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The aim of this study was to investigate if urinary glutamyl aminopeptidase (GluAp),
alanyl aminopeptidase (AlaAp), Klotho and hydroxyproline can be considered as
potential biomarkers of renal injury and fibrosis in an experimental model of obesity.
Male Zucker lean (ZL) and obese (ZO) rats were studied from 2 to 8 months old.
Kidneys from ZO rats at the end of the study (8 months old) developed mild focal
and segmental glomerulosclerosis as well as moderate tubulointerstitial injury. Urinary
excretion of Klotho was higher in ZO rats at 2, 5, and 8 months of study, plasma
Klotho levels were reduced and protein abundance of Klotho in renal tissue was similar
in ZL and ZO rats. GluAp and AlaAp urinary activities were also increased in ZO rats
throughout the time-course study. ZO rats showed an augmentation of hydroxyproline
content in renal tissue and a significant increase of tubulointerstitial fibrosis. Correlation
studies demonstrated that GluAp, AlaAp, and Klotho are early diagnostic markers of
renal lesions in Zucker obese rats. Proteinuria and hydroxyproline can be considered
delayed diagnostic markers because their contribution to diagnosis starts later. Another
relevant result is that GluAp, AlaAp, and Klotho are related not only with diagnosis but
also with prognosis of renal lesions in Zucker obese rats. Moreover, strong predictive
correlations of aminopeptidasic activities with the percentage of renal fibrosis or with
renal hydroxyproline content at the end of the experiment were observed, indicating
that an early increased excretion of these markers is related with a higher later extent
of fibrosis in Zucker obese rats. In conclusion, GluAp, AlaAp, and Klotho are early
diagnostic markers that are also related with the extent of renal fibrosis in Zucker obese
rats. Therefore, they have a potential use not only in diagnosis, but also in prognosis of
obesity-associated renal lesions.
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INTRODUCTION

The Zucker obese rat is an experimental model that mimicked
diabetes type II in human (de Artinano and Castro, 2009).
This model results from an autosomal recessive mutation of the
fa-gene, en coding the leptin receptor; and courses with obesity,
insulin resistance, dyslipidemia, mild glucose intolerance and
renal injury, whereas the Zucker lean rat is lacking of leptin
receptor mutation and of metabolic and renal abnormalities.

Renal injury is characterized by an increased time
related proteinuria, focal segmental glomerulosclerosis and
tubulointerstitial damage that culminates ultimately in renal
failure and death (Kasiske et al., 1985, 1992; Magil, 1995;
Coimbra et al., 2000; Gassler et al., 2001; D’Agati et al., 2016).

Renal clinical practice requires highly sensitive and specific
diagnostic and prognostic biomarkers for acute and chronic
kidney disease (CKD). The early identification of renal disease
onset and risk stratification in CKD progression are essential
for early treatment of patients to ameliorate their comorbidity
burden, particularly cardiovascular disease (CVD), and prevent
the development of end stage renal disease (ESRD).

Enzymes released from damaged tubular cells and excreted
into urine are the most promising biomarkers for an early
detection of kidney injury. They have an obvious diagnostic
benefit because their measurements may provide detailed
information about the nature, size and site of the damage
to tubular cells and their possible necrosis or dysfunction
(Lisowska-Myjak, 2010). Alanyl aminopeptidase (AlaAp,
EC3.4.11.2), and glutamyl aminopeptidase (GluAp, EC 3.4.11.7)
are present in the renal tubular cells (Kenny and Maroux,
1982; Song et al., 1994; Albiston et al., 2011) and exert its
aminopeptidasic activity in the renal angiotensin II metabolism,
factor that is activated in renal injury of diabetic rodents and
humans (Gagliardini et al., 2013).

In previous works, we determined the activity of these
aminopeptidases as an index of renal damage in hypertensive
hyperthyroid rats under normal, high and low saline intake
(Pérez-Abud et al., 2011) and in cisplatin treated rats (Quesada
et al., 2012). Urinary aminopeptidases, mainly AlaAp and GluAp,
were revealed as early and predictive biomarkers of renal injury
severity (Quesada et al., 2012; Montoro-Molina et al., 2015).
More recently, we have reported that GluAp in microvesicular
and exosomal fractions of urine is also related with renal
dysfunction in cisplatin-induced nephrotoxicity and that serve
to detect proximal tubular damage independently of glomerular
filtration status (Quesada et al., 2017).

Schnackenberg et al. (2012) observed that in a model
of melamine and cyanuric acid nephrotoxicity, urinary
hydroxyproline was increased in male and female Fischer
F344 rats; and that rats with the highest levels of urinary
hydroxyproline exhibited renal fibrosis. These authors concluded
that hydroxyproline may be a non-invasive urinary biomarker
for detection of acute kidney injury associated with renal fibrosis.

Klotho is a transmembrane protein that is expressed mainly
in the kidney. Parathyroid gland and choroid plexus are also
sites of abundant Klotho expression (Kuro-o et al., 1997; Erben,
2016). The soluble extracellular domain is cleaved, presumably

from renal cells, and secreted into the blood or other biological
fluids (Ito et al., 2000). Thus, Klotho can be found in two forms
tisular and secreted or soluble αKlotho. The kidney is probably
the major source of the soluble form, since serum soluble Klotho
was reduced by about 80% in kidney-specific Klotho knockout
mice (Lindberg et al., 2014).

In the kidney, Klotho is expressed in the distal convoluted
tubules, in the proximal convoluted tubule (Hu et al., 2010a; Ide
et al., 2016) and the inner medullary collecting duct (Mitobe et al.,
2005). Klotho mRNA expression in rat kidney is down regulated
in various animal models of vascular and metabolic diseases such
as hypertension, hyperlipidemia, renal failure, and inflammatory
stress (Nagai et al., 2000).

Under physiological conditions, the kidney has dual effects
over soluble αKlotho homeostasis, producing and cleaving
αKlotho from the membrane of the renal tubular epithelial cells
into the circulation and removing αKlotho from the blood into
the tubular urinary lumen through transcytosis to cross renal
tubules (Hu et al., 2016).

Soluble αKlotho is the main functional form in the circulation
(Hu et al., 2016), cerebrospinal fluid (Semba et al., 2014;
Chen et al., 2015), and urine (Hu et al., 2010a, 2011)
acting as an endocrine factor on distant organs (Hu et al.,
2013, 2015). Soluble Klotho is markedly decreased in CKD
and ESRD (Lu and Hu, 2017). It has been proposed as a
novel, early and sensitive biomarker for renal and CVDs
and that can also serve as a predictor for risk of CVD and
mortality in both CKD patients and the general population
(Shimamura et al., 2012; Scholze et al., 2014). In CKD
patients, the magnitude of decrease in urinary Klotho was
correlated with the severity of decline in GFR (Hu et al.,
2011).

In this work we characterized the histopathological
manifestations of obesity –induced renal injury in obese Zucker
(ZO) rats; and investigated the urinary enzymatic activities of
AlaAp and GluAp, plasma, urinary and renal Klotho levels and
urinary and renal hydroxyproline as potential biomarkers of the
renal injury observed in ZO rats.

MATERIALS AND METHODS

Ethics Statement
All experimental procedures were carried out in accordance with
the principles of the Basel Declaration and recommendations of
European Union Guidelines to the Care and Use of Laboratory
Animals. The protocol was approved by the Ethical Committee
of the University of Jaén and authorized by Junta de Andalucía
with the approval identification number 450-5297 (02/21/2014).

Animals
Male Zucker lean and obese rats (ZL and ZO, n = 10 each group)
at 2 months old were purchased from Charles River Laboratories
(Wilmington, MA, United States) and studied up to 8 months
old. These rats were kept in a room maintained at 24 ± 1◦C and
humidity of 55 ± 10%, with a 12 h light/dark cycle and had free
access to rat chow and tap water.
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Experimental Protocol
All rats were weighed and housed in metabolic cages (Panlab,
Barcelona, Spain) once a month during 24 h with free access
to food and drinking. Food and fluid intakes were measured
and 24 h urine samples were collected. Urine samples were
centrifuged for 15 min at 1000 g and frozen at−80◦C until assay.
We measured monthly urine volume, proteinuria, glucosuria,
creatinine, hydroxyproline, GluAp, and AlaAp activities. Urinary
Klotho was measured at 2, 5, and 8 months old.

After completion of the experimental period (at 8 months
old), rats were anesthetized with pentobarbital, 50 mg/kg, i.p.
Blood samples were then drawn by abdominal aortic puncture to
determine plasma variables. Blood samples were centrifuged for
15 min at 1000 g and stored at−80◦C. Finally, rats were killed by
pentobarbital overdose (200 mg/kg, i.p.), and kidneys and heart
were quickly removed and weighed.

Plasma variables were: glucose, urea, creatinine and Klotho.
Tibial length was measured to normalize heart and kidney
weight, since body weight cannot be used for this purpose
in the present experimental setting. One kidney was fixed
in 10% neutral-buffered formaldehyde solution for 48 h and
subsequently placed in 70% ethanol for histological studies.

Analytical Procedures
Proteinuria and urine creatinine were determined in urine
samples by an autoanalyzer Spin120. Plasma creatinine, urea
and glucose were also measured in this instrument. Reagents for
proteinuria, urea, and creatinine-Jaffé method were provided by
Spinreact (Barcelona, Spain). Plasma and urinary Klotho levels
were determined with an enzyme immunoassay kit, Bioassay
Technology Laboratory (Shanghai, China). Renal and urinary
hydroxyproline was measured with a Hydroxyproline Assay Kit
(Sigma-Aldrich, Madrid, Spain). Protein content in renal tissue
was analyzed with DC Bio-Rad protein assay (Madrid, Spain).

Measurement of Hydroxyproline in Urine
and Renal Tissue
Hundred microliter of urine sample or 100 µl of renal tissue
(100 mg/ml in water) were hydrolyzed with the same volume
of 37% HCl at 120◦C overnight. 5 mg of activated charcoal
were added to samples, mixed and centrifuged at 13,000 g
for 2 min. 50 µl of each supernatant were transferred to
a 69-well plate and dried in a 60◦C oven until dryness.
100 µl of chloramine T/oxidation buffer mixture, 50 µl of
4-(dimethylamino) benzaldehyde concentrate and 50 µl of
perchloric acid/isopropanol solution were added to each well and
plates were heated for 90 min at 60◦C. Absorbance was measured
at 560 nm. The amount of hydroxyproline in each well was
calculated from a standard curve of hydroxyproline containing
0–1 µg/well.

Western Blotting of Klotho in Renal
Tissue
Kidneys were homogenized using RIPA lysis cell buffer
containing protease inhibitors cocktail (05892791001, Roche,
Germany). 30 µg of protein were subjected to SDS-PAGE

electrophoresis using 50 µL/well ready gels purchased from
Bio-Rad (Madrid, Spain). Proteins were transferred to a
nitrocellulose membrane which was probed with 1 µg/mL
rabbit anti-Klotho-antibody (Sigma-Aldrich, Madrid, Spain), and
20 ng/mL goat anti-rabbit IgG antibody HRP-conjugated (KPL
Diagnostics, Gaithersburg, MD, United States). Bands were
visualized with an enhanced chemiluminescence system (ECL,
Amersham, United Kingdom) in a CCD camera image system
and quantified with Image J software (v 1.48) (National Institute
of Health, United States).

Measurement of Aminopeptidasic
Activities
GluAp and AlaAp fluorimetric activities were determined
in a kinetic fluorimetric assay using L-glutamic acid γ-2-
naphthylamide or alanyl-2-naphthylamide (Sigma-Aldrich,
Madrid, Spain) as substrates, respectively. 20 µl of urine,
plasma or kidney homogenate were incubated during 30 min
at 37◦C with 80 µl of substrate solution (10 mM L-glutamic
acid γ-2-naphthylamide or 10 mM alanyl-2-naphthylamide
in pH 8.7 50 mM HCl-Tris). This buffer was also used
to homogenate kidneys. Substrates had been previously
dissolved in 1 ml of dimethyl sulfoxide and stored at −20◦C.
The amount of 2-naphthylamine released as a result of the
aminopeptidase activities was measured fluorimetrically
at an emission wavelength of 412 nm with an excitation
wavelength of 345 nm, and quantified using a standard curve
of 2-naphthylamine (0–200 nmol/ml). Fluorimetric data from
samples and standard curve were taken each minute. Specific
aminopeptidase activities were calculated from the slope of the
linear portion of enzymatic assay, and expressed as nanomol
of substrate hydrolyzed per minute per mg of urine creatinine
(mU/mg Cr) per ml of plasma or per mg of total protein content
in renal tissue.

Histopathological Study
For conventional morphology, buffered 10% formaldehyde-
fixed, paraffin-embedded longitudinal rat kidney sections in
sagittal plane were deparaffinized in xylol (three passes of
5 min) and re-hydrated in ethanol of decreasing gradation
(absolute, 96%, and 70%, 2 passes of 3 min, respectively).
Tissue sections were stained with hematoxylin-eosin, Masson’s
trichrome and periodic acid-Schiff (PAS). The presence of
glomerular lesions (glomerulosclerosis, glomerular hyperplasia,
mesangium increase, glomerular cyst, and capsular fibrosis) was
assessed in at least 200 glomeruli. Tubulointerstitial damage
(tubular vacuolation, tubular atrophy, hyaline drops, tubular
casts, and chronic inflammatory infiltrate) was also studied.
Injury was graded according to Shih, Hines, and Neilson on
a semiquantitative scale of 0–4 (0 = normal, 0.5 = small focal
areas of damage, 1 = involvement of less than 10% of the cortex,
2 = involvement of 10–25% of the cortex, 3 = involvement of
25–75% of the cortex, 4 = extensive damage involving more than
75% of the cortex) (Shih et al., 1988). The morphological study
was done in blinded fashion on 4-micrometer sections with light
microscopy, using the most appropriate stain for each lesion.
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Morphometrical Study
Samples were fixed in buffered 10% formalin, embedded in
paraffin and serially sectioned at 5 µm thickness. Afterwards,
they were stained with 1% picro Sirius red F3BA (Gurr,
BDH Chemicals Ltd., Poole, United Kingdom) for image
analysis quantification. To improve staining, tissue sections
were kept after deparaffination for 3–5 days in 70% alcohol
as mordent. Picro Sirius red stains connective fibers deep red
and cell nuclei and cytoplasmatic structures light red/bright
yellow (Sweat et al., 1964). To semiautomatically quantify
interstitial connective tissue, 20 images of cortex per kidney
were acquired using an IF 550 green optical filter with
illumination intensity values slightly above those used for
normal observation with a digital camera 3CCD (DP70)
coupled to an Olympus BX-42 microscope (Olympus Optical
Company). 20 images of corticomedullary junction per kidney
were acquired using polarized light. Histologic images of
kidney biopsies were convert in black and white at 8-bit
intensity resolution (256 gray levels) with a global magnification
of 200×, and normalized with Adobe Photoshop software
(Adobe Systems Software, Ireland). To assess the fibrosis, we
made a macro that included a semiautomatic thresholding
of the total of the images per group of rats simultaneously
with ImageJ software (v 1.48) (National Institute of Health,
United States).

Statistical Analyses
To study the time course of biological variables and urinary
markers, we used a factorial ANOVA for repeated measures,
taking each rat as the subject and the group (ZL or ZO)
as the between-subjects factor. Interactions between factors
were analyzed using Bonferroni method. We used StatGraphics
Centurion XVII software.

Morphological and biological variables measured at the end
of the experiment were compared using a t-test for the analysis
of variables with normal distribution and equal variances. Welch
modification of t-test was used for data with normal distribution
and unequal variances and Mann–Whitney W (Wilcoxon) test
was used to analyze the differences when data did not correspond
to a normal distribution. Shapiro–Wilk test was used to analyze
the normality of distributions. Differences were considered
statistically significant at p < 0.05 level. We used StatGraphics
Centurion XVII software.

Simple linear regressions were analyzed with Statgraphics
Centurion XVII software. Multiple linear regressions were also
analyzed with this software to establish the optimal correlation
between urinary markers as independent variables and each renal
lesion as dependent variable. The model of regression with best
information criteria (Akaike information criteria) was selected.
This model eliminates the markers that do not significantly
contribute to regression, obtaining an optimal fitted model that
includes all markers with a significant contribution to regression
(p < 0.05).

For histopathological results IBM SPSS-Windows 20.0 (SPSS
Inc., Chicago, IL, United States) was used for the analyses.
Results are presented as mean ± standard error in the
case of fibrosis, or median and interquartilic range for

categorical data. t-test was used to compare percentage of
fibrosis. Non-parametric Mann–Whitney U-test were used to
compared morphological and histomorphometrical variables.
Results were considered statistically significance when p-values
were below 0.05.

RESULTS

Time Course of Biological Variables
A comparison of the biological variables between ZO and ZL
rats was performed (data not shown). The variables analyzed
were: body weight, food intake, water intake, diuresis and water
balance. Body weight was obviously greater in ZO with respect
to ZL rats. Food intake was increased in ZO rats, whereas water
intake was reduced along the study. Unexpectedly, diuresis was
higher in ZO rats; and consequently, water balance was found
reduced in these animals. The time course of glucosuria was
not significantly different in ZO and ZL rats when expressed
in concentration, but it was significantly increased from 6 to
8 months old when data were normalized by creatinine excretion.

Morphological Variables
Final body weight was significantly increased in ZO rats by
1.35-fold when compared to ZL rats. Kidney weight and heart
weight in absolute values or relative to tibial length were increased
in ZO rats when compared with the ZL group (Table 1).

Histopathological Results
Renal lesions in ZL group were absent. No glomerular,
tubulointerstitial, or vascular lesions were present in renal
parenchyma. In ZO rats moderate segmental increases in
glomerular matrix, segmental collapse and obliteration of
capillary lumina, and accumulation of hyaline were found. Such
changes were frequently associated with fibrosis and synechial
attachments to Bowman’s capsule. Tubulointerstitial injury
was defined as inflammatory cell infiltrates, tubular dilation
and/or atrophy, tubular casts or interstitial fibrosis, and tubular
atrophy, tubular casts, and chronic inflammatory infiltrate were
statistically significant increased in ZO rats (Table 2 and
Figure 1).

TABLE 1 | Morphological variables in male Zucker lean (ZL) and obese (ZO) rats at
8 months old.

Groups ZL ZO

Body weight (g) 469.1 ± 7.04 631.6 ± 10.2∗∗

Tibial length (TL, cm) 5.455 ± 0.042 5.480 ± 0.025

Kidney weight (KW, g) 1.628 ± 0.074 2.027 ± 0.105∗∗

KW/TL (mg/cm) 298.1 ± 12.5 398.4 ± 19.3∗∗

Heart weight (HW, g) 1.258 ± 0.020 1.396 ± 0.032∗

HW/TL (mg/cm) 230.6 ± 2.88 274.7 ± 5.52∗∗

Data are expressed as means ± SE final body weight; kidney weight; KW/TL, ratio
kidney weight versus tibial length; HW/TL, ratio heart weight versus tibial length.
∗P < 0.01, ∗∗P < 0.001 vs. the control group (n = 10 in each group).
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TABLE 2 | Histopathological results in male Zucker lean (ZL) and obese (ZO) rats
at 8 months old.

Groups ZL ZO

Glomerular sclerosis 0 (0–0) 1 (1–1)∗∗

Glomerular hyperplasia 1 (1–1) 2 (2–2)∗∗

Mesangium increase 0.5 (0–1) 2 (2–2)∗∗

Capsular fibrosis 0 (0–0) 1 (1–1)∗∗

Glomerular cyst 0 (0–0) 1 (0–1)∗

Tubular vacuolization 1 (0–2) 2.5 (0–3)

Tubular atrophy 0 (0–0) 2 (2–2)∗∗

Tubular casts 0 (0–0) 2 (2–3)∗∗

Hyaline drops 1 (0–1) 2 (0–2)

Inflammation infiltrate 0 (0–0) 1 (1–1)∗∗

Median and interquartilic range. ∗p < 0.05, ∗∗p < 0.001 vs. ZL (n = 10 in each
group).

Plasma Variables and Creatinine
Clearance at the End of the Study
Plasma urea and creatinine were decreased in ZO rats.
Plasma glucose was not significantly different, probably because
animals did not fast in order to obtain proper metabolic data.
Creatinine clearance, expressed in absolute values or relative
to g of kidney, was slightly increased in ZO rats, but did
not reach statistical signification. These data are shown in
Table 3.

Time-Course of Urinary Biomarkers
Figure 2 shows the evolution of urinary biomarkers along the
study. Proteinuria and GluAp were augmented in ZO rat at 4, 6, 7,
and 8 months old, when expressed relative to creatinine excretion
(mg/mg of Cr), showing a progressive time-related increase.
AlaAp was increased in ZO rats at 2, 4, 6, 7, and 8 months old,
showing a U-shaped pattern of evolution. Hydroxyproline was
significantly increased in ZO rats at 2, 4, 6, 7, and 8 months old.

Plasma and Renal Aminopeptidasic
Activities
GluAp and AlaAp enzymatic activities remained unchanged in
the kidney of ZO rats at the end of the experiment. In plasma,
there was a slight increase of GluAp activity in ZO rats, whereas
plasmatic AlaAp activity remained unchanged (Table 4). The
ratio of augmentation of GluAp activity in urine from ZO vs.
ZL rats at 8 months old was 11.8 whereas the plasmatic ratio
of augmentation was 1.43. Urinary AlaAp activity was nearly
three times increased, even though there was no variation in its
plasmatic activity.

Plasma, Urinary and Renal Klotho
The urinary excretion of Klotho was higher in ZO rats at 2, 5, and
8 months old when expressed as total daily excretion (ng/rat/day),
urinary concentration (ng/ml) or relative to creatinine excretion
(ng/mg Cr). The first two ways of expression are not presented.

FIGURE 1 | Representative images of lean rats without glomerular or tubulointerstitial injury (A,C), and obese rats with segmental glomerular sclerosis (ˆ), tubular
atrophy (black arrows), tubular casts (white arrow) and inflammatory infiltrate (B,D) (A,B, PAS stain; C,D, Masson’s trichrome stain, original magnification 10×).
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TABLE 3 | Plasma variables in male Zucker lean (ZL) and obese (ZO) rats at
8 months old.

Groups ZL ZO

Glucose (mg/dL) 249.7 ± 35.8 312.6 ± 35.0

Urea (mg/dL) 5.067 ± 0.065 3.833 ± 0.038∗

Creatinine (mg/dL) 0.577 ± 0.019 0.402 ± 0.075∗

CrCl (ml/min) 1.150 ± 0.061 2.033 ± 0.641

CrCl (ml/min/g kidney) 0.359 ± 0.025 0.485 ± 0.135

Data are expressed as means ± SE. ∗P < 0.05 vs. the control group (n = 10 in
each group). CrCl, creatinine clearance.

Plasma Klotho concentration was reduced to the half (p < 0.01) in
ZO rats when compared with ZL group. The protein abundance
of Klotho in renal tissue was similar in ZO and ZL rats. These data
are shown in Figure 3 and Supplementary Figure S1.

Urinary Klotho showed positive correlations with proteinuria,
urinary GluAp and urinary AlaAP excreted at 2, 5, and 8 months
old, when all animals (ZL and ZO rats) were pooled in a common
regression line, reaching the strongest correlation with urinary
GluAp (Figure 4).

Fibrosis Related Variables
Renal hydroxyproline content was increased in renal tissue of
obese rats and morphometrical quantification with Sirius red

stain and polarized light of renal cortex showed a significant
increase of tubulointerstitial fibrosis in Zucker obese rats
(p < 0.001). These data are displayed in Figure 5.

Correlation Studies
Table 5 shows a multiple regression analysis that included GluAp,
AlaAp, proteinuria, Klotho, and hydroxyproline excretion
normalized per mg of creatinine in urine collected at 2 months
old, GluAp, AlaAp, and Klotho or their combination were the
markers that better predicted all renal lesions quantified at the
end of the experiment. Results of multiple regression analysis
at 5 months old were very similar to that of 2 months. GluAp,
AlaAp, and Klotho were the best predictors of renal lesions
(Table 6).

At 8 months old, proteinuria, hydroxyproline, AlaAp, and
Klotho were the markers with the best correlations with renal
lesions (Table 7). Moreover, we also found correlations with renal
lesions at 2, 5, and 8 months old when urinary markers were
normalized by total daily excretion, and even when they were
expressed in urine concentration.

In order to study the prognostic value of urinary markers in
ZO group, we carried out a multiple regression analysis between
urinary markers at 2, 5, and 8 months old and the two continuous
variables at the end of the experiment: renal fibrosis and renal
hydroxyproline. At 2 months old, GluAp urinary activity was the

FIGURE 2 | Time course of urinary biomarkers normalized by creatinine excretion. Proteinuria (A), GluAP (B), AlaAP (C), and hydroxyproline (D) in male Zucker lean
and obese rats. Data are means ± SEM. ∗p < 0.05 compared with Zucker lean rats (n = 10, each group). Means with the same letter (a, b, or c) indicates sets of
means within there are no significant difference at p < 0.05.
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TABLE 4 | Plasmatic, renal and urinary enzymatic activities of GluAp and AlaAp at
8 months old in male Zucker lean (ZL) and Zucker obese (ZO) rats.

Groups ZL ZO

Plasma

GluAp (mU/ml) 3.03 ± 0.19 4.34 ± 0.32∗

AlaAp (mU/ml) 2.23 ± 0.04 2.45 ± 0.17

Kidney

GluAp (mU/mg protein) 8.16 ± 0.85 8.78 ± 0.70

AlaAp (mU/mg protein) 11.1 ± 1.19 11.5 ± 0.97

Urine

GluAp (mU/mg creatinine) 0.09 ± 0.02 1.06 ± 0.18∗∗

AlaAp (mU/mg creatinine) 0.28 ± 0.07 0.75 ± 0.09∗∗

Data are expressed as means ± SE. ∗p < 0.01, ∗∗p < 0.001 vs. ZL group (n = 10
in each group).

marker that showed the highest predictive correlation with renal
fibrosis in ZO group (Figure 6), indicating that this marker can
have an added value as an early prognostic marker of the extent of
fibrosis. Inclusion of ZL rats in the analysis made the correlation
to be weaker, and no correlation was found if analysis was carried
out using only ZL rats (Figure 6). These results can explain that
urinary activity of GluAp at 2 months old was not found to be
significantly increased in ZO rats, because some ZO rats have
a low urinary activity, but they are the ones that exhibit lower

levels of fibrosis at the end of the experiment. We did not find
significant correlations with renal fibrosis for any other marker
or their combinations at 5 or 8 months old when only ZO rats
were used.

Nevertheless, at 5 and 8 months old we found significant
correlations with renal hydroxyproline content. At 5 months
old, the combination of urinary AlaAp activity and Klotho
showed the maximal prognostic correlation (Figure 7), while the
combination of GluAp and Klotho was the marker that best fitted
with renal hydroxyproline content at 8 months old (Figure 8).

Altogether, these results demonstrate that GluAp, AlaAp, and
Klotho are related with the severity of renal lesions even when
animals are 2 months old, and they can serve not only to
differentiate these lesions between ZO and ZL rats but also to
establish a prognostic of these lesions inside ZO group.

DISCUSSION

This study clearly shows for first time that obesity of Zucker
rats is associated to increased urinary glutamyl and alanyl
aminopeptidasic activities and to increased urinary excretion of
Klotho, changes that were detected as early as 2 months old.
This study also shows that urinary aminopeptidases and urinary
Klotho correlates with the morphological changes observed in

FIGURE 3 | Urinary excretion of Klotho normalized by creatinine excretion (A), plasma levels of Klotho (B) at the end of the experiment (8 months old) and renal
protein abundance of Klotho (C) in male Zucker lean and obese rats. Data are means ± SEM. ∗p < 0.05 compared with Zucker lean rats (n = 10, each group).
Means with the same letter (a or b) indicates sets of means within there are no significant difference at p < 0.05.

FIGURE 4 | Correlations between urinary Klotho and proteinuria (A), urinary GluAp (B) and urinary AlaAP (C) excreted at 2, 5, and 8 months old, when all animals
(lean and obese Zucker rats) were pooled in a common regression line.
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FIGURE 5 | Fibrosis related variables. Renal level of fibrosis in Zucker lean rats (A,C) and Zucker obese rats (B,D), Note the significant increase of tubulointerstitial
fibrosis in obese rats in comparison with lean rats (A,B Sirius red stain with light microscope, C,D Sirius red stain with polarized light, original magnification 20×).
Renal hydroxyproline levels (E) and percentage of renal fibrosis (F). Data are means ± SEM. ∗p < 0.01 compared with Zucker lean rats (n = 10, each
group).

the renal injury of the ZO rats analyzed at the end of the
experimental period. Moreover, renal hydroxyproline content
and tubulointerstitial fibrosis were increased in the renal tissue
of obese rats.

The present paper shows that kidneys from ZO rats
at 8 months old developed mild focal and segmental
glomerulosclerosis as well as moderate tubulointerstitial injury,
data that are in consonance with those reported by other authors
in this type of experimental obesity (Kasiske et al., 1985, 1992;

Magil, 1995; Coimbra et al., 2000; Gassler et al., 2001; D’Agati
et al., 2016). It is interesting to note that despite to these
histopathological findings of renal injury in ZO rats, the classic
biomarkers of renal disease –plasma urea and creatinine and
creatinine clearance are normal or even better than normal in our
study, as well as in the literature (Lavaud et al., 1996; Coimbra
et al., 2000; Gassler et al., 2001), indicating that structural renal
changes might be present before the manifestation of renal
disease and that the classic biomarkers of renal disease are not
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TABLE 5 | Equation of the fitted model, correlation coefficient (r) and p-value of the multiple linear regression between urinary markers measured at 2 months and renal
lesions at the end of the experiment (8 months old) in Zucker lean and Zucker obese rats (n = 20).

2 months Equation of the fitted model r p

Glomerular esclerosis Y = −0.278 + 0.484AlaAp + 0.024Klotho 0.7993 0.0002

Glomerular hyperplasia Y = 0.866 + 0.037Klotho 0.8660 < 0.0001

Increased mesangium Y = 0.265 + 0.054Klotho 0.7869 < 0.0001

Capsular fibrosis Y = −0.543 + 1.049AlaAp + 0.018Klotho 0.8607 < 0.0001

Glomerular cysts Y = 0.0342 + 0.0241Klotho 0.5712 0.0085

Tubular vacuolization Y = −0.0155 + 2.18AlaAp 0.6204 0.0035

Tubular atrophy Y = −0.444 + 1.684GluAp + 0.0586Klotho 0.8774 < 0.0001

Casts Y = −0.604 + 3.18GluAp + 0.0517Klotho 0.7858 0.0003

Hyaline drops Y = 0.019 + 1.82AlaAp 0.6031 0.0049

Inflammation Y = −0.147 + 0.0404Klotho 0.7117 0.0004

Interstitial fibrosis (SR) Y = 0.414 + 2.53GluAp + 0.0931Klotho 0.7418 0.0011

Interstitial fibrosis (%) Y = 9.501 + 29.6GluAp + 0.3055Klotho 0.8507 < 0.0001

Renal Hyp Y = 313 + 134.5AlaAp 0.6180 0.0037

GluAp, glutamyl aminopeptidase; AlaAp, alanyl aminopeptidase; Hyp, hydroxyproline; SR, Sirius red.

TABLE 6 | Equation of the fitted model, correlation coefficient (r) and p-value of the multiple linear regression between urinary markers measured at 5 months and renal
lesions at the end of the experiment (8 months old) in Zucker lean and Zucker obese rats (n = 20).

5 months Equation of the fitted model r p

Glomerular esclerosis Y = −0.162 + 1.16GluAp + 0.0238Klotho 0.7981 0.0002

Glomerular hyperplasia Y = 0.887 + 1.07GluAp + 0.0256Klotho 0.8027 0.0002

Increased mesangium Y = 0.520 + 0.0494Klotho 0.6327 0.0028

Capsular fibrosis Y = −0.178 + 0.0456Klotho 0.8048 <0.0001

Glomerular cysts Y = 0.117 + 0.0242Klotho 0.5059 0.0229

Tubular vacuolization Y = 0.501 + 0.0652Klotho 0.5660 0.0093

Tubular atrophy Y = −0.070 + 2.26GluAp + 0.0431Klotho 0.7777 0.0004

Casts Y = −0.182 + 2.95GluAp + 0.0516Klotho 0.7831 0.0003

Hyaline drops Y = 0.607 + 0.0430Klotho 0.4354 0.0550

Inflammation Y = −0.142 + 0.0502Klotho 0.7815 <0.0001

Interstitial fibrosis (SR) Y = 1.45 + 0.0363Klotho 0.5113 0.0212

Interstitial fibrosis (%) Y = 7.56 + 44.66AlaAp 0.7023 0.0006

Renal Hyp Y = 326 + 5.38Klotho 0.7525 0.0001

GluAp, glutamyl aminopeptidase; AlaAp, alanyl aminopeptidase; Hyp, hydroxyproline; SR, Sirius red.

TABLE 7 | Equation of the fitted model, correlation coefficient (r) and p-value of the multiple linear regression between urinary markers measured at 8 months and renal
lesions at the end of the experiment (8 months old) in Zucker lean and Zucker obese rats (n = 20).

8 months Equation of the fitted model r p

Glomerular esclerosis Y = −0.356 + 0.0126Klotho + 0.0465Hyp 0.8636 < 0.0001

Glomerular hyperplasia Y = 0.787 + 0.2265Prot + 0.0090Klotho 0.9541 < 0.0001

Increased mesangium Y = 0.2661 + 0.2409Prot + 0.0193Klotho 0.8032 0.0001

Capsular fibrosis Y = −0.118 + 0.0313Klotho 0.8871 < 0.0001

Glomerular cysts Y = −0.158 + 0.0491Hyp 0.5727 0.0083

Tubular vacuolization Y = 0.327 + 2.08AlaAp 0.5799 0.0074

Tubular atrophy Y = −0.238 + 0.4153Prot + 0.0169Klotho 0.9230 < 0.0001

Casts Y = −0.4564 + 0.7042Prot 0.9346 < 0.0001

Hyaline drops Y = 0.2728 + 1.8015AlaAp 0.5842 0.0068

Inflammation Y = −0.602 + 0.0181Klotho + 0.0664Hyp 0.9181 < 0.0001

Interstitial fibrosis (SR) Y = 1.17 + 0.322Prot 0.6805 0.0010

Interstitial fibrosis (%) Y = 12.9 + 4.46Prot 0.8691 < 0.0001

Renal Hyp Y = 310 + 112AlaAp + 1.7623Klotho 0.8154 0.0001

AlaAp, alanyl aminopeptidase; Prot, proteinuria; Hyp, hydroxyproline; Hyp, hydroxyproline; SR, Sirius red.
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FIGURE 6 | Predictive correlations of urinary GluAp activity at 2 months old with interstitial fibrosis at the end of the experiment in ZO rats (A, n = 10), in ZL and ZO
rats (B, n = 20) and in ZL rats (C, n = 10).

FIGURE 7 | Predictive correlations of the combination of AlaAp and Klotho at 5 months old with renal hydroxyproline content at the end of the experiment in ZO rats
(A, n = 10), in ZL and ZO rats (B, n = 20) and in ZL rats (C, n = 10).

FIGURE 8 | Predictive correlations of the combination of GluAp and Klotho at 8 months old with renal hydroxyproline content at the end of the experiment in ZO rats
(A, n = 10), in ZL and ZO rats (B, n = 20) and in ZL rats (C, n = 10).

useful tools for the evaluation of obesity induced renal damage.
In fact, Coimbra et al. (2000) reported that plasma creatinine and
urea remained normal during the observation period until week
40, and they started to increase at a later stage of renal injury,
when Zucker obese rats were 60 weeks old.

The data concerning urinary aminopeptidasic activities are in
consonance with previous papers, where we showed that urinary
activity of these enzymes were associated to the development of

renal damage in hypertensive hyperthyroid rats under high salt
intake, showing that urinary aminopeptidasic activity correlates
with the degree of renal injury but not with plasma renin
activity or angiotensin II plasma levels (Pérez-Abud et al., 2011)
and in cisplatin-treated rats (Quesada et al., 2012). In these
studies, AlaAp and GluAp activities also were manifested as
early and predictive biomarkers of the presence and severity of
renal injury (Quesada et al., 2012; Montoro-Molina et al., 2015).
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These enzymes reach urine from damaged tubular cells, and they
can detect proximal tubular injury regardless of the glomerular
filtration status (Quesada et al., 2017).

Data obtained from the Prevention of Renal and Vascular End
Stage Disease (PREVEND) study demonstrate that albuminuria
augmented during the development of diabetic kidney disease
and that, in addition, is a marker of the progression of diabetes
(Brantsma et al., 2005). In our study, ZO rats also shows increased
proteinuria that started at 4 months old, at 2 months of the
observational period. However, other authors that also studied
the time course of proteinuria in ZO rats reported the appearance
of proteinuria in later stages of this type of obesity, e.g., 10 months
of age (Michel et al., 1997; Coimbra et al., 2000; Gassler et al.,
2001). Very recently, Mima et al. (2018) have observed that the
appearance of albuminuria can be accelerated when ZO rats are
fed with high-fat chow.

Proteinuria from the classic point of view is secondary
to alterations of the glomerular barrier membrane, in fact
podocyte injury underlies the progression of focal segmental
glomerulosclerosis in the fa/fa Zucker rat (Gassler et al.,
2001), but now it is also well known that, under physiological
conditions, 7–9 g/day of proteins can cross the glomerular
barrier membrane and appeared in primary urine in humans
(Haraldsson and Sörensson, 2004). These proteins are uptaked
by tubular cells (Haraldsson et al., 2008) by the megalin-cubulin
complex (Christensen and Birn, 2001) and degraded and
fragmented in the tubule (Eppel et al., 2001). Thus, lysine
has been administered to produce proteinuria by inhibiting
tubular cells (Tencer et al., 1998). Hence, it is possible that, at
least, a part of the proteinuria observed in ZO rats may arise
from a tubular injury, as indicated the increased urinary levels
of aminopeptidases -localized in the brush border of tubular
cells- that precede the appearance of proteinuria. Therefore, an
early tubular injury could determine a defective tubular uptake of
proteins. In consonance with this, Osicka et al. (2000) reported
that the proteinuria that occurs with diabetic nephropathy
reflects defects in the tubular system.

This study shows increased urinary levels of Klotho, a
reduction in plasma and normal values of protein abundance
in the renal tissue. These last data agree with the results of
Lorenzi et al. (2010) that found no differences in klotho mRNA
levels between obese Zucker and control rats, neither in kidneys
nor in other organs; and that Klotho protein levels tested by
Western blot were similar in kidneys from ZO and control rats.
However, the present results contrast with the decreased renal
gene expression of Klotho observed in various animal models of
vascular and metabolic diseases (Nagai et al., 2000). Moreover,
our results also contrast with previous reports in other renal
diseases, where plasma, renal and urinary Klotho go in the same
direction, considering that serum and urinary Klotho can be
surrogate markers for renal Klotho production (Hu et al., 2011).

The possible explanation for the absence of uniformity of
our Klotho data is that tubular injury determines an increased
urinary excretion of Klotho as happens with aminopeptidases
that are released to urine. This wasting of Klotho through the
urine, might contributes to the reduced plasma level, since
urinary αKlotho, at least in part, may arise from the plasma.

Thus, exogenously injected labeled αKlotho was detected in the
urine of rats (Hu et al., 2016). In support of our hypothesis is
the positive correlation between urinary aminopeptidases and
urinary Klotho, indicating that Klotho and aminopeptidases
probably are augmented in urine due to the presence of damaged
tubular cells.

As reported in the Introduction section, plasma soluble Klotho
may operate as an endocrine agent on distant organs (Hu et al.,
2013, 2015), with many cardiovascular and protective effects (Hu
et al., 2013, 2015; Lu and Hu, 2017). Thus, the reduced plasma
levels of Klotho might contribute to the cardiovascular and renal
abnormalities observed in ZO rats, since reduced circulating
Klotho also have been reported in other renal (Hu et al., 2010b,
2011, 2012; Akimoto et al., 2012; Scholze et al., 2014) or CVDs
(Wang and Sun, 2009; Yu et al., 2010), including diabetes in
humans and mice (Zhao et al., 2011; Asai et al., 2012).

Urinary hydroxyproline excretion has been related in previous
works with the development of different renal lesions including
fibrosis in a murine model of nephrotoxicity evoked with
melamine and cyanuric acid (Schnackenberg et al., 2012). In
our study, urinary hydroxiproline was increased in ZO rats
from two 2 months old, although our data demonstrate that
the excretion of Klotho, GluAp, and AlaAp activities at 2 and
5 months old correlate better than hydroxyproline even with
renal fibrosis or renal hydroxyproline content. At 8 months
old, urinary hydroxyproline excretion takes relevance as a
diagnostic marker of glomerular sclerosis, glomerular cysts and
inflammation, but not for renal fibrosis or renal hydroxyproline
content. Furthermore, in our study, urinary hydroxyproline was
not a prognostic marker, because it did not show any correlation
with these variables in ZO rats. This lack of correlation might
be due to the fact that urinary hydroxyproline mainly reflects
plasmatic levels of this amino acid, because it is freely filtered
in glomerulus, although hydroxyproline derived from collagen of
renal tissue can also contribute to increase its content in urine,
explaining the higher excretion of this marker in ZO rats when
compared with ZL rats.

The correlation studies shown in Tables 5, 6 demonstrate
that GluAp, AlaAp, and Klotho are early diagnostic markers
of renal lesions in ZO rats. Proteinuria and hydroxyproline
can be considered delayed diagnostic markers because their
contribution to diagnosis starts later, probably when glomerular
and fibrotic lesions are more extended. It is interesting to note
that all urinary markers were normalized per creatinine excretion
because it allows analyzing spot samples in clinical practice
without the needing of collecting 24-h urine and it is the most
used way to quantify urinary markers, but we have obtained
similar correlations when markers were expressed in total daily
excretion or even in urinary concentration.

Another relevant result is that GluAp, AlaAp and Klotho are
related not only with diagnosis but also with prognosis of renal
lesions in Zucker obese rats. Results reported in Figures 6–8 show
strong predictive correlations with percentage of renal fibrosis or
with renal hydroxyproline content at the end of the experiment,
indicating that an early increased excretion of these markers is
related with a higher later extent of fibrosis in ZO rats. Finally, we
also want to pointed out that the correlations observed between
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tubular urinary biomarkers and the morphological signs of renal
injury, do not establish any causal relationship among them.

CONCLUSION

Urinary aminopeptidases and Klotho are early diagnostic
biomarkers of renal injury, and urinary levels of these biomarkers
are also related with the extent of renal fibrosis in Zucker obese
rats. Measurements of GluAp, AlaAp, and Klotho may represent
a novel, specific and non-invasive diagnostic approach to assess
kidney fibrosis and may have a potential use not only in diagnosis
but also in prognosis of obesity-associated renal lesions.
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