
State of the art paper

Corresponding author: 
Fernando Rodríguez-Serrano
Institute 
of Biopathology
and Regenerative Medicine
Biomedical Research 
Centre
Avd. del Conocimiento
s/n. 18100 Armilla
Granada, Spain
Phone: +34 958 248826
Fax: +34 958 246296
E-mail: fernrs@ugr.es

1�Institute of Biopathology and Regenerative Medicine (IBIMER), University  
of Granada, Granada, Spain

2�Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, 
Granada, Spain

3�Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
4�Department of Human Anatomy and Embryology, University of Granada, Granada, 
Spain

Submitted: 5 March 2017
Accepted: 28 May 2017

Arch Med Sci 2019; 15 (4): 957–967
DOI: https://doi.org/10.5114/aoms.2019.86062
Copyright © 2019 Termedia & Banach

Hearing regeneration and regenerative medicine: 
present and future approaches
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A b s t r a c t

More than 5% of the world population lives with a hearing impairment. The 
main factors responsible for hearing degeneration are ototoxic drugs, aging, 
continued exposure to excessive noise and infections. The pool of adult stem 
cells in the inner ear drops dramatically after birth, and therefore an endog-
enous cellular source for regeneration is absent. Hearing loss can emerge 
after the degeneration of different cochlear components, so there are mul-
tiple targets to be reached, such as hair cells (HCs), spiral ganglion neurons 
(SGNs), supporting cells (SCs) and ribbon synapses. Important discoveries in 
the hearing regeneration field have been reported regarding stem cell trans-
plantation, migration and survival; genetic systems for cell fate monitoring; 
and stem cell differentiation to HCs, SGNs and SCs using adult stem cells, 
embryonic stem cells and induced pluripotent stem cells. Moreover, some 
molecular mediators that affect the establishment of functional synapses 
have been identified. In this review, we will focus on reporting the state of 
the art in the regenerative medicine field for hearing recovery. Stem cell 
research has enabled remarkable advances in regeneration, particularly in 
neuronal cells and synapses. Despite the progress achieved, there are cer-
tain issues that need a deeper development to improve the results already 
obtained, or to develop new approaches aiming for the clinical application.

Key words: stem cell therapy, hearing regeneration, hair cell, spiral 
ganglion neuron, ribbon synapse.

Introduction

Hearing is one of the most important human senses, allowing the 
interpretation of air vibrations (sounds), being an essential part of the 
process of communication. This complex transduction of mechanical en-
ergy into bioelectrical energy is made by the ear, which is divided into 
the outer, middle and inner ear [1]. The outer ear consists of the ear 
pinna and the external auditory canal. This system drives vibrations to-
ward the tympanic membrane. The middle ear transmits vibrations from 
the tympanic membrane to the oval membrane through a set of three 
ossicles, the malleus, incus, and stapes, this last one in direct contact 
with the oval membrane. The middle ear complex helps to overcome 
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the low vibration transmission efficiency between 
two media, air to perilymph, in the inner ear. Fi-
nally, the inner ear is formed by the semicircular 
canals, vestibule and the cochlea, the latter being 
the structure responsible for the transformation of 
vibrations into nerve impulses that can be inter-
preted by the brain [2].

Inside the cochlea, the following structures can 
be distinguished: the scala vestibuli and the sca-
la tympani, both containing perilymph (1–2 mM 
[K+]); and the scala media, which contains endo-
lymph (150 mM [K+] and a endocochlear potential 
of 100–120 mV) and the organ of Corti [3, 4]. The 
scala media is separated from the scala vestibuli 
and the scala tympani by the Reissner’s and bas-
ilar membranes, respectively. Moreover, the stria 
vascularis and the spiral ligament can be found on 
the side wall of the scala media.

Vibrations are transmitted from the stapes to 
the perilymph in the scala vestibuli, through the 
oval membrane. Then, each vibrational frequen-
cy advance through the perilymph to reach their 
specific resonance area in the basilar membrane, 
where the maximum vibration level and focal stim-
ulation are produced [5]. The vibration of the bas-
ilar membrane induce the opening of the mecha-
nosensitive K+ channels, activating the inner hair 
cells (IHCs), initiating the impulse. Simultaneously, 
the outer hair cells (OHCs) are in contact with the 
tectorial membrane. They modulate and amplify 
the stimulus, allowing small vibrations to be ampli-
fied enough to stimulate IHCs [2]. High-frequency 
sounds stimulate areas closer to the oval mem-
brane, while low-frequency sounds activate the 
apical areas. Primarily, IHCs transmit the stimulus. 
In fact these cells are innervated by spiral ganglion 

neurons (SGNs), mainly afferents, whereas OHC are 
innervated by fewer SGNs, mainly efferent.

Cell types and synapse systems

The main elements involved in the hearing 
processing are the hair cells (HCs), SGNs, sup-
porting cells (SCs) and ribbon synapses. HCs have 
an elongated structure, with ciliated projections 
or stereocilia of varying sizes at the apical pole. 
The movement of one stereocilia is transmitted 
through cadherin-23/protocadherin-15 bonds 
connected to the K+ channel present in the next 
stereocilia. Thus, the movement induces channel 
opening and initiates the signal transduction (Fig-
ure 1 A) [6, 7]. The entry of K+ increases the mem-
brane potential of HCs and allows the opening of 
Ca2+ channels, located in the basal side of the cell, 
which are involved in the release of glutamate 
vesicles (Figures 1 A, B).

SGNs are excited by the glutamate molecules 
released by the HCs, initiating the nerve impulses 
that are ending in the brain. These neurons are the 
first element of the primary and non-primary audi-
tory pathway, transmitted to different brain areas, 
where the signals are interpreted. The functional 
relationship between IHCs and type I SGNs is main-
ly mediated by the ribbon synapses, a system that 
enables fast and stable glutamate release from the 
presynaptic region, i.e., HCs. OHCs also establish 
ribbon synapses, but with type II SGNs; however, 
the density of these synapses is much lower and 
their function remains unknown [8, 9].

SCs are in direct contact with HCs providing 
physical and molecular support owing to the se-
cretion of some factors [10]. SCs are also respon-

Figure 1. Hair cell structure and function. Vibrations induce the opening of K+ channels located in the apical ciliated 
structures (stereocilia), leading to the K+ internalization (A). In response to the membrane potential depolarization, 
the basal Ca2+ channels open leading to the glutamate vesicles release to the synaptic cleft (B)
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sible for the recycling of K+, which is mediated by 
intercellular connexin junctions, allowing the K+ 
flow to reach the stria vascularis. This structure is 
responsible for the maintenance of the endolymph 
homeostasis, which is essential for the ear function 
and transduction of the vibrational stimuli [4, 11].

Hearing loss

More than 5% of the world population lives with 
some degree of hearing impairment (360 million 
people including 32 million children) according to 
the latest estimates of the World Health Organiza-
tion (WHO, February 2013).

The main factors behind hearing degeneration 
are ototoxic drugs, aging, continued exposure to 
excessive noise and infections. After an injury, 
the auditory system is damaged irreversibly, be-
cause the regeneration system is inhibited or de-
activated in higher mammals, oppositely to other 
non-mammalian vertebrates [12]. The pool of adult 
stem cells in the inner ear drops dramatically af-
ter birth. Therefore, an endogenous cellular source 
for regeneration is absent. In mammals, HCs are 
only generated during a short embryonic period; 
hence, their loss in adults produces an irreversible 
hearing defect. Similarly, the SGN degeneration is 
unrecoverable and in the case of synaptic loss, re-
covery has been shown to be limited [13].

Hearing impairments can be divided into sen-
sorineural (SNHL) and conductive. Conductive 
hearing loss is mainly treated by surgery, showing 
good outcomes, while SNHL patients are man-
aged with external devices of sound amplification 
(cochlear implants, auditory brainstem implants, 
etc.) and/or with pharmacological therapies with 
little success until the moment (corticosteroids, 
antibiotics, etc.). Because SNHL can emerge after 
the degeneration of different cochlear compo-
nents, there are multiple targets that should be 
reached in order to resolve this kind of hearing 
impairment. HCs, SGNs, ribbon synapsis system, 
stria vascularis and spiral ligament are currently 
the most studied elements, with a particular focus 
on the HC and SGN research. Nowadays there is 
no functional therapy for SNHL. Current strategies 
are directed to the hearing partial recovery using 
cochlear implants in severe cases or glucocorti-
coids in moderate or mild SNHL cases [14, 15].

Regeneration research

Because of the drastic reduction in the number 
of stem cells in the inner ear after the neonatal 
period, the autonomous regenerating capacity is 
almost depleted. Therefore, many research groups 
have focused their efforts on developing stem 
cell-based treatments to restore HC, SGN and SC 
populations. There are many studies outside the 

hearing research field, where stem cells showed 
remarkable healing capacities, for example, ten-
don-to-bone regeneration [16].

Stem cells are undifferentiated cells with self- 
renewal capacity, in presence of the appropriate 
stimulus [17–19]. Pluripotent stem cells have the 
ability to differentiate into any cell type derived 
from the three embryonic lineages (endoderm, 
ectoderm and mesoderm), while adult stem cells 
can only differentiate into the major specialized 
cell types of its tissue or organ. The auditory re-
generation field is mainly focus on embryonic 
stem cells (ES) [20], adult stem cells [21, 22], or 
induced pluripotent stem cells (iPSCs) [23, 24]. 
However, nowadays the main issues to be solved 
are the obtaining of a proper efficiency in the 
production of auditory stem cells and to demon-
strate the utility and safety of these cells in a clin-
ical context [25].

Experimentation in animal models with regen-
erative capacity, such as zebrafish or avian models, 
has shown that their auditory regeneration is guid-
ed by the same genetic pathways activated during 
embryonic development. That mechanism leads to 
HC or stereocilia regeneration by different mecha-
nisms (Figure 2), that have aroused great interest 
for the development of novel therapies that can 
reconstruct these pathways in humans [12].

In this review, we focus on the conservation 
and regeneration of HCs by stem cells and com-
plementary molecular therapies; delivery and 
integration of neural precursors and growth fac-
tors improving neuronal elongation and synaptic 
connections, for SGN regeneration; improving SCs 
survival and their transdifferentiation to HCs by 
molecular therapy; recent advances in delivery 
techniques to transplant stem cells into the inner 
ear; and monitoring techniques for auditory cell 
differentiation.

Advances in methodology for hearing 
regeneration 

In our opinion, the important discoveries in this 
area are mainly focused on the development of 
methods for stem cell transplantation, improving 
migration, survival and new genetic systems for 
cell fate monitoring.

The supply of exogenous neural stem cells into 
the cochlea and their proper migration to the 
Rosenthal’s canal (RC) is a very complex process. 
Different routes for stem cell transplantation have 
been tested, such as through the perilymph [26, 
27] or the endolymph [27]. Although these tech-
niques are promising, their results show a low cell 
survival rate , with only small populations of new 
cells in the RC. Transplantation of cells into the 
modiolus (bone lamina inside the cochlea) or in 
the cochlear nerve, showed a higher cell survival 
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rate and increased migration to the RC. Howev-
er, the transplantation process involves potential 
hearing damage [28].

The direct transplantation of stem cells on the 
side wall tissue of the cochlea seems to achieve 
efficient results. The abundance of tissue and 
blood supply to the area, may be responsible for 
the increased survival of grafted cells in the wall, 
also improving migration of cells to the RC in both 
control mice and animals treated with ototoxic 
drugs. Moreover, it has been hypothesized that 
the basilar membrane has crevasses that would 
facilitate stem cell migration. This method induc-
es the same temporary threshold shift of the au-
ditory brainstem response (ABR), as the one ob-
served in the classical transplantation through the 
scala tympani. Therefore, this method is as safe as 
the conventional methods of transplantation, but 
allowing a better cell survival and migration to the 
affected area [29].

Research on hair cells

One of the main research areas for hearing 
regeneration is focus on the production of new 
HCs, due to their importance in the auditory sig-
nal transduction. It has been postulated, that the 

precise knowledge concerning the genetic route 
responsible for the differentiation of stem cells to 
HCs, studied in vitro or in animal models show-
ing hearing regeneration (Figure 3), could offer 
relevant clues to reveal the way to induce trans-
differentiation of human SCs [7]. Most studies in 
this area have been conducted on avian models, 
which, unlike mammals, can regenerate the au-
ditory epithelium [30]. The main disadvantage of 
this approach is that in the adult human ear, the 
stem cell population is virtually absent. Therefore, 
the only cells capable of supplying HCs are SCs. 
However, if SCs are transdifferentiated to HCs, 
the reduction in the SC population may influence 
HC survival, because of the depletion of secreted 
factors and disorganization of the organ of Corti’s 
structure. Consequently, transdifferentiation must 
be preceded by cell proliferation or by an external 
supply of stem cells [25].

In this research field, ES [27, 25] and iPSCs [23. 
24] have been widely used. ES have the advan-
tage of maintaining a high proliferative capacity. 
However, they are difficult to obtain, generate an 
ethical debate, have tumorigenic potential and 
can elicit an immunologic response in the implant-
ed subject [31]. For their part, iPSCs can be easi-
ly obtained from the somatic cells of the patient, 

Figure 2. Hair cell (HC) and stereocilia regeneration. HC degeneration can affect the entire cell or can be restricted 
to the stereocilia. In some animal models with auditory regeneration capacity, supporting cells (SCs) can replace 
damaged HCs through mitosis and differentiation or by transdifferentiation and growth factor secretion. Figure 
modified from [15]
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and thus, no host rejection can be derived from 
cell autograft transplantation. Nevertheless, iPSCs 
have some disadvantages such as tumorigenicity, 
a  reduced proliferation rate and the tendency to 
differentiate into the original somatic tissue [31]. 
The great potential of iPSCs and ES to produce de-
rived HCs has been reported, but only in in vitro 
assays. Satisfactory results in graft implantation, 
or effective integration of differentiated HCs in the 
inner ear tissue in vivo have been rarely described 
[32–34]. This may be due to the complex cytoar-
chitecture and microenvironment of the organ of 
Corti, which is very different from the culture con-
ditions in which the new HCs are generated.

Despite the above described problems, major 
improvements have been observed in the differ-
entiation of ES and iPSCs to HCs, recording very 
promising results with the staggered method or 
step by step approach [32–34]. The study conduct-
ed by Chen et al. is noteworthy, as they describe  
a novel and effective stepwise differentiation 
method that allows the efficient otic precursors 
obtainment. The culture of stem cells in a specific 
medium containing fibroblast growth factor, led 
to the formation of epithelial progenitors, that 
can derive into SCs, HCs or neural progenitors 
[35]. Moreover, it has been suggested that culture 
conditions also influence the process, as for ex-
ample, suspension cultures showed an improve-
ment in the differentiation efficiency compared to 
adherent cultures [36]. Nevertheless, in vitro stem 
cell-derived HCs seem to exhibit the same mecha-
nosensitive and electrical properties as immature 
inner ear HCs [37]. If so, these cells could induce 
a functional recovery in vivo, as long as they be-
come adequately integrated into the target tissue.

Other interesting studies, in the HC topic, are 
focused on developing strategies to promote the 
protection or survival of damaged HCs, for ex-
ample exposed to noise or ototoxic factors. Mes-
enchymal stem cells can be differentiated into 
fibrocytes and then transferred to the non-sensi-
tive layer of the auditory epithelium, where they 
provide physical and molecular support for the 
damaged HCs [38]. Adipose-derived stem cells ex-
press certain neurotrophic factors, that can induce 
the regeneration or protection of HCs [39, 40]. In 
other cases, the aim of the intervention is to mod-
ulate the molecular microenvironment, for exam-
ple, using IGF1, which reduces apoptosis and has 
protective effects [15, 41].

Research on spiral ganglion neurons

The hearing regeneration field had accomplish 
greater success in the SGN area, working with 
ES, iPSCs, neural stem cells (NSC) and neural pre-
cursor cells. As stated before, the only treatment 
nowadays for severe SNHL is the cochlear implant. 

This device is designed to circumvent the HCs or 
organ of Corti functional impairment, directly 
stimulating the SGNs through a set of electrodes 
[42, 43]. However, various factors can induce  
a SNHL with SGN degeneration, rendering the co-
chlear implant completely useless. These factors 
include some diseases (mumps, meningitis, mul-
tiple sclerosis, Meniere’s disease, etc.) or ototox-
ic damages. Additionally, some factors, as noise 
overexposure and aging, have been shown to be 
highly related with this pathology. In fact, both 
are responsible of the SGN death, or more usu-
ally the degeneration of the synapses established 
between the SGNs and HCs, which subsequently 
leads to a progressive death of the neurons that 
have lost their interaction [8, 44]. For these rea-
sons, there has been a growing interest in the 
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Figure 3. Pathway for the stem cell differentiation 
into auditory neurons and hair cells. The scheme 
displays the step-by-step differentiation of embry-
onic or induced pluripotent stem cell, derived from 
placode precursors, to form cochlear neurons and 
hair cells. Cell intermediaries can be characterized 
by the marker expression profile specified in the 
figure. Figure modified from [45]
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development of cellular therapies, increasing the 
number of functional SGNs that can be stimulated 
by cochlear implant electrodes [45].

Bone marrow stromal stem cells have shown 
an efficient cell migration and differentiation abil-
ity and nowadays they are considered a promising 
source of neuronal lineage cells [46]. Numerous 
experiments involving adult stem cells employed 
NSCs. In particular, the olfactory epithelium has 
been suggested as a good source of NSCs (oe-NSCs), 
which can generate new SGNs thanks to their 
good regenerative capacity in adult models [47, 
48]. Moreover, oe-NSCs share some cell markers 
with some cell populations in the auditory epi-
thelium. The implantation of oe-NSCs showed 
an improvement in the ABR, although the hear-
ing damage was not sufficiently reduced [26, 29]. 
Interestingly, a recent study provided evidence of 
a new source of NSCs for this purpose: a purified 
subpopulation of glial cells expressing Sox2 that 
can be isolated from the auditory nerve [44]. 

Nowadays, many researchers defend the idea 
that the microenvironment generated after the 
degeneration of cochlear SGNs propitiates the 
homing, survival and differentiation of NSCs. In 
this context, stromal cell-derived factor-1 (SDF-1) 
may play an important role. Some studies suggest 
that SDF-1 is responsible for the migration of NSCs 
to the affected areas, based in the fact that after 
the injury, an overexpression of this factor (by the 
Schwann cells) and the augmentation of its recep-
tor expression in the NSC are observed [49].

Step-by-step differentiation of ES and iPSCs, 
into otic or neuronal precursors, has been pro-
posed (Figure 3) [45]. Thus, Chen et al. demon-
strated a procedure for the production of neurons 
with a  suitable phenotype, that lowers the ABR 
threshold, after their transplantation into deaf 
adult guinea pigs (Cavia porcellus) [35]. Several 
authors have confirmed the usefulness of NSCs 
derived from iPSCs [23] or ES [50, 28] for cell ther-
apies. However, although novel neurons maintain 

a good survival ratio, both in vitro and in vivo, 
a large proportion of neurons seems incapable of 
emitting elongations or projections [51].

Finally, other strategies, without stem cells, 
have been developed in order to improve neural 
tissue restoration, by using different factors. Gli-
al cell line-derived neurotrophic factor (GDNF) 
showed to induce increased branching capacities 
of the SGN neurites [52, 53]. In addition, GDNF 
promotes SGN survival, by specifically binding to 
the GDNF family receptor alpha 1 (GFRα1), acti-
vating PI3K/Akt and MEK/Erk phosphorylation 
pathways [53]. Cerivastatin is another active fac-
tor, involved in the elongation of the neurites [54], 
probably due to its inhibition of the post-trans-
lational modification of the Rho family proteins; 
this inhibition alters the normal function of the 
Rho family proteins, i.e., regulating the actin cyto-
skeleton and thus modulating the neurite elonga-
tion [55, 56]. However, despite the identification 
of some factors that promote the elongation and 
branching of neurons, in a  large percentage of 
cases, no functional connections between SGNs 
and HCs have been observed until today.

Research on ribbon synapses

Noise and aging are the two principal factors 
implicated in the degeneration of the ribbon syn-
apses connecting SGNs and HCs. Noise can induce 
permanent (PTS) or temporary threshold shift 
(TTS), depending on whether HCs are permanent-
ly damaged or not, respectively. However, some 
evidences suggest that successive TTSs lead to  
a PTS, mainly due to the synapse degeneration 
[8]. Although basal glutamate release is neces-
sary to maintain synaptic connections [8, 57], the 
degeneration process may be a  consequence of 
the excitotoxicity produced by excessive gluta-
mate release in the presynaptic space, released 
by the HCs in response to continued intense noise 
exposure [8, 58]. Despite the fact, that the ABR 
threshold can be recovered after TTS, synapses 

Figure 4. Synaptic loss and ribbon synapse degradation. The ribbon synapse complex is organized so, those neu-
rons with a low stimulation rate are concentrated in the modiolar site, while those with a higher stimulation rate 
are concentrated in the pillar site. Modiolar neurons are the most susceptible cells to noise- and aging-induced 
damage. Their synaptic degeneration leads to neuronal death. The remaining neurons modify their synaptic con-
nection to compensate the neuronal population reduction. However, the process can be reversed, before the SGN 
death, with NT-3 and BDNF overexpression. Figure modified from [8]
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and neural response amplitude cannot be recu-
perated (Figure 4). 

Also during aging, neuronal terminals display 
the same degeneration characteristics as those 
observed in noise traumas, suggesting that the 
ribbon complex degeneration can be also relat-
ed with a glutamate over-release [59, 60]. How-
ever, the molecular mechanism is still unknown.  
It has been proposed that recurrent TTSs produce 
repeated glutamate excitotoxicity, leading to cu-
mulative defects in the synaptic connections [8].

Although several experiments suggest that 
SGNs preserve spontaneous ability in vitro and  
in vivo to re-innervate the cochlea, the amount of 
new synaptic connections formed after denerva-
tion is lower than the normal pattern observed 
in non-denervated explants. Moreover, only a few 
implanted NSCs elongate and establish effective 
synapses [51]. This phenomenon may justify why 
a full hearing recovery has not yet been achieved.

Some of the most important issues in regen-
erative medicine for auditory regeneration, are 
the establishment of new functional ribbon syn-
apses between novel neurons and/or HCs, and to 
avoid or reverse the conversion from TTS to PTS. 
However, mainly all the experimental strategies, 
developed until this day, are focused in stem cells 
or growth factors alone. In our opinion, the inte-
gration of stem cell implants, together with the 
growth factors already identified would enable 
great advances in this field. 

During the embryonic stage, neurotrophin-3 
(NT-3) and the brain-derived neurotrophic factor 
(BDNF) induce pro-survival and pro-elongation 
signals for SGNs [61]. NT-3 is expressed in all cells 
of the inner ear, in the postnatal state, and in the 
IHCs and SCs in the adult stage [62]. BDNF expres-
sion is limited to IHCs, OHCs and SCs in the post-
natal state, whereas in adults, it is only expressed 
in SCs [63]. It has been shown that experimental 
therapies combining NT-3 and BDNF are able to in-
crease the number of functional synapses, defined 
as the overlapping of the presynaptic (CtBP2 in 
HCs) and postsynaptic (PSD95 in SGNs) markers 
[51]. Another study clarified that BDNF is effective 

postnatally only in vestibular organs, where it is 
not expressed in limiting concentrations. Thus, 
BDNF may not be implicated in the maintenance 
of the organ of Corti. However, NT-3 acts as a lim-
iting factor that influences the cochlear synaptic 
connections. NT-3 overexpression reduces the ABR 
thresholds, increases the amplitude of the ABR 
wave I (P1) and stimulates the regeneration of the 
ribbon synapses [10]. All this evidences suggests 
that auditory and vestibular neurons respond 
equally to NT-3 and BDNF during the embryonic 
stage, but the BDNF importance in the cochlea is 
lost after birth, being NT-3 the most relevant neu-
rotrophic factor in the cochlea.

In addition to the explained neurotrophic fac-
tors, other interesting elements, named axonal 
guidance molecules, were proposed by Brugeaud 
et al. It has been hypothesized, that the ability to 
form new synapses between the SGNs and HCs is 
maintained even in adult stages. However, it is in-
hibited or blocked by axonal guidance molecules 
[64]. As an example, the repulsive guidance mole-
cule a (RGMa) acts as an inhibitor of the neuronal 
fibers elongation [65]. This factor is expressed in 
the cochlear tissues and in the neuronal gangli-
on, in embryonic and adult stages, whereas its re-
ceptor, neogenin, is expressed only in the cochle-
ar ganglion neurons. The RGMa knockdown by 
specific antibodies, increases the amount of new 
neuronal fibers and synapses in the organ of Corti 
explants. Furthermore, RGMa blockage showed to 
improve the pruning process, which is related to 
the maturation of cochlear neuronal connections 
(Figure 5) [64]. Therefore, the expression of RGMa 
in adults may be one of the main factors limiting 
synaptic regeneration between SGNs and HCs.

Future directions and clinical trials

The discovery of the spontaneous regeneration 
of HCs in birds [66] and the similarities between 
avian and human embryonic auditory develop-
ment [67], promoted the development of a  re-
search field aiming to overcome the human audi-
tory regeneration blockage.

Figure 5. Synaptic pattern between hair cells (HCs) and spiral ganglion neurons (SGNs). Without in vitro block-
age of repulsive guidance molecule A (RGMa; Control), only an erratic pattern of innervation is established after  
18 days of HCs and SGNs co-culture (18 DIV). However, after in vitro blockage of RGMa, the cells develop an inner-
vation pattern similar to in vivo neurons after 7 days (7 DIV). Figure modified from [64]
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In this review, we focused on reporting the cur-
rent state of the regenerative research in hearing 
recovery. Stem cell research has enabled remark-
able advances in regeneration, particularly in neu-
ronal cells and synapses. Despite the progress 
achieved, there are certain issues that require 
a  deeper investigation, in order to improve the 
results already obtained, or to develop new ap-
proaches with clinical application.

Direct stem cell transplantation into the co-
chlea, seems to be insufficient to regenerate 
a  substantial number of HCs or reconstruct the 
sensory epithelium. One possible limitation could 
be the restricted control of the cell progenitors 
differentiation. Moreover, some important aspects 
of the development, maturation and function of 
HCs are unknown. For example, the Atoh1 gene 
appears to be sufficient to induce HC differenti-
ation [68]. However, the cascade of signals that 
distinguish the development of vestibular or co-
chlear HCs phenotypes have not been clarified. 
The identification of these factors and molecular 
mediators, may allow improvements in the dif-
ferentiation process of iPSCs and ES toward otic 
lineages, in order to obtain specific cell types and 
have greater control over the proliferation and dif-
ferentiation of progenitors transplanted into the 
cochlea. Nevertheless, those novel cells have to be 
properly organized, regarding their ultrastructure 
and polarity, and be able to restore the organ of 
Corti cytoarchitecture. All these aspects have to 
be further investigated.

We believe that iPSCs will have an important 
role for the development of stem cell-based treat-
ments for hearing diseases. For example, patients 
with gradual or sudden hearing loss may benefit 
from iPSCs-derived HCs, along with a  treatment 
or genetic reprogramming modulating NT-3 and/
or RGMa expression to promote the formation 
of new synapses. However, we have only found 
two ongoing clinical trials regarding stem cells 
and hearing loss. Both trials (NCT02038972 and 
NCT01343394; ClinicalTrials.gov; accessed 5 Sep-
tember 2016) are designed to evaluate the safe-
ty of employing autologous umbilical cord blood 
stem cells in children with early hearing loss, fol-
lowing their auditory response.

Some studies have shown the utility of zebraf-
ish as a model for screening new drugs for hear-
ing therapy [69]. However, no drug discovered or 
tested in this model has yet been used in human 
clinical trials. Another promising model for these 
screenings is the iPSCs. These cells can generate 
different phenotypes of HCs, on which new drugs 
can be tested. Nevertheless, the efficiency for the 
otic precursors differentiation is still insufficient.

For their part, neurotrophin signaling methods 
inducing ribbon synapsis formation should be 

further studied. The neurogenesis of functional 
ribbon systems requires from the neurofilaments 
to reinnervate HCs and then differentiate to form 
the postsynaptic complex, both structurally and 
biochemically. Therefore, extensive studies are still 
required to reveal how neurotrophin signaling in-
duces such specialization. This knowledge would 
define new targets for regenerative therapy in co-
chlear synapses.

Conclusions

In our opinion, hearing regeneration should be 
considered from a multidisciplinary point of view, 
not only focused on stem cells, but also consider-
ing molecular mediators as a strategy to improve 
the outcome. Some combined therapies have been 
shown to be a better approach to treat some dis-
eases than singular therapies, for instance, stem 
cell delivery with gene therapy to treat critical limb 
ischemia [70].

As was extensively discussed in this review, 
the transplantation of stem cell-derived otic pro-
genitors or adult stem cells (as NSCs), results in 
a significant improvement in hearing, which is es-
pecially noticeable in neuronal regeneration [35]. 
However, the cells have to properly migrate to the 
damaged area and promote the establishment of 
functional synaptic connections between HCs and 
SGNs, which could be improved with molecular 
mediators [8, 10, 49, 64] or genetic engineering 
[9]. Moreover, the reconstruction of the cytoarchi-
tecture of the organ of Corti seems an insurmount-
able challenge, because of its complex structure, 
compartmentation, and differences in fluid compo-
sition between chambers [2, 3]. To achieve a theo-
retical full recovery, specific HC subtypes should be 
obtained and integrated in their correct and func-
tional position [20]. Nevertheless, auditory regen-
eration should not be considered as a therapy with 
only two outcomes, full success or full failure, as 
the current experimental therapies have produced 
improvements in hearing performance (partial re-
coveries), without establishing an organized inte-
gration of exogenous cells, for example, with the 
formation of SGNs from stem cells [35].

In our opinion, stem cells can be of great in-
terest to improve the outcome of current hearing 
devices. Co-therapy with otic neural precursors 
and cochlear implants could provide good results 
[45]. With this principle, stem cell therapy could 
increase the number of functional SGNs, as seen 
in the paper by Masahiro Matsumoto et al. [50], 
which at last may be susceptible to stimulation 
by the implant electrodes. For patients with SGN 
degeneration, the auditory brainstem implant is 
the only therapeutic option, but this device pro-
vides a much more limited hearing capacity, com-
pared with cochlear implants [71]. This fact could 
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increase the interest in the combination of cell 
therapy and cochlear implants in the near future.

In conclusion, there are a  lot of issues in the 
hearing regeneration field to be solved, in order 
to develop new therapies that could provide the 
inner ear with new otic stem cells. Those stem 
cells delivery may be a good way to provide cells 
with self-renewal capacity, as they are absent in 
adult cochlea. They may be also a good reinforce-
ment for the cochlear implant. However, stem 
cell-based clinical trials directed at hearing re-
generation have to be launched to validate such 
a hypothesis. 
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