (2.10)

where ∇̊ is the Levi-Civita covariant derivative and Fμν(A) =
2∂[μ Aν] . It is easy to see that the metric-affine Einstein equation 
(2.2) with the connection on-shell reduces to the Levi-Civita one:

0 = R̊μν − 1

2
gμν R̊ . (2.11)

The latter does not impose any conditions on the metric, as the 
metric Einstein-Hilbert term is a topological invariant in n = 2. 
Indeed, it is well known that in two dimensions all metrics are 
conformally flat, gμν = e2φ(x)ημν , such that the Ricci tensor and 
scalar,

R̊μν = ∇̊2φ ημν, R̊ = 2 e−2φ ∇̊2φ (2.12)

yield an Einstein tensor that vanishes identically.
We thus find that the two-dimensional Einstein-Palatini term 

leaves both the metric and the torsion completely undetermined, 
but puts dynamical conditions on the non-metricity. Indeed, al-
though the pure trace conditions (2.6) and (2.7) of the torsion 
and the non-metricity look similar, it should be clear that their 
origin is completely different: (2.6) is a group-theoretical argu-
ment valid in general in two dimensions, while it is the connec-
tion equation (2.2) that forces the non-metricity to be pure trace, 
Q μνρ = Q μσ

σ gνρ . As can be seen in Table 2.1, besides the trace, 
the non-metricity has another 4 degrees of freedom Q̌ μνρ , which 
are set to zero by the dynamics of the theory. We refer to Ap-
pendix A for a quick discussion about the number of degrees of 
freedom of the different irreducible parts of Tμν

ρ and Q μνρ . A 
more detailed study can be found in [33,34].

The fact that there are non-trivial conditions on Q μνρ strongly 
suggests that the two-dimensional Einstein-Palatini action is topo-
logical when endowed with a torsionful metric-compatible connec-
tion, but not for connections with non-vanishing Q μνρ . We will 
now show that indeed, in general, the Einstein-Palatini action (2.1)
can be written as a sum of a total derivative term and a term that 
depends on Q μνρ .

2.2. The n = 2 Einstein-Palatini action is not a total derivative

In order to study the form of the Einstein-Palatini action, we 
will quickly introduce the Vielbein formalism in the language of 
differential forms (we refer to Appendix B for a quick review of 
differential forms). We start considering an arbitrary smooth dis-
tribution of bases ea over the different tangent spaces, which we 
will call a frame, and the dual distribution of cobases or a coframe
ϑa ,

ea = eμ
a ∂μ , ϑa = ea

μ dxμ . (2.13)

In other words, we have that ϑa(eb) = ea
μeμ

b = δa
b (in addition, 

we also have eν
aea

μ = δν
μ). We can now obtain the components of 

the metric in this new basis as

gab = eμ
a eν

b gμν . (2.14)

In principle, these anholonomic components of the metric gab
are completely general. However, in order to simplify many ex-
pressions, we will we consider throughout the paper a particular 
GL(n, R) gauge for the coframe, in which gab is independent of the 
point, i.e. its components are constant, dgab = ∂μgabdxμ = 0.

In the language of differential forms, the affine degrees of free-
dom of the theory are encoded in the connection 1-form, ωa

b =
ωμa

bdxμ , whose components are nothing else than the compo-
nents of the affine connection, transformed to the anholonomic 
basis5:

ωμa
b = eν

a eb
λ �μν

λ + eb
σ ∂μeσ

a . (2.15)

This connection 1-form has an associated exterior covariant deriva-
tive, that acts on forms αa...

b... as

Dαa...
b... = dαa...

b... + ωc
b ∧αa...

c... + ... − ωa
c ∧αc...

b... − ... .

(2.16)

The curvature and torsion 2-forms and the non-metricity 1-form 
are then defined as

Ra
b = dωa

b + ωc
b ∧ ωa

c , (2.17)

T a = dϑa + ωc
a ∧ ϑc = Dϑa , (2.18)

Q ab = −Dgab , (2.19)

whose components are indeed those of the corresponding curva-
ture, torsion and non-metricity tensors we introduced previously:

Ra
b = eρ

a eb
λ

( 1
2 Rμνρ

λ dxμ ∧ dxν
)
, (2.20)

T a = (∂[μea
ν] + ω[μ|caec |ν])dxμ ∧ dxν

= ea
λ

( 1
2 Tμν

λ dxμ ∧ dxν
)
, (2.21)

Q ab = eν
a eρ

b (Q μνρ dxμ) . (2.22)

In the presence of a metric, the indices of the connection 
1-form can be freely raised and lowered. In addition, it is not dif-
ficult to prove that if we extract from ωab its metric-compatible 
part ω̄ab , the rest turns out to be a symmetric tensor proportional 
to the non-metricity,

ωab = ω̄ab + 1
2 Q ab . (2.23)

It is important to remark that ω̄ab is a connection in its own 
right (metric-compatible by definition), whose torsion depends on 
the torsion and the non-metricity of ωa

b . Indeed, ω̄ab = ω[ab] +
1
2 dgab and, thanks to the GL(n, R) gauge choice we are assum-
ing throughout this paper, dgab = 0, the equation (2.23) can be 

5 This expression is sometimes called the “Vielbein postulate”, but in our ap-

proach it is simply the definition of ωμa
b .
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seen simply as the decomposition of ωab into its antisymmetric 
and symmetric parts.

Taking into account the projective invariance (1.11) of the 
Einstein-Palatini action, it is also useful to split the non-metricity 
Q ab = Q̌ ab + 1

2 Q c
c gab into its trace Q c

c and traceless degrees of 
freedom Q̌ ab (see Appendix A). Therefore, the general connection 
decomposes as

ωab = ω̄ab + 1
2 Q̌ ab + 1

4 Q c
c gab. (2.24)

Each of these three fields (ω̄a
b , Q̌ ab and Q c

c) can be treated as 
an independent field, giving a system of three equations of motion, 
equivalent to the equation of motion of ωa

b .
The curvature 2-form of ωa

b and ω̄a
b are hence related as

Ra
b(ω) = R̄a

b(ω̄) + 1
2 D̄ Q̌ a

b + 1
4 d Q c

c δa
b − 1

4 Q̌ a
c ∧ Q̌ c

b,

(2.25)

where D̄ is the (metric-compatible) exterior covariant derivative 
associated with ω̄a

b . This allows us to express the two-dimensional 
Einstein-Palatini action (2.1) as

S(2)
1 = 1

2κ

∫
Ea

b Ra
b(ω)

= 1

2κ

∫
Eab

[
R̄ab(ω̄) − 1

4 Q̌ ac ∧ Q̌ c
b
]
, (2.26)

where we have introduced the two-dimensional Levi-Civita ten-
sor Ea1a2 = √|det(gab)|εa1a2 , canonically associated to the metric 
(see Appendix B for the general definition). The terms D̄ Q̌ ab and 
d Q c

c gab drop out of the action, due to the antisymmetry of Eab . 
Note that Q c

c does not appear in the Einstein-Palatini action, and 
hence remains undetermined, in agreement with the projective 
symmetry. As we will see, this property also holds for the gen-
eral Lovelock Lagrangians (critical or non-critical) [32].

Considering an orthonormal gauge gab = ηab , we find that

Eab R̄ab(ω̄) = Eab dω̄ab = d(Eab ω̄ab) , (2.27)

where in the first step we have used that Eab ω̄ac ∧ ω̄c
b = 0, due 

to the antisymmetry of both Eab and ω̄ab and the fact that the 
theory lives in n = 2 (the indices a, b and c have to be all differ-
ent, but at the same time can only take values in the set {1, 2}), 
while in the second step we used the fact that dEab = dεab = 0. 
The two-dimensional Einstein-Palatini action therefore reduces to

S(2)
1 = 1

2κ

∫ [
d(Eab ω̄ab) − 1

4 Eab Q̌
ac ∧ Q̌ c

b
]
. (2.28)

So we find that the two-dimensional metric-affine Einstein term 
cannot be written as a total derivative, unless the connection 
verifies Q̌ ab = 0. Let us insist that ω̄a

b is an arbitrary metric-
compatible connection (that might include torsion). Indeed it is 
only the (traceless part of) the non-metricity what spoils the topo-
logical character of the theory.

Finally, let us quickly derive the results of the previous sub-
section in the language of differential forms. As Q̌ ab is the only 
dynamical variable of (2.28), its equation of motion can easily be 
calculated as

0 = δ Q̌ S(2)
1 = 1

2κ

∫
δ Q̌ ac ∧ ( − 1

2Eab Q̌ c
b)

⇒ Eab Q̌ c
b = 0 , (2.29)

whose only solution is the one we found in (2.7),

Q̌ ab = 0 . (2.30)
3. The Gauss-Bonnet-Palatini action in n = 4

Our next step will be to look at the second order Lovelock 
term in the corresponding critical dimension, the four-dimensional 
Gauss-Bonnet-Palatini theory, whose action is given by6

L(4)
2 = Ea

b
c

d Ra
b(ω) ∧ Rc

d(ω). (3.1)

Unfortunately, the dynamics of this case is already too complicated 
to solve the theory completely, as we have done for the n = 2
Einstein-Palatini theory. However we will argue that also here it 
is the traceless part of the non-metricity Q̌ ab what prevents the 
theory from being a boundary term, first by writing the action (3.1)
as a total derivative plus Q̌ -dependent terms and then presenting 
some specific field configurations that do not obey the equations 
of motion.

3.1. The n = 4 Gauss-Bonnet-Palatini term is not a total derivative

In order to isolate a total derivative term in the action (3.1), it is 
again useful to split the connection 1-form into its antisymmetric, 
traceless symmetric and trace parts, in a way similar to (2.24). In 
n = 4 we have

ωab = ω̄ab + 1
2 Q̌ ab + 1

8 Q c
c gab, (3.2)

yielding the Riemann tensor to split as

Ra
b(ω) = R̄a

b(ω̄) + 1
2 D̄ Q̌ a

b + 1
8 d Q c

c δa
b − 1

4 Q̌ a
c ∧ Q̌ c

b.

(3.3)

Substituting this into (3.1), the action becomes

L(4)
2 = Eabcd

[
R̄ab ∧ R̄cd − 1

2 R̄ab ∧ Q̌ c f ∧ Q̌ f
d

+ 1
16 Q̌ ae ∧ Q̌ e

b ∧ Q̌ c f ∧ Q̌ f
d
]
. (3.4)

The first term is the four-dimensional Euler characteristic and can 
easily be written as a total derivative (see for example [21,34]). 
Choosing again an orthonormal gauge (gab = ηab), we therefore 
find that the action (3.1) is of the form

L(4)
2 = dC − Eabcd

[
1
2 R̄ab ∧ Q̌ c f ∧ Q̌ f

d

− 1
16 Q̌ ae ∧ Q̌ e

b ∧ Q̌ c f ∧ Q̌ f
d
]
, (3.5)

where

C = Ea
b

c
d

[
R̄a

b ∧ ω̄c
d + 1

3 ω̄a
b ∧ ω̄c

f ∧ ω̄ f
d
]
. (3.6)

Again we find that the n = 4 Gauss-Bonnet-Palatini term can only 
be written as a total derivative for affine connections with Q̌ ab =
0.

6 Recall that this action can also be written in components as

L(4)
2 =

[
R2 −RμνRνμ + 2RμνR(2)νμ

−R(2)
μνR(2)νμ +RμνρλRρλμν

]√|g| d4x ,

where R(2)
μ

ν = gρσRμρσ
ν is the second contraction of the Riemann tensor.
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3.2. The equations of motion of n = 4 Gauss-Bonnet theory

Let us now look at the dynamics of this theory. The equation 
of motion of the coframe ϑa is the easiest to compute for the ac-
tion in the form (3.1). As explained in Appendix C, the equation of 
motion for a general Lagrangian of the form L(gab, ϑa, Ra

b(ω)) is 
given by7

0 = em�L − (em�R p
q) ∧

(
∂L

∂ R p
q

)
. (3.7)

Specifically, for the Gauss-Bonnet term (3.1), we find that

0 = em�
[
Ea

b
c

d Ra
b ∧ Rc

d
]

− (em�R p
q) ∧

[
2Ea

b
p

q Ra
b
]

= 2Ea
b

c
d (em�Ra

b) ∧ Rc
d − 2Ea

b
p

q (em�R p
q) ∧ Ra

b

= 0. (3.8)

In other words, the equation of motion of the coframe is automat-
ically satisfied, for any frame ea and connection configuration ωa

b . 
This property is not surprising for metric-compatible connections, 
as we have just proven that in that case the Lagrangian is a total 
derivative. However, for general connections with Q̌ ab �= 0, this is 
much less obvious. We will see in the next section that this prop-
erty is true for all critical metric-affine Lovelock terms.

As we explained above, the equation of motion of the connec-
tion is equivalent to the system of dynamical equations for the 
fields Q̌ ab and ω̄a

b , given respectively by

0 = Eabcd

[
R̄ab − 1

4 Q̌ f
a ∧ Q̌ bf

]
∧ Q̌ dm , (3.9)

0 = D̄
[

Q̌ c
a ∧ Q̌ bc

]
. (3.10)

The last equation has been contracted by another Levi-Civita tensor 
to eliminate the one coming from the Lagrangian, using (B.8). In 
principle, this produces the antisymmetrisation in {ab}, which can 
be dropped, since, Q̌ ab being a 1-form, the combination Q̌ c

a ∧
Q̌ bc is already antisymmetric.

As we mentioned earlier, these equations of motion are too 
complicated to solve in their full generality. However to illustrate 
the non-topological nature of the action (3.1), it is sufficient to 
come up with a field configuration that does not satisfy the equa-
tions (3.10), as this would prove that the equations of motion do 
impose some non-trivial conditions.

For instance consider the gravitational field configuration

gab = ηab , ω̄ab = ω̊ab + f α[aδb]
t ,

ϑa = dxa , Q̌ ab = 2α(aδ
b)
t , (3.11)

where ηab is the Minkowski metric, f is an arbitrary function and

αa = et (
δa

y dy + δa
z dz

)
. (3.12)

Let us remark a couple of details. First, note that this Ansatz is con-
sistent with the fact that Q̌ ab is traceless, since αcδ

c
t = 0. Further-

more, observe also that we can everywhere drop the Levi-Civita 
connection, since the associated metric is Minkowski and the Latin
indices are referred to the Cartesian basis of the space, as can be 
seen in the expression for ϑa in (3.11).

7 Here we have introduced the interior product �. See Appendix B for the defini-
tion and examples.
Under these conditions we have that

Q̌ c
a ∧ Q̌ bc = αa ∧ αb , (3.13)

and, with this in mind, it is not difficult to check that the Ansatz 
is a counterexample that violates the condition (3.10):

D̄
[

Q̌ c
a ∧ Q̌ bc

]
= d

[
αa ∧ αb

]
= 2e2t

(
δa

yδ
b
z − δb

yδ
a
z

)
dt ∧ dy ∧ dz

�= 0 . (3.14)

It is worth remarking that this inequality holds in the entire man-
ifold, since this set of coordinates is globally defined. This result 
proves that the metric-affine Gauss-Bonnet term in n = 4 is not 
a trivial theory (in the sense that it cannot be written as a total 
derivative), since only some configurations of the fields are allowed 
by the equations of motion.

4. The k-th order metric-affine Lovelock term in n = 2k

4.1. Proving that the theory is not a boundary term

Finally we will analyse the general case of the k-th order Love-
lock term in n = 2k dimensions, defined as

L(2k)

k = Ea1
a2 ...

a2k−1
a2k Ra1

a2 ∧ ... ∧ Ra2k−1
a2k . (4.1)

Again, splitting the connection ωab as

ωab = ω̄ab + 1
2 Q̌ ab + 1

2n Q c
c gab, (4.2)

it is straightforward to check that the action can be written as a 
power series in R̄ and Q̌ ∧ Q̌ terms,

L(2k)

k = Ea1...a2k

k∑
m=0

1

4k−m

k!
m!(k − m)! R̄a1a2 ∧ ... ∧ R̄a2m−1a2m ∧

∧ Q̌ a2m+1 f1 ∧ Q̌ f1
a2m+2 ∧ ... ∧ Q̌ a2k−1 fk−m ∧ Q̌ fk−m

a2k , (4.3)

of which only the m = k term R̄a1
a2 ∧ ... ∧ R̄a2k−1

a2k is in fact a 
boundary term [22,35] (see also [23,36]). This can be easily seen 
using the Bianchi identity of D̄ to show that it is a closed form 
and, hence, locally exact by Poincaré lemma. For this reason, we 
will eliminate this term for the rest of this section, as it does not 
contribute to the equations of motion.

As we did in the Gauss-Bonnet case, we will construct a field 
configuration that does not satisfy the equation of motion of ω̄a

b , 
proving that the latter is not automatically satisfied. The equation 
of motion of ω̄a

b can be found in (C.10), and the right hand side 
of the equation is given by8

gca
δ Ŝ(2k)

k

δω̄c
b

= Eaba3...a2k

k−1∑
m=1

1

4k−m

k!
m!(k − m)!

R̄a3a4 ∧ ... ∧ R̄a2m−1a2m∧
∧ D̄

[
Q̌ a2m+1 f1 ∧ Q̌ f1

a2m+2 ∧ ... ∧ Q̌ a2k−1 fk−m ∧ Q̌ fk−m
a2k

]
,

(4.4)

8 The hat indicates that the action is considered with respect to ω̄a
b and Q̌ ab , 

i.e.

Ŝ(2k)

k [g,ϑ, ω̄, Q̌ ] = S(2k)

k [g,ϑ,ω(ω̄, Q̌ )] .
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where we have taken into account the Bianchi identity D̄R̄a
b = 0.

Consider now the Ansatz

gab = ηab , ω̄ab = ω̊ab , (4.5)

ϑa = dxa , Q̌ ab = 2α(aδ
b)
t , (4.6)

where we now define

αa = et
(
δa

3dx3 + ... + δa
2kdx2k

)
, (4.7)

and the xa take values in the set {x1 = t, x2, ..., x2k}. Note that this 
Ansatz is consistent with Q̌ c

c = 0. Since our connection ω̄ab is flat, 
we have that R̊ab = 0 and only the m = 1 term in (4.4) survives, as 
it is the only one that does not contain R̄ab . For the same reason, 
the covariant exterior derivative reduces to the ordinary exterior 
derivative: D̄ = d. The equation (4.4) then simplifies to

ηca
δ Ŝ(2k)

k

δω̄c
b

= Eaba3...a2k

k

4k−1

d
[

Q̌ a3 f1 ∧ Q̌ f1
a4 ∧ ... ∧ Q̌ a2k−1 fk−1 ∧ Q̌ fk−1

a2k

]
.

(4.8)

As in the Gauss-Bonnet case, we have that Q̌ c
a ∧ Q̌ bc = αa ∧

αb , so the equation (4.8) can be rewritten as

−4k−1

k2!(2k − 2)! Ec
ba3...a2k

δ Ŝ(2k)

k

δω̄c
b

= d
(
αa3 ∧ ... ∧ αa2k

)
= 2(k − 1)e2(k−1)t (2k − 2)! δ[a3

3 ...δ
a2k]
2k

dt ∧ dx3 ∧ dx4 ∧ ... ∧ dx2k . (4.9)

Again, it is easy to see that this expression is non-zero in the entire 
manifold, except for k = 1. However, as we already solved the k = 1
case completely in Section 2, in practice we are only interested in 
k > 1. In summary, by finding a field configuration that does not 
satisfy the ω̄a

b equation, we have extended the argument from the 
Gauss-Bonnet case to general k-th order critical Lovelock theories, 
proving that in general the equations of motion impose non-trivial 
conditions.

4.2. Exploring non-trivial solutions of the critical case of arbitrary k

According to the previous result, it makes sense to search for 
non-trivial solutions for the critical metric-affine Lovelock theory 
of arbitrary order.

It is not difficult to see that the triviality of the equation of 
the coframe, proven in Section 3 for the Gauss-Bonnet case, is in 
fact a general property for all critical Lovelock theories. Indeed, 
it is straightforward to generalise the argument given in (3.8) to 
arbitrary k. Yet, there is also a particularly simple way of seeing 
this, looking at the direct variation with respect to the coframe 
given in (C.2),

0 = ∂L

∂ϑa . (4.10)

In contrast to the (non-critical) k-th order Lovelock term in arbi-
trary dimensions n,9

9 Here we have introduced the Hodge dual � associated to the metric structure. 
See Appendix B for its explicit expression.
L(n)

k = Ra1a2 ∧ ... ∧ Ra2k−1a2k ∧ �(ϑa1 ∧ ... ∧ ϑa2k ) (4.11)

= 1

(n − 2k)! Ea1...a2kb1...bn−2k

Ra1a2 ∧ ... ∧ Ra2k−1a2k ∧ ϑb1 ∧ ... ∧ ϑbn−2k , (4.12)

the critical k-th order Lovelock term (4.1) has no explicit depen-
dence on the coframe, implying that the equation (4.10) is trivially 
satisfied. A similar proof for critical Lovelock terms for arbitrary 
order in the metric formalism can be found in [37].

Consequently the only remaining equation is the one for the 
connection. Varying the action with respect to ωa

b , we find (see 
(C.3))

0 = DEa1
a2 ...

a
b ∧ Ra1

a2 ∧ ... ∧ Ra2k−3
a2k−2 (4.13)

=
[
δd

a1
Eca2...a2k−2ab + ... + δd

a2k−3
Ea1...a2k−4ca2k−2ab

+ δd
a Ea1...a2k−2cb

]
Q̌ c

d ∧ Ra1a2 ∧ ... ∧ Ra2k−3a2k−2 .

(4.14)

We will consider an arbitrary coframe ϑa , such that gab are 
constant, as this is an hypothesis we have been using from the 
beginning. By observing the equation (4.14) one can easily deduce 
a series of non-trivial connections that, together with that coframe, 
constitute solutions of the theory:

• Solutions for arbitrary k: In general, the equation is fulfilled 
by any connection with identically zero traceless part Q̌ ab (i.e. 
Q μνρ = Vμgνρ for some 1-form Vμ). Note that an interesting 
subcase is the connection (1.12), that was presented in [32] as 
a particular non-trivial solution for the k = 2 case, but conjec-
tured to hold for arbitrary k.

• Solutions for k > 1: For the second or higher order Lovelock 
critical Lagrangian, in the equation (4.14) there is at least one 
curvature as a global factor, so any teleparallel connection 
(Rc

d = 0) is a solution. Indeed, we can infer a slightly more 
general result: any connection satisfying

Q̌ ab ∧ Rc
d = 0 (4.15)

gives a solution of the equations of motion.
• Solutions for k > 2: In these cases, there are two or more cur-

vatures in the equation of motion. So any connection such that 
Rab = αab ∧ k for certain 1-forms αab and k, is a solution. In 
this category we find for example those studied in the context 
of gravitational waves in Poincaré gravity [38], where k is the 
dual form of the wave vector.

5. Conclusions

In this paper we studied metric-affine Lovelock theories in crit-
ical dimensions, i.e. the k-th order term in n = 2k dimensions. 
Where it is standard lore that critical Lovelock terms are topo-
logical invariants, when equipped with the Levi-Civita connection, 
we have proven that this is not the case for general affine con-
nections. In particular, it is the traceless part of the non-metricity 
Q̌ ab = Q ab − 1

n Q c
c gab that adds extra dynamical degrees of free-

dom to the Lagrangian.
We have performed a case by case study, starting with the 

lowest order case, the Einstein-Palatini action, and gradually mov-
ing up till the general k-th order term. For the two-dimensional 
Einstein-Palatini case, we have found the most general solution. It 
is given by an arbitrary (constant) metric gab , an arbitrary coframe 
ϑa and a connection that is restricted to have vanishing Q̌ ab . This 
constraint, which affects four of the eight degrees of freedom of 
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ωa
b , is an indicator that the Lagrangian cannot be an exact form, 

as it imposes non-trivial conditions on the field configurations. In-
deed, by decomposing the connection into its metric-compatible 
part ω̄a

b and its non-metricity Q ab and rearranging the terms in 
the Lagrangian, we have shown explicitly that the Einstein-Palatini 
term takes the form of a boundary term that depends on ω̄a

b plus 
a non-exact form that depends on Q̌ ab .

The analysis we made for the Gauss-Bonnet-Palatini case is in 
fact a particular example of the general critical metric-affine Love-
lock Lagrangian, so we will discuss all k > 1 cases together. In all of 
them, the theory is too complicated to solve completely. However, 
we were able to prove the dynamical nature of the theory by pro-
viding a counterexample that violates at least one of the equations 
of motion. This implies that the Lagrangian cannot be reduced to a 
boundary term, since in that case the equations of motion would 
have been identically satisfied for all configurations. Again we find 
in all the cases that the Lagrangian can be written as an exact form 
plus Q̌ ab-dependent terms. Therefore, in the metric-affine formu-
lation, it is not possible to rewrite curvature invariants in terms of 
other ones through integration by parts, since additional terms de-
pending on the traceless part of the non-metricity come into play.

Then, we showed that the coframe equation is always iden-
tically satisfied, but that this is not the case for the connection 
equation, as our counterexamples illustrate. Finally we suggested 
some non-trivial families of solutions for different values of k.

As we mentioned earlier, the traceless part of the non-metricity 
Q̌ ab appears as the main agent that prevents the theory from be-
ing a boundary term. It is worth remarking that Q̌ ab is not an 
irreducible part of the non-metricity under the GL(n, R) group, as 
can be seen in the Appendix A. It would be interesting to split 
Q̌ ab into its three irreducible parts and see whether they are all 
dynamical or whether the non-topological nature of the critical 
Lovelock actions comes only from a specific part.

So far, we have only looked at the dynamics of separate Love-
lock terms in critical dimensions. It would be interesting to in-
vestigate the full Lovelock theory including all the terms with 
k ≤ �n/2�, and look for non-trivial solutions of the full theory. We 
leave this for future research.
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Appendix A. Irreducible parts of torsion and non-metricity

We will give a quick review of the decomposition of the torsion 
and the non-metricity in their irreducible parts. A more detailed 
discussion in terms of differential forms can be found in [33,34].

In n dimensions, the torsion can in general be divided in three 
irreducible parts,

Tμν
ρ = T (tr)

μν
ρ + T (a)

μν
ρ + T (tn)

μν
ρ, (A.1)

where

T (tr)
μν

ρ = 2
T [μ|σ |σ δ

ρ
ν] , (A.2)
n − 1
T (a)
μν

ρ = gρσ T [μνσ ] , (A.3)

T (tn)
μν

ρ = Tμν
ρ − T (tr)

μν
ρ − T (a)

μν
ρ , (A.4)

which are respectively the trace, the completely antisymmetric 
part and the remaining trace-free part. In particular T (tn)

μν
ρ sat-

isfies the following cyclic property:

T (tn)
μνρ + T (tn)

ρμν + T (tn)
νρμ = 0. (A.5)

Note that in general the 1
2 n2(n − 1) components of the torsion 

are distributed as follows over the three irreducible parts: T (tr)
μν

ρ

has n independent components, T (a)
μν

ρ has 1
6 n(n − 1)(n − 2) and 

T (tn)
μν

ρ the remaining 1
3 n(n2 − 4).

The decomposition of the non-metricity is a bit more involved. 
In this case, there are four irreducible components,

Q μνρ = Q (tr1)
μνρ + Q (tr2)

μνρ + Q (s)
μνρ + Q (tn)

μνρ, (A.6)

where the first term is the trace of the non-metricity one-form 
Q νρ = Q μνρdxμ , the second one is the rest of the trace, Q (s)

μνρ

is the totally symmetric part without trace, and Q (tn)
μνρ is 

the trace-free tensor component with no totally symmetric part 
(Q (tn)

(μνρ) = 0). Defining

Q (1)
μ = Q μσ

σ , Q (2)
μ = Q σ

σμ, (A.7)

the different components can be expressed as

Q (tr1)
μνρ = 1

n
Q (1)

μ gνρ , (A.8)

Q (tr2)
μνρ = 2

(n − 1)(n + 2)

[
1

n
gνρ Q (1)

μ − gμ(ν Q (1)
ρ)

− gνρ Q (2)
μ + ngμ(ν Q (2)

ρ)

]
, (A.9)

Q (s)
μνρ = Q (μνρ) − 1

n + 2
g(μν

(
Q (1)

ρ) + 2Q (2)
ρ)

)
, (A.10)

Q (tn)
μνρ = Q μνρ − Q (tr1)

μνρ − Q (tr2)
μνρ − Q (s)

μνρ .

(A.11)

The 1
2 n2(n + 1) independent components of the full non-metricity 

are distributed over its irreducible parts as follows: each of the 
traces, Q (tr1)

μνρ and Q (tr2)
μνρ has n independent components, 

Q (s)
μνρ has 1

6 n(n − 1)(n + 4) and the remaining 1
3 n(n2 − 4) con-

stitute the irreducible part Q (tn)
μνρ .

Appendix B. Brief review of differential forms

The exterior notation is very natural when dealing with gauge 
theories. It is known that metric-affine gravity can be seen as a 
gauge theory of the n-dimensional affine group [34]. In fact, the 
basic physical objects in this formalism are differential forms over 
the spacetime with values in certain representation of the gauge 
group (depending on how the Latin indices transform),

αa...b = 1

k! αμ1...μk
a...b dxμ1 ∧ ... ∧ dxμk . (B.1)

For example, the metric gab and the coframe ϑa transform homo-
geneously (in the tensor product representation of the fundamen-
tal one), however the connection ωa

b transforms under the adjoint 
representation.
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B.1. Interior product

The interior product by a vector, V � = V aea� = V μ∂μ�, is the 
linear operator that acts on 1-forms as

∂μ�α = αμ ⇔ ea�α = eμ
aαμ , (B.2)

which implies for example ea�ϑb = δb
a or ea�dxμ = eμ

a . This op-
eration is extended to forms of arbitrary rank by imposing the 
graded Leibniz rule

ea�(α ∧ β) = (ea�α) ∧ β + (−1)pα ∧ (ea�β) , (B.3)

where p = rank(α). In particular, for a general p-form:

ea�α = 1

(p − 1)!eν
aανμ1...μp−1 dxμ1 ∧ ... ∧ dxμp−1

= 1

(p − 1)!αab1...bp−1ϑ
b1 ∧ ... ∧ ϑbp−1 . (B.4)

B.2. Hodge duality

A metric structure in a manifold induces an isomorphism be-
tween the space of p-forms and the space of (n − p)-forms (for 
each p). This isomorphism, called the Hodge duality, can be explic-
itly given by the Hodge star operator:

� : �p(M) −→ �n−p(M)

α �−→ �α = 1

(n − p)!p! αb1...bp Eb1...bpc1...cn−p

ϑc1 ∧ ... ∧ ϑcn−p . (B.5)

We have omitted the possible external indices of α, since this iso-
morphism does not affect them. In the definition of the Hodge star 
we have introduced the Levi-Civita tensor10

Ea1...an = √|det(gab)| εa1...an , (B.6)

where εa1...an = n!δ1[a1
...δn

an] is the n-dimensional alternating sym-
bol. Two important properties of the Levi-Civita tensor, which we 
will use often in our calculation are the following,

DEa1...an = −1

2
Ea1...an Q c

c , (B.7)

Ea1...akc1...cn−kE
b1...bkc1...cn−k = sgn(g)k!(n − k)!δb1...bk

a1...ak
, (B.8)

where D is the exterior covariant derivative defined in (2.16) for 
an arbitrary connection ωa

b .

Appendix C. Metric-affine equations of motion for general 
curvature dependent Lagrangians

In metric-affine gravity, the Noether identities of Diff(M) and 
GL(n, R) imply that only the equations of motion of ϑa and ωa

b

are necessary, since the equation of the metric is identically satis-
fied if the other two are [34].

Consider a Lagrangian that depends on the connection only 
through the curvature, i.e.

10 Note that when we omit the indices of the determinant, we always refer to the 
determinant in the coordinate basis, g = det(gμν). It should not be confused with 
det(gab). For that reason we write them explicitly in this expression.
S[g,ϑ,ω] =
∫

L(gab,ϑ
a, Ra

b(ω))

=
∫

L(gab, ea
μ, Rμνa

b(ω))
√|g|dnx . (C.1)

The equations of the coframe and the connection can be expressed 
in the language of differential forms as

0 = δS

δϑa = ∂L

∂ϑa = ea�L − (ea�Rc
b) ∧

(
∂L

∂ Rc
b

)
, (C.2)

0 = δS

δωa
b

= D

(
∂L

∂ Ra
b

)
, (C.3)

where the variation and the partial derivative with respect to dif-
ferential forms have been defined extracting the variations from 
the left:

δS[α] =
∫

δα ∧ δS

δα
,

δL(α,dα, ...) = δα ∧ ∂L

∂α
+ δdα ∧ ∂L

∂dα
+ ... (C.4)

Equivalently, in tensor notation we would obtain

0 = 1√|g|
δS

δea
μ

= eμ
aL+ ∂L

∂ea
μ

, (C.5)

0 = −1

2
√|g|

δS

δωμa
b

=
(

∇λ − 1

2
Q λσ

σ + Tλσ
σ

)(
∂L

∂ Rλμa
b

)

− 1

2
Tλσ

μ ∂L
∂ Rλσa

b
. (C.6)

C.1. Useful particular case

Suppose we apply the following splitting of the connection

ωab = ω̄ab + 1
2 Q̌ ab + 1

2n Q c
c gab , (C.7)

and that the remaining theory is both independent of Q c
c and 

D̄ Q̌ ab , such that we have an action of the type

Ŝ[g,ϑ, ω̄, Q̌ ] =
∫

L̂(gab,ϑ
a, R̄a

b(ω̄), Q̌ ab) . (C.8)

In that case, one can prove that the equation of motion of the new 
variables ω̄a

b and Q̌ ab are:

0 = δ Ŝ

δ Q̌ ab

= ∂ L̂

∂ Q̌ ab

, (C.9)

0 = δ Ŝ

δω̄a
b

= D̄

(
∂ L̂

∂ R̄a
b

)
. (C.10)
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