
“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 204 — #1

International Journal of Computational Intelligence Systems
Vol. 12(1); 2019, pp. 204–214

https://www.atlantis-press.com/journals/ijcis/

ID:ti0005

Design of Fuzzy Controllers for Embedded Systems With
JFML

1Department of Electronics and Computer Engineering, University of Córdoba, Rabanales Campus Córdoba, 14071, Spain
2Department of Computer Science, University of Salerno, Fisciano, 84084, Italy
3Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS), University of Santiago de Compostela, 15782, Spain
4Department of Physics Ettore Pancini, University of Naples Federico II, Naples, 80126, Italy
5DaSCI Research Institute, University of Granada, Granada, 18071, Spain

ART I C L E I N FO
Article History

Received 29 Jul 2018
Revised 28 Dec 2018
Accepted 22 Jan 2019

Keywords

ID:p0090

Fuzzy Rule-Based Systems
JFML
Embedded systems
IEEE Std 1855-2016
Open source software
Open hardware

ABSTRACT

ID:p0085

Fuzzy rule-based systems (FRBSs) have been successfully applied to a wide range of real-world problems. However, they suffer
from some design issues related to the difficulty to implement them on different hardware platforms without additional efforts.
To bridge this gap, recently, the IEEE Computational Intelligence Society has sponsored the publication of the standard IEEE
Std 1855-2016 which is aimed at providing the fuzzy community with a well-defined approach to model FRBSs in a hardware-
independent way. In order to provide a runnable version of an FRBS that is designed in accordance with the IEEE Std 1855-2016,
the open source library Java Fuzzy Markup Language (JFML) has been developed. However, due to hardware and/or software
limitations of embedded systems, it is not always possible to run an IEEE Std 1855-2016 FRBS on this kind of systems. The
aim of this paper is to overcome this drawback by developing a new JFML module that assists developers in the design and
implementation of FRBSs for open hardware–embedded systems. In detail, the module supports several connection types (WiFi,
Bluetooth, and USB) in order to make feasible running FRBSs in a remote computer when, due to hardware limitations, it is
not possible that they run locally in the embedded systems. The new JFML module is ready for ArduinoTM and Raspberry Pi,
but it can be easily extended to other hardware architectures. Moreover, the new JFML module allows to automatically generate
runnable files onArduinoTM or Raspberry Pi in order to support nonexpert users, that is, users without specific knowledge about
embedded systems or without strong programming skills. The use of the new JFML module is illustrated in two case studies.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1.

ID:TI0015

INTRODUCTION

ID:p0095

Fuzzy rule-based systems (FRBSs) are rule-based systems, where
fuzzy sets and fuzzy logic are used as tools for representing dif-
ferent forms of knowledge about the problem at hand, as well as
for modeling the interactions and relationships existing between
the related variables [1]. Thanks to their capability of dealing with
uncertainty and vagueness, FRBSs have been successfully applied
to a wide range of problems such as classification and regression
[2–4]. Surely, one of the most active and mature research fields in
the context of FRBSs is the area of fuzzy logic controllers (FLCs).
Different from control systems based on complex mathematical
models such as differential equations, FLCs use a collection of
linguistic rules to model the human expertise and skills related
to a given application domain [5]. In consequence of provided
benefits, FLCs have been successfully used in different domain
applications such as, for instance, mobile robot navigation [6],
medical diagnosis [7], nonlinear rotary chain pendulum [8], and
cement manufacturing plant [9].

*Corresponding author. Email: jmsoto@uco.es

ID:p0100

Unfortunately, in spite of their evident benefits, the design
activity of FRBSs has always been affected by strong difficulties
related to the implementation of a same system on different hard-
ware architectures, each one characterized by a proper set of elec-
trical/electronic/programming constraints [10]. To overcome this
weakness of FRBSs, recently, IEEE Computational Intelligence
Society (IEEE-CIS) has sponsored the publication of a standard
for FRBSs, namely IEEE Std 1855-2016 [11], capable of modeling
FRBSs in an hardware-independent way. In detail, this standard
defines a newW3C eXtensible markup language (XML)-based lan-
guage, named Fuzzy Markup Language (FML), aimed at providing
the fuzzy community with a unique and well-defined tool allow-
ing fuzzy systemdesign on different hardware architectures without
additional efforts [5].

ID:p0105

However, since an FLC develped in accordance with the IEEE Std
1855-2016 realizes a static view of a FRBS, tools to change this static
view to a computable version are necessary. Recently, the open
source Java library JFML1 has been developed to bridge this gap

1http://www.uco.es/JFML/
Pdf_Folio:204

J.M. Soto-Hidalgo1,*, A.Vitiello2, J.M. Alonso3, G. Acampora4, J. Alcala-Fdez5

DOI: https://doi.org/10.2991/ijcis.2019.0014; ISSN: 1875-6891; eISSN: 1875-6883

https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.2991/ijcis.2019.0014


“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 205 — #2

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214 205

[12]. This library provides designers of FRBSs with a fully func-
tional and complete implementation of the IEEE Std 1855-2016.
Thanks to JFML, the fuzzy community can take profit of an open
source software tool for designing and sharing FBRSs in accordance
with the IEEE Std 1855-2016, and thus without requiring any addi-
tional porting task (hardware or software).

ID:p0110

In spite of JFML benefits, FLCs and FRBSs, in general, implemented
by means of JFML library could be not suitable to be run on some
hardware systems such as embedded systems. In detail, an embed-
ded device is a strongly specialized piece of hardware meant for one
or very few specific purposes and it is usually included (embedded)
within another object or as a component of a larger system [13]. The
main components of an embedded device are an actuator, a sen-
sor, an embedded processor, and often a communication network.
In general, embedded devices are characterized by a limited set
of hardware and/or software functionalities. Among the hardware
limitations, it is worth noting the limits in processing performance,
power consumption, and memory, whereas, software limitations
could be few applications and no operating system or limited [14].
The difficulty to run FRBSs in embedded systems arises just from
these limitations. Hence, the need of developing new tools to over-
come this issue. Although some libraries allow using fuzzy logic
on embedded devices such as Matlab for Arduino2 and eFLL3,
currently there is no open source software infrastructure to sup-
port FLCs in accordance to the IEEE Std 1855-2016 for embedded
systems [15, 16].

ID:p0115

The main aim of this paper is to bridge this gap by enhancing the
JFML librarywith a newmodule whichmakes easier the implemen-
tation and deployment of FLCs on embedded systems. When FLCs
run in embedded systems, they need to be connected to a set of
sensors/actuators to obtain input values and provide suitable out-
put values to achieve a good performance of the systems. There-
fore, the new JFML module allows to assign sensors/actuators to
linguistic variables of the knowledge base in order to enable a FLC
design completely independent from the specific hardware/soft-
ware constraints that characterize the given architecture where the
system is to be deployed. In addition, a new communication pro-
tocol between JFML and embedded systems is included within this
module to enable both wireless communications (WiFi and Blue-
tooth) and the serial port. This protocol allows to run FLCs on a
remote computer, when they cannot run on the embedded systems
due to their limited capacity (e.g., low computational power).

ID:p0120

In order to offer a software easily modifiable to suit the user needs
and to be used as the basis for new products in different scenar-
ios, it is important to embrace the open software and hardware
models [17]. These models make it easier for other researchers to
share knowledge and promote trade through the open exchange
of designs. In this paper we focus on two of the most popular
and well-known embedded systems in the open hardware model,
ArduinoTM [18] andRaspberry Pi [19]. The new JFMLmodule pro-
vides developerswith a full assistance in the design of FLCs for these
two types of embedded systems. It is worth noting that this mod-
ule allows to implement FLCs in Arduino boards and Raspberry Pi
in an intuitive way and without the need for any additional tailored
code. The potential of the new module is illustrated with two case

2http://playground.arduino.cc/Interfacing/Matlab
3https://github.com/zerokol/eFLL

studies: 1. an FLC that manages the wall-following behavior of a
mobile robot and 2. an FLC that manages the ventilation system for
a refrigerating chamber.

ID:p0125

The rest of this paper is arranged as follows: Section 2 presents
briefly both the FLCs and the embedded systems under considera-
tion. It also introduces the main characteristics of the JFML library.
Section 3 describes the new JFML module for embedded systems.
Section 4 goes in depth with the two case studies. Finally, Section 5
points out some concluding remarks.

2.

ID:TI0020

PRELIMINARIES

ID:p0130

In this section, we first put in context the FLCs as a specificmodel of
FRBSs. Then we describe the main characteristics of the embedded
systems ArduinoTM and Raspberry Pi. Finally, we present the open
source JFML library.

2.1.

ID:ti0025

Fuzzy Logic Controllers

ID:p0135

FLCs can solve complex control situations using rules by defin-
ing automatic systems that behave like human experts in a partic-
ular domain [9, 20–22]. In these systems, a linguistic control strat-
egy based on expert knowledge can be converted into an automatic
control strategy on the basis of fuzzy rules. A fuzzy control rule
is a conditional statement in which the antecedent is a condition
in its application domain, the consequent is a control action to be
applied in the controlled system. FLCs usually present the archi-
tecture shown in Figure 1 where the fuzzification stage translates
nonfuzzy inputs (usually crisp values from the sensors) into fuzzy
inputs, while the defuzzification stage does just the opposite with
the outputs (usually crisp values to the actuators). A fuzzy infer-
ence engine processes fuzzy inputs and produces fuzzy outputs.
With that aim, an inference mechanism interprets the given inputs
in accordance with the knowledge base (i.e., the definition of all
related fuzzy variables) and the rule base (i.e., the set of all fuzzy
relations among the variables defined in the knowledge base).

2.2.

ID:ti0030

Embedded Systems: ArduinoTM
and Raspberry Pi

ID:p0145

Embedded systems are strongly specialized pieces of hardware
meant for specific purposes that are embedded as part of a
complete device [23]. Since they are dedicated to specific tasks,

Figure 1

ID:p0140

Common architecture of a fuzzy logic controller (FLC).
Pdf_Folio:205



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 206 — #3

206

engineers can optimize them to reduce the size and cost of the
product and increase the reliability and performance. Because of
this, in recent years the embedded industry has experienced expo-
nential growth and embedded systems can control many devices.
It is estimated that 98% of all microprocessors are manufactured
as part of an embedded system. Embedded systems are commonly
found in applications such as medical, commercial, industrial, or
automotive applications.

ID:p0150

One of the most used embedded system is ArduinoTM [18] due to
its great simplicity and usability. Namely, it is a microcontroller
board with a set of digital and analog input/output pins that may be
connected to various expansion boards andother electronic com-
ponents (e.g., motors, light sensors, or microphones). This board
offers several communication interfaces (USB, WiFi, and Blue-
tooth) for connecting to personal computers or other computa-
tional systems. The microcontroller can be programmed using a
dialect of the programming languages C and C++ in files with
extension .ino.

ID:p0155

ArduinoTM is the first widespread Open Source Hardware project
(with license Creative Commons Attribution Share-Alike) and it is
a popular tool for Internet of Things (IoT) product development as
well as one of the most successful tools for STEM/STEAM educa-
tion4. For instance, in [24], the design of a low-cost mobile robot
based on Arduino was proposed as an alternative or complemen-
tary educational tool in labs, classrooms, e-learning, and massive
open online courses (MOOC). In [25], an adaptive FLC based on
Arduino DUE was presented to manage a DC motor with flexible
shaft. In [13], Acampora et al. proposed an extension of the IEEE
Std 1855-2016 [26] to allow the definition of an FLC in a fully inter-
operable manner with Arduino architectures.

ID:p0160

Raspberry Pi [19] is a tiny and affordable computer that is usu-
ally used to learn programming skills in educational systems or as
embedded computer in controllers. This is a single-board computer
built on a single circuit board, with a microprocessor, memory,
input/output, and other features required of a functional computer.
Several communication interfaces are available depending on the
selected Raspberry Pi model. Secure digital cards are used to store
the operating system (e.g., Raspbian orUbuntu) and programmem-
ory in either SDHC or MicroSDHC sizes. The main programming
languages are Python and Scratch, but it supports other languages.

ID:p0165

The use of Raspberry Pi exhibits a steady growing in the litera-
ture due to its great usability and low price. For instance, in [27],
Jayapriya et al. implemented a FLC in a Raspberry Pi to man-
age the charging and discharging of battery units for a wind pow-
ered microgrid. In [28], a FLC is implemented on a Raspberry Pi
located at a remote location away from the plant to manage liq-
uid levels through a wireless network. In [29], a fuzzy classifier is
implemented on a Raspberry Pi to detect weed in sugarcane fields
through a low-cost mobile robot.

2.3.

ID:ti0035

The JFML Library

ID:p0170

In the year 2000, the Fuzzy Control Language (FCL) was defined
in the norm IEC61131-7 of the International Electrotechnical
Commission [30] with the aim of providing engineers with a

4http://stemtosteam.org/

common and well-defined understanding of the basic means for
integrating fuzzy controllers into control problems, and facili-
tating the exchange of controllers between different program-
ming languages and software (increasing the usability and the
interoperability of the available software). Recently, the IEEE-CIS
has sponsored the publication of a new standard for fuzzy logic sys-
tems (FLSs), named IEEE Std 1855-2016 [26]. This standard defines
the new FML language based onW3CXMLwith the aim of extend-
ing the advantages of IEC61131-7 to other types of problems (e.g.,
classification or regression). It exploits the advantages of XML to
represent FLSs.

ID:p0175

JFML is a new open source Java library ready to design and to
use type-1 FLSs according to the IEEE Std 1855-2016. It allows to
use all the fuzzy inference systems (Mamdani, TSK, Tsukamoto,
and AnYa) enclosed in the XML Schema Definition (XSD) of the
standard, including all the membership functions, fuzzy opera-
tors, defuzzifiaction methods, and so on, which are considered in
the standard (see [26] for more information). However, researchers
may need to use other elements that are not included in the cur-
rent definition of the XSD (e.g., type-2 or intuitionistic fuzzy sys-
tems). For this reason, JFML includes custom methods (named
according to the pattern custom_name) for all the elements indi-
cated in the XSD, enabling a way to extend the library conform-
ing to the updates of the standard without requiring to modify the
language grammar itself. Moreover, the modular design of JFML
based on the same labeled tree structure as the standard allows to
include future changes modifying only the corresponding part of
the library. JFML can also bind W3C XML documents and Java
representations thanks to the API of the Java Architecture for XML
Binding (JAXB). The JFML library uses JAXB to provide a fast
and convenient way for reading and writing FLSs according to the
standard. Finally, in order to make easier the interoperability of
the library with other available software, JFML includes a module
to import/export FLSs from/to three of the most widespread and
widely used formats for FLSs: FCL [30], PMML [31], and Matlab
FIS [32].

ID:p0180

This library is distributed as open source software under the terms
of the GNU Public License GPLv35 and it is hosted in the public
hosting GitHub6, which provides several tools (e.g., bug tracker) to
take advantage of the open source policy. Moreover, JFML has a
web page associated7 (see Figure 2) with a complete documenta-
tion and a good variety of examples. JFML provides the fuzzy com-
munitywith awell-defined tool for designing and sharing fuzzy sys-
tems without requiring any additional, hardware and/or software,
porting task.

3.

ID:TI0040

NEW JFML MODULE FOR EMBEDDED
SYSTEMS

ID:p0190

In this section we introduce the new JFML classes which assist
developers in the implementation and deployment of fuzzy con-
trollers for embedded systems. In the context of embedded systems,
this assistance is particularly important due to the variety of appli-
cations, communication protocols, software library dependencies,

5https://www.gnu.org/licenses/quick-guide-gplv3.html
6https://github.com/sotillo19/JFML
7http://www.uco.es/JFML

Pdf_Folio:206

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 207 — #4

207

Figure 2

ID:p0185

Web page associated to Java Fuzzy Markup Language (JFML).

and low-level programming tools that are required. This module
deals with all these issues into the JFML. As a result, FLCs devel-
oped with JFML in accordance with the IEEE Std 1855-2016 can
be integrated into different types of hardware architectures without
any software library dependencies or specific hardware program-
ming tasks.

ID:p0195

In the following subsections we describe the main features of this
new module. First, in Section 3.1 we give an overview of the mod-
ule design. Second, in Section 3.2, the communication protocol for
the bidirectional communication between embedded systems and
the JFML is detailed. Finally, the Arduino-based and Raspberry Pi-
based implementations are presented in Section 3.3.

3.1.

ID:ti0045

General Design

ID:p0200

Figure 3 shows the main classes in this module:

1.

ID:p0205

Embedded System: Main class responsible for defining both the
characteristics and the type of connection with the embedded
system. It requires a name, a type of connection, and a baud
rate for establishing the connection with the JFML core. It has
also associated a list of EmbeddedVariable objects which are in
charge of the association between variables of the knowledge
base and sensors/actuators. In addition, this class defines an
abstractmethod to create a runnable file according to the archi-
tecture design requirements of the embedded system. Thanks
to this file, a user without specific knowledge about the embed-
ded system architecture or programming language could run a
FLC on it.

2.

ID:p0210

Embedded Controller: This class is in charge of coordinating all
the embedded systems connected to the JFML by means of a
defined protocol. As many embedded systems as the designer
desires could be included in a unique EmbeddedController
instance. This class has associated a list of EmbeddedSystem
objects and an instance of the FuzzyInferenceSystem class that
is responsible for the fuzzy inference engine, which could run
in different computational systems thanks to the distributed
capacity of the protocol. In addition, this class provides meth-
ods for running during a certain period of time or indefinitely
by using the proposed communication protocol (Section 3.2).

3.

ID:p0215

Embedded Variable: This class enables the association between
sensors and variables from the knowledge base. Sensors are
usually associated to variables by means of the input/output
ports of the embedded system. Reading or writing values from
the sensors aremapped to the variable domain or viceversa. For
instance, if the domain of a sensor were defined in the interval
[0, 255] and the domain of the variable were defined in [0, 1],
then actual values would be mapped accordingly.

Figure 3

ID:p0235

Java Fuzzy Markup Language (JFML) module for embedded systems (main class diagram).
Pdf_Folio:207

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 208 — #5

208

4.

ID:p0220

Sensor and Sensor Library: These classes are responsible for
defining the characteristics of the different sensors. They
include the type of sensor (analog or digital), the domain of
the sensor (maximum and minimum read and write values),
as well as associated operating libraries. Each sensor can have
associated a library in order to manage the operating code by
including methods for generating the initialization code, read-
ing and writing sensors, and so on.

5.

ID:p0225

Aggregated Sensor. This class defines an association between
different sensors with the aim of representing input/output in
a unique way by the union of several sensors. To do this, a
list of Sensor objects is included in this class. Notice that, this
class allows us to preprocess the sensor values in order to gen-
erate high-level input variables and thus providing the infor-
mation that is more relevant and meaningful to model the
system [33]. This pre-processing task provides a great flexibil-
ity to the design since each sensor does not need to be associ-
ated with a specific input variable of the system.

6.

ID:p0230

Connection andConnection Library. TheConnection class spec-
ifies a bidirectional connection method that allows connecting
embedded systems with the core of the JFML via USB,WiFi, or
Bluetooth. The ConnectionLibrary allows to include additional
code to connect the embedded systems if it were required.

3.2.

ID:ti0050

Communication Protocol

ID:p0240

The new module allows FLCs to run on any embedded system but
taking advantage of the computational capacity of other systems
apart from the embedded ones, that is, the fuzzy inference pro-
cess (in the core of JFML) can be executed either on the embed-
ded system itself or on another remote computer. To do that, a
communication protocol for both connecting embedded systems
to a remote computer with the JFML and exchanging messages is
defined. The connection is directly handled by JFML and transpar-
ent to the developer (no matter if JFML is integrated in the embed-
ded system or run apart in a remote computer). This protocol man-
ages the communication between the JFML and the embedded sys-
tems bymeans of read/writemessage requests. Sensors connected to
embedded systems can send or receive values from or to the JFML
thanks to this protocol iteratively or during a single iteration. In the
following, we summarize the behavior of the protocol:

•

ID:p0245

First, the controller (EmbeddedController class) sends a
broadcast message to all embedded systems for establishing a
connection within the JFML. Each embedded system receives a
message for reading and/or writing values from the connected
sensors/actuators depending on the association between the
sensors/actuators and the variables. For instance, if a sensor is
associated to an input variable, the embedded system gets a
value from the sensor. However, if it is associated to an output
variable, the embedded system sets a value to the actuator. This
value is sent to the JFML as a message according to the
protocol definition.

•

ID:p0250

Second, the controller waits for a response (a message with the
value from the sensors) from all the embedded systems that are
connected to. If the controller receives response from all of them

and a timeout is not exceeded, the values of the variables of the
knowledge base are updated with the received values (coming
from the sensors), otherwise, an error message is displayed.

•

ID:p0255

Third, the JFML makes the fuzzy inference taking into account
the updated values to the input variables. Subsequently, the
output values are obtained by the defuzzification method
indicated in the FLC and, finally, they are sent to the
corresponding embedded systems (those that have associated
sensors/actuators with output variables). The sensors or
actuators associated to output variables are set according to the
results of the fuzzy inference. Finally, the controller waits for an
ACK response from all the embedded systems indicating the
results of the fuzzy inference is set correctly into the
corresponding sensors or actuators, otherwise, an error
message is displayed.

3.3.

ID:ti0055ID:p0260

As we havementioned before, ArduinoTM and Raspberry Pi are two
of themost popular embedded systems due to their great simplicity,
usability and multiple connections with sensors/actuators. In this
section, Arduino-based (see Section 3.3.1) and Raspberry Pi-based
(see Section 3.3.2) implementations in JFML are described. Finally,
Section 3.3.3 presents a collection of sensors (already managed by
the new JFMLmodule) which correspond to some of themost com-
monly used solutions based on ArduinoTM and Raspberry Pi.

3.3.1.

ID:ti0060

Arduino-based implementation

ID:p0265

On the basis of the classes design structure proposed in Section
3.1, a new class EmbeddedSystemArduino which extends the
abstract class EmbeddedSystem is implemented. Arduino boards
can be connected to serial ports (USB or Bluetooth) or WiFi
and used for designing FLCs in a simple way. These different
connections are taken into account by the EmbeddedSystemAr-
duinoUSB, EmbeddedSystemArduinoBluetooth, or EmbeddedSys-
temArduinoWIFI classes which extend the EmbeddedSystemAr-
duino class.

ID:p0270

The EmbeddedSystemArduino class implements the abstract
method for creating automatically a runnable file (.ino) according
to the Arduino architecture design. This file includes the code to
start and run Arduino-based systems. It requires two functions:
1. setup() which is called once when an Arduino starts after power-
up or reset and it is mainly used to initialize variables, input and
output pin modes, and other libraries needed in the program, and
2. loop() which is called repeatedly by a program loop in the main
program. This function is always called after the function setup().

ID:p0275

Each variable of an FLC, which is associated to a sensor or actuator,
as well as the related libraries, is automatically included in the code
of the setup()method as well as the pin mode (input or output) and
the pin number that is connected. Finally, the generated .ino file can
be loaded directly into the Arduino’s ROM by using, for instance,
the Arduino IDE enabling Arduino board to run FLCs. Notice that
this file could be edited by the users in case they needed to add or
modify their own code.

Pdf_Folio:208

Arduino-Based andRaspberry Pi-Based
Implementations in JFML

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 209 — #6

209

3.3.2.

ID:ti0065

Raspberry Pi-based implementation

ID:p0280

Similar to the Arduino-based implementation, a new class
EmbeddedSystemRaspberrywhich extends the abstract classEmbed-
dedSystem is implemented. In the same way, the classes Embed-
dedSystemRaspberryUSB, EmbeddedSystemRaspberryBluetooth or
EmbeddedSystemRasperryWIFI, which extend the EmbeddedSys-
temRaspberry class, are in charge of defining the different connec-
tions between the Raspberry Pi and the JFML.

ID:p0285

The class EmbeddedSystemRaspberry implements an abstract
method to automatically create a runnable file (.py) according to
the Raspberry Pi architecture design. In this case, unlike the exe-
cutable .ino file, the .py file does not contain the setup() and loop()
functions for configuring the parameters and running iteratively
the code, respectively. To achieve a similar behavior to the Arduino
board allowing iterations, amain() function has been implemented,
which contains awhile loop similar to the loop() function in the case
of Arduino. All configuration aspects such as connection pins or
baud rate are declared before themain() function. Finally, the gen-
erated .py file can be executed by the command python file_name.py.
Notice that this file can be edited by the users.

3.3.3.

ID:ti0070

Collection of sensors

ID:p0290

A collection of sensors of the most commonly used Arduino-based
and Raspberry Pi-based solutions is already available within the
new JFML module. Users can add more sensors and/or actuators
by accessing to the programming code and extending the Sensor
class. Table 1 shows a list of seven sensors and five actuators that
are already integrated in the JFML. This list includes classic sen-
sors [34] such as the temperature and humidity sensor DHT22, the
ultrasonic sensor HC-SR04, the motion sensor H-SR501, the Gas
sensor MQ-2, the light sensor LDR, and the accelerometer/gyro-
scopeMPU6050; and actuators such as LEDs, DCmotor and driver
motor. Notice that sensors and actuators can be digital and/or ana-
log. Their nature depends on the requirements of the designer.

Table 1

ID:p0310

Sensors/actuators implemented in the Java Fuzzy Markup
Language (JFML).

Sensor Type Digital Analog

ID:t0005

DHT22

ID:t0010

Temperature and humidity

ID:t0015

X

ID:t0020ID:t0025

HC-SR04

ID:t0030

Distance (ultrasound)

ID:t0035

X

ID:t0040ID:t0045

HC-SR501

ID:t0050

Motion

ID:t0055

X

ID:t0060ID:t0065

LDR

ID:t0070

Light

ID:t0075

X

ID:t0080

X

ID:t0085

MPU6050

ID:t0090

Acceler. and gyroscope

ID:t0095

X

ID:t0100ID:t0105

MQ-2

ID:t0110

Gas

ID:t0115

X

ID:t0120

X

ID:t0125

H206

ID:t0130

Encoder

ID:t0135

X

ID:t0140ID:t0145

Actuator

ID:t0150

Type

ID:t0155

Digital

ID:t0160

Analog

ID:t0165

DC Motor

ID:t0170

Motor

ID:t0175

X

ID:t0180

X

ID:t0185

L298N

ID:t0190

Driver

ID:t0195

X

ID:t0200

X

ID:t0205

LED Colour

ID:t0210

Led

ID:t0215

X

ID:t0220ID:t0225

LED PWM

ID:t0230

Led

ID:t0235

X

ID:t0240ID:t0245

SG90 Motor

ID:t0250

Servo motor

ID:t0255ID:t0260

X

4.

ID:TI0075

CASE STUDY

ID:p0295

JFML offers a complete implementation of the IEEE Std 1855-2016
and capability to import/export FLCs in accordance with other
standards and software. Users can run and exchange FLCs avoid-
ing the need to rewrite available pieces of code or to develop new
software tools to replicate functionalities that are already provided
by other software. These capabilities are extended to the design and
implementation of FLCs on embedded systems with the module
presented in this paper.

ID:p0300

In this section we present two case studies which illustrate the
potential of the new JFML module for embedded systems. First,
FLCs are used to manage the wall-following behavior of a mobile
robot. Second, a FLC manages the ventilation system of a refriger-
ating chamber.

4.1.

ID:ti0080

Fuzzy Control of the Wall-Following
Behavior in a Mobile Robot

ID:p0305

In mobile robotics, fuzzy controllers are commonly considered for
producing the wall-following behavior, which is frequently used to
explore unknown indoor environments and to navigate between
two points in a map. These controllers are in charge of preserving
a suitable distance from the robot to the wall (dwall) while the robot
moves as fast as possible, avoiding abrupt changes in the trajec-
tory movements and velocity. In [35], the authors designed a wall-
following FLC for a Nomad 200 robot making use of genetic algo-
rithms. It is made up of four input variables: relationship between
the distance to the right and dwall (RD), relationship between the
distance to the left and to the right (DQ), orientation respect to
the wall (O), and linear velocity with respect to the maximum lin-
ear velocity of the robot (V). This fuzzy controller has two output
variables: linear acceleration (LA) and angular velocity (AV) with
respect to the maximum linear acceleration and angular velocity of
the robot, respectively. Table 2 shows the domain of each variable.
This FLC is available as one of the examples provided with the soft-
ware JFML (./Examples/XMLFiles/RobotMamdani.xml).

ID:p0320

We have developed a homemade mobile robot with low-cost com-
ponents for this case study. The architecture of this robot con-
sists of an Arduino MEGA 2560 connected via USB with a Rasp-
berry Pi, five ultrasonic sensors HC-SR04, one accelerometer/gyro-
scope sensor MPU6050, a servo SG-90, and two DC drive motors
with matching wheels and driver H-Bridge L298N (see Figure 4).
In this case, a Raspberry Pi is used as a remote computer where the

Table 2

ID:p0315

Variables for the wall-following behavior fuzzy logic controller
(FLC).

Input Var. Domain Output Var. Domain

ID:t0265

RD

ID:t0270

[0.0, 3.0]

ID:t0275

LA

ID:t0280

[-1.0, 1.0]

ID:t0285

DQ

ID:t0290

[0.0, 2.0]

ID:t0295

AV

ID:t0300

[-1.0, 1.0]

ID:t0305

O

ID:t0310

[-45, 45]

ID:t0315ID:t0320ID:t0325

LV

ID:t0330

[0.0, 1.0]

ID:t0335ID:t0340

Pdf_Folio:209

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 210 — #7

210

Figure 4

ID:p0330

Hardware architecture of our mobile robot.

fuzzy inference is performed by taking the input values (from ultra-
sonic and accelerometer/gyroscope sensors) which are connected
to the Arduino board. In other words, the FLC is embedded in the
Arduino board but the fuzzy inference is carried out in the Rasp-
berry Pi (where JFML is installed).

ID:p0325

Notice that the sensor values are not directly used as inputs of the
FLC.They are low-level input variables that donot provide by them-
selves information that is relevant and meaningful to the FLC. For
this reason, these low-level values are aggregated in JFML bymeans
of the AggregatedSensor class in order to generate high-level input
variables for the FLC. Likewise, the FLC outputs are sent to other
aggregated sensors to calculate the values that will be sent to the DC
motors and to the servo for the linear acceleration and the angular
velocity, respectively.

ID:p0335

The necessary steps to run an FLC with the new JFML module are
as follows: The first step is to read the description of the FLC from
the related FML/XML document. The second step is to instantiate
the sensors/actuators that are connected with the Arduino board.
The third step is to generate the aggregated sensors for the input and
output values. The fourth step is to map the input/output variables
with the sensors/actuators and to include them in a list. The fifth
step is to create the embedded system (including the name, port,
rate, etc.) and to generate the .ino file. The following Java code per-
forms all the steps listed above:
// First step: Loading the FLC from a FML file
File fml;
fml=new File("./Examples/XMLFiles/RobotMamdani.xml");
FuzzyInferenceSystem fs = JFML.load(fml);

// Second step: Creating the sensors/actuators
KnowledgeBaseVariable rd = fs.getVariable("rd");
KnowledgeBaseVariable dq = fs.getVariable("dq");
KnowledgeBaseVariable o = fs.getVariable("o");
KnowledgeBaseVariable v = fs.getVariable("v");

KnowledgeBaseVariable la = fs.getVariable("la");
KnowledgeBaseVariable av = fs.getVariable("av");
Sensor rdSF = new ArduinoHC_SR04(rd.getName()+
"front",
ArduinoPin.PIN_40, ArduinoPin.PIN_41, 10, 200, 
true, 3, true, true);
Sensor rdSF2 = new ArduinoHC_SR04(rd.getName()+
"front2",
ArduinoPin.PIN_48, ArduinoPin.PIN_49, true, 3,
false,true);
Sensor rdSR = new ArduinoHC_SR04(rd.getName()+
"right",
ArduinoPin.PIN_50, ArduinoPin.PIN_51, true, 3,
false,true);
Sensor rdSR2 = new ArduinoHC_SR04(rd.getName()+
"right2",
ArduinoPin.PIN_32, ArduinoPin.PIN_33, true, 3,
false, true);
Sensor dqSL = new ArduinoHC_SR04(dq.getName()+
"left",
ArduinoPin.PIN_30, ArduinoPin.PIN_31, true, 3,
false,true);
Sensor oS = new ArduinoMPU6050(o.getName(), -45,
45, true);
Sensor laS = new ArduinoH_BRIDGE_L298N(
la.getName(), ArduinoPin.PIN_6, ArduinoPin.PIN_7,
ArduinoPin.PIN_4, ArduinoPin.PIN_2, ArduinoPin.PIN_1,
ArduinoPin.PIN_5, -1, 1, 40, 70, 15);
Sensor avS = new ArduinoSERVO(av.getName(),
ArduinoPin.PIN_9, -1, 1, 45, 135, 45, true);
 
// Third step: Creating the aggredated sensores
ArrayList<Sensor> sensorsRD = new ArrayList<>();
sensorsRD.add(rdSF);
sensorsRD.add(rdSF2);
sensorsRD.add(rdSR);
sensorsRD.add(rdSR2);
 
AggregatedSensor rdAgg, dqAgg, oAgg;
AggregatedSensor avAgg, vAgg;
ArrayList<Sensor> sensorsDQ, sensorsO;
ArrayList<Sensor> sensorsAV;

rdAgg = new ArduinoAggregatedSensorRD(
rd.getName(), sensorsRD, 0, 3, 6, 50, true);
sensorsDQ = new ArrayList<>();
sensorsDQ.add(dqSL);
dqAgg = new ArduinoAggregatedSensorDQ(
dq.getName(), sensorsDQ, 0, 2);
sensorsO = new ArrayList<>();
sensorsO.add(rdSR);
sensorsO.add(rdSR2);
oAgg = new ArduinoAggregatedSensorO(
o.getName(), sensorsO, -45, 45);
sensorsAV = new ArrayList<>();
sensorsAV.add(avS);
vAgg = new ArduinoAggregatedSensorV(
v.getName(), -1, 1, 50);
avAgg = new ArduinoAggregatedSensorAV(
av.getName(), sensorsAV, -1, 1, 18);
 
// Fourth step: Mapping sensors/actuators
ArrayList<EmbeddedVariable> eVar = new ArrayList<>();
eVar.add(new EmbeddedVariableArduino(0,rd,rdSF));
eVar.add(new EmbeddedVariableArduino(0,rd,rdSF2));
eVar.add(new EmbeddedVariableArduino(0,rd,rdSR));
eVar.add(new EmbeddedVariableArduino(0,rd,rdSR2));
eVar.add(new EmbeddedVariableArduino(0,rd,rdAgg));

Pdf_Folio:210

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 211 — #8

211

eVar.add(new EmbeddedVariableArduino(1,dq,dqSL));
eVar.add(new EmbeddedVariableArduino(1,dq,dqAgg));
eVar.add(new EmbeddedVariableArduino(2,o,oS));
eVar.add(new EmbeddedVariableArduino(2,o,oAgg));
eVar.add(new EmbeddedVariableArduino(3,v,vAgg));
eVar.add(new EmbeddedVariableArduino(4,la,laS));
eVar.add(new EmbeddedVariableArduino(5,av,avS));
eVar.add(new EmbeddedVariableArduino(5,av,avAgg));

// Fifth step: Creating embedded system
EmbeddedSystem robot;
robot = new EmbeddedSystemArduinoUSB
("RobotMamdani","USB_PORT", 9600, eVar);

// Creating the .ino file
robot.createRunnableEmbeddedFile("RobotMamdani.ino");

ID:p0755

The generated .ino file has to be written in the Arduino board with
the IDE provided by the company, and then the board can be con-
nected to the Raspberry Pi through a serial USB connection. Finally,
the embedded system is associated to the FLC and we can run the
system with the next Java code:
ArrayList<EmbeddedSystem> embd_R = new ArrayList<>();
embd_R(robot);

EmbeddedController controller;
controller = new EmbeddedControllerSystem(embd_R,fs);
controller.run();

ID:p0785

Notice that the embedded system named embd_R is included in a
list because several Arduino boards can be used to connect with
other sensors/actuators. As depicted in Figure 5 (the robot trajec-
tory is highlighted in red), our mobile robot has been tested in the
ground level of the Research Centre for Information and Commu-
nications Technologies of the University of Granada (CITIC-UGR).
We have evaluated a wide range of paths and contours (straight

walls of different lengths, followed and/or preceded by a number
of concave and convex corners, gaps, etc.) which correspond to the
usual situations that amobile robotmay face during normal naviga-
tion. The dwall considered in this case study was 40 cm. We can see
qualitatively how the robot follows a smooth trajectory despite the
noise produced by ultrasound sensors. This noise is mainly due to
the specular reflection caused by the surface material of the obsta-
cles (wooden doors, skirting boards, etc.). Moreover, small bugs
also appear due to the fact that the wheels can slip, the turned angle
is not exactly the one measured by the motors of the robot, and so
on. In spite of all these disturbances, the tested fuzzy controller got
an average distance of 40.5 cmwith a standard deviation of 3 cm and
an average speed of 42.9 cm/s, thus exhibiting a good performance
in the test environment. A demonstration video of this case study
and additional complementary illustrative material can be found at
the JFML website (http://www.uco.es/JFML/documentation).

ID:ti0085ID:p0790

In this case study, an FLC has been designed tomanage a ventilation
system for a refrigerating chamber in order to show the use of the
three communicationmechanisms (WiFi, Bluetooth, andUSB) and
the two embedded systems (ArduinoTM and Raspberry Pi) available
in the JFML. This kind of fuzzy controller is commonly considered
in the food-processing industry due to the fact that the chilled and
frozen food should be conserved in specific conditions to maintain
their nutritional properties. Fuzzy controllers can preserve the orig-
inal cooling conditions while avoiding abrupt changes in the envi-
ronment. In this case, we have considered three input variables: the
indoor temperature of the chamber (temp), the indoor humidity of
the chamber (hum), and the opening rate of the door (prox). Notice

Figure 5

ID:p0340

Test-bed environment of our mobile robot.
Pdf_Folio:211

4.2. Ventilation System for a Refrigerating
Chamber

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/14 — 9:05 — page 212 — #9

212

that the opening rate is measured as the distance from the door to
the backwall of the chamber. The output variable is the power of the
ventilation system (power). Table 3 shows the domain of each vari-
able. The designed FLC is available as one of the examples provided
with the software JFML (./Examples/XMLFiles/Chamber.xml).

Table 3

ID:p0795

Variables in the ventilation system.

Input Var. Domain Output Var. Domain

ID:t0345

Temp (C)

ID:t0350

[−40.0, 15.0]

ID:t0355

Power (%)

ID:t0360

[0.0, 100.0]

ID:t0365

Hum (%)

ID:t0370

[0.0, 100.0]

ID:t0375ID:t0380ID:t0385

Prox (cm)

ID:t0390

[0.0, 200.0]

ID:t0395ID:t0400ID:p0800

Figure 6 shows the hardware architecture for this embedded sys-
tem. It is made up of three modules (an Arduino UNO board, a
NodeMCU, and a Raspberry Pi), two temperature and humidity
sensors DHT22, a proximity sensor HCSR04, and a DCmotor. The
sensors DHT22 are connected to the NodeMCU and the Arduino
UNO to measure the temperature and the humidity, respectively.
The sensor HCSR04 is connected to the Raspberry Pi for measur-
ing the proximity. In addition, the DC motor is connected to the
ArduinoUNO to control the FANpower of the chamber.Moreover,
a remote personal computer (where JFML is installed) is used to
manage the whole system in real-time. The JFML library assists us
to run the related FLC and to infer the output values from the input
values. The computer is connected to the NodeMCU via WiFi, to
the Arduino Uno via USB, and to the Raspberry Pi via Bluetooth.

ID:p0810

The steps that are required to configure and run the whole system
are as follows: The first step is to read the description of the FLC
from the FML/XMLdocument. The second step is to create the sen-
sors/actuators that are connected with the Arduino board.The third
step is to map the input/output variables with the sensors/actuators

Figure 6

ID:p0805

Hardware architecture for the ventilation system.

and to include them in a list. The fourth step is to create the embed-
ded system (including the name, port, rate, etc.) and to generate the
.ino file. The following Javacode carries out all these steps:
// First step: Loading the FLC from a XML file
File fml=new File("./Examples/XMLFiles/Chamber.xml");
FuzzyInferenceSystem fs = JFML.load(fml);

// Second step: Creating the sensors/actuators
KnowledgeBaseVariable temp, hum, prox, power;
temp = fs.getVariable("temperature");
hum = fs.getVariable("humidity");
prox = fs.getVariable("proximity");
power = fs.getVariable("power");

Sensor tempS, humS, proxS, powerS;
tempS = new ArduinoDHT22_temperature(temp.getName(),
ArduinoPin.PIN_D2);
humS = new ArduinoDHT22_humidity(hum.getName(),
ArduinoPin.PIN_2);
powerS = new ArduinoDCMOTOR_PWM(power.getName(),
ArduinoPin.PIN_10, ArduinoPin.PIN_11);
proxS = new RaspberryHC_SR04(prox.getName(),
RaspberryPin.GPIO25, RaspberryPin.GPIO7);

// Third step: Mapping sensors/actuators
ArrayList<EmbeddedVariable> eVarWIFI;
eVarWIFI = new ArrayList<>();
eVarWIFI.add(new EmbeddedVariableArduino
(0, temp, tempS));

ArrayList<EmbeddedVariable> eVarUSB;
eVarUSB = new ArrayList<>();
eVarUSB.add(new EmbeddedVariableArduino
(0, hum, humS));
eVarUSB.add(new EmbeddedVariableArduino
(1, power, powerS));

ArrayList<EmbeddedVariable> eVarBluetooth;
eVarBluetooth = new ArrayList<>();
eVarBluetooth.add(new EmbeddedVariableRaspberry
(0, prox, proxS));

// Fourth step: Creating the embedded systems
EmbeddedSystem arduinoWIFI;
arduinoWIFI = new EmbeddedSystemArduinoWifi
("arduinoWIFIDHT22TEMP", "IP_ADDRESS",
"SSID", "PASSWORD", eVarWIFI);
EmbeddedSystem arduinoUSB;
arduinoUSB = new EmbeddedSystemArduinoUsb
("arduinoUSB-DHT22HUM", "USB_PORT", 9600, eVarUSB);
EmbeddedSystem rpiBluetooth;
rpiBluetooth = new EmbeddedSystemRaspberryBluetooth
("rpiBluetooth-HCSR04","BLUETOOTH_PORT", 9600,
eVarBluetooth);

//Creating the .ino and .py files
arduinoWIFI.createRunnableEmbeddedFile
(fml.getName()+"WIFI");
arduinoUSB.createRunnableEmbeddedFile
(fml.getName()+"USB");
rpyBluetooth.createRunnableEmbeddedFile
(fml.getName()+"BLUETOOTH");

ID:p1075

The generated .ino files have to be written in the corresponding
Arduino boards with the IDE provided by the company. The .py
file has to be executed by the command “python file.py” in the

Pdf_Folio:212

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214



“IJ-CIS-D-18-00133_proof ” — 2019/2/19 — 9:29 — page 213 — #10

J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214 213

Raspberry Pi. Finally, we can execute the controller that synchro-
nizes all the embedded systems (Arduino UNO, NodeMCU and
Raspberry Pi) and runs the FLC, in this case in the external com-
puter. The following Java code corresponds to this final step:
ArrayList<EmbeddedSystem> boards;
boards = new ArrayList<>();
boards.add(arduinoWIFI);
boards.add(arduinoUSB);
boards.add(rpiBluetooth);

EmbeddedController controller;
controller=new EmbeddedControllerSystem(boards, fs);
controller.run();

ID:p1120

Notice that the embedded systems are included in a list because we
have used two Arduino boards and one Raspberry Pi in the design.
The different communication mechanisms available in the module
allow us to place the sensors over appropriate settings according
to the system, obtaining relevant information to manage the sys-
tem and with low noise from sensors. However, the low-cost com-
ponents used in the hardware architecture have a certain degree of
imprecision in this environment, therefore some parameters of the
FLC may need to be tuned in order to obtain a good performance
in unknown environments.

5.

ID:TI0090

CONCLUSIONS

ID:p1125

In this paper we present a new module of the open source JFML
library. It allows to connect FLCs with two of themost used embed-
ded systems in the open hardware model, ArduinoTM and Rasp-
berry Pi. The new JFMLmodule maps the input/output variables of
a FLCwith a large set of sensors/actuators through these embedded
systems in a completely independent way apart from the specific
hardware/software constraints that usually characterize the archi-
tectures where such system is to be deployed. Moreover, this mod-
ule integrates a new communication protocol between JFML and
the embedded systems by means of several communication mech-
anisms (WiFi, Bluetooth, and USB). This communication proto-
col allows to perform the fuzzy inference in an external personal
computer, overcoming the limited computing capacity that typi-
cally characterizes some embedded systems. Thanks to this proto-
col, an FLC can be distributed in computer network environments
which is a key issue in real-time applications.

ID:p1130

We have shown two case studies in order to illustrate the potential
of the new JFMLmodule: 1. a wall-following FLCdefined according
to the IEEE Std 1855-2016 to manage a mobile robot and 2. a FLC
to manage a ventilation system for a refrigerating chamber.

ID:p1135

We have also illustrated how to make use of the new module in
a Java program. In detail, we can map the input/output variables
of the FLC with the sensors and the actuators, generate runnable
files for ArduinoTM board and Raspberry Pi, andmanage the devel-
oped systems by performing the fuzzy inference either locally in
the embedded system or remotely in an external computer while
communication can be established through several communica-
tionmechanisms (USB, Bluetooth, orWiFi). These communication
mechanisms allow to place the embedded systems over appropriate
settings for the system, and obtaining the information more rele-
vant tomanage the system.Moreover, sensor values can be grouped
to generate high-level input variables that provide information that

is more relevant and meaningful to model the systems under con-
sideration.

ID:p1140

JFML supports three of the most popular and widely used formats
for FLCs (i.e., FCL, PMML, and Matlab FIS), making possible with
thismodule to implement a wide range of FLCs designedwith other
software tools on ArduinoTM and Raspberry Pi. Moreover, the open
software and hardware models make it easier to share knowledge,
promote trade through the open exchange of designs, improve the
level of application of FLCs to industry, and to promote the teaching
of basic computer science in schools and in developing countries.

ID:p1145

As well as the whole JFML, this new module is continuously
updated and improved. Currently, we are working on the incorpo-
ration of new embedded systems, sensors, and actuators, and on the
development of a graphical user interface to provide a framework
friendly and easy to use.

ID:p1150

In addition, we consider that the IoT paradigm represents one the
most active research trends in the area of computation. Therefore,
we are mainly focusing our future research in this line, facing IoT
challenges by extending opportunely the JFML modules to enable
fuzzy programmers to approach these novel scenarios in a simple,
intuitive, and direct way. In this sense, a very interesting application
of this paradigm addresses the area of recommender systems, which
in combination with IoT, are currently successful solutions for facil-
itating online access to the information that fits user preferences
and needs in overloaded search spaces [36]. For example, housing
design in safe, adaptive environments, integrated with technologies
for senior citizens life support [37], or web personalization [38] are
hot related challenges.

ID:TI0095

ACKNOWLEDGMENTS

ID:p1155

This paper has been supported in part by the Spanish Ministry of Econ-
omy and Competitiveness (Projects TIN2017-89517-P, TIN2015-68454-R,
TIN2017-84796-C2-1-R, and TIN2017-90773-REDT) and the Andalusian
Government. In addition, Jose M. Alonso is Ramon y Cajal Researcher
(RYC-2016-19802). Financial support from theGalicianMinistry of Educa-
tion (grants ED431F 2018/02, GRC2014/030 and accreditation 2016-2019,
ED431G/08), co-funded by the European Regional Development Fund
(ERDF/FEDER program), is also gratefully acknowledged.

REFERENCES

ID:TI0100

[1] L. Magdalena, Fuzzy rule-based systems, in: J. Kacprzyk,
W. Pedrycz (Eds.), Springer Handbook of Computational Intelli-
gence, Springer, 2015, pp. 203–218.

[2] R. Alcala, M.J. Gacto, J. Alcala-Fdez, Evolutionary data mining
and applications: a revision on the most cited papers from the
last 10 years (2007–2017), Wiley Interdiscip. Rev. Data Mining
Knowledge Discov. 8(2) (2018), e1239.

[3] J. Alcalá-Fdez, R. Alcalá, S. Gonzalez, Y. Nojima, S. Garcia, Evo-
lutionary fuzzy rule-based methods for monotonic classification,
IEEE Trans. Fuzzy Syst. 25(6) (2017), 1376–1390.

[4] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, J. Lu, Fuzzy regres-
sion transfer learning in takagi-sugeno fuzzy models, IEEE Trans.
Fuzzy Syst. 25(6) (2017), 1795–1807.

Pdf_Folio:213

https://doi.org/10.1002/widm.1239
https://doi.org/10.1002/widm.1239
https://doi.org/10.1002/widm.1239
https://doi.org/10.1002/widm.1239
https://doi.org/10.1109/TFUZZ.2017.2718491
https://doi.org/10.1109/TFUZZ.2017.2718491
https://doi.org/10.1109/TFUZZ.2017.2718491
https://doi.org/10.1109/TFUZZ.2016.2633376
https://doi.org/10.1109/TFUZZ.2016.2633376
https://doi.org/10.1109/TFUZZ.2016.2633376
https://doi.org/10.1007/978-3-662-43505-2_13
https://doi.org/10.1007/978-3-662-43505-2_13
https://doi.org/10.1007/978-3-662-43505-2_13


“IJ-CIS-D-18-00133_proof ” — 2019/2/19 — 9:29 — page 214 — #11

214 J.M. Soto-Hidalgo et al. / International Journal of Computational Intelligence Systems 12(1) 204–214

[5] G. Acampora, Fuzzy markup language: a XML based language
for enabling full interoperability in fuzzy systems design, in: A.
Giovanni, L. Vincenzo, L. Chang-Shing, W. Mei-Hui (Eds.), On
the Power of Fuzzy Markup Language, Springer, Berlin, 2013,
pp. 17–31.

[6] H. Zermane, H. Mouss, Internet and fuzzy based control system
for rotary kiln in cement manufacturing plant, Int. J. Comput.
Intell. Syst. 10(1) (2017), 835–850.

[7] S. El-Sappagh, J.M. Alonso, F. Ali, A. Ali, J.-H. Jang, K.-S. Kwak,
An ontology-based interpretable fuzzy decision support system
for diabetes mellitus diagnosis, IEEE Access. 6 (2018), 37371–
37394.

[8] E. Aranda-Escolástico,M.Guinaldo,M. Santos, S. Dormido, Con-
trol of a chain pendulum: a fuzzy logic approach, Int. J. Comput.
Intell. Syst. 9(2) (2016), 281–295.

[9]

[10] G. Acampora, V. Loia, A. Vitiello, Distributing fuzzy reasoning
through fuzzy markup language: an application to ambient intel-
ligence, in: A. Giovanni, L. Vincenzo, L. Chang-Shing, W. Mei-
Hui (Eds.), On the Power of Fuzzy Markup Language, Springer,
Berlin, 2013, pp. 33–50.

[11] G. Acampora, B. di Stefano, A. Vitiello, IEEE 1855TM: the first
IEEE standard sponsored by IEEE Computational Intelligence
Society, IEEE Comput. Intell. Mag. 11(4) (2016), 4–6.

[12] J.M Soto-Hidalgo, J.M. Alonso, G. Acampora, J. Alcala-Fdez,
JFML: a java library to design fuzzy logic systems according to the
IEEE std 1855-2016, IEEE Access. 6 (2018), 54952–54964.

[13] G. Acampora, A. Vitiello, Extending IEEE std 1855 for designing
ArduinoTM-based fuzzy systems, in IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE), July 2017, pp. 1–6.

[14] T. Noergaard, Embedded systems architecture: a comprehensive
guide for engineers and programmers, Newnes, 2012.

[15] J. Alcalá-Fdez, J.M. Alonso, A survey of fuzzy systems software:
taxonomy, current research trends and prospects, IEEE Trans.
Fuzzy Syst. 24(1) (2016), 40–56.

[16] A.H. Altalhi, J.M. Luna, M.A. Vallejo, S. Ventura, Evaluation
and comparison of open source software suites for data mining
and knowledge discovery, Wiley Interdiscip. Rev. Data Mining
Knowledge Discov. 7(3) (2017), e1204.

[17] J.M. Pearce, Open-Source Lab: How to Build YourOwnHardware
and Reduce Research Costs, first ed., Elsevier, Amsterdam, 2013.

[18] Arduino Project, Open-source electronic prototyping platform
enabling users to create interactive electronic objects, 2019.
https://www.arduino.cc/.

[19] Raspberry Pi Foundation, Tiny and affordable computer that you
can use to learn programming through fun, practical projects,
2018. https://www.raspberrypi.org/

[20] J.M. Alonso, C. Castiello, C. Mencar, The role of interpretable
fuzzy systems in designing cognitive cities, in: E. Portmann, M.E.
Tabacchi, R. Seising, A. Habenstein (Eds.), Designing Cognitive
Cities. Studies in Systems, Decision and Control, Springer Nature
Switzerland AG, 2019, pp. 131–152.

[21] M. Muñoz, E. Miranda, P. Sánchez, A fuzzy system for estimat-
ing premium cost of option exchange using mamdani inference:
derivatives market of mexico. Int. J. Comput. Intell. Syst. 10(1)
(2017), 153–164.

[22] B. Zhang, C. Yang, H. Zhu, P. Shi, W. Gui, Controllable-domain-
based fuzzy rule extraction for copper removal process control,
IEEE Trans. Fuzzy Syst. 26(3) (2018), 1744–1756.

[23] M. Barr, Embedded systems glossary, Neutrino Technical Library.
Retrieved 21 April, 2007, https://barrgroup.com/Embedded-
Systems/Glossary

[24] F. López-Rodríguez, F. Cuesta, Andruino-A1: low-cost educa-
tional mobile robot based on Android and Arduino, J. Intell.
Robot. Syst. 81(1) (2016), 63–76.

[25] A. Aziz Khater, M. El-Bardini, N.M. El-Rabaie, Embedded adap-
tive fuzzy controller based on reinforcement learning for dcmotor
with flexible shaft, Arab. J. Sci. Eng. 40(8) (2015), 2389–2406.

[26] IEEE-SA Standards Board, IEEE standard for fuzzy markup lan-
guage, IEEE Std. (2016), 1855–2016.

[27] M. Jayapriya, S. Yadav, A.R. Ram, S. Sathvik, R.R. Lekshmi, S.
Selva Kumar, Implementation of fuzzy based frequency stabiliza-
tion control strategy in Raspberry Pi for a wind powered micro-
grid, Procedia Comput. Sci. 115 (2017), 151–158.

[28] R.G.J. Anduray, S.M.Z. Irigoyen, Development of a fuzzy con-
troller for liquid level by using raspberry pi and internet of
things, in IEEECentral America and Panama Student Conference
(CONESCAPAN 2017), Panama, 2017, pp. 1–5.

[29] M. Sujaritha, S. Annadurai, J. Satheeshkumar, S. Kowshik Sharan,
L. Mahesh, Weed detecting robot in sugarcane fields using fuzzy
real time classifier, Comput. Electron. Agr. 134 (2017), 160–171.

[30] International Electrotechnical Commission, Technical Commit-
tee Industrial Process Measurement and Control. IEC 61131-
Programmable Controllers. IEC, 2000.

[31] A. Guazzelli, W.C. Lin T. Jena. PMML in Action: Unleashing the
Power of Open Standards for DataMining and Predictive Analyt-
ics Paperback CreateSpace Independent, second ed., Publishing
Platform, 2012.

[32] MathWorks, Fuzzy logic toolbox-r2017b. https://www.
mathworks.com/products/fuzzy-logic.html, 2017.

[33] I. Rodríguez-Fdez, M. Mucientes, A. Bugarín, Learning fuzzy
controllers in mobile robotics with embedded preprocessing,
Appl. Soft Comput. 26 (2015), 123–142.

[34] K. Karvinen, T. Karvinen, Getting Started with Sensors: Measure
the World with Electronics, Arduino, and Raspberry Pi, Maker
Media, Incorporated, San Francisco, 2014.

[35] M. Mucientes, R. Alcalá, J. Alcalá-Fdez, J. Casillas, Learning
weighted linguistic rules to control an autonomous robot, Int. J.
Intell. Syst. 24(3) (2009), 226–251.

[36] R. Yera, L. Martínez, Fuzzy tools in recommender systems: a sur-
vey, Int. J. Comput. Intell. Syst. 10 (2017), 776–803.

[37] M. Zallio, D. Berry, N. Casiddu, Adaptive environments for
enabling senior citizens: an holistic assessment tool for housing
design and iot-based technologies, in IEEE 3rd World Forum on
Internet of Things (WF-IoT), Dec. 2016, pp. 419–424.

[38] V. Salonen, H. Karjaluoto, Web personalization: the state of the
art and future avenues for research and practice, Telemat. Inform.
33(4) (2016), 1088–1104.

Pdf_Folio:214

X. Xiang, C. Yu, L. Lapierre, J. Zhang, Q. Zhang, Survey on fuzzy-
logic-based guidance and control of marine surface vehicles and
underwater vehicles, Int. J. Fuzzy. Syst. 20(2) (2018), 572–586.

https://doi.org/10.2991/ijcis.2017.10.1.56
https://doi.org/10.2991/ijcis.2017.10.1.56
https://doi.org/10.2991/ijcis.2017.10.1.56
https://doi.org/10.1109/ACCESS.2018.2852004
https://doi.org/10.1109/ACCESS.2018.2852004
https://doi.org/10.1109/ACCESS.2018.2852004
https://doi.org/10.1109/ACCESS.2018.2852004
https://doi.org/10.1080/18756891.2016.1150001
https://doi.org/10.1080/18756891.2016.1150001
https://doi.org/10.1080/18756891.2016.1150001
https://doi.org/10.1109/MCI.2016.2602068
https://doi.org/10.1109/MCI.2016.2602068
https://doi.org/10.1109/MCI.2016.2602068
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/ACCESS.2018.2872777
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1109/TFUZZ.2015.2426212
https://doi.org/10.1002/widm.1204
https://doi.org/10.1002/widm.1204
https://doi.org/10.1002/widm.1204
https://doi.org/10.1002/widm.1204
https://doi.org/10.2991/ijcis.2017.10.1.11
https://doi.org/10.2991/ijcis.2017.10.1.11
https://doi.org/10.2991/ijcis.2017.10.1.11
https://doi.org/10.2991/ijcis.2017.10.1.11
https://doi.org/10.1109/TFUZZ.2017.2751000
https://doi.org/10.1109/TFUZZ.2017.2751000
https://doi.org/10.1109/TFUZZ.2017.2751000
https://doi.org/10.1007/s10846-015-0227-x
https://doi.org/10.1007/s10846-015-0227-x
https://doi.org/10.1007/s10846-015-0227-x
https://doi.org/10.1007/s13369-015-1752-4
https://doi.org/10.1007/s13369-015-1752-4
https://doi.org/10.1007/s13369-015-1752-4
https://doi.org/10.1109/IEEESTD.2016.7479441
https://doi.org/10.1109/IEEESTD.2016.7479441
https://doi.org/10.1016/j.procs.2017.09.120
https://doi.org/10.1016/j.procs.2017.09.120
https://doi.org/10.1016/j.procs.2017.09.120
https://doi.org/10.1016/j.procs.2017.09.120
https://doi.org/10.1016/j.compag.2017.01.008
https://doi.org/10.1016/j.compag.2017.01.008
https://doi.org/10.1016/j.compag.2017.01.008
https://doi.org/10.1016/j.asoc.2014.09.021
https://doi.org/10.1016/j.asoc.2014.09.021
https://doi.org/10.1016/j.asoc.2014.09.021
https://doi.org/10.1002/int.20334
https://doi.org/10.1002/int.20334
https://doi.org/10.1002/int.20334
https://doi.org/10.2991/ijcis.2017.10.1.52
https://doi.org/10.2991/ijcis.2017.10.1.52
https://doi.org/10.1016/j.tele.2016.03.004
https://doi.org/10.1016/j.tele.2016.03.004
https://doi.org/10.1016/j.tele.2016.03.004
https://doi.org/10.1109/CONESCAPAN.2017.8277606
https://doi.org/10.1109/CONESCAPAN.2017.8277606
https://doi.org/10.1109/CONESCAPAN.2017.8277606
https://doi.org/10.1109/CONESCAPAN.2017.8277606
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1007/978-3-642-35488-5_2
https://doi.org/10.1109/FUZZ-IEEE.2017.8015768
https://doi.org/10.1109/FUZZ-IEEE.2017.8015768
https://doi.org/10.1109/FUZZ-IEEE.2017.8015768
https://doi.org/10.1007/978-3-030-00317-3_6
https://doi.org/10.1007/978-3-030-00317-3_6
https://doi.org/10.1007/978-3-030-00317-3_6
https://doi.org/10.1007/978-3-030-00317-3_6
https://doi.org/10.1007/978-3-030-00317-3_6
https://doi.org/10.1007/s40815-017-0401-3
https://doi.org/10.1007/s40815-017-0401-3
https://doi.org/10.1007/s40815-017-0401-3

	Design of Fuzzy Controllers for Embedded Systems With JFML
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1. Fuzzy Logic Controllers
	2.2. Embedded Systems: ArduinoTM and Raspberry Pi
	2.3. The JFML Library

	3. NEW JFML MODULE FOR EMBEDDED SYSTEMS
	3.1. General Design
	3.2. Communication Protocol
	3.3. Arduino-Based and Raspberry Pi-Based Implementations in JFML
	3.3.1. Arduino-based implementation
	3.3.2. Raspberry Pi-based implementation
	3.3.3. Collection of sensors


	4. CASE STUDY
	4.1. Fuzzy Control of the Wall-Following Behavior in a Mobile Robot
	4.2. Ventilation System for a Refrigerating Chamber

	5. CONCLUSIONS


