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A B S T R A C T

The rationale behind most car-following (CF) models is the possibility to appraise and formalize how drivers
naturally follow each other. Characterizing and parametrizing Normative Driving Behavior (NDB) became major
goals, especially during the last 25 years. Most CF models assumed driver propensity for constant, safe distance is
axiomatic. This paper challenges the idea of safety distance as the main parameter defining a unique (or natural)
NDB. Instead, it states drivers can adapt to reactive and proactive car following. Drawing on recent CF models
close to the Nagoya paradigm and on other phenomena (e.g., wave movement in Nature), we conceived car
following by Driving to keep Inertia (DI) as an alternative to Driving to keep Distance (DD). On a driving
simulator, three studies (N ¼ 113) based on a repeated-measures experimental design explored the efficiency of
these elementary techniques by measuring individual driver performance (e.g., accelerations, decelerations,
average speed, distance to leader). Drivers easily grasped and applied either technique and easily switched back
and forth between the two. As an overall indicator, all the studies revealed DI trips use about 20% less fuel than
DD trips do.
1. Introduction

Our goals are to point out the empirical fact that the same driver can
follow the same swinging motion of a lead car in two different ways and
to detect which car-following (CF) technique is more efficient. This
empirical fact deserves broader examination, beyond the classic
stimulus-response framework most engineering models adopt to describe
CF behavior. To do so, we review analysis of CF behavior by considering
three stages in the development of psychology: stimulus-response frame
(e.g., Hull, 1943), TOTE unit (Miller et al., 1960) and mental model
concept (Johnson-Laird, 1983).

CF literature divides into Newtonian (or engineering) vs. psycho-
physiological modeling streams (Brackstone and McDonald, 1999; Saif-
fuzaman and Zheng, 2014; Pariota et al., 2016b). During more than 60
years of modeling efforts, their complexity grew and, in part, converged
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by embedding psychophysiological processes into engineering models.
Valuable analytical insights were gained (Brackstone et al., 2002;Wilson,
2008; Wagner, 2011; Pariota et al., 2016b). That division is, however,
artificial and unbalanced, at least for human factors. Efforts focused on
modeling driver behavior forsook the issues behind the need for CF
models: to rationalize traffic flows and ease congestion. This state of
affairs is partly due to misconceiving driving behavior as an essential or
“nature” issue, also embedded in the concept of Normative Driving
Behavior (NDB). Contrarily, how a driver follows another is “nurtured” in
many ways (Hennessy et al., 2011; Saifuzzaman and Zheng, 2014). A
choice then arises: act as if nothing can alter the resulting CF heteroge-
neity, and try to model the mix mathematically (and adopt top-down
measures), or find the specific knowledge drivers must learn to create a
better traffic flow bottom-up.
2017
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1.1. Car following: the stimulus-response frame

At the start of the 20th century, scientific psychology ditched the
instinct paradigm and embraced behaviorism, the new paradigm of
mainstream psychology till the early 1960s (Reeve, 2008). From then on,
human behavior was explained considering exposure to patterns of
stimulus configurations; behaviorists were optimists: given adequate
stimuli, behavior would be predictable. General Motors researchers made
the first attempt to model CF behavior in the early 1950s (Brackstone and
McDonald, 1999). Though not commonly stated, that model likely held
influences from contemporary mainstream physiology and psychology.
Note that, in 1943, Hull’s classic Principles of Behavior expressed the main
parameters concerning human response:

sEr ¼ sHr � D � V � K (1)

This may be phrased as “the excitatory potential (E), or the likelihood
that the organism would produce response r to stimulus s, depends on the
habit strength (H) linking them, the drive strength (D), the stimulus in-
tensity (V) and the incentive (K)” (Hull, 1943). Applying this formula to
the CF situation would yield the classic stimulus-response frame. For
example, the simplest form of the Gazis-Herman-Rothery (GHR) model,
one of the most studied and influential ones, adopts the expression
(Chandler et al., 1958):

anðtÞ ¼ λΔVnðt�τnÞ (2)

This may be phrased as “the response – i.e., acceleration, an(t) – of the
subject car n at time t is computed as the speed difference, ΔVn (t-τn),
between the subject car at time (t - τn), where τn denotes the reaction
time and λ is a sensitivity parameter” (cf., Brackstone and McDonald,
1999). Follower drivers are sensitive to stimulus-variables from the car in
front and this determines their behavior (most often, acceleration).
Though considered now too simple, Eq. (2) was the seed for continuous
improvement in the GHR frame plus the reference for critical and alter-
native visions for CF modeling. For example, the main stimulus drivers
respond to in the GHR model is velocity, but that response is nuanced by
other elements enriching the model, such as memory (of speeds over a
period of time), heterogeneity of reaction time, asymmetries between
acceleration and deceleration and drivers’ focus on more than one
vehicle ahead and on traffic density (Saifuzzaman and Zheng, 2014).

During 1958–1963 the core CF theories and models were born. The
essential issue was choosing the right variables to model the stimuli that
follower drivers respond to. For example, in 1959 Kometani and Sasaki
(cf. Saifuzzaman and Zheng, 2014) proposed that followers do not try to
equal the leader’s speed, but instead keep a minimum safety distance; this
idea, later improved by Gipps (1981), assumed drivers modulate their
speed to stop safely if the driver in front suddenly brakes. In 1959 Helly
set up a family of models ascribing driver acceleration to desired headway
space (e.g., to avoid a front-end crash; cf. Saifuzzaman and Zheng, 2014).
The desired measures concept was taken farther by Treiber and col-
leagues in a series of changes to the Intelligent Driver Model (Treiber and
Kesting, 2013), including desired speed and desired headway space. The
Optimal Velocity model branch first introduced by Bando et al. (1995)
opposed the classic, core follow-the-leader theories (drivers obey regula-
tions to avoid crashes by keeping safety distance to the leader) with the
principle that driver compliance is based on legal velocity. Drivers will
keep the right distance to leaders, and increase speed accordingly and
smoothly, never above the maximum speed limit.

The CF core period yielded another major development: the Action
Point model (Barbosa, 1961; Todosiev, 1963; Michaels, 1963; cf. Pariota
and Bifulco, 2015). Todosiev first used “AP” to describe two basic points
of discontinuity correlating to start of CF acceleration and deceleration
phases. In 1963 Michaels was first to propose a specific psychophysical
mechanism to explain the discontinuity: a lead vehicle’s visual extent
(size) is the specific stimulus for drivers during CF. Drivers are good at
estimating time to crash based on visual angles subtended by a lead
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vehicle (Gray and Regan, 1998). In 1974 Wiedemann issued a more so-
phisticated AP paradigm (cf. Pariota and Bifulco, 2015), upgraded to four
APs (CLDV, OPDV, also suggested by Barbosa and Todosiev, plus ABX,
SDX); though some researchers obtained empirical evidence in favor of
Wiedemann’s model (Brackstone et al., 2002), others found the earlier,
simpler paradigms by Barbosa and Todosiev account for the same data
more succinctly (Pariota and Bifulco, 2015).

After the core period such new models as Fuzzy-logic (Kikuchi and
Chakroborty, 1992; cf. Brackstone and McDonald, 1999) and Cellular
Automata (see Zheng, 2014) were produced and also improvements,
realism, sophistication and integration in the core models, especially by
embedding the psychophysiological AP paradigm in engineering models
(Pariota and Bifulco, 2015; Pariota et al., 2016a; Wagner, 2011). The
excellent revision by Saiffuzaman& Zheng (2014) enabled a nuanced yet
easy tracking of the historical betterment of each branch of models,
including aspects of driver heterogeneity (e.g., reaction time, desired
spacing, speed, acceleration or time headway, driver errors),
multi-vehicle interaction and, notably, introduction of predictions for
free flow, CF, congestion phases and their transitions.

Overall, engineering models expect rational driver behavior during CF
(Bando et al., 1995; Wilson, 2008), “drivers typically increase their ac-
celeration when there is an increase in the spacing…and reduce it in the
opposite situation. The same happens with respect to relative speed.”
(Pariota et al., 2016a; p. 1033). As the general response ¼ sensitivity x
stimulus frame posits, rational drivers are coherent, reactive-prone drivers.

1.2. Car following: the TOTE unit

Early assumptions for CF modeling were rooted in the classic,
behavioristic perspective for which mental life was irrelevant. Yet, when
core CF models originated, psychology’s new paradigm, cognitivism,
emerged. The classic Plans and the Structure of Behavior, analyzing how
plans motivate behavior, by Miller et al. (1960) marked that change. Its
main premise is humans have mental representations of ideal behavior
(events and the environment) and of current behavior (events and cir-
cumstances). The ideal-real incongruence motivates behavior, and the
cognitive mechanism doing that work is the Test-Operate-Test-Exit
(TOTE) unit.

TOTE is a homeostatic, cybernetic control unit viewing humans and
machines as a complex system of hierarchical control loops (Carver and
Scheier, 2012; Wiener, 1950). Classic models in traffic psychology, Risk
Homeostasis Theory (Wilde, 1982) and Zero-Risk Theory (Summala,
1997), describe speed control based on a feedback loop comparing input
(perceptions while driving) and reference values (e.g., target speed).
Consistent with these models, speed variations may be seen as due to a
change in task demand, risk perception or enforcement of speed limits.
Criticism of engineering CF models may be framed here (Boer, 1999;
Ranney, 1999).

To analyze the regulation process (concerning speed, acceleration),
we refer to the tracking-loop idea, based on the closed loop of physical
action (Adams, 1971). Most hierarchical models of driving behavior
describe three performance levels: top-down navigation (e.g., route se-
lection), maneuvring (e.g., reaction to traffic, speed choice, control of
longitudinal guidance) and control (use of gas/brake pedals to achieve
the previous level’s target action) (Horst, 2013). With no adverse
external factors (heavy traffic, curves, fog), driver speed systematically
oscillates around a mean value due to the regulation process. This
oscillation, consubstantial to driving, expresses itself when driving alone,
when car following at constant speed, for high or low speed, and for high
or low visibility. Data shows that stable oscillatory pattern at 1 m/s
around the mean speed adopted (Wille and Debus, 2005; Wille, 2011).

TOTE brings two insights to CF analysis. First, drivers can be more
than reactive followers. They set up and undertake a hierarchy of actions,
and how they stabilize their driving paths links to guidance strategies;
nothing should prevent proactive following. Second, drivers move amidst
a perennial oscillation. This was implicit in early CF theories under the



Fig. 1. Summing and offsetting waves in vertical and horizontal directions. (Videos at: https://drive.google.com/file/d/0B1F_W58F2EWPVTdYaTR0Wkdnbmc/view?
usp¼sharing. and https://drive.google.com/file/d/0B1F_W58F2EWPQk9XUHktUWVoM0k/view?usp¼sharing.)
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AP paradigm (e.g., close following spirals, Brackstone et al., 2002; Par-
iota and Bifulco, 2015; Pariota et al., 2016b; Wagner, 2011). Other
models describe instability typical of transition phases between free-flow
and congestion (Orosz et al., 2004), especially when the leader’s speed
varies (Pariota et al., 2016a). Wille’s finding, reported above, was
striking: the oscillatory pattern comes per se, is systematic, and is near
constant in different driving contexts.
1.3. Car following: mental models

Humans are active and highly adaptive due to an ability to generate
complex, internal models of their environs. In Mental Models, a cognitive
science masterpiece, Johnson-Laird (1983) dares to explain how without
referring to presumed, black box mental algorithms. Humans perceive
real and imaginary worlds, then act by developing specific mental models
of such worlds. Perception, language and general knowledgemay nurture
mental models about these worlds. Johnson-Laird (1983) distinguishes
between two basic types of mental models, physical (the tangible,
including dynamic referents) and conceptual (the abstract); for mental
models to be built up, the information available must be determined and
specific. According to Johnson-Laird, (1983, 2006), our minds hold more
types of mental representations: images (basically portraying one
recognizable facet of a mental model) and propositional representations
of a verbal nature (similar to natural language) verified on a mental
model. Physical mental models are structural analogs of a specific
referent. If I enter a familiar maze and recall “three L-shaped left turns” to
exit, a mental model is heeded. If I enter an alien maze, I am told “when
possible, always turn left” to exit and I do, I am heeding a propositional
representation that I verify onto a perceptual model of the maze gener-
ated dynamically.
1.4. Car following: way forward

CF theories would likely baffle most drivers. They need not hear how
mathematical models portray their driving or why they drive as they do,
currently, as an aggregate of drivers. But we do require a vision (also a
mental model) of the basic dynamics of traffic flow and improvements for
drivers to adopt. A good example of a concrete empirical manifestation of
a theoretical background (Bando et al., 1995) is the Nagoya experiment
by Sugiyama et al. (2008); Tadaki et al. (2013), which found why traffic
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jams arise when bottlenecks (e.g., lane loss) are absent.
Examining road capacity may be misleading. Topologically speaking,

capacity of a bucket is limited; that of a hose (like a road) is not. Road
functionality relies on how flows are ordered. Congested roads express
unreasonably scant capacity so pervasively that a metaphysical label was
earned: phantom traffic jam (Gazis and Herman, 1992). Explaining
phantom traffic jams requires a shift from modeling coupled vehicles;
now “traffic flow is investigated as a dynamical phenomenon of a
many-particle system” (Sugiyama et al., 2008; p. 2). The Nagoya exper-
iment created an artificial jam. Drivers followed each other in a circle of
230 m perimeter. Subjects were instructed only: follow the vehicle ahead in
safety in addition to trying to maintain cruising velocity. This was a propo-
sitional representation enacted dynamically (against the background of
the lead vehicle). Subjects drove and kept free flow. But, when number of
drivers rose to 22, fluctuations tripping backward broke the free flow and
several vehicles stopped for a moment to avert crashing. It does not
matter if tight couplings and platoons come from external reduction of
space (adding cars to a track) or voluntary decision (e.g., driving with less
than 1 s distance to the car ahead, as many really do) (Brackstone et al.,
2002).

At stake here are longitudinal mechanical waves (Cromer, 1977).
Keep safety distance is good advice for coupling cars on a road, but, when
more than two follow, cars platoon into a near perfect medium for wave
transmission (three cars may suffice, Orosz et al., 2004). As Sugiyama
et al. showed, the oscillatory nature of flowing cars eventually spread,
backward, to form a soliton of 25 km/h. Cars platooned so nicely that
drivers, due to the instruction given, could not avoid propagating dis-
turbances. Considering wave mechanics, we either eliminate distur-
bances or tackle the medium transmitting them – the car-following
platoon. Controlling the former is hard, but not the latter (at least in
harmonic form). In mathematics, a Fourier series can represent a
(wave-like) function as the sum of simple sines. Hence, complex waves
may be expressed as the sum of simple waves (French, 1971). Bringing
this to our discussion is Fig. 1. Car 1. A has three elements: the ground
(emitting vibrations), shock absorbers (springs linking chassis and
wheels) and chassis (receiving the final sum of disturbances). The yellow
and green waves sum bottom-up, yielding the pink wave: considerable
oscillation of its chassis results. Car 1. B has the same elements, but its
shock absorbers, now modern and functional, compensate for distur-
bances coming up. A stable chassis (flat pink line) results.

https://drive.google.com/file/d/0B1F_W58F2EWPVTdYaTR0Wkdnbmc/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPVTdYaTR0Wkdnbmc/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPVTdYaTR0Wkdnbmc/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPQk9XUHktUWVoM0k/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPQk9XUHktUWVoM0k/view?usp=sharing


Table 2
Means corresponding to the main variables in Studies 1–3.

Variables Study 1 Study 2 Study 3

DD DI DD DI DD DI

Accelerations (n) 147.9 90.1 158.3 106.6 230.9 55.0
Decelerations (n) 108.5 55.8 100.7 62.6 134.2 31.2
Crashes (n) 3.7 .3 2.9 .2 1.56 .36
Fuel expenditure (l) 19.4 15.0 18.6 15.1 19.7 13.9
Distance to leader (m) 6.6 11.9 7.7 17.6 9.25 19.4
Distance dispersion (m) 3.95 4.74 4.37 5.40 4.57 6.08
Speed (m/s) 3.08 3.05 3.07 3.03 3.07 3.03
Speed dispersion (m/s) 2.57 1.44 2.54 1.44 2.24 .99
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Supplementary material related to this article can be found online at
doi:10.1016/j.tranpol.2017.05.008.

Consider now the horizontal waves in 1. A0. The lead car emits dis-
turbances (green wave) as the follower receives the sum of the waves (red
wave). Who manages the center yellow wave? Answer: the driving
technique, in this case Driving to keep Distance (DD). The follower,
mimicking the leader’s actions, aims for a constant heading distance. But
his/her reaction time intensifies the oscillatory pattern (red wave). Sce-
nario 1. B0 presents an alternative. The follower, Driving to keep Inertia
(DI), has a stable speed that damps the leader’s oscillatory pattern,
thereby compensating for the leader’s disturbance and becoming an
easier car to follow.

To cope with a lead oscillatory car (the shockwave origin), a follower
must be shockwave proof. Reversing the goal of Sugiyama et al. is the
remedy: preventing jams instead of observing their cause. To this end,
effectiveness of DD and DI in promoting steadier travel is compared.
Proposing these orthogonal driving techniques (aim for uniform distance
vs. uniform speed) opposes the NDB concept as a unique driving mode
(Brackstone and McDonald, 1999) and assumes drivers can learn CF
proactively by changing operative mode from automatic to controlled
(Charlton and Starkey, 2011) and applying DD or DI as appropriate.

2. Overview of the studies

DD and DI were tested in three separate, but linked, studies (N ¼
113).

2.1. Goals

All three studies checked if: a) the same driver could adopt DD and DI
when following a lead “disturbing” car; b) drivers could adopt DD and DI
after a three-sentence 10 s instruction; c) DD vs. DI differences were
statistically significant in behavioral, operative terms (accelerations,
decelerations, crashes, speed, distance to leader, fuel usage, etc.). Study 3
also monitored space used by eight virtual “robot” DD drivers following a
DD or DI subject. For psychophysiological (skin conductance) and
cognitive responses (self-assessment concerning affective and personality
factors), which are beyond this paper’s scope, see Lucas-Alba et al.
(2017).

2.2. Subjects

All subjects were licensed drivers (Table 1), mostly students plus
others responding to posters in nearby shops, driving schools, restau-
rants, etc.

2.3. Design

The studies shared the same experimental design, a repeated mea-
sures model controlling for order. Manipulation of driving technique
(DD/DI) was the within-subject factor. Random order (DD/DI, DI/DD)
was the between-subjects factor. Dependent measures concerned per-
formance indicators (Table 2). The controlled laboratory scenario had no
Table 1
Main demographics of subjects in the three Studies.

Variables Study 1: Blanch
(2015)

Study 2: Blanch
(2015)

Study 3: Ferruz
(2015)

N 44 44 25

Gender (n) 24f, 20 m 37f, 4 m 12f, 13 m
Age in years (Mean) 23.3 20.7 21.3
University
education (%)

84.1% 68.2% 100%

Years driving
(Mean)

4.07 2.81 2.68

Km per year (%) 59.1% < 10,000 59.6% < 10,000 44.0% < 10,000
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roadway distractions (other cars, overtaking, merging, etc.). The task was
advancing, for 4 min on a straight simulated road, behind a car accel-
erating and decelerating (until stopping) cyclically, like driving in con-
gested traffic. A 4-min drive is not long, but enough for our purposes.
Initial adaptation to the CF situation in terms of speed and distance to
leader took from 12 to 18 s and was regular afterwards (Figs. 2 and 3).
Naturalistic situations with Instrumented Vehicles consider even shorter
time slots, 30–90 s, for analyzing CF parameters, (Pariota et al., 2016b).

2.4. Materials

A Spanish university faculty laboratory provided a booth for task
execution and an adjoining room with two-way glass and monitor dis-
playing the psychophysiological responses. An early goal was designing a
3D driving simulator to run remotely on a standard PC. React Follower
(Impactware, 2014), based on UNITY software, was developed and
customized to change parameters (speed, frequency of stop-and-go cy-
cles, etc.) externally, via XML. The focus was on materializing study of
DD/DI with a lead car’s differing oscillatory patterns. Subjects saw three
scenarios, always in one lane: A) driving alone on the road (in a natural
position on the driver’s virtual side of the car); B) driving behind another
car traveling at constant speed of 3 m/s (10.8 km/h); C) driving behind
another car traveling with stop-and-go cycles of a sinusoidal function
built at a mean speed of 3 m/s (data is presented only from C). Subjects
could control their car’s acceleration/deceleration only by pressing
up/down arrows on a PC keyboard. When “up” was pressed, the car
accelerated andmaintained constant speed. When “down”was pressed, it
decelerated and maintained constant speed. Each speed change was in
incremental: to accelerate or decelerate continually meant repeatedly
pressing the keys. The simplest option (keyboard) was preferred to
enable all subjects to use the software with basic hardware equipment,
and to level differences in expertise with video game keyboards. The road
had no changes in horizontal or vertical alignment; the only requirement
was altering speed-distance on a straight flat lane. The driving simulator
worked on an HP TouchSmart iq522es with a 23-in. screen, NVIDIA
GeForce 9300 m GS video card and 4 GB RAM, Intel Core 2 Duo Pro-
cessor T6400 2.00 GHz, and Windows 7 operating system. A precision
Apple USB keyboard (PCB DirectIN V2012) was used. The simulator
collected, among others, variables for speed, distance to leader, and fuel
usage (a gross estimate obtained considering variations in speed per
frame, Table 2).

2.5. Procedure

Scenarios A/B were designed as controls. Scenario C subjects were
told to follow the lead car and adopt DD or DI; neither was given an
explicit verbal label. The group first performing DD had this instruction
first: “In the simulated driving scenario that you will enter, you will see a
vehicle ahead of you and it will not move at a constant speed. Sometimes
it will go faster or slower. We ask you to travel behind that vehicle as
closely as possible without risking a crash.” Heeding this, they used the
simulator and then were given the SAM scales. Next, the instruction for
DI was provided: “In the simulated driving scenario, you will see a

https://doi.org/10.1016/j.tranpol.2017.05.008


Fig. 2. Average speed of followers throughout the CF driving path under DD and DI.
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vehicle ahead of you and it will not move at a constant speed. Sometimes
it will go faster or slower. We ask you to travel smoothly behind the
vehicle and maintain a constant speed, without letting the lead vehicle
move too far away.” For the group performing DI first, the instructions’
order was reversed.

3. Overview of main results

Data was subjected to a repeated measure ANOVA having two levels
of driving orientation (DD/DI). Table 2 presents the main performance
results. Comparing the DD/DI means for all factors (accelerations, de-
celerations, crashes, etc.) yielded significant differences in Study 1 (p <

.001), Study 2 (p<.001) and Study 3 (p < .005).
Performance characterized DD mainly as preserving distance to

leader (always shorter and within a smaller span) and sacrificing,
notably, speed dispersion. DD replicated the leader disturbance, hence
transmitting it. Performance characterized DI mainly as preserving speed
dispersion while yielding on distance and distance dispersion. DI damped
the leader’s disturbance, rendering the subject easier to follow. Fig. 2
summarizes average speed in Studies 1–3. During DI driving, subject’s
speed was more uniform throughout the whole CF path; during DD
driving, the same subjects had heavier oscillation around the mean
(Table 2).

With average distance to lead car in Studies 1–3, Fig. 3 shows the
Fig. 3. Average distance from follow
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complementary side of DD and DI strategies. Heeding the DD instruction,
follower distance to leader is shorter. Heeding the DI instruction requires
a damping distance to keep a uniform speed, so more space is left.
Sugiyama et al. (2008) provoked a traffic jam increasing density, as
drivers could not keep the instruction concerning the uniform speed. But
we see that drivers may cope with an oscillating leader by summing or
offsetting so they can proactively avoid transmitting jam-causing waves.

This issue was checked in Study 3 with new simulator measurements:
eight virtual cars followed subjects (who were unaware of it). These
virtual drivers all practiced the traditional DD approach to follow each
other (and the subject). The simulator registered distances from leader to
8th car, and from subject to 8th car. Average distance from leader to 8th
car is similar under DD and DI (DD: M ¼ 117.3 m, SD ¼ 1.93; DI: M ¼
118.95, SD ¼ 8.75). However, as Table 2 shows, distance from subject to
leader is larger under DI. Most important, measuring distances from
subjects’ car to 8th car under DD and DI (DD: M ¼ 108.03 m, SD ¼ 1.93;
DI:M¼ 99.55, SD¼ 3.69) yields significant differences: F(1,23)¼ 30.32, p
< .001. DI furnishes platoon stability and optimized space on the road.
Overall, a good global indicator of performance in Studies 1–3 is virtual
fuel expenditure, always ~ 20% lower under DI.

The next section compares performance measurements based on
mixed ANOVA for each as within-subject factors; DD/DI order and the
Study were between-subject factors.
ers to leader under DD and DI.



Fig. 5. Differences in distance to leader considering technique type and Study.
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3.1. Measures concerning punctual actions: accelerations, decelerations,
crashes

Operational scores were subjected to a repeated measure ANOVA
having two levels of driving orientation (distance, inertia), two action
types (accelerations, decelerations) and DD/DI vs. DI/DD order and the
Study (1–3). More accelerations (M ¼ 131.42) than decelerations (M ¼
82.22) occur overall, F(1,107) ¼ 71.52, p < .0001, ηp2 ¼ .401 (Table 2), as
expected considering real life acceleration/deceleration asymmetry
(Saifuzzaman and Zheng, 2014). More accelerations and decelerations
occur under DD (M ¼ 146.81) than DI (M ¼ 66.83), F(1,107) ¼ 87.39, p <

.0001, ηp2 ¼ .450. This is nuanced by an interaction of factors, F(1,107) ¼
10.59, p < .005, ηp2 ¼ .09: more accelerations (M ¼ 179.0) than de-
celerations (M ¼ 114.6) occur under DD than DI (Acc.M ¼ 83.8; Dec.:M
¼ 49.8), but decelerations differ more.

Though the factor Study’s main effect is not significant (p > .54),
former results are nuanced by it. Number of accelerations/decelerations
differs significantly for DD and DI considering each Study, F(2,107)¼ 10.3,
p< .0001, ηp2¼ .160. The DD/DI differences in S-1 (DD:M¼ 128.2; DI:M
¼ 72.9) and S-2 (DD:M¼ 129.5; DI:M¼ 84.6) are less extreme than in S-
3 (DD: M ¼ 182.8; DI: M ¼ 42.9). This effect yields a second order
interaction, including event type – accelerations and decelerations,
F(2,107) ¼ 4.30, p < .05, ηp2 ¼ .074 (Fig. 4). DD/DI differences in accel-
erations and decelerations are more extreme in S-3.

More crashes always occur under DD (M ¼ 2.72) than DI (M ¼ .31),
F(1,107) ¼ 56.7, p< .0001, ηp2 ¼.346 (Table 2). The factor Study presented
a marginal effect on crashes, F(2,107) ¼ 2.79, p< .07, ηp2 ¼ .049, but this is
nuanced by interaction with driving technique, F(2,107) ¼ 3.35, p < .05,
ηp
2 ¼ .059. Difference in number of crashes is larger in S-1 (DD:M ¼3.66;
DI: M ¼.32) and S-2 (DD: M ¼2.91; DI: M ¼ .23) than in S-3 (DD: M ¼
1.59; DI: M ¼ .38).
3.2. Referential measures: distance to lead car

Average and dispersion measures of distance to leader were subjected
to a repeated measure ANOVA having two levels of driving technique
(DD/DI), and DD vs. DI order and the Study (1–3). Mean distance to lead
cars differs according to driving technique, more under DI (M ¼ 16.26)
than DD (M ¼ 7.84) overall, F(1,107) ¼ 138.43, p < .0001, ηp2 ¼ .564
(Table 2). The Study also presents differences, F(2,107) ¼ 10.06, p <

.0001, ηp2 ¼ .158; S-2 (M¼ 12.68) and S-3 (M¼ 14.26) do not differ from
each other (p > .19), but both differ with S-1 (M ¼ 9.22; p < .001). The
two factors give way to an interaction, F(2,107) ¼ 5.35, p < .01, ηp2 ¼ .091:
differences between S-1 vs. S-2 and S-3 are more acute for DI (Fig. 5).
Fig. 4. Differences in operation consi
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Order also reveals as significant the between-subject factor, F(1,107) ¼
4.81, p < .05, ηp2 ¼ .043, distance being overall greater with DI/DD (M ¼
13.10) vs. DD/DI (M ¼ 11.01). This effect is nuanced by interaction with
driving technique, F(1,107) ¼ 7.96, p< .01, ηp2 ¼ .069: when subjects heed
the order DI-DD, distance to leader is greater under DI (M ¼ 18.31) than
when the order heeded is DD-DI (distance under DI, M ¼ 14.21), while
distance to leader when driving DD is always similar (DI-DD,MDD¼ 7.87;
DD-DI, MDD ¼ 7.81). Complementarily, dispersion of distance to leader
differs according to driving technique, more under DI (M ¼ 5.40) than
DD (M ¼ 4.30) overall, F(1,107) ¼ 28.63, p < .0001, ηp2 ¼ .211 (Table 2).
The Study also presents differences, F(2,107) ¼ 3.74, p < .05, ηp2 ¼ .065: S-
2 (M ¼ 4.89) and S-3 (M ¼ 5.31) do not differ from each other (p > .25);
neither do S-1/S-2 (M ¼ 4.35; p > .08), but S-1 and S-3 do (p < .01).
3.3. Referential measures: speed

Average and dispersion measures of speed were subjected to a
repeated measure ANOVA having two levels of driving technique (DD/
DI) and DD vs. DI order and the Study (1–3). Mean speed differs
depending on driving technique, more under DD (M¼ 3.08) than DI (M¼
3.04) overall, F(1,107) ¼ 46.66, p < .0001, ηp2 ¼ .304 (Table 2). The Study
also presents differences, F(2,107) ¼ 5.72, p < .005, ηp2 ¼ .097: S-2 (M ¼
dering technique type and Study.



Fig. 6. Differences on speed dispersion for DD/DI considering order and Study.
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3.05) and S-3 (M¼ 3.05) do not differ from each other (p> .63), but both
differ from S-1 (M ¼ 3.07; p < .01). And the order presents differences,
F(1,107) ¼ 12.60, p < .001, ηp2 ¼ .110: drivers starting with DD (M ¼ 3.07)
drove faster overall than drivers starting with DI (M¼ 3.05). This effect is
nuanced by an interaction, F(1,107) ¼ 8.82, p < .005, ηp2 ¼ .076: when
subjects began with DI, speed was first low under DI (M¼ 3.02) and then
higher under DD (M ¼ 3.07); however, when subjects began with DD,
speed was equally high under DD (M ¼ 3.08) and DI (M ¼ 3.06).

Dispersion measures of speed yield a strong main effect, F(1,107) ¼
305.43, p< .0001, ηp2 ¼ .741 (Table 2); dispersion is clearly higher under
DD (M ¼ 2.45) than DI (M ¼ 1.29). The Study also presents differences,
F(2,107)¼ 8.51, p< .001, ηp2¼ .137: S-1 (M¼ 2.01) and S-2 (M¼ 1.99) do
not differ from each other (p> .82), but both differ from S-3 (M¼ 1.63; p
< .001). Finally, a second order interaction of these variables is observed,
F(2,107) ¼ 3.18, p < .05, ηp2 ¼ .056 (Fig. 6).
3.4. Overall measures: fuel consumption

Liters of virtual fuel used were subjected to a repeated measure
ANOVA having two levels of driving technique (DD/DI) and DD vs. DI
order and the Study (1–3). Sound differences were noted in fuel used,
more under DD (M ¼ 19.23) than DI (M ¼ 14.65) overall, F(1,107) ¼
429.4, p < .0001, ηp2 ¼ .801 (Table 2). This is nearly 24% less fuel usage.
Fig. 7. Differences in fuel consumption fo
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This effect is nuanced by the Study, F(2,107) ¼ 8.39, p < .0001, ηp2 ¼ .136.
Fuel usage under DD and DI is more extreme in S-3 than S-1/S-2: dif-
ference in S-3 ¼ 5.86 l; in S-2 ¼ 3.53 l; in S-1 ¼ 4.34 l. A second order
interaction occurs too, F(2,107) ¼ 4.50, p < .01, ηp2 ¼ .078 (Fig. 7).

4. Discussion

DI drivers perform more steadily, and are easier to follow (even for
DD virtual drivers). Statistical analysis confirms the main results under-
lined here concerning characterization of performance and operative
indicators (Table 2). All three studies show sound differences in these
factors, always in the same direction depending on technique being
heeded. First, all drivers can drive under DD/DI mode when following a
lead swinging car and keep it permanently as requested (not return solely
to DD or another “natural” way of driving after a while). Second, drivers
assume these techniques easily after a 10 s instruction (a few sentences or
a short video). Third, differences in behavioral, operative terms (accel-
erations, decelerations, crashes, speed, distance to leader, fuel usage,
etc.) are statistically significant. DI and DD techniques are basically
orthogonal modes.

Provided drivers get proper instruction, DI drivers can be a determi-
nant and act proactively as a bottom-up element against traffic flow’s
oscillatory nature. In a similar vein to Wiener (1950), one may say each
r DD/DI considering order and Study.



Fig. 8. Performance of a proficient driver subject under DD and DI.
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driver’s role can be essential in bringing order to the natural entropy of
such dynamic systems as traffic flow. Drivers can mentally model the
present dynamics of traffic ahead and damp oscillations – not contribute
to the problem, but to the solution. Henceforth, our empirical findings
may be formally described as:

ωn ¼ ωn�1þiωn (3)

where, ωn is the wave corresponding to movement of car “n” in the
platoon, ωn�1 is the wave corresponding to movement of the preceding
car, and iωn is the imaginary wave enacted by mental endeavor (flow
ordering strategy) corresponding to car “n” in the platoon. Human and
automated drivers can move according to the same CF strategies as other
animals do in Nature. For example, pine processionary larvae
(T. pityocampa) can turn in a circle one after another for 12 consecutive
hours before disaggregating (Fitzgerald, 2003).

4.1. Potential relevance of training and education in learning DD/DI

Results show differences concerning the Studies as factor and the DD-
DI vs. DI-DD order. Subjects in Studies 1–3 received the same main in-
structions about the driving techniques. But compared with Studies 1 and
3 (short sentence describing the procedure), Study 2’s instruction was a
short video on how phantom traffic jams emerge and how to prevent
them by applying DD or DI. The main recommendation was embedded
(written) at the video’s end. Also, the description in Studies 1 and 3 was
direct, even more directive, than Study 2’s instruction (Blanch, 2015).

Before the experiment proper, subjects in Studies 1 and 2 were invited
to check distance to the lead car (some purposely crashed to verify the
limit). Subjects in Study 3 were left to their own perceptions about how
to follow the lead car. Although DD/DI differences were sound in all
Studies, due to differences among the studies (number of crashes, dis-
tance to lead car, speed variations, fuel consumption) that seemed related
to instructions, effect of instruction procedures deserve attention. More
demographics may also be compared. These considerations push future
efforts toward analyzing the role of the premises within the AP theoret-
ical background (how drivers compute DI car following in perceptual and
cognitive terms) and the role of expert vs. novice drivers on the technique
applied.

4.2. Changes as a consequence of order followed

Though the technique type applied first may have affected assimila-
tion or contrast of magnitudes (speed, distance), the global set we
analyzed (including psychophysiological and self-reports) points to a
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statistical effect that tends to compensate under different conditions
(sometimes assimilation, sometimes contrast). Order, as such, is not a
theoretical variable for us, just a methodological control. If perceived as
relevant, this effect should be theoretically analyzed, then introduced
and manipulated for better appraisal.

4.3. Limitations of the studies

The set of studies is not without limitations. Most subjects were young
drivers at university. That weakness may be a strength as acquiring both
driving techniques was easy despite their inexperience. Does experience
(habit) improve or worsen performance (especially under DI)? Future
studies should check. Another issue is driver heterogeneity. Endogenous
factors (gender, age, personality and individual differences, transient
states, specific travel goals and timing) may introduce considerable
changes in CF (Hennessy et al., 2011; Saifuzzaman and Zheng, 2014;
Wille, 2011). Though the experimental manipulation of DD and DI con-
ditions led to sound differences, subjects were heterogeneous too. Fig. 8
shows performance of one subject under DD and DI throughout the task.
Y-axis shows speed (m/s) and distance (m); X-axis shows time (s). This
proficient driver performed as requested: uniform speed under DI and
uniform distance under DD. Other subjects were less good, with a DI
output that was a “mild” version of DD (too many ups and downs in
speed, close distance to leader).

Also materials may improve. Our simulator used PC keys, not a
realistic driving environment with gas/brake pedals. The leader’s speed
(10.8 km/h) was set up thinking of a critical, jammed situation – not so
uncommon and applicable to emergency situations – to gain clear
observation of the effects after the two strategies adopted to follow a
swinging leader. Recently, Carrasco (2017) tested DI on a circular track
(30 m radius) with six real cars, similar to the Nagoya experiment. The
first was an automated car driving with cycles of acceleration (till
25 km/h) and deceleration (to a full stop); the second was the subject car
(with no instruction in Trial 1, and a short DI instruction, similar to ours,
in Trial 2); the other cars were followers with no instruction (driving
“naturally”). In only three complete loops around the track, driving with
no instruction equates to DD and reproduces the backward soliton wave
instability (as in Nagoya); driving with DI instruction keeps free flow
behind the subject’s car (Carrasco’s original sessions are at https://drive.
google.com/file/d/0B1F_W58F2EWPVFhMbGFDMWxMUms/view?
usp¼sharing). Like Carrasco (2017), our aim is showing as possible
quicker stabilization of the following platoon; however, a wider range of
speeds should be tested.

Similarly, the leader’s oscillation was constant (a harmonic wave) so
the DD/DI instruction was easy to apply (e.g., considering the basic

https://drive.google.com/file/d/0B1F_W58F2EWPVFhMbGFDMWxMUms/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPVFhMbGFDMWxMUms/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPVFhMbGFDMWxMUms/view?usp=sharing
https://drive.google.com/file/d/0B1F_W58F2EWPVFhMbGFDMWxMUms/view?usp=sharing


Fig. 9. Fundamental diagram of traffic flow (DD vs. DI).
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parameters fixed by the classic models under the AP paradigm; Pariota
and Bifulco, 2015; Wagner, 2011). But most studies under the AP para-
digm analyze how followers adapt to a relatively stable leader. Pariota
et al. (2016a) proposed a CF model based on two inputs: follower’s
desired equilibrium space and speed of leader. When this speed is
non-constant, “the follower tries to achieve the desired spacing, but the
process is continuously perturbed by the bias produced by the leader” (p.
1036). At present, drivers are supposed to practice CF in the “natural”
(desired) way. Yet, rather than assume “naturally endowed” CF behavior,
drivers are taught DD: roadway “capacity” has been designed considering
couplings of speed-safety distance and number of expected drivers (per
lane and kilometer) between locations, then driving schools teach DD,
and road signs reinforce it as does surrounding traffic – not always safely
(Brackstone et al., 2002; Hennessy et al., 2011). What would result if car
drivers learned DI instead, to aim for uniform speed like teamsters do?
(Ossen and Hoogendoorn, 2011). Despite our studies’ narrow speed
range, we know drivers can learn and apply DI. The challenges now are
determining driver ability to apply DI under differing speed-distance CF
contexts and calculating the gains if DI becomes commonplace.

5. Concluding remarks

Modern societies face this hazard: breathing eliminates part of vehicle
emissions, which has already takenmore lives than road crashes (Caiazzo
et al., 2013). Pollution and jams are highly linked because acceleration
and deceleration are the most contaminating (Tong et al., 2000). This
paper aims to frame CF models by widening their potential ties to human
behavior, with our first attempts focused on how individual drivers may
improve traffic flows. Drivers learn to stay close behind leaders, but
changing this thinking can ease jams if drivers combine safety distance
with efficiency distance needed to damp without stopping. Abstract as it
seems, our subjects did it.

Inspired by Smeed’s classic accounts (1968), Fig. 9 presents two ex-
tremes of the fundamental traffic flow diagram. The black curve shows
the typical relationship between velocity and flow under DD. Point A is
maximum flow at the speed limit (e.g., 120 km/h). Forced traffic begins
at B. Maximum flow is attained at M. B and M are coincident. Ideally,
maximum flow at the corresponding speed (90 km/h) should be kept,
but, given the oscillatory nature of traffic flows (reaction time, summing
waves), this state cannot last long; a jam occurs and speed and flow
decrease. The green curve represents DI. A0 is maximum flow at the speed
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limit (e.g., 120 km/h). Forced traffic begins (~ 20–25 km/h) at B0.
Maximum flow is attained at M0 (~ 70 km/h). B0 and M0 are not coinci-
dent so M0 is not as precarious as M and can last much longer. The bad
news: M0 is lower than M, so capacity seems undermined; but M will not
last long. The good news: DI should promote a stable flow lasting longer.
Angle Φ represents level of flow stability: as the efficiency factor in-
creases the maximum flow decreases, but gets more stable (this is
graphically represented by a family of curves and the Φ parameter).

Conceptual models need more physical and mathematical complexity
to depict the road network (multiple lanes, curves, hills, various speeds,
overtaking, merging). However such analysis progresses, and with the
right driver training and education (in a growing ICT context), the role of
individual drivers in modern traffic deserves review. Small, simple
changes may effect global transformations if we all adopt them. Washing
hands, for instance, revolutionized sanitation. Teaching drivers DI may
similarly transform traffic flows. This pertains to automated cars too,
which may be programed to leave extra space with the vehicle ahead. If
humans grasp the basic principles of flow stability, they will also un-
derstand how automatons may drive. Longitudinal mechanical waves are
instruments of Nature that serve different types of movement, and robots
are not free of such allegiance. Perhaps under this common stance inte-
grating human and automated driving will not be difficult.
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