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Abstract

Large scale surveys very often involve multi-stage sampling design,
where the first-stage units are selected with varying probability sam-
pling without replacement method and the second and subsequent
stages units are selected with varying or equal probability sampling
schemes. It is well known (vide Chaudhuri and Arnab (1982)) that
for such sampling designs it impossible to find an unbiased estimator
of the variance of the estimator of the population total (or mean) as a
homogeneous quadratic function of the estimators of the totals (means)
of second-stage units without estimating variances of the estimators of
the totals (means) of the second and sub-sequent stages of sampling.
Wolter (1985) has shown that the Jackknife estimators of the popu-
lation total based on unequal probability sampling overestimates the
variance. In this paper we have proposed an alternative Jackknife es-
timator after reduction of bias from the original Jackknife estimator.
The performances of the proposed Jackknife estimator and the original
estimator are compared through simulation studies using Household In-
come and Expenditure Survey (HIES) 2002/03 data collected by CSO,
Botswana. The simulation studies reveal that the proposed estimator
fares better than the original Jackknife estimator in terms of relative
bias and mean-square error.

Keywords: Complex survey design, Inclusion probability proportional to size,
Jackknife estimator, Variance estimation, Varying probability sampling.
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1. Introduction

A sampling design other than the simple random sampling (SRS) is known
as a complex sampling design. Complex designs involve clustering, stratification
and varying probability sampling (VPS) among others. Most real life surveys are
complex surveys and for such surveys we often need to estimate several parametric
functions such as the population mean, population ratio of the total of two charac-
teristics, population coefficient of variation, population regression coefficient and
population correlation coefficient.

For example, Household Income and Expenditure Survey 2002/03 (HIES 2002/03)
conducted by the Central Statistics Office (CSO), Botswana, used enumeration
areas (EA’s) as first-stage units (fsu’s) and households in an EA as second-stage
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units (ssu’s). The EA’s are selected by inclusion probability proportional to size
(IPPS) sampling design using PPS systematic sampling procedure (Goodman and
Kish (1950)) taking the number of households in an enumeration area as measure
of size variable while the households in the selected EA’s by systematic sampling
procedure. The same survey design was used by CSO for Botswana Aids Impact
Surveys (BAIS) 2004, 2008, 2012 amongst others.

Variance estimation is essential for estimating the precision of survey estimates,
calculation of confidence intervals, determination of optimum sample sizes and for
testing of hypotheses, amongst others. In particular, finding the optimum sample
size is the key factor in the determination of the cost of a survey and the subsequent
precision of estimates.

In a multistage sampling, if the fsu’s are selected by without replacement sam-
pling procedure, the variance of the population total (or mean) cannot be esti-
mated unbiasedly as a homogeneous quadratic function of the estimates of the ssu
totals only. It requires unbiased estimates of variances of the estimators of the
second and sub-sequent sages (vide Chaudhury and Arnab (1982)). For example
if the fsu’s are selected by IPPS sampling design and ssu’s are selected by sim-
ple random sampling procedure, then the unbiased estimator of the variance of
the estimator of the population total (mean) cannot be estimated unbiasedly as
a quadratic function of the sample means of ssu’s of the selected fsu’s only. It
should also involve sample variances of the selected ssu’s totals (means) of the
second-stage units. To avoid the complexity of the unbiased variance estimation,
conventional approximate variance estimators such as Random group (RG), Jack-
knife (JK), Balanced repeated replications (BRR), Bootstrap (BT) methods are
proposed (vide Wolter, 1985). It is well known that for a multi-stage sampling,
the RG and JK methods very often overestimate the variance (Vide Wolter, 1985).
Singh et al. (1998, 1999, 2011) among others proposed alternative methods of vari-
ance estimation for complex survey designs. Arnab et al. (2012, 2015) proposed
methods of unbiased estimation of the variances of the population totals for multi-
stage sampling designs. Their variance estimators involve unbiased estimators of
the variances of the first-stage units as well as unbiased estimators (or approxi-
mate estimators) of the variances of the estimators of the second-stage units. The
performances of their proposed variance estimators were compared using simula-
tion studies based on the HIES 02/03 data with six indicators (study variables).
The simulation studies revealed that variance estimators proposed by Arnab et al.
(2015) yielded better estimators in respect to bias and mean square errors than
the conventional Jackknife and Random group methods.

Although, the method of variance estimation involving unbiased variance es-
timation of the first-stage units produces better variance estimators, it requires
computation of second order inclusion probabilities which are very complex and
difficult to compute for general IPPS sampling designs. The PPS systematic sam-
pling design proposed by Goodman and Kish (1950) is very easy to execute and
imposes the least restriction on pi (viz. pi ≤ 1/n) where pi (

∑
pi = 1) is the

normed size measure for the ith unit and n is the sample size. The expression for
the second order inclusion probabilities for such sampling scheme was obtained by
Hartley and Rao (1962) assuming the units are labelled at random. Such random
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labelling of units is not possible in practice since the units adjacent to each other
are normally labelled by adjacent numbers. So, in this present paper, we have
considered Sampford’s (1967) IPPS sampling design which is described in Section
2.

Asok and Sukhatme (1976) showed that the variances of the Horvitz-Thompson
(1952) estimator

(1.1) Ŷ =
∑
i∈s

yi
πi

(with πi = npi = inclusion probability of the ith unit) for a finite population total
Y based on a sample s of size n selected by the Goodman-Kish (1950) or Sampford
(1967)’s sampling scheme, correct to O(N−1) are the same and they are exactly
equal to

(1.2) V (Ŷ ) =
1

n

[
N∑
i=1

piz
2
i − (n− 1)

N∑
i=1

p2
i z

2
i

]

where zi =
yi
pi
− Y .

Expression (1.2) indicates that the Horvitz-Thomson estimator based on the
PPS systematic as well as Sampford’s procedures possess a uniformly smaller vari-
ance than that of the Hansen-Hurwitz estimator based on a PPSWR sampling
design of the same sample size n. Furthermore, when the variance is considered to
be O(N−2), the Horvitz-Thomson estimator based on Sampford sampling (VSAM )
has a uniformly smaller variance than that of the PPS systematic sampling pro-
cedure VGK and their difference

(1.3) VGK − VSAM = (n− 1)

(
N∑
i=1

p2
i zi

)2

is non-negative and increases with the sample size n.
In the present paper, we have proposed an alternative variance estimation for-

mula for multi-stage sampling design where the first-stage units are selected by
Sampord’s (1967) IPPS sampling design. The proposed variance formula is ob-
tained by removing the bias of the conventional Jackknife variance estimator. The
adjusted Jackknife variance estimator is obtained after reduction of bias from the
original Jackknife estimator and it is free from second order inclusion probabili-
ties. The performance of the proposed variance estimator is tested by simulation
studies using HIES (2003/2004) data with six indicators (study variables). The
simulation studies reveal that the proposed variance formula brings enormous gain
in efficiency with respect to bias and mean square error. We have also proved that
the bias of the conventional Jackknife estimator does not depend on the group size
m and the variances of the estimators of the second-stage units σ2

i ’s.

2. Variance estimation from multi-stage sampling

Consider a finite population U = (U1, . . . , Ui, . . . , UN ) of N first-stage units
(fsu’s). The ith fsu Ui consists of Mi second-stage units (ssu’s). Let yij be the
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value of variable of interest y for the jth ssu of the ith fsu and

(2.1) Y =

N∑
i=1

Mi∑
j=1

yij =

N∑
i=1

Yi

be the population total where Yi =

Mi∑
j=1

yij is the ith fus total.

From the population U , a sample s of n fsu’s is selected with probability p(s)
using Sampford’s (1967) IPPS sampling design (described below) with normed size
pi measure attached to the i th unit so that the inclusion probability for the ith
unit becomes πi = npi. If the ith fsu is selected in the sample s, a sub-sample si of
size mi (pre-determined number) ssu’s is selected from it by using some suitable
sampling procedure. Each of the selected fsu’s are sub-sampled independently.

The Sampford’s (1967) sampling design is described as follows:
On the first draw the ith unit is selected with probability pi(1) = pi. Then

the remaining (n−1) fsu’s are drawn with replacement from the entire population
with probability proportional to λi = pi/(1−npi) attached to the i th unit i.e. the

probability of selecting ith unit at kth draw is pi(k) = λ/
∑N
j=1 λj , k = 2, . . . , n.

The selected units are accepted as a sample if all the n units happen to be different,
otherwise the entire selection is discarded and this process is repeated unless a set
of n distinct units is obtained. Sampford (1967) has shown that the inclusion
probability for the selection of ith unit is πi = npi and ∆ij = πiπj − πij ≥ 0.
The expression for the second order inclusion probabilities is not simple. However,
approximate expression of πij correct to O(N−4), derived by Asok and Sukhatme
(1976) is given for n ≥ 3 as follows:

πij = n(n− 1)pipj

1 +

pi + pj −
∑
j

p2
j

+

2(p2
i + p2

j )− 2
∑
j

p3
j

(2.2) −(n− 2)pipj + (n− 3)(pi + pj)
∑
j

p2
j − (n− 3)(

∑
j

p2
j )

2




The Horvitz-Thompson (1952) estimator for the population total Y is

(2.3) Ŷ =
∑
i∈s

Ŷi
πi

where Ŷi is an unbiased estimator of Yi and
∑
i∈s

denotes the sum over the distinct

units in s.
The variance of Ŷ is given by

V (Ŷ ) =
1

2

N∑
i 6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

+

N∑
i=1

σ2
i

πi

= Vπps +

N∑
i=1

σ2
i

πi
(2.4)
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where σ2
i = V (Ŷi) and

(2.5) Vπps =
1

2

N∑
i 6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

An exact unbiased estimator of (2.4) was proposed by Chaudhuri and Arnab
(1982) as

(2.6) V̂ (Ŷ ) =
1

2

∑
i 6=

∑
j∈s

∆ij

πij

(
Ŷi
πi
− Ŷj
πj

)2

+
∑
i∈s

σ̂2
i

πi

where σ̂2
i is an unbiased estimator of σ2

i .

3. Jackknife Variance estimation

To use the exact variance estimator V̂ (Ŷ ) in practice becomes difficult because
of the computation of πij as well as σ̂2

i for i, j ∈ s. To avoid such tedious com-
putation, one may use the Jackknife variance estimator. The Jackknife method
of variance estimation for varying probability sampling was proposed by Wolter
(1985) and Särndal et al. (1992). Following Wolter and Särndal et al., in the
proposed Jackknife method the first-stage sample s of size n is partitioned at ran-
dom into k groups each so that the j th group s̃j consists of m = n/k (assuming

integer) units. The Jackknife estimator of the variance V (Ŷ ) is

(3.1) VJ =
k − 1

k

k∑
j=1

(
Ŷ−j − Ŷ•

)2

where Ŷ−j =
n

n−m

∑
i∈s

Ŷi
πi
−
∑
k∈s̃j

Ŷk
πk

 is an estimator of Y obtained after delet-

ing the j th group s̃j from the sample s and Ŷ• =
1

k

k∑
j=1

Ŷ−j .

3.1. Theorem.
(i) The bias of VJ is

B(VJ) =
n

n− 1
(Vpps − Vπps)

where Vpps =
1

n

N∑
i=1

pi

(
Yi
pi
− Y

)2

and Vπps is defined in (2.5).

(ii) The estimator VJ overestimates the variance V (Ŷ ) and also independent of
the group size m (i.e. k) and the second-stage variances σ2

i ’s.

Proof:
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(i)

E(VJ) =
k − 1

k
E

 k∑
j=1

E

{(
Ŷ−j − Ŷ

)2

| s
}

=
k − 1

k
E

 k∑
j=1

V
{
Ŷ−j | s

}
=
k − 1

k
n2

(
1

n−m
− 1

n

)
k

n− 1
E

∑
j∈s

(
Ŷj
πj

)2

− Ŷ 2

n


=

n

n− 1
E

∑
j∈s

(
Ŷj
πj

)2

− Ŷ 2

n


=

n

n− 1
E

∑
j∈s

Y 2
j + σ2

j

π2
j

− Vπps + Y 2

n



=
n

n− 1


N∑
i=1

Y 2
i + σ2

i

πi
−

1
2

N∑
i 6=

N∑
j=1

∆ij

(
Yi
πi
− Yj
πj

)2

+

N∑
i=1

σ2
i

πi
+ Y 2

n


= V (Ŷ ) +

n

n− 1

[
N∑
i=1

Y 2
i

πi
− Y 2

n
− Vπps

]
= V (Ŷ ) +

n

n− 1
(Vpps − Vπps)(3.2)

Hence the bias of the Jackknife estimator is

(3.3) B(VJ) =
n

n− 1
(Vpps − Vπps)

(ii) From expressions (1.3) and (3.3), we note that the magnitude of bias B(VJ)
is positive and independent of m (i.e. k) and σ2

i ’s.

4. Proposed Variance estimator

Following Asok and Sukhatme (1976), we can approximate the variance Vπps
up to order O(N−2) as

(4.1) Vπps '
1

n

[
N∑
i=1

pi

(
Yi
pi
− Y

)2

− (n− 1)

N∑
i=1

p2
i

(
Yi
pi
− Y

)2
]

Now substituting (4.1), in the expression of bias (3.3), we find an approximate
expression of bias as



7

B(VJ) '
N∑
i=1

p2
i

(
Yi
pi
− Y

)2

=

N∑
i=1

Y 2
i − 2Y

N∑
i=1

Yipi + Y 2
N∑
i=1

p2
i(4.2)

Let VadJ be an improved adjusted estimator of the variance of V (Ŷ ). Then an
approximate of unbiased estimator of B(VJ) as

(4.3) B̂(VJ) =
∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + (Ŷ 2 − VadJ)

(
N∑
i=1

p2
i

)
The proposed adjusted Jackknife variance estimator of V (Ŷ ) is obtained as a

solution of the following equation

VadJ = VJ − B̂(VJ)

= VJ −

[∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + (Ŷ 2 − VadJ)

(
N∑
i=1

p2
i

)]
(4.4)

The equation (4.4) yields

VadJ =

[
VJ −

{∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + Ŷ 2

(
N∑
i=1

p2
i

)}]
/{

1−

(
N∑
i=1

p2
i

)}
(4.5)

Now replacing

(
N∑
i=1

p2
i

)
by it’s unbiased estimate

∑
i∈s

p2
i

πi
=

1

n

∑
i∈s

1

pi
, the ex-

pression (4.5), we find an improved jackknife estimator (vide Särndal et al.(1992))
as

V ∗adJ =

[
VJ −

{∑
i∈s

Ŷ 2
i − σ̂2

i

πi
− 2Ŷ

n

∑
i∈s

Ŷi + Ŷ 2

(
1

n

∑
i∈s

1

pi

)}]
/{

1−

(
1

n

∑
i∈s

1

pi

)}
(4.6)

5. Relative efficiency

Here we compare the performance of the proposed variance estimator V ∗adJ with
respect to VJ through simulation studies. For the simulation study, we consider
the stratum “Gaborone district” of HIES 2002/03 survey as population. The
Gaborone district comprises 13 (= N) enumeration areas (EA’s) of 120, 132, 140,
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120, 120, 112, 64, 72, 96, 120, 100, 90 and 80 households respectively. From
the population (Gaborone district) a sample s of EA’s is selected by Sampford’s
(1967) IPPS sampling scheme taking number of households Mi of the ith EA as
measure of size variable. The inclusion probability of the ith EA is πi = npi
where pi = Mi/M , M =

∑
i∈U

Mi = 1366. If the ith fsu (EA) Ui is selected in

the sample s, a sub-sample si of size mi = γMi (γ = 0.50, 0.33, 0.10) households
(second-stage units) is selected from it by SRSWOR method. Here mi’s are pre-
determined numbers and the subsamples si’s are selected independently from each
of the fsu’s (first-stage units). The variance σ2

i (V (Ŷi)) is unbiasedly estimated by

σ̂2
i = M2

i (
1

mi
− 1

Mi
)

1

mi − 1

∑
j∈si

(yij − yi)2, yi =
1

mi

∑
∈si

yij .

From the selected households information relating to six different indicators viz.
Total consumption, Cash earnings, School meals, Gross Income, Earned Income
and Income Tax are collected.

From the selected sample estimates of population total Ŷ , Jackknife estimator
VJ (with k = n) and the proposed adjusted Jackknife estimator V ∗adJ are obtained.
The selection of sample and estimation of the variance estimators from each the
selected sample (iteration) are repeated R = 100, 000 times. Let Ŷ [r], VJ [r] and

V̂adJ(1)[r] be the value of Ŷ , VJ and V ∗adJ based on the r th iteration, r = 1, . . . , R.

The relative bias of Ŷ is obtained as

RB(Ŷ ) =

[
1

R

R∑
r=1

Ŷ [r]− Y

]
/Y

The relative biases and mean square errors (MSE) of VJ and V ∗adJ are obtained
as follows:

Relative bias of VJ = RB(VJ) = B(VJ)/V =

[
1

R

R∑
r=1

VJ [r]− V

]
/V ,

Relative bias of V ∗adJ = RB(V ∗adJ) = B(V ∗adJ)/V =

[
1

R

R∑
r=1

V ∗adJ [r]− V

]
/V ,

MSE of VJ = M(VJ) =
1

R

R∑
r=1

(VJ [r]− V )2 and

MSE of V ∗adJ = M(V ∗adJ) =
1

R

R∑
r=1

(V ∗adJ [r]− V )2,

where the true variance V is obtained 100,000 simulated samples. The efficiency
of the proposed variance estimator V ∗adJ with respect to VJ is given by

RE =
M(VJ)

M(V ∗adJ)

Table 1 gives the average sample size, Percentage relative bias RB(Ŷ )%(=

RB(Ŷ ) × 100) and Coefficient of variation (cv) of Ŷ , Percentage relative bias re-
duction RBR%(= {RB(VJ)−RB(V ∗adJ)}×100) and percentage relative efficiency
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PRE = RE× 100 of the adjusted Jackknife estimator over the conventional Jack-
knife estimator. The Table 1 shows that the proposed adjusted Jackknife estimator
possesses the lower bias and higher efficiency than the original Jackknife estimator
in almost all the situations. The reduction in biases of the proposed estimator and
relative efficiencies vary together. The percentage reduction of biases vary from
-1.72% to 26.92% while efficiencies vary from 95.75% to 126.50%. For a given
fsu size (n) both the reduction of bias and efficiency increase with the increase
of ssu size (mi) while for a given ssu size (mi), both the reduction of biases and
efficiencies increase with the fsu size (n). However, there is virtually no reduc-
tion of biases and increase of efficiencies when both fsu and ssu sizes are small
for some of the indicators e.g. Gross Income (n = 3, γ = 0.1), Earned Income
(n = 3, γ = 0.1;n = 4, γ = 0.1) and Income Tax (n = 3, γ = 0.1;n = 4, γ = 0.1).

6. Conclusions

Multi-stage sampling designs are used extensively in real life surveys. The ex-
pression of the exact unbiased variance estimators of the population total (or mean)
is complex. So, Jackknife variance estimators are used for computing standard er-
rors of the estimators. Standard errors are used for determination of confidence
intervals, testing of hypothesis and determination of the optimal sample size. The
jackknife estimators generally overestimate the bias and hence results provide in-
appropriate inferences. It is proved in this paper that the bias of the Jackknife
variance estimators is independent of the group size m and second-stage variances
(σ2
i ) of the sampling designs used. An alternative Jackknife variance estimator has

been proposed in this paper by eliminating bias of the usual Jackknife estimator.
The performances of the proposed Jackknife variance estimators are compared
with the existing one using HIES 2002/data. The study reveals that the proposed
adjusted variance estimators perform better than the original Jackknife estima-
tors in terms of reduction of bias and enhancing relative efficiencies in almost all
the situations. The present study is based on a limited sample size due to small
resources. However, a similar study with large sample size will certainly provide
more conclusive performance of the proposed variance estimator.

Acknowledgement

The authors are thankful to the referees for their valuable suggestions which
lead substantial improvement of the earlier version of the manuscript. The authors
wish to thank Dr. G. Anderson and Mr. K. Molebatsi for their valuable comments.

References

[1] Asok.C. and Sukhatme, B.V. On Sampford’s procedure of unequal probability sampling with-
out replacement, J. Amer. Statist. Assoc., 71, 912-918, 1976.

[2] Arnab, R. and North, D. An appraisal of household income and expenditure survey design,
Pak. J. Statist., 28, 423-436, 2012.

[3] Arnab, R., Zewotir, T. and North, D. Variance estimation from complex survey designs: A
case study of household income and expenditure survey design 2002/03, Botswana, Com-
muni. Statist. Theory. Methods., 44, 63-79, 2015.

[4] CSO (2005). 2004 Botswana AIDS Impact Survey II

[5] CSO (2009). 2008 Botswana AIDS Impact Survey III



10

[6] CSO (2016). 2012 Botswana AIDS Impact Survey VI (in print)

[7] Chaudhuri, A. and Arnab, R. On unbiased variance estimation with various multi-stage

sampling strategies, Sankhya B, 44, 92-101, 1982.
[8] CSO Household Income and Expenditure Survey 2002/03, Republic of Botswana, 2004.

[9] Goodman, R. and Kish, L. Controlled selection-a technique in probability sampling, J. Amer.

Statist. Assoc., 45, 350-372, 1950.
[10] Hartley, H.O and Rao, J.N.K. Sampling with unequal probabilities and without replacement,

Ann. Math. Statist., 33, 350-374, 1962.

[11] Horvitz, D.G. and Thompson, D.J. A generalization of sampling without replacement from
a finite universe, J. Amer. Statist. Assoc., 47, 663-685, 1952.

[12] Sampford, M.R. On sampling without replacement with unequal probability selection,

Biometrika, 67, 639-650, 1967.
[13] Särndal, C.E., Swensson, B. and Wretman, J. Model Assisted Survry Sampling, Springer-

Verlag, New York, 1992.
[14] Singh, H.P., Tailor, R., Singh, S. and Kim, J. M. Estimation of population variance in

successive sampling, Quality & Quantity, 45, 477- 494, 2011.

[15] Singh, S., Horn, S. , and Yu, F. Estimation of variance of the general regression estimator:
Higher level calibration approach, Survey Methodology, 24, 41-50, 1998.

[16] Singh, S., Horn, S., Choudhuri, S. and Yu, F. Calibration of the estimators of variance,

Austral. and New Zealand J. Statist. 41, 199-212, 1999.
[17] Wolter, K. Introduction to variance estimation, Springer-Verlag, New York, 1985.



11

Table 1.

Average
sample

n γ size RB(Ŷ )% cv(Ŷ ) RBR% PRE%

Total consumption

3 0.50 164.536 -0.195 0.172 9.849 111.29
0.33 110.055 -0.413 0.190 7.392 108.74
0.10 32.827 -0.047 0.278 -0.915 100.76

4 0.50 219.562 -0.483 0.192 21.033 125.62
0.33 146.606 0.881 0.203 18.834 120.66
0.10 43.878 0.121 0.273 3.596 105.90

Cash earnings

3 0.50 164.536 -0.171 0.178 9.718 111.35
0.33 110.055 -0.377 0.196 7.331 108.71
0.10 32.827 -0.027 0.285 -0.869 100.84

4 0.50 219.562 0.285 0.192 22.114 125.79
0.33 146.606 1.657 0.204 19.804 120.88
0.10 43.878 0.864 0.276 4.114 106.15

School meals

3 0.50 164.536 0.001 0.169 9.314 111.06
0.33 110.055 -0.150 0.187 7.255 108.82
0.10 32.827 0.329 0.266 0.4 103.64

4 0.50 219.562 -0.468 0.175 22.601 126.50
0.33 146.606 0.890 0.184 19.936 123.24
0.10 43.878 -0.164 0.247 5.496 110.38

Gross Income

3 0.50 164.536 -0.304 0.169 9.588 110.98
0.33 110.055 -0.569 0.188 7.05 108.19
0.10 32.827 -0.053 0.278 -1.721 99.15

4 0.50 219.562 -0.509 0.195 19.774 124.58
0.33 146.606 0.880 0.206 17.457 119.32
0.10 43.878 0.103 0.278 2.454 103.63

Earned Income

3 0.50 164.536 0.108 0.187 9.454 107.63
0.33 110.055 0.085 0.214 6.54 103.53
0.10 32.827 1.318 0.323 -1.311 95.98

4 0.50 219.562 -0.239 0.183 26.922 117.71
0.33 146.606 1.037 0.197 21.583 113.12
0.10 43.878 0.806 0.294 3.223 99.76

Income Tax

3 0.50 164.536 0.077 0.182 9.432 107.36
0.33 110.055 0.053 0.208 6.473 103.89
0.10 32.827 1.368 0.313 -1.328 95.75

4 0.50 219.562 -0.301 0.186 25.786 117.67
0.33 146.606 1.040 0.198 20.616 113.11
0.10 43.878 0.744 0.289 3.115 99.73


