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Abstract

The sequencing of the Human Genome has opened a new era of opportunities
in the field of Bioinformatics. Now more than ever, the biological knowledge
about the human being continues to widen thanks to immersion and research
dedication in multiple interdisciplinary fields at different scales: Transcriptomics,
Genomics, Metabolomics, Proteomics, etc. Both governmental organisations and
different international institutions have made strong economic investments in
search of providing their research centers and laboratories with the best possible
equipment. The explosion of the number of experiments carried that have been
carried out in these last 2 decades on the different technologies of sequencing
at transcriptomical level (mainly microarrays and RNA-seq) has meant the
collection of an enormous amount of information that does not stop growing.
Over time, many of these isolated experiments have been shared with the scientific
community both publicly and under controlled access. In this sense, the potential
of the information stored in such repositories is extremely high and the biological
knowledge to be derived may still be an unknown to be revealed. This is due in
large part to the fact that the experiments carried out usually have a very reduced
number of samples, which implies the extraction of specific conclusions dependent
on the characteristics of the cohort of samples analysed. Bringing together all
the multilevel biological information on the same disease, one could collect a
much broader and more robust set of data from which to extract more significant

results at the biological level and widely supported at the statistical level. In
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addition to glimpsing general conclusions about the most prominent biomarkers
of a disease, there is the possibility of immersing oneself in the search for more
specific biomarkers, taking into account clinical data that offer a much closer
approach to the patient and to that what is increasingly demanded in healthcare:
the pursued dream of personalised medicine. In this sense, advanced strategies for
the efficient integration of information and the selection of reliable biomarkers
are increasingly valued and necessary in order to advance the understanding,
knowledge and treatment of diseases. Although the methodological approaches
proposed in this thesis can be extrapolated and applied to any type of disease
for which there is a relevant number of samples, the research carried out has
focused on improving the diagnosis of skin cancer. This cancerous disease is
biologically very heterogeneous and its incidence is increasing worldwide, so
there is great alarm and social concern. Since cancer is essentially considered
a disease on genetic level, all efforts have been made to extract knowledge from
two main sources of information at the transcriptomic and genomic levels: gene
expression levels and copy number variations. Besides providing some insights
into the most informative biomarkers for knowing skin cancer predisposition,
this dissertation opens new opportunities to develop innovative methodological
approaches that consider highly heterogeneous data, quantified in multiple omic
viewpoints and leading to the establishment of greater awareness and knowledge

about the analysed diseases.




Resumen

La secuenciacion del Genoma Humano ha abierto una nueva era para una
disciplina como la Bioinformatica. Ahora mas que nunca, el conocimiento
biolégico sobre el ser humano sigue ensanchandose cada vez més gracias a
la inmersién y dedicacién investigadora en multiples campos interdisciplinares
a diferentes escalas: Transcriptémica, Gendémica, Metabolomica, Protedmica,
etc.  Tanto organizaciones gubernamentales como diferentes instituciones
internacionales han realizado fuertes inversiones econémicas en busqueda de dotar
sus centros de investigacion y laboratorios con los mejores equipamientos. La
explosion del nimero de experimentos realizados sobre las diferentes tecnologias
de secuenciaciéon a nivel transcriptomico que se han ido sucediendo en estas
2 ultimas décadas (principalmente microarrays y RNA-seq) ha supuesto la
recoleccién de una cantidad ingente de informacién que no para de crecer. Poco
a poco, muchos de estos experimentos aislados han sido compartidos con la
comunidad cientifica tanto de forma piiblica como bajo acceso controlado. En
este sentido, el potencial de la informacién alojada en dichos repositorios es
extremadamente alto y el conocimiento biolégico a derivar puede seguir siendo
aun una incégnita. Esto es debido en gran parte a que los experimentos llevados
a cabo usualmente cuentan con un nimero muy reducido de muestras, lo que
supone la extracciéon de conclusiones muy concretas y adaptadas al cohorte de
muestras analizado. Aunando toda la informacion bioldgica posible sobre una

misma enfermedad, se podria extraer un conjunto de datos mucho mas amplio
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y robusto del que poder extraer resultados mas significativos a nivel biol6gico
y ampliamente sustentados a nivel estadistico. Ademads de llegar a obtener
conclusiones mas generales sobre aquellos biomarcadores mas prominentes a
informar mejor sobre el padecimiento de una enfermedad, es posible sumergirse en
la busqueda de biomarcadores mas especificos teniendo en cuenta datos clinicos
que ofrezcan un acercamiento mucho mayor al paciente y a aquello que se reclama
cada vez mas en la atencion sanitaria: la medicina personalizada. En este sentido,
estrategias avanzadas para la integracion eficiente de la informacién y la seleccion
de biomarcadores fiables son cada vez mas valoradas y necesarias en pos de
avanzar en el entendimiento, conocimiento y tratamiento de las enfermedades.
Aunque las aproximaciones metodoldgicas planteadas en esta tesis pueden ser
extrapoladas y aplicadas a cualquier tipo de enfermedad sobre la que exista
un numero relevante de muestras, la investigacion realizada se ha centrado
en la mejora del diagnostico del cancer de piel. Se trata de una enfermedad
cancerosa altamente heterogénea y cuya incidencia es cada vez mayor a nivel
mundial, por lo que existe una gran alarma y preocupacion social. Dado que
el cancer se considera fundamentalmente una enfermedad de los genes, todos
los esfuerzos han sido destinados a extraer conocimiento desde principalmente
2 fuentes de informacion a nivel transcriptémico y gendémico: la expresion de
gen y el nimero de copias de gen. Finalmente, ademas de proporcionar ciertas
averiguaciones sobre aquellos biomarcadores mas informativos para conocer la
predisposicion a padecer cancer de piel, esta tesis abre nuevas oportunidades
para desarrollar innovadoras aproximaciones metodolégicas que consideren datos
altamente heterogéneos, cuantificados en multiples puntos de vista 6micos y
liderando al establecimiento de una conciencia y un conocimiento mayor sobre

las enfermedades analizadas.




1. Introduction

1.1. Thesis Goal

The main goal of this thesis aims to contribute in the development of advanced
computing techniques for the processing of biological data in the field of
Bioinformatics and Biomedical Engineering. In particular, this thesis focuses on
the application of efficient strategies by means of the integration of heterogeneous
information sources for the determination of reliable biomarkers which help
in improving the diagnosis of complex and cancerous diseases. All different
methodological approaches proposed in this dissertation have been designed and

assessed on a specific cancerous disease: the skin cancer.

1.2. Problem & Motivation

The decryption of the Human Genome has not only marked a before and after
in the biological analysis of the human being. Its achievement has meant the
opening to an endless number of human biological studies, offering the possibility
of collecting and analysing a myriad of patient samples presenting evident signs
of suffering from certain pathologies. Different laboratories and research groups
around the world have made significant efforts to elucidate those more prominent
biomarkers to better inform about the disease or predisposition to suffer from

certain diseases. However, these initiatives are strongly limited to the availability
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of small repertoires of samples that make it difficult to generalise and state their
biological implication as well as their significance and statistical robustness to
interpret those obtained results. Over the years, both publicly and protectively
accessible databases have appeared, sharing and making those data available to
the scientific community for experimental analysis. Thus, the main challenge now
lies in obtaining the most reliable, robust and meaningful results possible based
on the consideration of multiple samples from different experiments achieved
for the same disease. As an immediate consequence, multiple bioinformatics
issues appear to be treated and considered in order to effectively analyse an
integrated dataset made up of all those isolated experiments. In order to show
the potential of the different strategies of information integration and biomarker
selection proposed in this thesis, skin cancer was chosen as a study case. And,
because the cancer is considered a genetic disease, the experimental and research
efforts carried out throughout this thesis focused on using information directly
related to this fact: gene expression levels and gene copy number variations. As it
will be seen below, skin cancer is a highly heterogeneous and complex cancerous
disease. In this sense, with the purpose of facing this problem, the improvement
of the reliability of the diagnostic process is postulated as fundamental, being
able to be supported by automated computational tools that complement the
subjective judgment of medical experts with an objective mathematical point of
view. This experimental part has been extensively assessed by applying multiple

machine learning techniques.

1.3. Thesis Aims and Contributions

In this section, the main objectives and goals together with the most remarked

contributions of this thesis are highlighted.
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1.3.1. Thesis Aim and Objectives

Although there are more and more studies that show promising results pointing
to specific biomarkers better informing about multiple complex and cancerous
diseases, it is true that there is a global concern about both their reliability at the
level of generalisation and global occurrence and their particular and differential
appearance in different cohorts of patients.

The main motivation behind this dissertation is to make available a range
of advanced computing strategies to the scientific community for integrating
heterogeneous biological data. This fact is thought to facilitate the discovery
and emergence of more representative and discerning biomarkers of the analysed
disease. By having paid all the attention and focus on the analysis of skin cancer,
the main objectives have been specialised in order to improve the detection and
diagnosis of this cancerous disease.

Some of the issues addressed in this thesis take into account the following:

o Is it possible to obtain a widespread diagnosis of skin cancer on the basis of
the biological data available and accessible to the scientific community?
And if so, is there a repertoire of biomarker candidates reliable and

contrasted enough to describe and help diagnose this heterogeneous disease?

o What technological, scientific and design considerations are essential and
required to establish a stable pipeline that allows such biomarkers to
emerge? And in that case, what are the real possibilities of effectively
integrating biological data from such diverse sources? What feature
extraction methods can provide the most informative and discerning

biomarkers that facilitate the classification process?

« In this last point, how is it possible to efficiently train a classifier where the
generalisation model has to take into consideration multiple pathological

states of skin cancer?
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The research work carried out during the development of this thesis confronts
these questions broadly in search of being resolved by presenting advanced
computational strategies that bring light to these uncertainties raised. The
proposed strategies address several essential and standardised parts of automated
data processing such as preprocessing, dimensionality reduction, feature selection

and/or classification.

1.3.2. Contributions of the Thesis

The main contribution of the thesis is the development of efficient strategies for
the integration of heterogeneous data and the selection of reliable biomarkers that
facilitate the research work of the scientific community when dealing with large
studies. It should be noted that the methodological approaches proposed here
can be applied to a wide range of diseases by using machine learning techniques.
Extensively, under the assessment of a specific study case such as skin cancer,
some insights are provided about biomarkers that emerged from our analysis
taking into consideration gene expression and copy number variation. All these

points will be discussed in more detail in the related chapters.

1.3.2.1. Contributions to Skin Cancer Diagnosis

1. Proposing a panel of informative biomarkers on the main skin cancer

pathologies at epidermal level (Chapter 3).

2. Proposing a panel of informative biomarkers that additionally discern some

skin diseases considered pre-cancerous of skin cancer (Chapter 4).

3. Proposing a panel of highly informative biomarkers that may be responsible

for the progression of cutaneous melanoma (Chapter 5).
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1.3.2.2. More General Contributions

1. Proposing different effective integration pipelines dealing with
heterogeneous information sources based exclusively on gene expression
from multiple microarray platforms (Chapter 3) or considering both

microarrays and RNA-seq platforms (Chapter 4).

2. Proposing a methodological approach for the efficient selection of
informative biomarkers for multiple pathological states of skin cancer

(Chapter 4).

3. Proposing an integration pipeline where heterogeneous information is

quantified in gene expression and copy number variation (Chapter 5).

1.4. QOutline

In this Chapter 1, the main objectives and motivations revolving around
the achievement of this thesis have been presented, also motivating the
accomplishment of various milestones translated into various contributions at
the methodological level and on findings about the diagnosis of skin cancer.

In Chapter 2, a brief exposition on some fundamental concepts for the efficient
treatment of the biological information used in this research is carried out. In
addition, information is included on the repositories of inspected data, the types
of biological data used and the pathological states of skin considered for the
development of the different studies approached during this thesis.

In Chapter 3, a study on the integration of different microarray platforms is
presented. In this first work, the informative potential stored in the microarrays
for the extraction of knowledge about the analysed disease is highlighted and an
innovative biomarker selection strategy is established, considering genes robust

to the influence of diverse and potential present batch effects. Particularised to
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the problem of skin cancer analysed in this dissertation, the 17 most informative
biomarkers are indicated to discern up to 7 pathological states of skin considering
5 tumor states (basal cell carcinoma, squamous cell carcinoma, Merkel cell
carcinoma, cutaneous melanoma in primary state and cutaneous melanoma in
metastatic state).

In Chapter 4, an extension of the work carried out and presented in chapter
3 is presented, which is reflected in several points: the selection of data
from additional repositories, the additional consideration of RNA-seq data to
co-integrate with microarray data, the introduction of skin diseases considered
precancerous of the skin (psoriasis and actinic keratosis) and the implementation
of an algorithm of selection of informative biomarkers to discern different
pathological states simultaneously.

In Chapter 5, a new methodological extension of the previous works is
made. In the first place, samples of healthy states (normal skin and moles)
and melanomas (primary and metastatic) already used previously are considered.
Next, the integrated dataset is reinforced with a cohort of 73 patients suffering
from cutaneous melanoma, for which quantified biological data are available at
the transcriptomic level (gene expression from RNA-seq data) and genomic level
(copy number variation from whole exome data). The methodological approach
presented allows biomarkers to be selected based on the informative correlation
between the level of expression and copy number alterations of these genes.

In Chapter 6, based on the findings revealed, some conclusions and a series

of suggestions are indicated to be carried out in the future.

1.5. Summary

This chapter was intended for providing an introduction of the main aims and

motivations behind this thesis, thus remarking an overview of the research
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contributions as well as a brief exposition of the content included in the next

chapters.







2. Methological Review and

Fundamentals

2.1. Designing Customised Bioinformatics Pipelines

In the pursuit of extracting underlying knowledge from biological data, it is
absolutely essential to become aware that a series of bioinformatics tasks are
necessary for their correct determination. Traditionally, bioinformatics pipelines
have been guided to simply understand which patterns or biomarkers best define
or distinguish the object of analysis (human, mouse, plant, etc.), considering 3
standardised steps: preprocessing, experimental analysis and results. However,
when it is intended to bring together as much information as possible to
be integrated and extract additional knowledge such as the most informative
biomarkers for diagnosis, these steps have to be extended on both sides of the
simplest classical pipeline. A standard pipeline to meet these requirements
involves the following steps: identification and acquisition, pre-processing,
post-processing, feature selection and classification. FEach of these pipeline
phases can be custom-designed according to the scope and purpose of the study
approached by considering different strategies and tools for implementation. For
this reason, the studies presented in Chapters 3, 4 and 5 require different
considerations for their implementation. Although some key concepts will be

used later, here they are briefly introduced and specific information for the
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accomplishment of the studies is included.

2.1.1. Identification & Acquisition

This first step requires an exhaustive search for those data that are intended to be
analysed. This implies taking into account of which biological nature is (sample
type) and how this is acquired (sequencing technology), where these data are
accessible (webdata repositories) and how much can be acquired from each type

of samples that are stored there (skin pathological states).

2.1.1.1. Sample Type

In general, and knowing that there may be other forms of biological origin, the
choice of the type of sample for the experimental analyses was one of the most
important decisions: tissue or cell line. After inspecting the current possibilities,
it was decided to analyse those samples that are extracted from tissue specimen,
following the rules established by ICD-10 [1]. Specifically, this assumes that those
samples are usually extracted by means of punch biopsies or as slice sections.
Special care was taken in order to not select samples on which drugs were applied
or viruses were evaluated. Similarly, those skin tissues corresponding to trunk,

upper limb (including shoulder) and lower limb (including hip) were selected.

2.1.1.2. Sequencing Technology

As previously introduced, this thesis has focused on the analysis of gene expression
and alterations in gene copy numbers for the presentation of the results. In
this sense, and based on the platforms of available data for the analysis of
this type of biological variables, we considered the 2 technologies with the
greatest number of experiments and co-existing at present: hybridisation-based
microarrays (those experiments based on array) and high-throughput sequencing

(those experiments based mainly on Next-Generation Sequencing (NGS) such as
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RiboNucleic Acid sequencing (RNA-seq) and Whole Exome Sequencing (WXS)).
For the experimental analysis of the studies carried out for the presentation of
this dissertation, gene expression values and Copy Number Variations (CNVs)
were specifically considered and used. The different sequential processes for
obtaining gene expression (from microarrays and RNA-seq) and somatic copy

number variation (from WXS) are briefly introduced here:

o Microarrays: The main foundation of this technology is based on DNA
hybridisation process, taking into account the 4 different nucleotide types:
Adenine (A) binding to Thymine (T) and Cytosine binding to Guanine (G).
In order to create the microarray for further analysis, different sequential
events have to take place. First of all, the oligonucleotides probes are
adhered to the array surface. Following, each patient sample is subjected
to fluorescent lighting and added to the array. As a consequence, that
non-hybridised material to each probe is removed. Later, the hybridised
material is subjected to a laser whose reflected light is detected by a scanner.
At this point, the surface of microarray can be scanned in order to obtain a
microarray image. The proportion of hybridised sample can be quantified
by means of a process analysis of this image and the results are stored in a
CEL file. This raw files contain values quantified in gene expression values.

The main manufacturers of this technology are Affymetrix [2] and Illumina

13].

« RNA-seq: Based on the use of NGS, this technology reveals the presence
and quantity of RNA in a biological sample at a specific temporal
moment. In this sense, the use of this current alternative is thought to
monitorise the continuous changes within the cellular transcriptome at
gene expression level, among others. The RNA sequencing process mainly

considers three general steps for the obtaining of reads: RNA isolation,
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RNA selection/depletion and ¢cDNA synthesis. Following, based on guided
genome, these raw sequence reads can be aligned by means of a reference
genome. At this point, RNA-seq read counts can be obtained by counting
the number of reads mapping to each locus in the transcriptome assembly
step [4]. Finally, correspondence and conversion to gene expression values
is achieved under application of conditional quantile normalisation [5, 6].

Nowadays, Illumina [3] has already monopolised the RNA-seq market.

« WXS: This technology is essentially a genomic technique for sequencing
the exome, which implies the analysis of the protein-coding region of genes
in a genome. These regions are known as exons and only constitute the
1% of the human genome. The identification of genetic variants altering
protein sequences can be achieved by means of its analysis. This is the
main reason to consider this technology for determining somatic CNVs and

will be briefly justified in Section 2.1.2.2.

2.1.1.3. Webdata Repositories

Up to 3 web repositories were consulted for the collection of biological samples:

« National Center for Biotechnology Information - Gene Expression
Omnibus (NCBI GEO): This international public repository archives
and freely distributes microarray, next-generation sequencing (NGS) and
other forms of high-throughput functional genomic data. The resource
supports archiving of raw data, processed data and metadata which are

indexed, cross-linked and searchable [7].

o ArrayExpress (AE): One of the major international public repositories
of functional genomics data which includes biological data generated

by sequencing or array-based technologies. This repository maintains
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an exchange agreement with NCBI GEO in order to import directly

experiments for both technologies [8].

« National Cancer Institute - Genomic Data Commons (NCI GDC):
Conceived as an information system, this repository contains multiple
biological raw data as well as harmonised data by means of standardised
pipelines. Besides storing diagnostic, histologic and clinical outcome of
patient samples, this database offers patient cohorts quantified in multiple

omics point of view such as transcriptomic or genomic [9].

2.1.1.4. Skin Pathological States

After a long research work at biological level, 10 pathological skin states were
finally considered for experimental analyses. They can be taxonomically classified
within 4 groups: healthy states (with regard to healthy normal skin and
nevus/moles), Non-Melanoma Skin Cancer (NMSC) (with regard to biological
alterations in keratinocytes), Melanoma Skin Cancer (MSC) (with regard to
biological alterations in melanocytes) and precancerous states (concerning skin
diseases with a possible predisposition to tumorally evolve). It should be noted
that only those samples showing the lesion at epidermal level were taken into
account. This decision led to discard those referring to lymph nodes or metastases
in other parts of the body other than the metastasis itself cutaneous. The

pathological states are the following:

o Normal Skin (NSK): Taken as a reference sample to observe alterations,
this healthy state can be collected either from patients with no apparent
signs of suffering from any skin disease or from patients with skin lesions

but extracting from an area without skin lesion.

« Nevus (NEV): Also considered a priori as a healthy state, NEV are

considered as a birthmark or a mole on the skin, especially a birthmark
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in the form of a raised red patch. It is fundamental to take into account
this state, since it is proven that many of them can tumorally degenerate
into melanoma. Their morphological and histological aspects become very

similar and they can represent a high risk of melanoma [10].

Basal Cell Carcinoma (BCC): Included among NMSC, this skin
carcinoma is considered to be the most common pathology of skin cancer
[11]. Although BCC is the one with the least risk of spreading and becoming
deadly [12], it can be disfiguring if it is not treated promptly. It is a highly
complex cancerous manifestation histopathologically, which historically has

an incidence of >80% among NMSC [13].

Squamous Cell Carcinoma (SCC): This is the second most common
NMSC [14], although its incidence is dramatically increasing even with

respect to BCC [15].

Primary Merkel Cell Carcinoma (PMCC): As a global manifestation,
it is a highly aggressive and rare cancer with neuroendocrine characteristics
[16]. It would be the third NMSC in order of incidence after BCC y SCC.
Merkel Cell Carcinoma (MCC) development is linked to exposure to UV
radiation as with other skin cancers, and PMCC lesions typically appear

on sun-exposed skin [17].

Metastatic Merkel Cell Carcinoma (MMCC): When MCC gets to
metastasise, it is really out of precise medical control and it becomes very
complicated to be able to treat it. It does not even seem clear that
chemotherapy can always be effective. Its diagnosis and treatment still

require a broader consensus to establish clearer and more precise guidelines

1s].

o Primary Melanoma (PRIMEL): Cutaneous melanoma is undoubtedly
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the most deadly manifestation of skin cancer, included in MSC. However,
detected at an early stage and thanks to appropriate biopsy methods, it
can be easily treated and reduce the risk of death [19]. Primary melanoma
is usually diagnosed following the ABCDE signs [20]: asimmetry, border,

color, diamater and evolving.

o Metastatic Melanoma (METMEL): Despite great advances in
treatment, the long-term prognosis of this MSC disease in advance state
remains poor [21].  Probably, its highly mutable and heterogeneous

character precludes setting standards for generalised treatment.

 Psoriasis (PS): For those patients suffering from this immune skin disease,
the risk of developing some form of cancer (lung, gastrointestinal tract,
urinary tract, etc.) have already been alerted [22]. However, in recent
years, there have also been indications that there is a risk of deriving in

some tumor manifestation of skin [23].

« Actinic Keratosis (AK): Considered to be a cancerous precursor to SCC
[24], its early diagnosis and treatment could prevent the development of

more dangerous skin cancer later on.

2.1.2. Pre-processing

After having identified and acquired all relevant and existing information, it is
crucial to properly process it so that the subsequent downstream analysis is as
reliable as possible on the basis of the underlying biological knowledge. Different

tasks are usually carried out at this stage:

2.1.2.1. Key Considerations for Processing Microarray and RNA-seq

Platfoms
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A. Data Adequacy All datasets must be properly preprocessed under the
application of different procedures, regardless of the technological platform
and the sequencing technology used. In this sense, each dataset must be
processed individually in order to convert the raw data into expression values.
Traditionally, the processing of microarrays has involved the use of Robust
Multi-array Average (RMA) algorithm [25]. This algorithm performs background
correction, normalisation and summarisation in a modular way. Regarding the
RNA-seq data, this part is mainly covered by the consideration of conditional

quantile normalisation to correct GC-content [5, 26].

B. Heterogeneous Sources Integration When all datasets have been
individually adequated, checking the depth of scale for each dataset has to be
performed in order to homogenise the analysis of all samples considered and
thinking that they will be subsequently integrated. This supposes to apply
logarithmic transformation on those series that were not previously pre-processed
as well as homogenisation of the bit depth (more widely known as dynamic range)
to equalise the expression ranges for all datasets. Following, it is completely
necessary to check the gene annotation of each series and map to common gene
symbols for all datasets. For this purpose, the use of standardised gene symbols
is highly recommended for gene annotation: HUman Genome Organization
(HUGO) [27], Entrez [28], Ensembl [29], etc. For example, HUGO is the
official gene symbol approved by the HUGO Gene Nomenclature Committee
(HGNC) [30]. This committee approves those symbols and sets the standards
in accordance with the guidelines for Human Gene Nomenclature (HGN). In
this sense, the HGNC approves a unique and meaningful name for every known
human gene, based on a query of experts. Extensively, HGNC is responsible for
approving unique symbols and names for human loci, including protein coding

genes, RNA genes and pseudogenes. This fact also helps in avoiding ambiguous
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scientific communication. Additionally, the use of standardised gene symbols
makes possible to know truthfully how many genes are common throughout all
the datasets considered and avoids integration errors when applying some tool

for this purpose.

C. Batch Effects Removal After having jointly corrected all the considered
datasets, a joint evaluation of possible deviations between different datasets is
essential. Obtaining each dataset involves at least one different experiment that
can insert variations in gene expression due to biological, technical and even
atmospheric agents [31]. This concept is widely known as batch effects. For the
experimental analysis of each study, several batch effects correction algorithms

have been considered. They are briefly introduced here:

e Quantile Discretization (QD): Although the main purpose of this
method consisted in data normalisating at the probe level [32], batch effect
removal has been also benefited from being taken into consideration [25, 33].
Conceived as a discrete method, this algorithm assigns the same value to
all genes that fall into the same bin across all studies. These bin values
can be continuous or cardinal numbers obtained by calculating mean gene

expression values.

e Mean Rank Scores (MRS): This method considers one batch reference
and all genes are ranked based on their median expression. Following, all
genes contained in each sample in the non-reference batch are also ranked
and their value replaced by the corresponding ranked median from the

reference [33].

o Gene Quantile (GQ): This discrete method applies a quantile
normalisation for each individual gene among different considered datasets.

More specifically, it is considered as an extension of MRS that enforces an
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extra transformation of gene expression values such that the median values

for each gene are equal in all batches (in our case, different datasets) [33].

Empirical Bayes (EB): Widely-known as ComBat and based on empirical
bayesian techniques, this method assumes that the expression of each gene
within a performed analysis is directly affected by a known designed batch
factor [33, 34]. In order to remove the influence of these batch effects,
estimations considering additive and multiplicative factors are calculated
for each gene in each batch. These estimations are usually well-known
and simple parameters such as mean and variance. Those parameters are
calculated by means of gathering information from multiple genes with
similar expression characteristics in each considered batch or analysed
dataset. One of the major strengths of this approach focuses on avoiding

over-correcting which is critical for use with small batches.

Normal Discretization (NORDI): Based on discrete normalisation as
well, this method fits a normal distribution to each expression profile
and following detected outlier genes are removed. To achieve it, genes
are categorised and separated in three different groups: under-expressed,
over-expressed and unexpressed. Finally, each gene expression value is
replaced by -1, +1 or 0 in accordance with the previously assigned group.
This method was thought to reinforce the extraction of relevant association

rules [35].

Mean Centering (MC): Considering the occurrence of systematic
multiplicative biases within batches, this simple method transforms the data
by subtracting the mean of each gene over all samples (per batch) from its
observed expression value, such that the mean for each gene becomes sero

136).

In general terms, an attempt has been made to apply batch effect correction
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algorithms that preserve the biological information contained in the datasets.
However, dealing with batch effects removal is becoming currently becoming
challenging because there is no absolute certainty about removing it even after

applying specific correction algorithms [37].

D. Normalisation Although the deletion of batch effects becomes successful,
the expression levels between samples do not remain completely homogeneous.
In order to avoid possible subsequent errors in the classification phase (see
Section 2.1.5), a homogeneous range is established by means of an inter-array
normalisation [38]. More consistency is achieved among all samples put together,
forcing an identical empirical distribution on each of them based on quantile
normalisation. Finally, a data matrix is available in gene expression where the
rows correspond to the patient samples and the columns correspond to the genes,
or vice versa. In this sense, the broad set of potential biomarkers candidates to

discern between different pathologies is ready to be analysed.

2.1.2.2. Key Considerations for Detecting Copy Number Variation

When considering the analysis of genomic data, adequate chromosomal
segmentation of the genome is crucial in order to efficiently detect the length and
position of copy number variations. Extensively, for effective partitioning, the
availability of as many control samples as possible will allow a reliable comparison
to tumor samples, helping in emerging copy number variations between them.
After inspecting the different possibilites for this purpose, cn.MOPS [39] was
selected against other alternative methods: MOFDOC [40], EWT [41], JointSLM
[42], CNV-Seq [43] and FREEC [44]. In addition to significantly improving
performance with respect to its predecessor alternatives, this tool enables the
application of various configurations for the determination of CNVs. Among

them, there is opportunity to determine somatic CNVs by subtracting the part
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of germline CNVs. This can be achieved thanks to the availability of control
and tumor samples from the same cohort of patients. Technically, while tumor
sample will contain together somatic and germline CNVs part, control sample

will contain only germline CNVs part.

2.1.3. Post-processing

Various tasks can be included here when assessing the validity of biological

information that is available after being pre-processed.

2.1.3.1. Dimensionality Reduction

The integration of multiple data sources can lead to a severe problem of
computational analysis. = When the size of the integrated dataset grows
significantly, gathering not only thousands of genes but also hundreds or
thousands of samples, finding those most informative biomarkers can be
computationally expensive. When analysing gene expression data, a first step
is to significantly reduce the search space by determining a set of Differentially
Expressed Genes (DEGs). This implies that only those genes that are more
informative between each pair of analysed pathologies could be selected. To
achieve this, it is necessary to restrict the selection of biomarkers based on some
statistical parameters. [imma package has been postulated as a powerful tool
to extract this type of information from both microarrays and RNA-seq [38] by
applying several statistical restrictions. Among them, Log2-Fold-Change (LFC)
and P-Value (PV) can be highlighted by their widespread use. On the one
hand, LFC requires a minimum absolute threshold of gene expression level change
between each pair of pathological states. On the other hand, PV establishes a
cutoff value for adjuste p-values, only allowing those genes with lower p-values to

be considered.
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2.1.3.2. Statistical Assessment Application

The consideration of statistical values to delimit the set of biomarkers candidates
is commonly applied in this type of research studies. Traditionally, it is possible
to impose a selection of genes based on the statistical significance of parameters
such as p-value or logarithmic fold change. On the other hand, the influence
of various factors on those biomarkers candidates must be thoroughly evaluated
by applying some statistical test. This will determine whether the variations
in gene expression between the different considered pathologies are due to the
biological nature itself or may be due to some of the analysed factors. Any
complementary information to the selected biological samples may be useful at
this point (clinical or other data). ANalysis Of VAriance (ANOVA) statistical
test [45] was used for this purpose and extended documentation was consulted
in order to perform the statistical analyses [45-48]. This well-standardised and
widely-used test is useful for comparing more than two factor means for statistical
significance. Additionally, the consideration of correlation tests can help to
corroborate the informative correlation between evaluated characteristics. In
this thesis, this is applied to see the informational correlation between gene
expression and the number of gene copies: Kendall [49], Pearson [50] and
Spearman [51]. These non-parametric statistical tests allow to validate the
significance of the method without the need to check the normality of the analysed
distribution. Finally, other statistical parameters were used to make comparisons
of multiple corrections based on confidence intervals: Fisher [52], Bonferroni [53]

and Benjamini-Hochberg [54].

2.1.3.3. Functional Enrichment Analysis

In many cases, obtaining DEGs is not enough to know the relevance of the
outstanding biomarkers discerning between pathological states. In this sense,

it is usually necessary to take a further step forward by seeking to prove the
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associations of gene sets with disease phenotypes. For this purpose, there
are methods that also use statistical approximations in order to identify those
significantly enriched or depleted groups of biomarkers. From the retrieved result,
there is an opportunity to better understand the underlying biological processes
thanks to the determination of the functional profile of that gene set. Taking
into account this type of approaches has allowed associating different gene set,
grouped together by their involvement in the same biological pathway, or by
proximal location on a chromosome. In this dissertation, both database-specific
and programmatic queries under the use of several tools have been carried out.
On the one hand, DAVID Bioinformatics Database offers a wide range of results
associated with functional properties of the submitted genes [55]. Among them,
Gene Ontology (GO) terms divided into Biological Processes (BP), Cellular
Components (CC) and Molecular Functions (MF) can be easily retrieved [56].
Reactome [57] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [58] web
browsers were also inspected in search of checking involved pathways for gene

sets.

2.1.4. Feature Selection

Although the reduction of dimensionality allows to dramatically decrease the
set of biomarkers to be evaluated, usually therapeutic diagnoses require only
some target genes. With personalised and patient-oriented approaches in mind,
it is difficult to determine very specific biomarkers. However, with respect to
generalised studies, it may be interesting to determine what diagnostic potency
is possible to achieve with small sets of genes. In order to do this, it is necessary
to apply some informative ordering criterion that evaluates which genes are more
informative than others. For example, there are feature selection algorithms
based on mutual information which aim to find the largest dependency between a

subset of features and the output variable. In this sense, this dissertation took into
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account the Minimum Redundancy Maximum Relevance (mRMR) algorithm [59].
The basis criterion consists in considering mutual information among variables
(in our case, genes) in search of assesing variables relevance. In this sense, the
algorithm will rank in first position that gene containing the maximum relevance
information, followed by those genes providing minimum redundant information.
Also, well-known correlation tests have been applied in order to establish another
way to order them based on informative correlation, mentioned above: Kendall

[49], Pearson [50] and Spearman [51].

2.1.5. Classification

This last step helps in assessing the informative power of the those selected
genes to provide an intelligent diagnosis of a new unseen sample. In this thesis,
well-known state-of-the-art Machine Learning (ML) techniques have been trained

and tested for this purpose:

o Support Vector Machine (SVM): These classification models are
discriminative classifiers formally defined by a separating hyperplane. This
implies that the algorithm outputs an optimal hyperplane that maximises
the distance between different classes (in our case, different pathological
states). Thanks to this, new unseen samples will be assigned to categories,
even when overlapping data is happening. These models have the capability
to define a higher dimensional space from a reduced space by means of kernel
functions. Extensively, fault tolerance is also managed by this algorithm
by controlling v hyperparameter. This fact improves the generalisation

capability of the model [60].

o K-Nearest Neighbors (KNN): This type of instance-based learning
model assigns a category to a new unseen sample under majority voting

decision. This consensus is achieved by inducing the predominant class
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among the k nearest neighbors. This technique provides an outstanding

performance, even being one of the simplest machine learning techniques

61].

Naive Bayes (INB): This classifier is based on a conditional probability
model which applies Bayes theorema with strong (naive) independence
assumptions between the features. Although independence is generally a
poor assumption, in practice naive Bayes often competes well with more

sophisticated classifiers [62].

Tree Bagging (TB): This algorithm is considered as a special case of
the model averaging approach. In other words, a very simple and powerful
ensemble method. The basis for operation lies in combining the predictions
from multiple machine learning algorithms together to make more accurate
predictions than any individual model. Traditionally, this algorithm is

implemented by means of multiple decision trees [63].

Ensemble Learning (ENS): This approach is very similar to TB, but it is
implemented by means of multiple learning algorithms (for example, those
classification models previously commented and put all together). This type
of implementation is thought to obtain better predictive performance than
could be obtained from any of the constituent machine learning algorithms
alone. Additionally, each of the considered classifiers can be weighted,

allowing to tune the influence of each one of them in the performance [64].

In order to assess the classifier performance, several cross-validation tecniques

can be taken into account: Leave-One-Out Cross-Validation (LOO-CV) [65] and
K-Fold Cross-Validation (KFOLD-CV) [66]. These techniques are applied over

the training dataset to obtain the optimal hyperparameters for the previous

methodologies: o (kernel width) and ~ for SVM, and & for KNN. Finally, different

metrics for recognition assessment are usually considered, mainly highlighting
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Accuracy (ACC) and Overall Fl-score (OF1) among others. Specifically, ACC
may suffer from some limitations under presence of data imbalancement [67]. In

this case, OF1 is the most recommendable metric by tackling better that issue.

2.2. Summary

This chapter presented the main key concepts revolve around the development of
this thesis. The content is intended to provide a useful guide for understanding

the following 3 chapters focused on presenting the research studies conducted.







3. Offering New Opportunities to

Microarrays

3.1. Introduction

This chapter addresses the possibility of offering a comprehensive skin cancer
diagnosis based exclusively on the integration of multiple microarray platforms.
For this purpose, a novel methodological approach is proposed involving the
integration of several heterogeneous skin cancer datasets, and a later multiclass
classifier design. This approach is thus a way to provide the clinicians with an
intelligent diagnosis support tool based on the use of a robust set of selected
biomarkers, which simultaneously distinguishes among different cancer-related

skin states. The study has made use of the following resources:

e Number of datasets: 24
e« Number of samples: 678

« Skin Pathological States: 7 (NSK, NEV, BCC, SCC, MCC, PRIMEL
and METMEL)

« Web Data Repositories: NCBI GEO

* Sequencing Technology: Microarrays
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For more general information on the different resources consulted and used
in this dissertation, see Section 2.1.1. The content presented here is largely
based on the journal publication entitled “Multiclass classification for skin cancer
profiling based on the integration of heterogeneous gene expression series” (PloS

one, Volume 13, Number 5, https://doi.org/10.1371/journal.pone.0196836

3.2. Background

The analysis of microarray data has become a common practice of research
groups for the determination of biomarkers of interest for many years. The
ability to simultaneously measure the expression levels of thousands of genes
has not gone unnoticed by researchers. This fact has promoted its widespread
use for determining biomarkers discerning among very specific pathological states
(usually, control versus tumor). As a consequence of the above, multiple isolated
experiments have been performed and, little by little, collected by means of
different webdata repositories. However, despite successful results that have
helped to develop diverse target therapies for the treatment of specific diseases,
the definitive cure for extremely worrying diseases such as cancer has not been
elucidated. In fact, the trend of new cases is gradually increasing for cancerous
pathologies such as skin cancer. Almost two decades ago, this cancerous disease
was predicted to account for more than a third of all cancers [68], and that
prediction is already a crude reality. Although the occurrence of skin cancer is
becoming alarming, the registration standards of NMSC are incomprehensibly
precarious almost worldwide [69]. This is largely due to an insufficient data
collection in cancer registries on BCC cases which prevents its actual incidence
from being known [70]. Even so, skin cancer is considered the major public
health problem in Australia [71, 72] and the most commonly diagnosed cancer

in United States [70, 73]. Therefore, several consciousnees campaigns and



https://doi.org/10.1371/journal.pone.0196836

3.3. MOTIVATION 29

programs have been promoted in relation to the prevention of skin cancer in
both countries [70, 74]. With respect to its incidence in Europe, NMSC has
been categorised as one of the most worrying malignancies in Germany [75] as
well as a systematic review reflected the worrying current situation in Spain [76].
Focusing on examining what research efforts have been perfomed for revealing
clues about how to treat this cancerous disease, a wide range of research studies
have been performed by using microarray technology [77-80]. Additionally, in
search of broadening the knowledge about this disease, a wide range of ML
and computer science approaches have been also proposed: neural networks [81],
image preprocessing and classification [82-84], prediction models [85, 86|, pattern

recognition [87], optical techniques [88, 89], etc.

3.3. Motivation

Despite great efforts have been done for bringing light to effective diagnosis
of multiple diseases, there are suspicions that a much more widespread and
robust studies could be carried out. In the light of what has been investigated
so far, there is a high probability that most of the research studies developed
applying microarray technology to the characterisation of different pathological
states of any disease may fail in reaching statistically significant results. This
is largely due to the small repertoire of analysed samples, and to the limitation
in the number of states or pathologies usually addressed. Focusing again on the
diagnosis of skin cancer, this seems to be the general trend of previous microarray
studies such as those presented in Section 3.2 where the researches are often
conducted on a limited sample set. This fact leads to obtain different DEGs
sets by using traditionally binary classifiers for each isolated experiment. As a
solution to these limitations, collecting different datasets including skin cancer

samples of diverse pathological states from various experiments, may considerably
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increase the robustness of the study and help in identifying biomarkers for the
differentiation of a wider range of pathological states. This initiative would entail
the challenge of analysing a multiclass scenario. Although multiclass classification
has been approached for a wide range of cancerous diseases in several previous
works (breast [90], colorectal [91], ovarian [92], prostate [93], etc.), the truth is
that the consideration of this approach on skin cancer analysis remains practically
unprecedented. Merely, hierarchical clustering has been used in order to compare
gene expression signatures from different skin pathological states [94]. Also,
a number of skin cancer studies have used this strategy from the analysis of
histopathological [95, 96] or dermoscopic images [97-100]. Therefore, it is sighted
that an excellent opportunity presents itself for performing a comprehensive
analysis of the gene expression, eventually becoming able to extract revealing
genes which could be responsible for a number of manifestations of this disease of
the genes [101]. However, the joint consideration of cancer datasets with different
technical characteristics usually involves dealing with the removal of batch effects.
The influence of potential deviations on the gene expression quantification is
wrongly and usually disregarded, so it should be always taken into account for
an effective integration [37]. Extensively, although the imposition of RNA-seq is
a matter of time with regard to gene expression analysis, microarrays still have
many factors in their favor. Above all, microarrays have been used so far, and are
still in use, because they are cheaper. Additionally, the existing availability of a
vast amount of gene expression microarray datasets encourages to take them into
consideration and should still be properly exploited. With all these premises, a
multi-platform combination of microarray datasets from Affymetrix and [llumina
manufacturers [2, 3] was carried out. This integration is expected to strengthen
the statistical robustness of the study as well as the finding of highly-reliable skin
cancer biomarkers. For this end, ML techniques efficiently help to select those

genes with the highest informative power for the diagnosis. Under this general
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idea and based on the use of highly-discriminant DEGs, any new patient skin
sample could be assessed and correctly classified by distinguishing among several
skin pathological states in a single analysis [102]. Since the cancer prognosis is
much more encouraging when a patient diagnosis is available at an early stage,
clinicians can take advantage of relying the final diagnosis on its assessment [103].
Consequently, at the dawn of the personalised medicine, predisposition to certain
skin cancer manifestations could be properly detected [104], and unnecessary
medical treatments such as radiation therapies, excision surgeries or medications

supply could be prevented [105].

3.4. Methodologies and Experiments

3.4.1. Samples

All analysed RNA samples were obtained from NCBI GEO web platform
[106, 107]. An exhaustive search was carried out covering the main skin cancerous
manifestations for which registers were found in this public database. The two
most well-known microarray technologies (Illumina [3] and Affymetrix [2]) were
considered for this purpose. Thus NMSC, MSC and healthy skin categories were
finally chosen. The first category is comprised by the NMSC variants already
mentioned in Section 2.1.1.4: BCC, SCC and MCC samples. The next category
collects melanoma samples, distinguishing between two types: PRIMEL and
METMEL. The last category includes those samples from healthy skin (NEV and
NSK). Other important cancer manifestations such as Langerhans cells, among
others, were not considered as no registers were found in the database. This fact
led to not including it among the considered skin pathological states introduced
in Section 2.1.1.4 for this dissertation.

Under the specified operation framework, 24 datasets from Affymetrix and

[lumina platforms were selected. Specifically, 770 microarray samples were
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Table 3.1: Taxonomic classifications for the three skin cancer scenarios: 2, 3 & 7
classes.

Carcinoma (NMSC) Melanoma (MSC) | Healthy Skin
BCC | SCC | MCC | PRIMEL | METMEL | NSK | NEV

7 classes 43 84 33 118 118 250 32
3 classes 160 236

2 classes 396 282
TOTAL 678

contained in these 24 datasets and were collected in first instance. However,
only 678 of them finally passed the quality control and were subjected to the
pre-processing phase: 554 samples from Affymetrix platforms and 124 samples
from Illumina platforms. In order to obtain them, these datasets are publicly
available and accessible at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=S.NAME where S.NAME is the name of each series at NCBI GEO web
platform. From the collection of the all selected RNA samples, the following
taxonomies were proposed (see Table 3.1 for complete information including

number of samples for each category):

o tumor and healthy samples as the most general taxonomy (2 classes

taxonomy).
 carcinoma, melanoma and healthy samples (3 classes taxonomy).

« BCC, SCC, MCC, PRIMEL, METMEL, NSK and NEV samples (7 classes

taxonomy).

Extensively, Table 3.2 offers a summarisation of the information about the
series before and after the quality control phase. Finally, Table 3.3 details the

distribution of the skin samples for each microarray series used for this study.



https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=S.NAME
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=S.NAME
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3.4.2. Tools

R [108] and MATLAB [109] programming languages were used for performing
this study. Most of the used R packages derived from Bioconductor platform
[110]. This platform is an open-source and open-development software built in
the R statistical programming environment for the analysis and comprehension of
genomic data. The tools contained in the Bioconductor project represent many
state-of-the-art methods for the analysis of microarray and genomic data. Other
R packages come from CRAN [111], a network of ftp and web servers around the

world storing identical, up-to-date versions of code and documentation for R.

3.4.3. Pipeline

Our work has been based on the steps specified in Figure 3.1, dealing with a part
of the key concepts introduced in Chapter 2. Each one of the phases carried out

is detailed in the next subsections.

3.4.3.1. Raw Data Acquisition and Preparation

Acquiring raw data is the very first step in any analysis. Each vendor quantifies
its raw data in a different format, even with different platforms. Therefore, a
particular procedure has to be applied for each series. In this study, several R
packages have been used to download the microarray datasets in a programmatic
manner. The Bioconductor affy package was used to read and process Affymetrix
CEL files for their later preprocessing [112]. GEOquery package [113] was
necessary in order to obtain already preprocessed RNA samples (when RNA
samples CEL files are not available). For the newer Affymetrix microarrays, the
Bioconductor oligo package [114] was employed. For the Illumina microarrays,

the lumi package [115] has been used.
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Raw data
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processing

» Affymetrix and

lllumina
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 Transformation
* Annotation

e Integration

Postprocessing

« Differential
expression
analysis

Classification

* Feature
selection
algorithm
(mRMR)

o Supervised
classifier (SVM)

Figure 3.1: Microarray gene expression analysis pipeline. The process has been
developed sequentially in different phases. This pipeline summarises the
decisions made throughout the study.

3.4.3.2. Quality Control

Assessing the quality of the experiments is an essential step in microarray
analysis as array-based technologies present inherent biases. Bioconductor
arrayQualityMetrics package [116] is widely used for chip analysis and its
use is not limited to one technology. It provides tests that consider quality
metrics over the series samples as comparisons, intensity distributions, variance
mean dependence and individual quality, for the detection of samples with
insufficient quality (outliers). These tests include: distance among samples,
principal component analysis (PCA), Kolmogorov-Smirnov test based on the
K, parameter, density distribution plots, standard deviation of the samples
intensities and Hoeffding’s D-statistic (normally executed with D < 0.15). All
of them are iteratively applied over a given series until outliers are no longer

detected or considered. Final number of excluded outliers from the considered

series is shown in the last column of Table 3.2.
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3.4.3.3. Preprocessing

Applying a preprocessing step on microarray data is crucial, especially when
different platforms and technologies are integrated. More specifically, microarray
technologies usually require normalisation, which involves a platform-dependent
process necessary for converting raw data probe intensities into expression
values. In this study, the Robust Multi-array Average (RMA) algorithm [25] was
applied on the collected microarray data. RMA performs background correction,
normalisation, and summarisation in a modular way. For Affymetrix microarrays,
it can be achieved by means of the rma function from affy and oligo packages. In
the case of [llumina microarrays analysis, the homologous lumiFzpresso function
from lumi package was used, allowing to do all processing steps simultaneously.

After microarray normalisation, other factors have to be taken into account for
a correct microarray integration. On one hand, the logarithmic transformation
must be done on the different series as well as the bit depth homogenisation.
Both processes are necessary in order to avoid scale errors in further analysis. In
particular, all series required logarithmic transformation in base 2. However, only
4 series had to be changed to 16-bit depth: GSE2503, GSE3189, GSE29359 and
GSEb55664. This type of transformations should be applied to any new sample
before it can be classified correctly through the pipeline proposed in this study.

A final verification of correct series annotation was made by checking
annotation data for different chips from Bioconductor AnnotationData Packages
website. The main reason lies in avoiding further integration errors. They can
likely come from either a missing annotation in the raw data taken from NCBI
GEO web platform or after the application of the previous pre-processing R
routines. Table 3.4 summarises different R packages of annotation data chips
included in this work. Finally, the sample integration is possible by means
of packages as virtualArray [117], readbulk [118] or inSilicoMerging [119] in
association with inSilicoDb [120].
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These tools have in common that allow combining multiple microarray samples
with different strategies, but not all have the necessary characteristics for this
study. While readbulk can only collect heterogeneous datasets, inSilicoMerging
only works with Affymetrix platforms. This last package can also normalise
and remove batch effect over multiple datasets of Affymetrix technology, but
virtualArray package allows merging additional datasets from other technologies
as Illumina. For this reason, the package virtualArray was chosen for this

approach.

Additionally, the impact of two factors on the quantification of genes can be
evaluated with this tool: batch effect and union method. The first one takes
into account the variations in gene expression due to biological, technical and
even atmospheric agents [31]. Taking into account the hypothetical influence of
this factor is considered as a compulsory step in any study of high-throughput
data [121]. Currently, dealing with it is becoming challenging because there is no
absolute certainty about removing the batch effects even after applying correction
algorithms. An effective removal may be essential for effective integration of
different datasets [37]. In this sense, the virtualArray package allows evaluating
up to 6 different batch effects without losing biological information on the
quantification of the gene expression: GQ [33], EB [34], NORDI [35], QD [33],
MRS [33] and MC [36].The second one allows summarising in a single value
all the values of expression of genes that transcribe the same gene identifier. All
transcripts can be gathered into a single expression value in order to be consistent
in evaluating the impact of each gene selected in the study. To evaluate its
effect, this tool allows 2 union methods: mean and median. Therefore, and
in search of independence in the process, a total of 12 configurations from the
combination between the 6 batch effects and the 2 union methods have been
tested. Consequently, only those genes that are also robust to these factors are

obtained.
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3.4.3.4. Post-processing

The next step in the microarray analysis methodology is calculating and obtaining
DEGs. In this study, a seven-classes taxonomy was considered for DEGs
identification. Then, those results were translated to the three-classes and the
two-classes taxonomies for assessment.

The limma package [38] is commonly used since it includes interesting
supplementary features: in addition to calculating DEGs, it allows making
heatmaps and Venn diagrams. Although there are several statistical parameters
that are taken into account in this type of studies as moderated t-statistic (T')
or B-statistic (B), special attention was paid to other two parameters: log-fold
change (LFC) and p-value (PV). Restrictive values for those two parameters
were considered in order to guarantee statistically highly differentiated candidate
genes.

This decision is motivated by the fact that certain variations can be expected
among the quantification values of the genes since data are being taken from
different platforms. Because of this, they could influence the selection of the
genes that define the considered skin states. To avoid the potential influence
of these factors, it is important to impose severe statistical restriction values on
these parameters with the aim of taking those genes that are as representative as
possible.

With these premises, each configuration was subjected to evaluation from
the imposition of the finally chosen values for LFC and PV of 4 and
0.001, respectively.  Then, a joint result was obtained, by selecting as
definitive candidates based on the matches among those configurations returning
candidates.

Once a set of genes has been selected, it is very important to know the
robustness of the expression of these DEGs when processing microarrays from

different technologies. From this perspective, the main goal is to analyse whether
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the variation in the expression of these DEGs is mainly due to the different
cancer-related skin states considered in this study or there are also other relevant
factors involved in the processing (such as the batch effect, the country of origin
of the samples or the union methods considered). In order to perform a statistical
analysis that can encompass the information of all DEGs simultaneously, a
dependent variable has been designed based on the Least Squares concept [122].
This algorithm takes into account the difference between the expression value of
each of the candidate genes and their mean over all experiments and preprocessing
variants. An ANOVA statistical test [45] was performed in order to verify the
robustness of the selected genes with respect to a number of factors: “country”,
"type” (7 cancer-related skin states), "batch effect” and "union method”. This
test allowed us to confirm the study feasibility and robustness, in the selection of
the identified skin cancer biomarkers.

Finally, after all the post-processing tasks were performed, the DEGs identified
by the proposed methodology were consulted in different databases in order
to assess their hypothetical relationship with skin cancer. DisGeNET [123],
WikiGenes [124], DISEASES [125] and Open Targets [126] databases were
employed for this purpose. Additionally, a text mining tool, ”Gene Set to Disease”
(GS2D) [127], was applied to extract the relation among the DEGs with skin

diseases or disorders.

3.4.3.5. Classification

The traditional microarray data processing typically ends with the determination
of DEGs. The experts can usually check these highlighted genes with laboratory
experimentation or contrast them with past works. However, a great interest is
aroused in relation to which DEGs are more relevant according to the analysed
data groups.

This work moves one step ahead by applying ML techniques in order to gain
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knowledge on the relevance of the selected genes. Similarly, a classification model
is designed to automatically classify new data samples.

With the objective of discerning among the involved seven cancer-related
skin states, a ranking of the most significant DEGs was obtained by using
the well-known and effective mRMR algorithm [59]. This algorithm takes into
account the redundancy contained among the considered genes, identifying the
genes that add complementary information. This leads to attaining simpler
classifiers with lower number of genes. The mRMR algorithm made use of the
Kraskov Mutual Information estimator [128].

The classification technique considered in this study is the SVMs [60]. Then,
two cross-validation techniques were applied to assess the classifier performance:
K-Fold cross-validation (KFOLD-CV, where K = 10) [129] and Leave-One-Out
cross-validation (LOO-CV) [65].

3.5. Results

3.5.1. Biological Samples Integration

24 series from Affymetrix and Illumina platforms were selected. Table 3.2
summarised the series selection process and the samples relevant to the study.
92 RNA samples were considered outliers and discarded after a strict quality
control from the initial selection of 770 RNA samples. The joint representation
of individual series normalisation reflected several expression value ranges
(Figure 3.2). An additional preprocessing was carried out by using virtualArray
tool in order to remove the samples dynamic variability, so that a homogeneous
expression range was obtained for 678 high quality RNA samples (Figure 3.3).

12 different configurations, coming from six batch effects using two different
union methods, were applied through this tool on all 678 RNA samples. This

was made in order to invalidate the influence of intrinsic anomalies on the
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Figure 3.2: Expression values of each series after independent normalisation. The
aggregation of the high quality samples shows dynamic variability among
different datasets.

Figure 3.3: Expression values of each series after joint platforms normalisation. The
integration tool used on the high quality samples reflects a homogeneous
expression range.

quantification of the genes. A cross-platform normalisation and batch effect
removal was simultaneously applied. Regardless of the configuration applied,

9978 genes were coerced through correct annotation (Table 3.4).
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Table 3.5: Total number of obtained DEGs depending on several restrictions imposed
by different evaluated configurations of virtualArray tool. The batch
effect removal and union method factors were considered. The statistical
parameters LFC > 4 and PV < 0.001 were selected.

Batch Effect

GQ QD EB NORDI MRS MC

Union
Mean 0 25 0 0 39 39
Median 0 23 0 0 41 41

3.5.2. Expressed Genes Selection

As several heterogeneous data series were put together, and with the aim of
attaining statistical robustness in the selection of DEGs, all possible batch effect
validations provided by virtualArray package were tested. Similarly, strong
conditions were imposed to the statistical parameters involved. Values of LFC
> 4, PV < 0.001 were finally selected. Table 3.5 summarises the number of
expressed genes after evaluating each of the 12 configurations.

DEGs appearing in several of the configuration outcomes were expected
to perform robustly as potential biomarkers of skin cancer. Therefore, the
intersection of candidate DEGs for configurations QD and MRS by using both
union methods (configuration MC got the same results as MRS) was carried
out. This guarantees that possible anomalies, coming from the heterogeneous
union of datasets, would have no effect on the discriminative gene selection. The
Venn diagram in Figure 3.4 shows the common DEGs among the 4 considered
configurations. Resulting DEGs selected from this intersection are shown in
Table 3.6; it includes the main statistical parameters presented by limma package
in a summary way. Average and standard deviation values for LFC, T and
B parameters were included considering the cases in where required statistical
restrictions were fulfilled. Also, minimum and maximum PV were specified

for these cases. Additionally, in the DEG cases column, the number of times
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QP (MEAN) MRS (MED)

QD(MED) T MRS (MEAN)

Figure 3.4: Final common DEGs obtained by considering common genes from QD
and MRS results intersection. 17 common DEGs were obtained between
QD and MRS effect batch removal in addition to apply union methods
intersection.

each gene is present as a DEG is given. This number is calculated doing pair
comparisons between two classes which results in a total of 21 pair comparisons

taking into account the 7 cancer-related skin states.

3.5.2.1. ANOVA Statistical Test

Our aim is to accurately determine the influence on the DEGs when various
factors or ways of treating the microarray are used. In addition, factors related
to the skin pathological state analysed in this study will be included in this
statistical analysis, in order to compare the statistical significance of the disease.
A well-known technique such as ANOVA was used for performing this analysis.

First of all, those factors are identified and distinguished (Table 3.7).
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Table 3.7: Variables used in the statistical study. All the possible configurations of
factors levels.

Factors Levels of the Factors

Country GERMANY NETHERLANDS SOUTH KOREA USA UNITED KINGDOM AUSTRALIA FINLAND
Type NEV NSK PRIMEL SCC METMEL BCC MCC
Batch MRS QD

Method MED MEAN

Due to the existence of multiple genes that are significant once the pipeline of
genes selection is carried out (17 genes have been selected, which are presented
in Table 3.6), in order to perform a statistical analysis that can encompass all
the information of all those genes simultaneously, a dependent variable has been
designed based on the concept of Least Squares (regression analysis method)

[122]. This variable is defined as:

1 N M
di =g YD (95— 6) (3.1)
i=1 j=1

where N is the number of genes used in this study (a total of 17), M is the
number of measures which have been performed in the various experiments and /or
pre-processing variants with these genes (a total of 2712), g, ; is the value of gene
i in the experiment j, and g; is therefore the average of the gene 7 in all the

experiments and/or pre-processing variants:

1 M
~ 2
gi = M ;gi,j (3.2)

Thus, because of having different data from several microarray, the influence
of the gene expression (over a selected set of genes) is analysed using d; as the
dependent variable. Following, Table 3.8 gives the four-way variance analysis for
the whole set of processing examples of the microarray analysed in this study. The
ANOVA table containing the sum of squares, degrees of freedom, mean square,
test statistics, etc., representing the experimental analysis in a compact form.

This kind of tabular representation is customarily used to set out the results of
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Table 3.8: Results of the ANOVA test. The statistical analysis includes the main
factors assessed, such as relevant statistics parameters among which
highlights associated PV.

Source (Main Factors) Sum of Squares Df  Mean Square F-Ratio P-Value

A: TYPE (%) 6,28026 6 1,04671 152163 0,0000
B: BATCH (*) 1,51534 1 1,51534 2202,88  0,0000
C: METHOD 0,00112746 1 0,00112746 1,64 0,2005
D: COUNTRY (*) 0,332589 6 0,0554316 80,58  0,0000
RESIDUAL 1,85524 2697  0,000687889

TOTAL (CORRECTED) 10,1783 2711

the ANOVA calculations.

Therefore, an ANOVA test allowed determining the influence of different factors
considered on the 17 expressed common genes quantified and extracted from
different microarrays. From its assessment, the analysed cancer-related skin state
has been showed to be the factor with greater repercussion on the variation in
the expression of such genes. Therefore, these 17 expressed common genes were
cataloged as hopeful candidates for skin cancer biomarkers. Also, these genes are
able to discern as much as possible among the seven skin states considered in
this study. In accordance with this, Table 3.8 summarised the main statistics
parameters of this analysis and supported the independent selection of any

configuration for the subsequent analysis of the 17 DEGs quantification values.

3.5.3. Gene Set Assessment & Hierarchical Clustering

With the aim of illustrating the joint discriminatory power of the 17 DEGs
analysed in this study, a hierarchical clustering of a selection of samples from
each skin state is presented in Figure 3.5. A suitable cluster separation and
a inter-cluster grouping among similar cancer-related skin states were achieved
thanks to the dendrogram reorder performed by using the Ward’s method [130].
On the top, both skin carcinomas (BCC and SCC) were put together. Next, both
healthy skin states (NSK and NEV) and both skin melanoma states (PRIMEL
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Figure 3.5: Hierarchical clustering of healthy and skin cancer samples by using the 17
DEGs. A perfect differentiation among the 7 cancer-related skin states
was obtained after applying clustering and dendrogram reorder. Five
samples from each skin state were used. Different colors are used for each
skin sample type: NSK (light green), NEV (dark green), PRIMEL (dark
purple), METMEL (light purple), BCC (chocolate), SCC (orange) and
MCC (salmon).

and METMEL) were sequentially listed. At the bottom, MCC was separated
from the other skin carcinomas as it practically exhibits opposite expression
values for almost all the selected genes. In the light of all this, the different
selected genes show to have an expectable remarkable discriminative power to
differentiate among the different cancer-related skin states as well as to obtain a

reliable skin cancer diagnosis.

3.5.4. Gene Relevance ldentification & Classification Process

An assessment of the quality of the information provided by the 17 validated
DEGs is necessary in order to reduce the complexity of the study. It also allows
to limit the effective diagnostic potential of skin cancer to only a small set of

genes.
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Figure 3.6: Classification accuracy achieved for each of the considered taxonomies:
(A) 7 classes, (B) 3 classes and (C) 2 classes. The confusion matrix
for taxonomy A was constructed with 10-CV and 17 DEGs. The other
confusion matrices were constructed from the previous, by summing the
respective sub-matrices associated with each skin super-state.

Different databases were consulted with the aim of checking the relationship
between these genes and skin cancer. Table 3.6 points out if the identified DEGs
were previously reported as related to the cancer-related skin states, according
to the consulted databases. Full and exhaustive information about the biological
relationship of these genes with skin cancer and other cancers can be consulted
in S3 Appendix [131]. Main insights and findings about the involvement of these
genes in skin cancer are discussed below in Section 3.6.2.

In order to assess a hypothetical classification procedure, special precaution
must be taken regarding the information provided by the selected set of genes
in a new skin sample. For this reason, a classification model based on SVM
multiclass was designed together with two cross-validation processes (LOO
and 10-FOLD) for its assessment. The results reflect an overall accuracy

recognition for the 7 cancer-related skin states considered up to 92% for both
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cross-validation processes. Translating this percentage into the 2 additional
taxonomies considered of 3 classes (melanoma, carcinoma and healthy skin) and
2 classes (tumoral and healthy skin), this percentage increased to 95% and 96%,
respectively. The associated confusion matrices can be seen in the Figure 3.6.

This previous result does not allow appreciating objectively the informative
contribution of each gene to the skin state recognition. For this reason, the
mRMR algorithm was employed in order to obtain a ranking of these genes
according to their potential in the seven skin states discernment. The genes
ranking returned by the algorithm is as follows: DSC3, SCGB2A1, BNC2,
TYRP1, ISL1, DSC1, MLANA, CRYBA2, ANXA3, PCP4, LGR5, CLDNI,
POU4F1, SOSTDC1, KRT20, TGM3 and MYO15A. The expression value
distribution of each selected gene sorted by this ranking over each of the
cancer-related skin states can be seen in the Figure 3.7.

Next, distinct SVM models were designed and retested by cross-validation
processes in order to assess the classification capacity of different subgroups of
genes returned by this ranking. The gene ranking classification results on the
three considered taxonomies can be seen in the Figure 3.8. Finally, an evaluation
of the designed classifiers behaviour was carried out for each of the cancer-related
skin states. The accuracy results for each skin state and for each gene subset are

showed in the Figure 3.9.

3.6. Discussion

3.6.1. Heterogeneous Dataset Integration & Expressed Gene

Selection

Two main reasons motivate the integration of multiple gene expression datasets.

Firstly, an extensive quantity of high quality samples from different platforms and
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Figure 3.7: Expression level of the selected genes ordered by the ranking returned by
mRMR algorithm. Different colors are used for each cancer-related skin
state: NSK (Normal Skin), NEV (Nevus), PRIMEL (Primary Melanoma),
METMEL (Metastatic Melanoma), BCC (Basal Cell Carcinoma), SCC
(Squamous Cell Carcinoma) and MCC (Merkel Cell Carcinoma).

technologies must be put together. This decision enriches the heterogeneity of the
study, thus reinforcing its reliability and statistical robustness as well. Secondly,
resulting from the previous reason, the independence of the results obtained
can be guaranteed by analysing a wider heterogeneous dataset. The collection
of a large repertoire of samples increases significantly the dimensionality, the
diversity and the complexity of the experimental analysis, more so when it
comes to addressing a multiclass problem. This ambitious challenge is driven

by jointly analysing multiple batches where each of them collects only a part
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Figure 3.8: Evolution of the classification accuracy for each subset of genes considered,
and for each taxonomy. Similar trends can be observed for both LOO-CV
and 10-CV.

of the classes involved in the final approach design. Table 3.2 reflects how the
heterogeneity can be achieved by taking into account samples that have been
experimentally processed at different time points, from different technologies and
different platforms. Moreover, a large racial diversity can be expected given the
origin of the samples. As a result of the foregoing, Table 3.1 includes the 678
RNA samples that were finally considered after a strict quality control phase.
These samples represent 7 different cancer-related skin states from which was
aimed to extract genes that may be truly representative of their manifestation.
By considering several series with different number of skin states, the emergence
of batch effects may become inevitable and could be seen as a possible limitation
because of the partial association between series and skin states. However, in
spite of the great heterogeneity that can be observed from the expression values
of the 24 unprocessed series (Figure 3.2), a simultaneous preprocessing step across

all the samples attains an homogeneous expression range (Figure 3.3).
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Figure 3.9: Evolution of the classification accuracy for each cancer-related skin state
according to the number of genes from the mRMR ranking considered in
the classifier. Different colors are used for each skin sample type: NSK
(Normal Skin), NEV (Nevus), PRIMEL (Primary Melanoma), METMEL
(Metastatic Melanoma), BCC (Basal Cell Carcinoma), SCC (Squamous
Cell Carcinoma) and MCC (Merkel Cell Carcinoma). SVM with 10-CV

was used.

In the translation from samples to genes, only those common genes that have
the same coded symbol for any considered microarray platform, will appear after
heterogeneous sample integration. The lack of uncommon gene symbols from
different platforms is an assumed trade-off since the main purpose of this study
is to integrate as many samples as possible that significantly represent each
cancer-related skin state. Table 3.4 showed how the series from GPL96 and
GPL571 Affymetrix platforms could integrate a little more than 12400 genes.
This imposes a maximum number of potential genes that may eventually appear
as common after the microarray integration. However, those series contain more
than half of the PRIMEL samples (specifically, 73) and almost three quarters of

the total NEV samples (in this case, 23). Not including those series would have




3.6. DISCUSSION 55

had direct repercussions on the balance of classes and their representativeness in
the study.

In view of this decision, a total of 9978 genes with common symbols appeared
after integration and were exposed to the statistical significance process. In order
to obtain genes that can become robust and reliable, very restrictive values were
imposed for the statistical parameters LFC and PV. At this point, ensuring the
statistical significance of the selected genes is thought to be primordial. This
imposition can restrict the finding of skin cancer biomarkers that are strongly
invariant against different anomalies or deviations. Under these restrictions, a
small set of genes were highlighted by the tested configurations as presented in
Table 3.5. Those genes were obtained from the intersection of configurations
returning candidate biomarkers as shown in Figure 3.4. The final validity of the
selected 17 gene set has been supported through the application of a statistical
test. That test confirms the relevance of those genes to classify the 7 different
cancer-related skin states versus other intrinsic factors of the heterogeneous

datasets integration.

3.6.2. Biological Relevance of the DEGs

The relevance of these DEGs in the diagnosis of cancerous manifestations on
the skin was investigated from an exhaustive search in the literature. Table 3.6
summarised how 11 of the 17 highlighted genes have already been strongly related
to skin cancer in previous studies (ISL1, POU4F1, CLDN1, TYRP1, DSCI,
TGM3, DSC3, BNC2, KRT20, LGR5 and MLANA). Regarding the 6 remaining
genes, 2 of them have been linked to epithelial tissues (SOSTDC1 and SCGB2A1).
The other 4 genes have not been previously highlighted as reliable biomarkers of
the disease (PCP4, MYO15A, ANXA3 and CRYBAZ2). Additionally, Table 3.9
reflects the outcome of the "Gene Set to Disease” (GS2D) text mining tool for
the identified DEGs.
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From these results, 13 of the 17 genes in this study have been related to some
pathology, disorder or disease of the skin, including the cancer-related skin states
studied in this work. However, in addition to the possible relationship of the
expressed genes with different cancerous manifestations and skin diseases, it is
important to emphasise that 4 genes (ANXA3, LGR5, CLDN1 and KRT20) have
been related to lymphatic metastasis. Similarly, 6 genes (DSC3, ISL1, TYRPI,
LGR5, MYO15A and BNC2) are related to genetic predisposition to disease.
In this sense, the potential relevance of these genes surpasses the scope of this
study: the potential biomarkers not only reflect their relationship with different
cancerous manifestations of the skin but they also seem to have some relationship

with the predisposition to metastasise and to become ill.

3.6.3. Gene Ranking Assessment

Although the potential of all the identified DEGs as skin cancer biomarkers
became evident, an additional evaluation of the actual information provided in a
possible diagnosis test was carried out. Two additional objectives were aimed: on
one hand, to further reduce the final repertoire of DEGs in order to decrease the
test complexity; on the other hand, to check the potential relevance of each of the
considered DEGs, especially those that were not previously related to skin cancer.
The procedure followed in this study was the evaluation of different classifiers
taking into account the gradual insertion of the highlighted genes according to
their maximisation of the discernment capability among the cancer-related skin
states. From the mRMR algorithm point of view, this is translated to a gradual
increase of mutual information between the identified DEGs and the skin states,

avoiding as much as possible the redundancy among them.
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3.6.3.1. Gene Relevance Analysis

DSC3 gene was chosen from the selected gene set as the most discriminating
gen by mRMR algorithm to differentiate among the 7 cancer-related skin states.
This gene, which has already been previously cataloged as skin oncogene, tends
to present low gene expression levels on patients who suffer from skin melanoma
(see S3 Appendix in [131]). This can be seen in Figure 3.7, where gene expression
levels for each gene in each skin state are observed. In this gene, only its PRIMEL
gene expression wide range prevents separating this skin state from the rest. Even
so, DSC3 allows separating those skin states that present a greater probability of
provoking malignant tumor formations and spreading (PRIMEL, METMEL and
MCC) from those less aggressive or simply healthy skin states (BCC, SCC, NSK
and NEV).

Following, the mRMR algorithm selected the SCGB2A1 gene as the next with
more information to discern among the 7 cancer-related skin states. In this gene,
at least 2 groups can be easily differentiated: 1) NSK together with MCC, and
2) the rest. It is noteworthy that this gene, that had never been related to skin
cancer before, appeared in second position. However, this gene has certainly been
linked to epithelial tissues and other cancers (ovary, prostate, uterus, primary
and occult breast, liver, colorectal, etc.), and what it is more important, with
up-expression in almost all of them. From Figure 3.7, we observe that in skin
cancer, gene expression levels appeared down-expressed with respect to NSK for
the remaining cancer-related skin states, except for MCC. In this sense, there is
evidence that its gene expression level is lower for cancer-related skin states than
for the other healthy skin state (NEV). For all of this, this gene could be a novel
and valid biomarker that provides clues about the predisposition to suffer from
some type of skin cancer. Extended information can be consulted in S3 Appendix
in [131].

BNC2 gene was ranked in third position by the feature selection algorithm.
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Already previously accepted as skin oncogene, this biomarker allows clearly
differentiating among the 2 most diagnosed skin carcinomas (BCC and SCC).
Additionally, its expression adds complementary information to what it is already
provided by DSC3 and SCGB2A1, providing a better discernment among the 7
cancer-related skin states.

The gene expression differences for each of the next selected genes in the ranking
can be also observed in Figure 3.7. It should be noted at this point that, although
the mRMR ranking proposes genes with greater ability to discriminate among
cancer-related skin states than others, all of them present relevant information for
the specific skin states diagnosis. For example, several genes from the final part of
the ranking, present specific clear information on MCC against the rest skin states
as LGRb5, POU4F1, SOSTDC1, KRT20, TGM3 and MYO15A genes, as their
gene expression levels are opposite against to the other cancer-related skin states.
Among all of them, up-expression of POU4F1 and KRT20 genes was previously
related to MCC. Surprisingly, although LGR5 and TGM3 have been linked before
to BCC risk, they showed here down-expressed values in MCC (Figure 3.7). Even
going beyond, SOSTDC1 and MYO15A have not been previously reported as skin
cancer biomarkers. However, they show down-expression and up-expression in
MCC, respectively. On the other hand, PCP4 gene appeared as down-expressed
in several skin states with respect to NSK as well as so did SCGB2A1. More
biological details about these genes and their relationship with skin cancer can

be seen in S3 Appendix in [131].

3.6.3.2. Accuracy-Complexity Trade-Off

Although only 17 genes fulfilled all the statistical constraints and a high overall
recognition rate was obtained, there are chances that not all of them have a
direct influence on improving the classifier performance. In this regard, a detailed

analysis of the influence of each DEG on the classifier improvement can be made.
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Multiple interpretations could be drawn from the gene relevance analysis. On the
one hand, it could be achieved from the interlaced analysis of their distribution on
each cancer-related skin state. On the other hand, together with the previous one,
it could be analysed from their influence on the classifying power of the classifier
model both in the global recognition and in the specific recognition of each skin
state. Thus, in search of informative power for the genes to be finally selected
for the diagnosis tool, a classification accuracy improvement was assessed, by

gradually adding genes from the ranking into the classifier.

The actual contribution of each gene to the classifier can be more clearly
verified from the overall and specific trends in the evolution analysis seen in
Figure 3.8 and Figure 3.9. If the 17 DEGs are used, an overall accuracy above
92%, 95% and 96% can be attained when the 7, 3 and 2 classes taxonomy
are used. The curves associated with each taxonomy evolve similarly for both
cross-validation processes. This fact indicates that a great robustness was reached
in this study from the large sample integration, which leads to the convergence of
both validation processes. With respect to the 7 classes taxonomy curve trend, an
ascending order is clearly observed as the genes are introduced into the classifier.

Therefore, it shows that there is a gradual real information input.

Since the 3 and 2 classes taxonomies results were obtained from the 7 classes
confusion matrix summary, there are certain local convergence zones in their
accuracy evolutions. These events occur among the fourth and sixth genes, and
from the tenth gene, from which the accuracy practically reaches its maximum
value. Therefore, this quantity of genes can be considered as a suboptimal gene
subset, allowing to establish a trade-off between the number of genes considered
for the diagnosis model and its accuracy. Precision rounded 95.5% for 2 classes,
95% for 3 classes and 90% for 7 classes for the 10 genes model. This implies a
decrease of around 2% of accuracy in the classifier performance for the main 7

classes taxonomy, at the expense of reducing in 40% the number of genes needed
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for diagnosing. Thus a simpler diagnosis model is possible, with the resulting
economical and time reduction. To sum up, different accuracy-complexity

trade-offs can be raised depending on the benefits that intend to be optimised:

(a) Minimum number of genes: 4 DEGs, accuracies around 92% (2 classes),

90% (3 classes) and 83% (7 classes).

(b) Maximum accuracy: All 17 DEGs, accuracies around 96% (2 classes),

95% (3 classes) and 92.5% (7 classes) (see Figure 3.8).

(c) Accuracy-genes trade-off approach: 10 DEGs, accuracies around

95.5% (2 classes), 95% (3 classes) and 90% (7 classes).

Figure 3.9 showed how different accuracy evolutions were reached by each
cancer-related skin state as the genes were gradually aggregated into the classifier
model. For example, with only the first 3 genes (DSC3, SCGB2A1 and BNC2),
an accuracy above 80% is insured for 4 skin states (NSK, METMEL, BCC and
MCC). By selecting 10 genes as trade-off, high classification rates are reached for
most cancer-related skin states: NSK (99%), PRIMEL (82%), METMEL (90%),
BCC (84%), SCC (90%) and MCC (96%).

These observations suggest that different gene rankings could be returned when
pursuing an optimal classification of a specific cancer-related skin state. For
example, although MCC shows expression values contrary to the rest of skin
states in the identified DEGs, there are genes like LGR5, POU4F1, SOSTDCI,
KRT20 and MYO15A which are clearly postulated as differentiating genes in
MCC diagnosing in comparison to other cancer-related skin states. However,
their contribution on the MCC diagnosis improvement can not be appreciated
because these genes were ranked after eleventh position and the diagnosis of this
skin carcinoma does not improve after the ninth gene as can be seen in Figure 3.9.
From the same figure, a similar conclusion can be drawn from the PCP4 gene that

was ranked in tenth position and its potential informative power for diagnosing
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some skin state seems to be irrelevant despite having a distribution similar to

SCGB2A1.

3.7. Conclusions

Through a restrictive pipeline process, 17 DEGs were obtained for discriminating
up to seven cancer-related skin states from the integration of multiple skin cancer
datasets. In the light of all results and discussions presented in this study, these
genes have been seen as reliable skin cancer biomarkers. Consequently, they
are expected to serve as a guide to improve the early diagnosis of skin cancer
because these indicate the potential predisposition to suffer from it. Many of
these genes have been linked even to other pathologies or disorders of the skin
that are considered as precancerous skin states.

The vast heterogeneity of the sample collection with respect to diverse factors
like platforms, origin, parts of the body, etc. positively influenced in the finding
of 6 genes that had not previously related to skin cancer: SCGB2A1, CRYBA2,
ANXA3, PCP4, SOSTDC1 and MYO15A. In this sense, beyond the importance
of each DEG in the overall recognition, the relevance analysis of each DEG
showed the differentiating role of the SCGB2A1 gene. This is greatly due to the
fact that the massive heterogeneous sample integration has allowed extracting
extremely useful underlying information from the joint study of up to 7 different
cancer-related skin states. SCGB2A1 appeared as down-expressed for all the
cancer-related skin states, but MCC. The same gene was also down-expressed
for the NEV state, in comparison with NSK gene expression levels. In terms
of accuracy recognition, an overall recognition around 92.5% of accuracy has
been achieved to distinguish among 7 cancer-related skin states. More briefly,
an accuracy of 96% is guaranteed to discriminate between healthy and tumor

samples from the 17 DEGs.
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Our next objectives include the idea of using this pipeline in other types
of cancers or diseases with a good number of existing samples from public
repositories, available private data or even from further generation sequencing
techniques, having data quantified in gene expression values. Specifically,
the proposed integration scheme is expected to allow the co-integration with
more innovative state-of-the-art technologies such as RNA-seq. Additionally,
modifications of the general pipeline are aimed to be used in the improvement
of the diagnosis of those cancer-related skin states with lowest diagnostic

accuracies.







4. Integrating Transcriptomic

Technologies

4.1. Introduction

This chapter presents a new methodological approach that integrates skin cancer
datasets at the gene expression level, and whose information comes from the 2
co-existing sequencing technologies: microarray and RNA-seq. The study aims
to take a step forward, reinforcing the methodology presented in Chapter 3 from
several fronts: the consideration of precancerous diseases, the implementation of
an algorithm for selection of biomarkers and an improvement in the classification
process.

The study has made use of the following resources:
e Number of datasets: 27
e Number of samples: 968

« Skin Pathological States: 10 (NSK, NEV, BCC, SCC, PMCC, MMCC,
PRIMEL, METMEL, AK and PS)

« Web Data Repositories: NCBI GEO and AE

e Sequencing Technology: Microarrays and RNA-seq
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As in the previous Chapter 3, it is suggested to review the concepts and
resources previously explained in Section 2.1.1 for a better understanding of the
procedure presented here. The content included in this chapter is a part of the
submitted journal article entitled "Towards Improving Skin Cancer Diagnosis by

Integrating Microarray and RNA-seq Datasets” (revision process).

4.2. Background

Skin cancer is a worrying complex disease taking a wide range of skin pathological
states (SPSs). The complex heterogeneity of its occurrence is determined by
the abnormal and out of control proliferation of specific cells (squamous, basal,
Merkel, melanocyte, keratinocyte, etc.) that incur the development of multiple
skin cancerous pathologies. Among them, the most frequent in order of incidence
are related to non-melanoma skin cancer (NMSC) which is led by basal cell
carcinoma (BCC), squamous cell carcinoma (SCC) and Merkel cell carcinoma
(MCC) [69]. With regard to melanoma skin cancer (MSC), the main pathologies
can be summarised in primary melanoma (PRIMEL) and metastatic melanoma
(METMEL) whose mortality rate is higher [132]. The concerning current global
trend is reflected in epidemiological studies that show how the incidence and
occurrence of both MSC and NMSC cases have already become the most common
types of cancer in white populations [133]. This is supported by the statistical
analyses of cohorts of MSC rates on United States whites, United Kingdom,
Norway and Sweden which increased up to 3% annually during the last 3
decades [134]. With respect to NMSC cases, its incidence is around 20 times
higher than MSC cases [135] despite being widely understudied. As a result
of the fateful combination of both factors, an extensive global alarm is being
increased together with the possibility of suffering from any skin cancer type

by two main drivers: on the one hand, because of tumor evolution of other
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skin diseases previously considered precancerous states such as psoriasis (PS)
[23, 136, 137] or actinic keratosis (AK) [24, 138], and on the other hand, because
of tumor degeneration and mutation from healthy states such as normal skin
(NSK) and nevus (NEV). The narrow biological relationship among several SPSs
may complicate the successful diagnosis of skin cancer. Certain researches have
pointed out the difficulty in discerning among specific SPSs from the clinical,
histological and molecular points of view: AK vs SCC [139], AK and SCC
vs PRIMEL [140], SCC vs BCC and MSC [141], primary MCC (PMCC) vs
metastatic MCC (MMCC) [142], etc. Different editions of the American Joint
Committee on Cancer (AJCC) have gradually introduced the most outstanding
clinical parameters for the diagnosis (tumor mitotic rate, TNM classification,
Breslow thickness, Clark levels, etc.). Consequently, the AJCC Cancer Staging
Manual has been considered the gold standard by clinicians when making their
diagnoses [143]. However, the way to diagnose this cancerous disease continues to
be limited and each AJCC edition implies controversies and corrections on which
are the best criteria to efficiently diagnose each SPS. Conversely, other studies
insist on the possibility of differentiating them from the identification of gene
expression patterns such as AK vs SCC [144]. Although discerning among SPSs
by using DEGs has been revealed, the biological complexity of the skin cancer

may put its validity into question.

4.3. Motivation

The opportunity to efficiently improving the discernment among multiple SPSs
related to cancer from biological data involves taking into account a set of
requirements. Firstly, different technological alternatives which allow to quantify
in terms of gene expression have to be inspected. Although microarray technology

has been vastly used, RNA-seq technology is definitely ending up replacing
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it thanks to various notorious advantages [145]: i) RNA-seq allows detecting
the variation of a single nucleotide; ii) it does not need genomic sequence
knowledge; 1iii) it provides quantitative expression levels and isoform-level
expression measurements; and finally, iv) it offers a broader dynamic range than
microarrays. Nonetheless, the absence of open access datasets from experiments
of the newest technologies still invites to consider analysing microarrays. In
addition to its low cost, it may not have been properly exploited yet because
of being analysed for isolated experiments. By combining diverse skin cancer
datasets containing samples of different SPSs, there is the chance to reinforce the
statistical robustness of the study as well as to obtain highly DEGs from a wider
range of SPSs. This fact adds the challenge of adequately integrating data from
both technologies in order to increase as much as possible the repertoire of samples
of each identified SPS for the study. Previous studies have proven the consistency
of applying multi-platform integration among both microarray platforms and
technologies at gene expression level [146-149], encouraging to continue carrying
it out. However, the researchers have traditionally kept in mind the mandatory
correction of eventual batch effects with the purpose of achieving an effective
integration of multiple experiments over different microarray platforms [121],
mainly coming from two manufacturers: Affymetrix [2] and Illumina [3]. By
additionally taking into account experiments conducted on RNA-seq technology,
the hypothetical influence of this factor may be modified in an unpredictable
way. Although despite the efforts to remove them completely, there is not
even certainty that a complete elimination of these effects will take place
[37], the treatment and the attempt of correction should never be disregarded.
Among the multiple batch effect correction algorithms, ComBat [34] has been
proven to show the highest effectiveness when integrating microarrays [31] and,
recently, has been strongly validated by integrating RNA-seq datasets from
different sources: GTEx and TCGA projects [150]. In the case of favorably
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dealing with all these limitations, discerning multiple SPSs by using changes
in gene expression implies a new experimental challenge. Although hierarchical
clustering highly helps in graphically showing such changes [94], methodological
approaches based on multiclass classification are postulated as an innovative
alternative when assessing the validity of DEGs for simultaneously diagnosing
multiple SPSs [131]. Finally, the use of feature selection algorithms must be
explored with the objective of selecting only informative DEGs, thus dramatically
reducing the search space. Under the fulfillment of the previous premises, the
integration of microarray and RNA-seq technologies at gene expression level
[151] opens new possibilities for skin cancer analysis. Concretely, this advance
could improve the understanding about the hypothetical biological relationships
and differences among SPSs that may be discerned in a simple simultaneous
analysis. Clinicians could directly benefit from its validity in multiple ways.
Firstly, the suspicions about the patient tumor evolution from healthy skin
states to cancerous states, even through precancerous skin diseases, could be
eventually assessed by presenting certain genetic susceptibility to change [77]. A
personalised and patient-oriented medical service could be derived from the above
by knowing the genetic signs. Consequently, unnecessary medical treatments
such as radiation therapies, excision surgeries or medications supply could be
prevented [105]. Definitely, their diagnosis decisions could be supported thanks
to the use of an intelligent diagnosis tool that offers another complementary
point of view [103]. In view of the benefits and clinical coverage that its use
could offer, this study presents a novel methodological approach that addresses
all the requirements presented to advance in the improvement of the skin cancer
diagnosis. The integration of different skin cancer datasets from microarray and
RNA-seq technologies based on gene expression analysis has not been widely
explored by the scientific community. First of all, an exhaustive sample search of

multiple SPSs was carried out from public data repositories. Thus, 22 microarray
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and 5 RNA-seq series containing 1090 samples in total were finally collected.
However, after applying a strict quality control phase, only 968 samples passed
and were subjected to the preprocessing phase: 666 samples from Affymetrix and
[Mumina microarray platforms and 302 samples from Illumina RNA-seq platforms.
Subsequently, the sample integration consisted in considering only those genes
sharing a common annotation for all the series selected for this study. After
merging multiple batches and applying batch effect correction on them, the
challenge was to efficiently find valid genes to simultaneously discern up to 10
SPSs: from a priori healthy states (NSK and NEV) to cutaneous carcinomas
(BCC, ISCC, PMCC and MMCC) or melanomas (PRIMEL and METMEL),
including skin diseases with a higher risk of tumor degeneration that have already
been cataloged as precancerous states (AK and PS). From the assessment of a
highly heterogeneous multiclass dataset of 968 samples and almost 7700 genes, a
subset of DEGs was identified by applying a simple one-vs-one (OVO) multiclass
gene selection algorithm. This was achieved by means of consciously tuning
critical and highly selective parameters. Concretely, log2 fold change (LFC) and
maximum number of selected DEGs (NMAX) among each pair of SPSs were
considered. By relying on a widely used feature selection algorithm and assessing
different subgroups of multiclass candidate DEGs, an ANOVA statistical test
[152] assessed the influence of these critical parameters together with the use of
different classification models and performance metrics. Finally, the biological
relationship of these DEGs with skin cancer was consulted by examining their

functional properties and inspecting specific literature.

4.4. Methodologies and Experiments

Under the operation of a specific designed pipeline, an overall flowchart of our

approach is presented (Figure 4.1). Each of the experimental steps of this
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proposed pipeline will be sequentially addressed in the following subsections.

4.4.1. Transcriptomics Technologies Integration

To obtain the integration of skin cancer datasets coming from different platforms

and technologies, three steps have to be carried out (see left part in Figure 4.1).

4.4.1.1. Raw Data Acquisition

One of the first steps involves carrying out an in-depth information search
about skin cancerous pathologies and, subsequently, finding out the current
availability of datasets. On the one hand, AK and PS have been previously
cataloged as precancerous skin diseases. On the other hand, a wide range of
SPSs related to cancer have been specified: from carcinomas (BCC, SCC or
MCC) to melanomas (PRIMEL and METMEL), to even lymphomas or sarcomas.
Next, the identification of transcriptomics webdata resources implied inspecting
the availability of the above SPSs together with healthy states (such as NSK
or NEV) in public repositories such as NCBI GEO [106] and ArrayExpress
[8] web platforms. Initially, guidelines indicated in Section 2.1.1.1 for sample
selection were followed. Moreover, only those SPSs containing a representative
number of samples were considered in order to increase the possibilities of
characterising their manifestation [153]. Under these considerations, Bowen’s
disease samples (also known as SCC in situ) were not finally considered (only
two datasets containing data samples from this SPS were found, summing up to
only 12 samples which was considered too low for the study). Extensively, no
representative number of lymphoma and sarcoma samples were available to be
considered in this study. By dealing with different microarray technologies and
platforms, several R packages were considered from Bioconductor web platform
[154] in order to acquire the RNA samples: from GEOquery [113], affy [112] and

oligo [114] for different Affymetrix platforms to lumi [115] for Illumina platforms.
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In the case of RNA-seq series, Sequence Read Archive (SRA) and FASTQ files
containing raw information were directly downloaded in a programmatic manner
before being preprocessed. Only those series whose samples were aligned to the
GRCh37 reference genome, were considered for this study due to its greater public
availability. Specifically, the extensive RNA sample collection from 27 series used
in this work led to the analysis of up to 10 SPSs (Table 4.1). Each of the series
can be identified under accession ID, highlighting most of them being submitted
from United States and other countries where their population is predominantly

white: Deutschland, Netherlands, Great Britain and Australia (Table 4.2).

4.4.1.2. Preprocessing

This phase begins by checking the quality of the samples under a restrictive
evaluation procedure. To achieve it, the arrayQualityMetrics R package was
iteratively applied on every microarray series by assessing up to 6 quality tests
[116]: distance among samples, principal Principal Component Analysis (PCA),
Kolmogorov-Smirnov test based on the Ka parameter, density distribution
plots, standard deviation of the samples intensities and Hoeffding’s D-statistic
(normally executed with D < 0.15). In order to discard all samples presenting
low quality (outliers), all of these tests were iteratively applied over each series.
With respect to RNA-seq series, 5 samples were excluded by avoiding sample
duplication. The total number of excluded samples from each series is specified
in the last column of Table 4.2. Subsequently, each of the sequencing technologies
requires a wide range of intra-array processing steps which have to be carefully
performed when both are going to be integrated at gene expression level. Because
of being processed from different platforms, a normalisation procedure has to
be applied on each microarray series. RMA algorithm [25] was applied in
this work by modularly performing background correction, normalisation and

summarisation on the microarray data. For its application, rma function from
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affy and oligo R packages was used for Affymetrix microarrays as well as
lumiExpresso from lumi R package was used for [llumina microarrays. Gene
annotation of each series was provided by the annotate R package, which eases
the mapping from the manufacturer chip identifiers to standardised symbols by
using a wide range of annotation packages from Bioconductor website. With
respect to RNA-seq series processing, the proposed pipeline by Anders et al.
[155] was partially followed but changing certain tools. Once a large number of
FASTQ and SRA files are available, several tools such as sra-toolkit [156], hisat2
[157], bowtie2 [158], samtools [159] and htseq [4] were used until getting read
count files containing the located genes in each sample. Before obtaining these
files, gene annotation was retrieved by means of biomaRt R package [160], a
data-mining tool which allows to connect with Ensembl database [161]. After all
these steps, other R packages such as cqn [5] helped in correcting and normalising

GC content bias, and NOISeq [6] allowed to calculate the gene expression values.

4.4.1.3. Gene Expression Integration

After preprocessing each of the microarray and RNA-seq series individually,
additional requirements have to be considered before inter-array normalising and
correctly integrating them all [162]. On the one hand, each of the expression
values of the genes transcribing the same gene identifier have to be summarised
in a single value. In order to be consistent in assessing the impact of each gene
selected, all transcripts were gathered by applying the mean of them on each
series separately. On the other hand, several simultaneous steps were carried
out on the 27 series (Figure 4.2). 28 batches were established because different
samples from GSE42677 series were processed by two different platforms. Firstly,
logarithmic transformation was performed on 2 series (GSE2503 and GSE3189)
in order to adequate the scale representing gene expression values, establishing

base 2 for all the batches (Figure 4.2A). Following, 16-bit depth homogenisation
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Figure 4.2: Series processing procedure for gene expression integration: (A)
logarithmic transformation, (B) 16-bit depth homogenisation, (C)
complete cases selection along the batches, (D) batch effect correction with
ComBat and (E) inter-array normalisation with normalizeBetweenArrays.
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was applied (Figure 4.2B) after previously analysing the maximum value of
gene expression for each series in function of the platform, establishing different
consensus values in the bit depth: 20-bit depth for Human Genome U133A
Array platform (GSE2503, GSE3189, GSE6710 and GSE46517), 16-bit depth for
Human Genome U133 Plus 2.0 Array platform (GSE7553, GSE13355, GSE14905,
GSE15605, GSE30999, GSE32924, GSE39612, GSE42677, GSE45216, GSE50451,
GSES3223 and GSE82105), 16-bit depth for Human Genome U133A 2.0 Array
platform (GSE32407, GSE42109, GSE42677 and GSE52471), 12-bit depth for
Human Exon 1.0 ST Array platform (GSE36150), 16-bit depth for HumanAll
platform (GSE32628 and GSE53462), 22-bit depth for Genome Analyzer platform
(GSE54456), 20-bit depth for Genome Analyzer IIx platform (GSEG67785), 24-bit
depth for HiSeq 2000 platform (GSE84293 and E-MTAB-5678) and 22-bit
depth for HiSeq 2500 platform (GSE98394). Thereupon, by having previously
established a common gene annotation for all the considered series, only common
genes were identified and selected for all the samples coming from the series
/ batches. At this point, batch effect correction was thought to be applied
because hypothetical batch effects could be appearing among all 28 batches
considered (Figure 4.2C). By dealing with this issue, ComBat method [34] from
sva R package [163] was considered, correcting and establishing a harmonised
sample distribution along all the samples from all batches (Figure 4.2D). Finally,
an inter-array normalisation was applied by means of normalizeBetweenArrays
function from limma R package [38]. This achieves consistency among all the
samples put together and forces an identical empirical distribution on each of
them based on quantile normalisation (Figure 4.2E). Before any new sample
is properly assessed by this procedure, all these transformations are completely
necessary and have to be applied in the same way. At the end of this procedure,
the whole integrated dataset formed by p common genes and all n quality samples

selected including N classes is achieved (matrix A in Figure 4.1).
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4.4.2. Machine Learning and Soft Computing

Bioinformatics researches have been successfully benefited from the use of
machine learning and soft computing techniques [164] in a wide range of problems
such as expression profiling identification, feature selection and classification [59].
As the number of biological experiments and applications using high-throughput
technologies continue to increase, new approaches using this type of techniques

for knowledge discovery have to be proposed [165, 166].

4.4.2.1. OVO Multiclass DEGs Selection

Traditionally, the gene selection from expression profiles analysis deals with the
curse of dimensionality problem (np-hard) because of pitting few n samples
against thousands of p genes [62]. By reducing such dimensionality to highly
discriminatory DEGs, this issue becomes even more challenging when increasing
the number of SPSs (in our work, N) (see nomenclature in Figure 4.1). With
the purpose of handling such challenge, this work presents a simple and intuitive
one-vs-one (OVO) multiclass DEGs selection approach based on the assessment
of all possible pair comparisons of SPSs. This concept of comparing two SPSs has
been defined in this work as class pair comparison (CPC). Each CPC is analysed
under the criterion of selecting those DEGs with higher LFC by having a higher
discernment power at the gene expression level. For this purpose, this process was
carried out by means of tuning the two parameters LFC and NMAX. On the one
hand, LFC establishes a minimum threshold value to be genes considered as DEGs
throughout all CPCs. On the other hand, NMAX indicates the maximum number
of DEGs selected for each CPC. An additional threshold can be established by
means of p-value (PV), but a constant value of 0.001 was established to present
our approach. By extending to a problem of N SPSs, the total number of CPCs
amounts to (N2 — N)/2. This is particularised in 45 CPCs in this work in

which 10 SPSs are simultaneously analysed. The expected maximum number of
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DEGs would attain NMAX * (N2 — N)/2 value after applying this methodology.
This step forward with respect to the classical gene selection process, which
is exclusively controlled by PV and LFC, may eventually avoid the lack of
capacity of the selected DEGs discerning among specific CPCs or different SPSs
subsets by easily tuning NMAX parameter. In order to finish this process, the
union of all the DEGs sets after considering each CPC has to be performed.
This consideration allows identifying repeated DEGs because of having higher
difference of gene expression for several CPCs. Such DEGs coincidence helps
in reducing even further up to p* the final candidate multiclass DEGs, where
p* < NMAX*(N2 — N)/2 < p. In search of strengthening the selection of
DEGs as much as possible, up to M different experiments were performed,
splitting the whole integrated dataset into two datasets: 90% for training and
validation and the remaining 10% for testing. Similar representativeness of each
SPS was ensured within both datasets. The feature selection and parameter
tuning processes were initially applied on the 90% similarly to a cross-validation
procedure for each of these M experiments, thus returning different DEGs sets
for each LFC and NMAX combination. With the aim of improving the reliability
and the interpretability of the subsequent results, only those p* common genes
matching all the M experiments for each parameter combination were selected.
This fact discards spurious DEGs only emerging in specific experiments and
preserves from subsequent classification biases. Before evaluating the different p*
common genes sets within each of the M experiments, an additional assessment
of their informative power was performed by means of minimum-Redundancy
Maximum-Relevance (mRMR) feature selection algorithm [59]. This algorithm
returns a ranking according to the criterion of placing those DEGs with the most
relevant and the lowest redundant information among themselves with respect to
the class variable. After applying it, different DEGs rankings were established by

assessing the different p* candidates sets on the whole integrated dataset for each
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LFC and NMAX combination. To sum up, twofold DEGs selections were carried
out: firstly, reducing the computational complexity from p thousands of genes to
the p* most reliable candidate DEGs of the disease; secondly, after considering
the previous reason, exclusively selecting those p** DEGs with higher informative

capability for the intelligent diagnosis (see right part in Figure 4.1).

4.4.2.2. Automated Classification Assessment

Three classification techniques assessed the informative power of different DEGs
subsets from the ranking returned by mRMR: Support Vector Machines (SVM)
[60], K-Nearest Neighbour (KNN) [61] and Naive Bayes (NB) [62]. K-fold
cross validation technique (K-fold CV, where K = 10) [66], the most considered
accurate approach for model selection, was used on the training set of each M
experiment with the purpose of providing a realistic performance of the DEGs on
new unseen data. Once again, samples from each SPS were equally distributed
among K-folds in search of improving the possibilities of correctly classifying any
new sample. The 10-fold CV classification assessment was repeated 10 times by
randomly shuffling the dataset, thus achieving statistical robustness by procuring
asymptotic convergence to a reliable estimation of the classifier performance [167].
Finally, three metrics were used in order to measure the recognition rate by

combining each classifier in association with different DEGs set sizes: accuracy

(ACC), overall Fj-score (OF})) and mean multiclass Fj-score (M F}).

These are calculated by using the Equation 1, 2 and 3, respectively. Fach of
these metrics can be expressed in function of certain parameters (precision (P)
and recall (R)) or different rates (7}, T,,, F, and F,,) which can be identified from

a confusion matrix of N classes:

T, +T,
T,+T,+F,+F,

ACC =
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2.P-R 2T,

OF, = = 4.2
""" P+R  2-T,+F,+F, (4.2)
N classs (;
R
MF1 — Zzzl ]\1[ (Z) (43)

The metrics related to Fl-score [168] were considered particularly suited and
robust for the multiclass study tackled, as they provide a better measurement of
the recognition rate of each of the classes under unbalanced data. After our model
has been validated by the K-fold CV, these metrics were also calculated for the
remaining 10% testing dataset for each experiment. Following, in order to assess
the influence of the multiple factors considered for identifying multiclass DEGs,
an ANOVA statistical test was performed over the entire dataset. Although
factors such as assessed dataset type (TYPE), analysed K-fold cross validation
(KFOLD) or M experiment performed (EXPERIMENT) were also evaluated by
this test, 4 factors were specifically highlighted because of their further relevance
in the subsequent analysis. On the one hand, LFC and NMAX parameters were
subjected to evaluation by tuning the proposed algorithm. On the other hand,
the hypothetical differences of applying different classifiers in combination with
a number of DEGs set sizes (GenMax) were also inspected by means of this test.
By checking the validity of each factor (LFC, NMAX, classifier and GenMax),
the different performance metrics (ACC, OF1 and M F}) were measured for both
training and test sets. Finally, a functional enrichment analysis was performed
by means of DAVID 6.8 [169] in order to functionally annotate and interrelate
the obtained DEGs using Gene Ontology (GO) terms.
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4.5. Results and Discussion

By taking into account the integration at gene expression level from 22
microarrays and 5 RNA-seq series containing multiple SPSs related to cancer,
the opportunity to determine a skin cancer gene signature of up to N = 10 SPSs,
formed by highly reliable multiclass DEGs, has been addressed in this work. The
experimental analysis of this study have been conducted under the proposal of an
OVO multiclass DEGs selection algorithm which has been thoroughly tested by
means of an ANOVA statistical test. The interpretation of the results obtained
from this analysis have been used in order to select suitable setting parameters.
By tuning our proposed algorithm, this study was focused on assessing the
informative power of the p* identified multiclass DEGs. After selecting p**
multiclass DEGs from the previous one, their biological relationship to skin cancer
was finally consulted. This discussion has been guided on presenting all the results

derived from the procedure above.

4.5.1. Impact of Tuning Algorithm Parameters

The statistical significance of each considered and highlighted factor (NMAX,
LFC, GenMax, Classifier) was confirmed by means of the ANOVA statistical
test, showing the influence of each of them on the classification performance
(Table 4.3). Type III sums of squares was chosen and the contribution of each
factor was measured having removed the effects of all other factors. P-values
tested the statistical significance of each of the factors. Since 6 P-values are
less than 0,05, these factors have a statistically significant effect on M F; at the
95,0% confidence level (highlighted in bold). All F-ratios are based on the residual
mean square error. The most significant differences were exclusively appreciated
by checking the scale depth when using M F; (Figure 4.3). While the lowest

NMAX parameter value reflected one of the highest classification performances
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Table 4.3: ANOVA statistical test for M F; performance metric
Source (Main Effects) Sum of Squares Df Mean Square F-Ratio P-Value

A: TYPE 61.4457 1 61.4457 22681.85 0.0000
B: EXPERIMENT 48.0765 9 5.34183 1971.87  0.0000
C: KFOLD 0.00597 9 0.00066 0.24 0.9878
D: CLASSIFIER 10.1689 2 5.08447 1876.86  0.0000
E: LFC 42.0707 8 5.25884 1941.23  0.0000
F: NMAX 30.6972 9 3.4108 1259.05  0.0000
G: GENMAX 419897 5 83.9794 30999.84 0.0000
RESIDUAL 739442 272955 0.00270

TOTAL (CORRECTED) 1398.59 272998

and discarded the consideration of a wide range of DEGs for each of the 45 CPCs,
the impact of tuning LFC helped to elucidate the disadvantage of selecting high
threshold values because of dropping value more than 3%. Classification models
results ranged from 80% to 82%, establishing these performances around 10 genes
(see Classifier and GenMax factors in Figure 4.3). Similar statistical results and
distribution for each factor were achieved for ACC and OF1, and these can be
facilitated under petition. Following, in order to present and illustrate the utility
of the proposed algorithm in this work, a choice of parameters was required. The
decision was motivated under the criterion of restrictively selecting DEGs while
being preserved the information of all considered SPSs for this study. For this
purpose, NMAX = 1 was established by presenting one of the highest recognition
rate for each performance metric assessed (as clearly showed and supported the
results of ANOVA statistical test), leading to drastically reduce the computational
complexity to a maximum of (N? — N)/2 = 45 highly discerning DEGs. This
fact prevents of arbitrarily tuning LFC and relying decision power on it in search
of an enough threshold for discerning among multiple SPSs. Extensively, this
decision may avoid the removal of DEGs to discern those hardly distinguishable
when applying highly restrictive LFC values. Hereafter, these setting parameters
were used to identify the candidate multiclass DEGs and present a potential gene

signature of the skin cancer.




4.5. RESULTS AND DISCUSSION 85

Figure 4.3: ANOVA statistical test results for M F; in function of different factors:
Type, Experiment, NMAX, LFC, Classifier and GenMax. All these
factors were determined as significant statistically.
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4.5.2. Selection of Informative DEGs

Although up to 45 genes could have potentially been returned by our proposed
algorithm under the selected configuration, exclusively p* = 10 candidate

multiclass DEGs appeared as common genes from the intersection of DEGs
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for each of the M = 10 experiments performed, as many of these genes were
highly discriminating among several CPCs. However, in order to reduce the
repertoire of candidate DEGs set for intelligent diagnosis, the informative
capability of different subgroups of up to p* DEGs ordered by means of mRMR,
was subjected to an automated classification assessment. This algorithm then
established the following DEGs ranking: MLANA, LTF, MMP1, ADAMTSS3,
LY6D, SCGB2A2, KRT14, PI3, PMEL and S100A7. As a result, the
classification results are presented when increasing the size of DEGs set following
the previously established ranking, showing asymptotic convergence for the
different performance assessments (Figure 4.4). Our classification procedure even
demonstrates how the recognition rate for unseen data does not drastically drop,
reinforcing the overall reliability of these DEGs for skin cancer diagnosis. By
reducing the complexity of the study, the subsequent experimental analysis was
limited to consider the first p** = 8 DEGs given that the average improvement
of MF; per gene is lower than 0.6%. The results associated with this size of
DEGs set even improved those showed by GenMax parameter for ANOVA test,
outperforming recognition rates of 94% OF1 and 80% M F; when considering
any classifier. Afterwards, with the purpose of knowing the overall discernment
capabilities of the 8 multiclass candidate DEGs, the number of SPSs and CPC
cases being covered by each one of them when being appeared with the highest

|ILFC| for any CPC was summarised (Table 4.4).

4.5.3. Recognition of SPSs

Despite establishing setting parameters which help in emerging DEGs to
discern from each CPC, this fact does not prevent from having difficulties in
distinguishing among certain SPSs. Most CPCs can be properly discerned from
any of the 8 DEGs by presenting significant LFC values (Figure 4.5). However,

there is a small set of CPCs which are harder to distinguish when examining
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changes at gene expression level such as ISCC vs AK (LFC < 2) or PMCC

vs MMCC (LFC < 1). This incurs in observing the informative limits of gene

expression when intending to offer a reliable diagnosis among a lot of SPSs which

are close at the biological level.

Figure 4.4: Evolution of the recognition rate for training and test datasets. Three
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classification models (SVM, KNN and NB) were assessed by means of
several performance metrics (ACC, OF; and MF;) when considering
different subgroups of DEGs ranked by mRMR algorithm.
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Table 4.4: ANOVA statistical test for M F; performance metric
(GGene Symbol SPSs CPCs (%) MULFC + OLFC PVMIN;PVMAX]

[

MLANA 7 8 (17.8) 486 £ 0.97  [1.30E-157, 8.52E-80]
LTF 5 4 (8.9) 481 +0.29  [3.87E-186, 2.70E-94]
MMP1 7 7 (15.6) 467 & 1.48  [1.34E-77, 8.30E-14]
ADAMTS3 4 3 (6.7) 402 4027  [3.91E-230, 1.67E-160]
LY6D 5 5 (11.1) 535+ 0.33  [4.55E-135, 5.71E-121]
SCGB2A2 6 5 (11.1) 548 £ 0.69  [7.58E-121, 4.41E-89]
KRT14 7 6 (13.3) 6.24 + 0.56  [2.42FE-264, 1.96E-189)]
PI3 7 6 (13.3) 6.39 £ 1.07  [9.99E-220, 7.23E-73]

By extensively checking how a new unseen sample could be classified, the
different classification models assessed the 8 highlighted DEGs set (Figure 4.6).
The recognition rates confirm the real challenge of properly discerning the CPC
cases previously highlighted, although presenting accuracy differences among
models when classifying certain SPSs (for example, ISCC achieves 72% for NB,
76% for KNN and 77% for SVM). On the one hand, 3 SPSs achieved high
recognition rates for SVM classification model: NSK (97%), BCC ( 100%) and
PS ( 98%). On the other hand, recognition rates dropped for the 7 remaining
SPSs mainly to be confused with another SPS as predecessor studies had already
advanced [9-12]: NEV ( 83% and confused with NSK above 4%), ISCC (77%
and confused with AK above 20%), PMCC ( 58% and confused with MMCC
above 37%), MMCC (45% and confused with PMCC above 54%), PRIMEL (91%
and confused with METMEL above 2%), METMEL (90% and confused with
PRIMEL above 7%) and AK ( 65% and confused with ISCC above 31%). This
fact remarks the difficulty of achieving reliable DEGs between precancerous and

invasive states because they present molecular similarities. By considering the

fusion of certain CPCs (for example, MCC formed by PMCC and MMCC, MSC
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formed by PRIMEL and METMEL or combining ISCC and AK), the recognition
rates would have practically outperformed percentages ranged from 87% to 99%

for these skin super-states in a much more generalised study.

Figure 4.5: Distribution map of the 8 multiclass DEGs set. Highest |LFC| value for
each CPC by considering NMAX = 1 and applying mRMR algorithm.
Circle sise and color are correlated with |[LFC| value and multiclass DEG
with highest |LFC|, respectively. CPC, class pair comparison.
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4.5.4. Determination of Potential Target Genes

One of the main reasons to separate in specific SPSs lies in finding relevant
biomarkers of their occurrence from gene expression analysis. The determination
of potential target genes could help clinicians when making their diagnoses,
eventually avoiding the application of inappropriate therapies to combat certain
SPSs. For example, the search of therapeutic alternatives for the treatment of
MMCC [170] has been necessary due to the ineffectiveness of chemotherapy by
failing to ensure successful outcomes when applying on long-term MMCC [171].
This fact has driven the pursuit of personalised therapies to deal with diverse
MCC stages such as PMCC or MMCC [172]. Before making any medical decision
on any new skin sample, clinicians could rely on intelligent diagnosis based on
assessing reliable multiclass DEGs. In this case, our approach highlighted the
informative capacity of these 8 candidate multiclass DEGs for an overall diagnosis
of suffering from skin cancer (Figure 4.7).

In view of these results, certain multiclass DEGs such as MLANA, MMP1,
LY6D or PI3 appeared down-expressed for both SPSs and, among others, may
discern better PMCC and MMCC with respect to other SPSs (Figure 4.5). All
these genes have previously proven to be of great importance for expression
pattern characterisation and skin cancer diagnosis: from inhibition in SCC
(MLANA), positive dysregulation in BCC and AK (MMP1) to correlated
overexpression in SCC and PS (PI3) [173-175]. Therefore, a preventive clinical
analysis of these genes could help to avoid erroneous therapies by examining their

hypothetical involvement in other SPSs addressed by this study.

4.5.5. Biological Interpretation of the Multiclass DEGs

In order to understand the functional properties of the 8 highlighted DEGs, a

functional enrichment analysis based on GO terms was performed from DAVID
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Bionformatics Database [169]. The three GO ontologies for biological processes
(BP), cellular components (CC) and molecular functions (MF) were considered
for our analysis. A total of 6 BPs, 6 CCs and 4 MFs were determined to be
significant throughout these genes (Table 4.5). As shown, MMP1, ADAMTS3
and LTF genes are highly related in terms of their proteolysis process and endo-
and metalloendo-peptidase activity. According to the activity of proteolytic
enzymes, this fact has been associated with angiogenesis and tumor progression
of skin cancer [176, 177]. Following, by exhaustively inspecting specific literature,
the biological relationship of the 8 highlighted DEGs with skin cancer was
consulted. On the one hand, the most remarkable inquiries underlined the
dysregulation of up to 6 DEGs in MSC cases [178, 179] and development risk
[180] (excepting ADAMTS3 and PI3) and the implication of up to 5 DEGs
in PS development or inflammatory processes [175, 181] (excepting MLANA,
ADAMTS3 and KRT14). On the other hand, the differentiating role of specific
DEGs in NMSC cases was highlighted: the overexpression of ADAMTS3 in BCC
[182] or the hypothetical implication of KRT14 in the malignant transformation
of potential stem cells as origin of MCC [183]. Based on all these precedent
evidences and the results showed (Figure 4.7), the 8 multiclass DEGs highlighted
by this approach should be particularly taken into account by being related to
tumorigenesis and pathogenesis of skin cancer. Concretely, MLANA has been
remarkably demonstrated to be upregulated in NEV [178], inhibited in SCC
[173] and differentiated between MCC and PRIMEL by highlighting absence
and overexpression by means of immunohistochemical analysis [184]. Further,
multiple genetic dysregulations of DEGs have been reported in several studies:
from the downregulation of LY6D, SCGB2A2 and KRT14 in METMEL with
respect to PRIMEL [178] to the dysregulation in SCC versus NSK by showing
inhibition of MLANA and SCGB2A2 or overexpression of MMP1 and PI3
[173, 185, 186].
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Finally, the dysregulation of certain DEGs has been interestingly reflected in
both SCC and PS in a similar way: from inhibition of SCGB2A2 together with
overexpression of MMP1 and PI3 [175] to slight and strong upregulation of LTF
in SCC and PS, respectively [175, 181]. Because of being a chronic inflammatory
skin disease, special attention should be paid to the psoriasis evolution because the
cancer development also generates inflammatory reactions around surrounding
tissue [23]. From the preventive point of view, clinicians should remain attentive
to the high gene expression variability of these specific DEGs by showing changes
between NSK, PS and diverse SPSs related to cancer (see gene expression changes
for all these DEGs in Figure 4.7). In accordance with our results, this subset
of multiclass DEGs could represent a genetic signature offering clues about the

overall state of the disease.

4.6. Conclusions

Throughout this study, the validity of integrating transcriptomic data from
the main technologies for quantifying gene expression has been underlined.
Specifically, an even more generalised study on skin cancer has been approached,
extending the methodological approach presented in Chapter 3. Some new
insights on biomarkers that might be offering clues on skin tumor degeneration
have been shown. Despite specific skin pathological states are hardly
distinguishable due to high intrinsic biological similarities, obtaining an intelligent
skin cancer diagnosis for 10 pathological states with an overall classification rate
higher than 94% with only 8 genes is quite promising. This result took on
more value when inspecting the biological involvement of these 8 biomarkers
on skin cancer. New clinical evaluations will determine the diagnostic potential
of these biomarkers, thus encouraging to develop innovative target therapies for

combating the skin cancer.







5. Considering Somatic CNVs to

Improve Intelligent Diagnosis

5.1. Introduction

This chapter is intended to motivate the potential of genomic information to
help narrow further the candidate gene set that may show greater biological
involvement and hypothetical responsibility promoting the development of the
analysed cancer. Specifically, taking advantage of the knowledge acquired from
the studies presented in Chapters 3 and 4, gene expression has been integrated
with somatic CNVs, even analysing the informative correlation between both
biological information sources in order to select those biomarkers with greater
informative power in an intelligent diagnosis.

The study has been made from the use of the following resources:

Number of datasets: 18

Number of samples (patients): 605 (532)

Skin Pathological States: 4 (NSK, NEV, PRIMEL and METMEL)

Web Data Repositories: NCBI GEO, AE and NCI GDC

Sequencing Technology: Microarrays, RNA-seq and CNVs
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All these resources were defined in Chapter 2 and can be consulted there. The
content included in this chapter is a part of the submitted journal article entitled
“Supporting Clinical Decisions - Determining Biomarkers Driven by Somatic
Copy Number Variations Being Responsible for the Progression of Cutaneous

Melanoma” (under review).

5.2. Background

Cutaneous melanoma is unquestionably the deadliest form of all skin cancers.
Despite historically being a rare cancer, its incidence in recent decades has
increased faster than any other cancer [187]. This growing projection represents
a significant health burden in worldwide [134]], being remarkably alarming in
United States where it is estimated >96000 new cases and >7000 deaths during
2019 [73]. Nowadays, the personalised treatment of this disease considerably
depends on the diagnosed clinical stage which is usually based on the AJCC
guidelines [143]. However, the melanoma heterogeneity prevents of establishing
long-lived therapeutic solutions [188]. On the one hand, surgical excision is
clearly considered the main recommendation for treating the primary cutaneous
melanoma. On the other hand, multiple controversies appear about which is the
most proper therapy to treat metastatic malignant melanoma. Depending on
whether the malignancy is unresectable or not, those acquired mutations may
potentially influence in the progression of the disease [189]. In this sense, despite
having been an important therapeutic strategy for palliation, chemotherapy has
been shifted to secondary choice. Among the new therapeutic trends, the design of
dysregulated pathway inhibitors (for example, for RAS/RAF/MEK/ERK MAPK
pathway), the application of targeted therapies and the consideration of different
immunotherapy strategies are currently prevailing [190]. More importantly, it

should be noted that the ongoing research focused on the development of effective
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resistance for treating cutaneous melanoma is highly challenging because of being

a highly mutated cancer.

5.3. Motivation

With the demand for accurate and customised solutions for the patient,
new targeted therapies have to be increasingly oriented towards extremely
personalised medicine. Moreover, the success of these novelty therapeutic
strategies may come with early diagnoses which anticipate the progression of
the cancer. As it has been showed in the previous Chapter 3 and 4, DEGs
usually help in offering clues about what genetic biomarkers discern better
among different pathological states. However, the predisposition of certain
biomarkers to present multiple mutations could hinder the determination of
reliable DEGsDEGs, thus influencing in the variation of their gene expression
levels. Despite having widely studied Single Nucleotide Polymorphisms (SNPs)
using Genome-Wide Association Studies (GWAS), the inter-individual genetic
variation provided by CNVs has been mostly ignored [191]. In this sense, the
best findings about the occurrence of CNVs in cancer have been determined from
the use of array Comparative Genomic Hybridization (aCGH) [192]. Nowadays,
with the arrival of NGS, copy number variation extracted from WXS could
help in elucidating which of those DEGs are likely dosage-sensitive by changing
their expression due to alterations promoting loss or gain of gene copies. This
fact could bring light in determining the susceptibility of genes affected by
CNVs to tumorigenesis and angiogenesis. In search of offering new insights on
the diagnosis of cutaneous melanoma, this chapter presents a methodological
approach which determines reliable biomarkers related to the progression of the
cutaneous melanoma from primary to metastatic state. For this purpose, an

integrative analysis of gene expression and somatic copy number variation has
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been designed and included within our clinical support approach (Figure 5.1).
In search of offering new insights on the diagnosis of cutaneous melanoma, this
work presents a methodological approach which determines reliable biomarkers
related to the progression of the cutaneous melanoma from primary to metastatic
state. For this purpose, an integrative analysis of gene expression and somatic
copy number variation has been designed and included within our clinical support
approach (Figure 5.1). On the basis of the motivations presented, the following
experimental procedure has been performed. Firstly, by taking advantage of the
previously demonstrated consistency when integrating microarray and RNA-seq
datasets at gene expression level [148, 149] (also showed in the previous studies
presented in Chapter 3 and 4), up to 18 different skin cancer datasets coming
from 3 webdata repositories were considered. Concretely, 13 microarray and 5
RNA-seq datasets containing 596 samples in total were finally collected. For the
preprocessing phase, only 532 samples were subjected after passing the quality
control phase: 289 samples from Affymetrix and Illumina microarray platforms
and 243 samples from Illumina RNA-seq platforms. Secondly, among the all
previously selected samples, 73 of them corresponded to patients also having
DNA-seq information: blood derived normal and primary or metastatic tumor
samples. This allowed to perform an integrated analysis by using a 73 patients
cohort containing 42 primary and 31 metastatic tumor samples. As a result of the
whole integrative analysis, 26 DEGs showing remarkable somatic copy number
variations were highlighted. Besides checking the functional properties of these
biomarkers, their discernment capability for an eventual intelligent diagnosis was
subjected by means of a robust ML process considering different classification
techniques of the state-of-the-art. This study brings certain findings along
about the existent informative correlation between gene expression and somatic
copy number variation which helps in explaining the progression of cutaneous

melanoma.
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5.4. Methodologies and Experiments

5.4.1. Raw Data Acquisition

Three webdata repositories were inspected for collecting the biological samples:
NCBI GEO [106], ArrayExpress [8] and NCI Genomic Data Commons (GDC)
[9] (See Section 2.1.1.3 for details). In order to implement our multi-omic
integration approach, several heterogeneous information sources were considered:
from transcriptomic datasets (microarray and RNA-seq) to genomic datasets
(DNA-seq). Both technologies have been widely introduced in Section 2.1.1.2.
Finally, Up to 4 different sample types were considered for our study: healthy
skin, nevus, primary melanoma and metastatic melanoma (see a wide description
of samples types for skin cancer in Section 2.1.1.1). Tissue specimens were
exclusively considered based on the guidelines of International Classification
of Diseases (ICD-10) [1], selecting those skin tissues corresponding to trunk,
upper limb (including shoulder) and lower limb (including hip). Total number
of collected samples for each dataset and skin pathological state is specified in
Table A.3A.

Concretely, a total of 13 different microarray series were selected from NCBI
GEO and identified by means of their accession ID: GSE2503, GSE3189,
GSE7553, GSE14905, GSE15605, GSE32407, GSE32924, GSE42677, GSE46517,
GSE52471, GSE53223 and GSE8210. A range of R packages from Bioconductor
web platform [154] were used to acquire these datasets collected on different
Affymetrix platforms [2]: GEOquery [113], affy [112] and oligo [114]. RNA-seq
sample sets under GSE54456, GSE58375 and GSE98394 accession ID from NCBI
GEO and E-MTAB-5678 accession ID from ArrayExpress were also considered.
Finally, RNA-seq and WXS samples for a cohort of 73 patients were downloaded
under controlled access from GDC Portal. These data are part of TCGA-SKCM
project under dbGaP study accession phs000178.v10.p8. They were downloaded
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by means of authorised data access request under the following project title:
“Multi-Omic integration using different sources of information. Advancing
in Personalized Precision Medicine”. Sample IDs and clinical data for the

identification of this cohort within the webdata repository are included in Table A.

5.4.2. Preprocessing
5.4.2.1. Microarray Pipeline

As in the previous chapters, several quality metrics were assessed in order
to discard low quality samples by means of arrayQualityMetrics R package
[116]: density distribution plots, standard deviation of the samples intensities,
Kolgomorov-Smirnov test based on the Ka parameter, distance among samples,
principal component analysis (PCA) and Hoeffdings D-statistic (executed with
D < 0.15). Total number of selected samples for each dataset can be
consulted in Supplemental Table A.3B. Each dataset was separately preprocessed
by considering Robust Multiarray Average (RMA) algorithm [25] whose
implementation is included in rma function of affy and oligo R packages. Gene
annotation standardisation of different datasets was established by translating

chip identifiers to official gene symbols from the use of annotate R package [193].

5.4.2.2. RNA-Seq Pipeline

Standardised and well-established pipeline [155] was modified in order to
preprocess all collected FASTQ and SRA files from Illumina manufacturer [3].
Count files were achieved after applying sra-toolkit [194], Hisat2 [157], bowtie2
[158], samtools [159] and HTSeq [4] tools. Gene annotation was retrieved by using
biomaRt R package [160] and connecting to Ensembl database [195]. Correction
and normalisation of GC content bias was performed by means of cqn [5]. Gene

expression values were calculated by using NOISeq [6].
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5.4.2.3. DNA-seq Pipeline

cn.MOPS [39] was selected for CNV detection by clearly improving the
performance versus alternative methods: MOFDOC [40], EWT [41], JointSLM
[42], CNV-Seq [43] and FREEC [44]. Segmentation window size selection and
algorithm were carefully designed to setting CNV detection. Following the
suggestions from cn.MOPS authors, an average number or reads in a window of
50-100 base pairs (bp) was established to guarantee a good performance. Window

length (WL) can be calculated from the next simple relation:

W, =—= (5.1)

where m is the average number of reads per bin, L is the sequence read length
and C represents the number of unique reads including a single nucleotide in
the reconstructed sequence (redundancy of coverage or depth). Coverage was
calculated by averaging all samples from the cohort of patients (see Table A) and
subsequently applying the Lander-Waterman equation [196]:
N-L

O==Z" (5.2)

where N corresponds to the number of sequence reads, L is the sequence read
length and G is the haploid genome size (in our study, diploid genome for human
species). Sequence read length was equal to 76 bp/read for each DNA-seq sample
by applying samtools and idxstats command. Number of sequence reads was
averaged by considering 22 chromosomes together with X and Y chromosomes
(around 84477952 reads). Genome size was retrieved as 3088269832 bp, so:

W, =G (5.3)

where m is ranged from 50 to 100 base pairs. This implies window lengths
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ranging from 1827 to 3655 bp. Window length was selected to 2000 bp. Circular
binary segmentation algorithm was applied on our study [197]. Somatic CNVs
were determined by individually applying referencecn.mops function on paired
patient samples: blood derived normal versus tumor sample (control versus case
setting). Copy number regions were mapped to loss value (-1 for CNO and CN1)
and gain value (1 for CN3 to CN128). Genes appearing in several chromosome
regions were detected, cataloged as transition genes by changing the segmentation

window and finally discarded of our downstream analysis.

5.4.3. Multiomic Integration

Logarithmic transformation (base 2) and 16-bit depth homogenisation (also
referred to dynamic range) were required before applying gene expression
integration. As mentioned above, batch effect correction was applied by means of
ComBat method [34] from sva R package [121], showing the highest effectiveness
when integrating microarrays [31] and RNA-seq datasets coming from different
projects [150]. Inter-array normalisation was also considered, establishing an
identical empirical distribution by applying normalizeBetweenArrays function
from limma R package [38]. LFC and PV were used for selecting DEGs among
both cutaneous melanoma states: LFC > 1 and PV < 0.001. Integrative analysis
of gene expression and copy number variation was performed by using iGC R
package [198]. False discovery rate (FDR) and PV were used as statistical
parameters to restrict the selection of CNV-driven DEGs: FDR < 0.05 and PV
< 0.001. Up to 9 different patient cohort analyses were carried out in function of

the skin pathological state and gender:

1. Full patient cohort.
2. Only samples from men.

3. Only samples from women.
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Only primary melanoma samples.

Only metastatic melanoma samples.

Only primary melanoma samples for men.
Only primary melanoma for women.

Only metastatic melanoma for men.

© 0 N o o

Only metastatic melanoma for women.

5.4.4. Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) was performed by using DAVID
Bioinformatics Database 6.8 [55] and topGO R package [199]. Highlighted GO
terms divided into biological processes (BP), cellular components (CC) and
molecular functions (MF) were retrieved. As introduced in Section 2.1.3.3,
Reactome [57] and KEGG [58] pathway web browsers were inspected by using
pathway identifiers retrieved from DAVID. Fisher’s exact statistical test [52] was
carried out to determine their significance (PV < 0.05) together with associated
FDR. Our analysis was accompanied by widely-accepted standard statistics for

multiple comparison corrections: Bonferroni [53] and Benjamini-Hochberg [54].

5.4.5. Machine Learning Process

As previously mentioned, feature selection was carried out by weighting three
different rank correlation coefficients: Kendall [49], Pearson [50] and Spearman
[51]. Weighted ranking was used to assess different gene subsets. Two feature
sets were assessed: FS1 (considering only gene expression) and FS2 (considering
gene expression together with CNV). Three individual classification models were
trained and tested to compare their performance: SVM [60], KNN [61] and
TB [63]. Additionally, ensemble fusion of these classifiers ENS was particularly

designed and assessed [64], assigning different weights for each classifier (Wgy s,
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Wxnn and Wrp) in function of the individual recognition rates: W = 0.25 for the
worst, W = 0.5 for the intermediate and W = 1 for the best. KFOLD-CV (where
K = 10) [66] and overall Fl-score [168] performance metric were considered to

assess and measure the informative capability of the biomarkers.

5.5. Results

5.5.1. Determination of Somatic CNV-Driven DEGs

Candidates

79 genes were cataloged as DEGs between primary and metastatic melanoma
from the integration of microarray and RNA-seq datasets. This first gene set
was obtained by intersecting three DEGs lists coming from assessing diverse
sample subsets: (1) DEGs appearing from NCBI GEO and ArrayExpress samples
(microarray + RNA-seq), (2) DEGs appearing from GDC Portal (RNA-Seq),
and (3) DEGs coming from the integrated dataset (microarray + RNA-seq).
Following, an integrative analysis considering gene expression and somatic CNVs
determined which of those genes could be changing their gene expression value
in function of alterations in gene copy number. By exclusively analysing the
cohort of 73 patients from GDC, up to 26 of them showed simultaneous changes
of both magnitudes, being statistically significant within any of the 9 cohort
integrative analyses. Those were designed based on 3 discriminant search
criteria of CNVs: disease (full patient cohort), state (primary or metastatic
melanoma) and gender (men or women). No candidate gene appeared when
primary melanoma in men or women, or metastatic melanoma in general were
analysed. However, the 6 remaining criteria combinations presented candidate
somatic CNV-driven DEGs: full patient cohort (DSG3), primary melanoma

(SERPINB4), metastatic melanoma in men (DEFB1), metastatic melanoma in
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women (CST6), cutaneous melanoma in men (CLCA2, CST6, IVL, KLKI11,
KRT5, KRT6A, KRT6B, KRT10, KRT14, KRT16, LCE3D, LOR, LYPD3, PKP3,
S100A2, S100A7, SI00A7A, SPRR1A, SPRR1B, SPRR2G, SFN and TRIM?29)
and cutaneous melanoma in women (KLK7 and SFN). Behind these results, the
most remarkable interpretations highlight the involvement and alteration of a
range of keratins and members of S100 family mainly affecting men, together
with the generalised loss of gene copy number. No less important is to emphasise
the behavior of SFN by losing copies in men and gaining them in women. In
both cases, this eventuality seems to be more prominent for patients suffering
from metastasised cutaneous melanoma (above 16% of cases for men and 23%
for women). All the information about the determination of the 26 candidate

somatic CNV-driven DEGs can be consulted in Table A.1.

5.5.2. Functional Characteristics Related to Highlighted

Biomarkers

Only those 26 candidate somatic CNV-driven DEGs were subjected to an
enrichment analysis. The functional profiles of these biomarkers were retrieved
based on involved gene ontology terms and affected pathways. High statistical
significance was imposed in order to only highlight those functional properties
with the highest opportunities to have association with cutaneous melanoma.
Diverse functional properties were classified within the 3 categories (Table
5.1), highlighting in bold 10 terms annotated coinciding from the use of two
functional annotation tools (see Section 5.4 for details). Beyond showing apparent
relationship with biological processes of the skin (keratinisation, keratinocyte
differentiation, etc.), a wide range of those 26 candidate genes were associated
with diverse cellular components involving the extracellular space. Among our
highlighted biomarkers set, the structural integrity of the cytoskeleton and the

complex assembly within or outside the cell were related.
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Table 5.2: Pathway analysis using DAVID 6.8 and linking to Reactome and KEGG
web browsers. (Abbreviations: SNP: Single Nucleotide Polymorphism;
MMP: matrix metalloproteinase; TP53: tumor protein p53)

Gene Symbol Source Pathway ID Related topic

DEFB1 Reactome R-HSA-1461957 SNPs
Reactome R-HSA-1461973 Extracellular region part
DSG3 Reactome R-HSA-351906  Apoptosis
KLK7 Reactome R.HSA-1474298 MMPs apd extracellular matrix
degradation
KRT14 Reactome R-HSA-446107 Hemidesmosomes
KRT5 Reactome R-HSA-446107 Hemidesmosomes
SEN Reactome R-HSA-5628897 TP53 regulation
KEGG hsa04110 Cell growth and death
KEGG hsa04115 TP53 signaling pathway

Those genes involved in each annotated term together with additional
statistical results are specified in Table A.2. Additionally, pathway analysis
elucidated the biological involvement of several highlighted biomarkers by our
approach. By directly interpreting the retrieved information, those genes are
related to biological processes involving the interaction with the extracellular
matrix, playing a critical role in the maintenance and integrity of tissue structure.
Different biological events of the cell cycle are critically related to specific
biomarkers as well (cell development, apoptosis, etc.). Highlighted information

about these findings is specified in Table 5.2.

5.5.3. Development and Progression of Cutaneous Melanoma

Gene expression levels of the 26 candidate somatic CNV-driven DEGs were
compared by considering both cutaneous melanoma states (primary and
metastatic) together with healthy skin and nevus samples. Our straightforward
purpose consisted in inspecting whether gene expression levels could be changing
among the different skin pathological states. Despite the identified genes

were not selected to simultaneously discern among all the considered states
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(healthy states were not initially considered for the gene selection purpose), our
highlighted genes show a clearly revealing result: gene expression levels usually
decrease when metastasising cutaneous melanoma. This trend is not exclusively
appreciated when melanoma progresses from primary to metastatic state, but
tumor degeneration could be taking place from healthy skin states to tumor states
(Figure 5.2). For example, different gene expression levels can be distinguished
for KLK7, KLK11 or LOR genes, ranging from 11-13 to 7 for gene expression
values. In this sense, a wide range of these candidate biomarkers highlighted

could offer clues about a more general progression of the cutaneous melanoma.

5.5.4. Intelligent Diagnosis for Clinical Support

A machine learning process was designed in search of assessing the informative
capability of those biomarkers based on gene expression level and copy number
variation. Our feature selection procedure ranked those 26 somatic CNV-driven
DEGs candidate in the order shown in Figure 5.2 from left to right and up-bottom.
Different subgroups of p genes, ranging p from the most informative gene
(S100A7) to the whole set of 26 highlighted genes, were assessed by means of
several well-trained and tested classification models. This experimental analysis
was focus on assessing two feature sets (FS1 and FS2, defined in Section 5.4)
and clearing two concerns up: 1) how much piece of information the somatic
copy number variation provides to the gene expression for recognition purposes,
and 2) how many genes are enough to offer a reliable intelligent diagnosis of
cutaneous melanoma by considering both sources of information. Both concerns
can be elucidated by interpreting the results showed in Figure 5.3. In general
terms, the recognition rate increases from 0.5% to 2% for every additional gene
including somatic copy number variation information (for example, LOR, ranked

as 11th, showed improvements for KNN and TB models).
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Figure 5.3: Comparison of the informative capability of the 26 candidate somatic
CNV-driven DEGs by using two different feature sets. Three classification
models (SVM, KNN and TB) and an ensemble fusion of all of them (ENS)

was assessed by means of overall Fl-score.

However, there are also specific genes with scarce recognition improvements
when they are inserted in the classification process (for example, SI00A7, ranked
as Tth, for any classification model). Consequently, in order to reduce the
complexity of our study, the classification using only the first 6 ranked genes was
finally considered. This decision was taken given that the average improvement of
the overall recognition rate per gene was lower than 0.05% after those 6 genes. By
using exclusively this last reduced gene set, our classification procedure indicates
that an intelligent diagnosis with a success probability above 95% and close to
97% could be attained for different classification models and for our ensemble

solution, respectively.
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5.5.5. Correlation between Gene Expression and Copy

Number Variation

Gene expression levels and somatic copy number variation information were
represented in order to see the influence of copy number alterations on gene
expression. The generalised loss of gene copy number for the highlighted
biomarkers by our methodological approach was previously mentioned. Figure 5.4
shows how gene expression level and specific alterations in somatic copy number
variation (divided into loss and gain) seem to be correlated when patients
are suffering from the disease. Specifically, those 6 most informative genes
underlined by our approach reflected gene expression levels above median value
for primary melanoma and around median value for metastatic melanoma when
losing copy number. This result was significantly remarkable for men (see
Table A.1). However, this fact may not be distinguished when gaining gene copy
number. Furthermore, separation of samples from different webdata repositories
was performed in order to check the distribution of gene expression levels. In
spite of performing multiple preprocessing steps before integrating, the biological
information was preserved by presenting similar distribution ranges within each
dataset (for example, KRT'14 was ranged from 8 to 15 log2 expression values in
primary melanoma for both datasets). All these genes show unequivocally loss of

gene expression when cutaneous melanoma metastasises.

5.6. Discussion

In this study, the informative correlation between gene expression and somatic
copy number variation of significant genes being responsible for the progression of
cutaneous melanoma was elucidated. This relationship has been previously noted
under different experimental conditions: ulcerated versus non-ulcerated tumor

subgroups [200], genetic subtypes defined by the presence of BRAF, NRAS or
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Figure 5.4: Gene expression values and somatic copy number variation for the 6
most informative genes highlighted by our approach. Distribution of two
datasets was compared for both skin disease states: PRIMEL (primary
melanoma) and METMEL (metastatic melanoma). CN: Copy Number.

NF1 mutations [201], etc. After carefully preprocessing and integrating multiple
heterogeneous information sources, up to 26 candidate somatic CNV-driven
DEGs emerged from our integrative analysis. Interestingly, all of them showed
decreased expression when progressing cutaneous melanoma to advanced stages
(Figure 5.2), which agrees with other findings in previously reported studies
[202-204]. With respect to the detection of CNVs, it has been demonstrated
that primary and metastatic states are highly similar in terms of their gene
copy number alterations, loss of heterosygosity and single nucleotide variation
(SNVs), thus making their differentiation extremely challenging [205]. In this
sense, several previous works have performed great efforts in search of CNV

differences among skin states related to cancer. On the one hand, genomic
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differences between cutaneous melanoma and nevus have been showed by means
of aCGH experiments [206, 207]. On the other hand, somatic CNVs have been
detected by examining the influence of dividing into different sample thicknesses

for distinguishing multiple primary cutaneous melanomas [208].

The functional enrichment analysis performed by analysing those 26
candidate somatic CNV-driven DEGs determined their significance and potential
relationship to both gene expression and copy number variation (Table 5.1
and Table 5.2). Firstly, although different biological processes were associated
with cellular and tissue development at epidermal and epithelial level, both
keratinocyte differentiation and keratinisation were specially remarked. These
findings are in accordance with recent studies of cutaneous melanoma [209], where
the differentiation process is marked by contrasted markers such as loricrin (LOR)
or involucrin (IVL) [210] together with family members of keratins. In fact, the
differentiator role of this protein family has been also investigated in breast cancer
[211-213]. Additionally, cutaneous melanoma may be delineated from epidermal
stem cells marked accordingly such as KRT5 and KRT14, which are attached to
the basement membrane through hemidesmosomes [214]. These structures keep
adhered those epidermal keratinocytes to the extracellular matrix. In order to
correctly preserve the skin homeostasis, their disruption may not take place. This
fact supports the invasive behavior of tumor cells in absence of those keratins [215]
and could explain the similar downregulation of other highlighted genes in our
work. Despite being an approach that identifies potential relevant biomarkers
from a reduced patient cohort, the biological involvement of all of them is
consistent with findings of the current panorama dealing with melanoma diagnosis
since the broadest analytic context. The importance of cellular components
related to extracellular matrix such as vesicle or exosome has been recently
demonstrated by analysing liquid biopsy samples [216], being also evidenced

within our enrichment analysis (Table 5.1). Extensively, the integration of
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heterogeneous datasets is becoming popular to extract robust knowledge by
additionally considering different omic points of view. Our approach considered
a patient cohort containing RNA-seq and WXS samples, but other previous
studies extracted relevant knowledge by additionally considering whole genome
sequencing (WGS) data, microRNA (miRNA) and methylation, among others
[200, 201].

After identifying a set of outstanding biomarkers related to the progression
of cutaneous melanoma, our approach determined which of them have the
most powerful informative capability for an intelligent diagnosis. Under a
robust machine learning classification process, the joint use of the first 6 ranked
candidate somatic CNV-driven DEGs (S100A7, SFN, KRT14, KRT16, KRT10
and KLK11) guarantees to outperform recognition rates of 96% overall Fj-score
(Figure 5.3). Beyond the role of keratins which was already discussed, the
remaining biomarkers were also interestingly highlighted. S100A7 has been
widely studied for several skin lesions, suggesting that the expression could
be altered in association with early stages of skin tumorigenesis with highest
levels and, conversely, downregulated in invasive state [217]. These findings
correlate with our results, where expression level was upregulated in primary
melanoma and downregulated in metastatic melanoma with respect to healthy
skin states (Figure 5.2). Among both melanoma states, the downregulation
of this gene was already associated with metastasis [204]. SFN has been
simultaneously showed hypermethylated and dramatically downregulated in
cutaneous melanoma, suggesting the pathogenic role of inhibiting angiogenesis
[218, 219]. Finally, KLK11 has been associated with spreading of metastatic
melanoma and overall survival of patients with primary melanoma [220].
Other member of kallikrin family, KLK7, was highlighted by our approach,
presenting 31% women cases with copy number alterations in metastatic state

(see Table A.1). Based on their diagnosis power and involvement in cutaneous
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melanoma, our results confirmed previous findings of those biomarkers by using
an independent dataset of samples. Furthermore, our approach is expected to
contribute with an innovative point of view on how to integrate heterogeneous
and multi-omic information in order to identify reliable biomarkers which improve
the effectiveness of the clinical diagnosis of cutaneous melanoma. This work
underlines the biological involvement of outstanding biomarkers being responsible
for the progression of this malignancy. Extensively, the validity of our integrative
pipeline is aimed to be applied on a wide range of complex and cancerous diseases,
offering support for clinical diagnosis decisions. Among our next objectives,
new improvements of our methodological approach are thought to reinforce the
diagnosis power by considering miRNA [221] and methylation data [222] together

with clinical data within the machine learning process.

5.7. Conclusions

Although diverse therapeutics strategies continue to appear for the effective
treatment of cutaneous melanoma, the metastasis process remains uncontrollable
and misunderstood due in large part to its biological heterogeneity. In search
of biomarkers being responsible of this tumor degeneration, our methodological
approach identified 26 somatic CNV-driven DEGs which reflected generalised
loss of expression level and copy number losses ranging from 4% to 31% of total
cases, being statistically significant within our assessed patient cohort. Besides
supporting clinical decisions by means of an intelligent diagnosis, these findings
encourage to deeply study the role of these biomarkers and dedicate new efforts

in determining their influence on the metastatic process of cutaneous melanoma.




6. Conclusions & Future Work

6.1. Conclusions

This section gathers and underlines the general and most relevant conclusions of
this doctoral thesis, as well as going into detail on those more specific conclusions
that appeared from the carrying out of the different studies that make up the

development of this thesis, previously noted in each corresponding chapter.

6.1.1. Conclusions about exclusively integrating microarrays

Based on the results obtained in Chapter 3, it is clear that the informational
potential of this widely used sequencing technology is extremely high. As has been
introduced and motivated in the Section 3.3, the arrangement of a large number of
experiments on the same disease can contribute to the development of much more
robust and statistically reliable studies than those carried out in isolation. It is
precisely now, when data repositories are full of heterogeneous information, that
a scientific effort must be made to try to exploit this information. This involves
irrevocably developing advanced computing strategies that take into account
multiple factors to achieve reliable integration of data sources. It is precisely now
time to extend the knowledge about the appearance and development of multiple
diseases, taking advantage of the existence of multiple algorithms widely-used
and well-standardised for microarray analysis. However, only by addressing the

following detected weak points will it be possible to extract more benefit from
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the integration strategies:

1. Microarray platforms reannotation: It is postulated that it is essential
that the scientific community make an additional effort in trying to
implement tools that apply re-annotation to the different microarray
platforms. This is due to the fact that the specifications and annotations
between them vary significantly. This fact directly influences the extraction
of relevant potential biomarkers because many of them will not appear after
the integration phase. For example, by examining the Table 3.4, it can
be glimpsed that the potential number of identified official gene symbols
(under HUGO standard) varies between 12441 and 21035. It could be
expected that if those symbols are common to each other and specific to each
platform, the number of common symbols could become 12441. However,
after integration, only 9978 common genes were obtained. This shows
that there is at least a divergence of about 20% between platforms that
will prevent subsequent analysis and possible loss of biomarkers potentially
important for improving the diagnosis of the disease analysed. To a large
extent, it is also influenced by the timing at which the experiments are
performed, as the quality of genome assembly and the amount of annotation
increases, and new experiments may improve in this respect significantly

over predecessors.

2. Effective batch effect removal: Although the procedure approached
for the minimisation of eventual batch effects by the integration proposed
in Chapter 3 is considered highly robust, going into more detail on this
issue is extremely necessary. As already motivated in the Section 3.3,
dealing with this technical factor is highly challenging. In addition to
applying methodological approaches emerging robust genes to the existence

of hypothetical batch effects such as the one proposed in this thesis, it
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must be asserted that the correction is taking place. Having as much
information as possible regarding the conduct of experiments, conditions,
assumptions, etc. can help to improve the performance of the several
batch effect correction methods included in the literature. Extensively,
iterative batch effect corrections could help to understand and determine the
potential emerging deviations by microarray platform and technology. The
biological relevance of subsequent analysis is profoundly influenced by this
technical challenge. Based on the results obtained regarding the biological
involvement of the proposed biomarkers and the classification rate (above
92% to discern 7 pathologies by means of 17 genes), the proposed integration
pipeline is intended to partly satisfy this problem and is presumed to be
extensively applied by the scientific community under the idea of selecting
robust genes versus batch effects. This contribution is also considered

achieved.

3. Integration with a greater number of platforms: This thesis has
been based on the use of data from the main firms in the microarray
sector: Affymetrix and Illumina. However, the repositories have microarray
experiments carried out by Agilent, Taqgman, Exon, etc. In the case of
applying adequate procedures in order to have gene expression from these
providers, additional challenges would come into play. On the one hand,
challenging factors such as dealing with those mentioned above on a larger
scale given the intrinsic heterogeneity of considering new data sources;
on the other hand, computational complexity would increase to evaluate
those emerging biomarkers in a classification process. On the contrary, in
favour would be 2 issues: on the one hand, the reduction of the existing
margin due to the course of dimensionality: more samples (n) versus the
same number of genes (p) or lower due to integration without improvement

by re-annotation; on the other hand, statistical robustness and reliability
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should be further reinforced. The opposite option would suppose to consider
for the integration a select group of samples coming from specific platforms
where the number of genes annotated is higher and avoids losses in the
integration. This implies irremediably sacrificing robustness in recognising
certain pathological states at the expense of this being compensated by

improving the efficiency of diagnosis in classification.

6.1.2. Conclusions about simultaneously co-integrating

microarrays and RNA-seq

The proven consistency of integrating both transcriptomic data sources has
extended the possibilities of research studies. By applying a rigorous integration
process, a simple and intuitive way of determining relevant biomarkers for
diagnosis has been devised: to check the optimal number of genes by discerning
between each pair of pathologies that are mnecessary to improve intelligent
diagnosis. Our methodological approach demonstrated that by simply selecting
the DEG with the highest LFC among each pair of pathological states, it is
possible to dramatically reduce the set of candidate genes to obtain an intelligent
diagnosis of the analysed disease. Therefore, this study, which was conceived as
an extension of the study presented in the Chapter 3, also manages to deal with
and solve in a simple way the problem of the course of dimensionality: those "p”
thousands of genes become tens and practically units of genes. This experimental
contribution is intended to be applied in approaches based on inaccurate but
highly efficient solutions such as those proposed under the paradigm of "soft
computing”. In addition, it is possible to invalidate something completely
usual in an experimental process: the subjective criterion of the researcher,
avoiding having to establish statistical thresholds, simply has to choose the best
gene for each pair of pathologies (in this sense, this assessment must be taken

with caution). Therefore, the second general contribution is thought to have
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been widely satisfied by the satisfactory result offered by the methodological
implementation presented here. As an extension to the conclusions pointed out
previously in the Section 6.1.1, it can be insisted that considering now more
potential transcripomic data can be integrated, the challenges posed must be
even more carefully addressed. From this analytical perspective of promoter and
to improve the previous, in the Chapter 4 it was decided to consider the correction
of potential batch effects under the use of ComBat method. This method is highly
recommended and effective against the integration of microarray and RNA-seq
platforms as it was introduced, justified and motivated in the Section 4.3. As a
learning from the study presented in Chapter 3, the sacrifice between leaving out
of the integration some series of data in favor of not losing potentially relevant
genes was taken into account. The introduction of gene enrichment analysis was

also an improvement over the previous methodological approach.

6.1.3. Conclusions about co-integrating microarrays, RNA-seq

and CNV

Taking a step forward, the informative correlation between gene expression and
somatic variations in gene copies is the cornerstone of the study presented in
Chapter 5. On this occasion, since gene expression is commonly used to discern
between pathological states, we tried to see to what extent those genes appearing
as DEGs could be really reliable. The consideration of information for the same
cohort of patients at both genomic and transcriptomic levels was decisive in
this study. The somatic variations helped to establish a filter for the selection
of DEGs due to the additional presence of gene alterations. This approach is
highly innovative and according to the results presented in the Chapter 5, the
achievement of another objective can be highlighted with this contribution. By
evaluating the different previous influencing factors that can be determinant in

the subsequent analysis, it is necessary to highlight the selection of outstanding
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biomarkers informing about the hypothetical progression of cutaneous melanoma.

These insights are further discussed and concluded in the Section 6.1.4.

6.1.4. Biological level conclusions about panels of biomarkers

These observations can be specifically commented for each study carried out, with

subtle differences in the omic viewpoints considered and the pathologies involved

in the analysis. However, one of the most positive aspects of the application of

the integration techniques proposed by this thesis lies in the fact that they were

sequentially tested on the same cancerous disease: skin cancer. In this way, in

spite of the small divergences at the experimental level to which one is subject,

it is possible to extract a series of enriching conclusions in this respect:

1. Panel of biomarcadores from microarray analysis: Among the most

important experimental findings, we must highlight the joint informative
power of the genes DSC3, SCGB2A1 and BNC2 in a potential intelligent
diagnosis evaluating the main epidermal cancerous pathologies of the skin
(see Figure 3.9 where 4 pathological states surpassed 80%). More important
has been the fact of verifying the biological involvement of these biomarkers
(see S3 Appendix in the publication associated with this study [131]
with more detailed information): on the one hand, DSC3 has shown a
contradictory character and its simple deregulation in melanoma patients
seems to imply predisposition to suffer tumorigenic processes in the skin.
In addition, it is a protein-coding gene of the family of desmosomes that is
responsible for maintaining the adhesion of cells. BNC2, associated with the
risk of developing SCC, is considered a tumor suppressor gene during cancer
development. A special mention deserves SCGB2A1. Although it not was
directly related to skin cancer, the presented methodological approach in

this dissertation, integrating a wide amount of heterogeneous data, brought
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it to light, showing low levels expressed for practically all skin pathologies
except MCC (see Figure 3.7 for more detail). Even so, it is glimpsed that
this gene could have some biological implication in the development of skin
cancer because it has already been related to the development of other
epithelial cancers, whose cells are in charge of covering the inside and outside

surfaces of the body.

2. Panel of biomarkers from co-integrating transcriptomics
technologies: In addition to bringing together transcriptomic data
from both co-existing technologies, this study focused on further testing
the predisposition of those diseases already considered pre-cancerous of the
skin to become skin cancer such as actinic keratosis and psoriasis. Highly
discriminatory genes such as ADAMTS3 and LTF (discerning BCC and
PS versus the rest, respectively) can offer valuable scientific knowledge to
detect the early development of skin cancer. Besides highlighting the role of
genes such as MMP1 thanks to perform an enrichment analysis, it is again
curious and interesting to see how another gene from the secretoglobin
family, SCGB2A2, has been highlighted as highly relevant. Future research
will have to determine the validity of this gene as a differential biomarker
in the diagnosis of skin cancer. Also, the appearance as a candidate of a

keratin, KRT14, highly related to the skin.

3. Panel of biomarkers considering simultaneously transcriptomic
and genomic data: Up to 18 of the 26 genes highlighted as DEGs
and presenting somatic CNVs are related to the extracellular region
according to the term GO. Interestingly, KRT14 was again highlighted
and is related to hemidesmosomes that keep the epidermal keratinocytes
attached to the extracellular matrix. Interactions with this region are

critical since alterations can cause disruption. As a potential biological
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contribution, it has been hypothesised that the generalised low-expression of
the outstanding biomarkers can clearly indicate the invasive and progressive
character of cutaneous melanoma. Other insights were justified based on
the use of clinical data for the determination of these biomarkers, which

gives the study a further point of experimental rigor.

On the basis of all the biological findings derived from the three research
studies presented in this dissertation, the intersection of similar results between
the different approaches is valuable. Among them, the emergence of a priori
unexpected genes (such as SCGB2A1 and SCGB2A2 in the studies exclusively
using gene expression) and the influence on biological processes of angiogenesis,
tumorigenesis and melanogenesis of genes such as DSC3 or KRT14 together with
other biomarkers such as MLANA, SI00A7 or MMP1 can be highlighted. It is
strongly thought that future studies further reinforcing the research initiatives
carried out for the development of this thesis will contribute to the confirmation
of some of these biomarkers as crucial in the diagnosis of skin cancer. Thanks
to the knowledge acquired during this time, it is also possible to indicate some
possible future projects that confirm the arguments presented throughout these

conclusions.

6.2. Future Work

The main research efforts carried out during the course of this thesis were focused
on the development of strategies for the integration of heterogeneous data with
a global character. This was especially highlighted by the transcriptomic studies
in which multiple pathological states of the skin were considered (7 for the
study of Chapter 3 and 10 for the study of Chapter 4). However, this type
of strategy must be irremediably complemented by other approaches that insist

on determining what is exclusively and specifically related to the pathogenic




6.2. FUTURE WORK 127

emergency. With more and more popular demand and translated into widespread
economic and governmental implication, the marked guidelines for the treatment
of today’s and future diseases converge on the same point: the application of
therapy and personalised and patient-oriented medicine. Evidently, Biomedical
Engineering takes full advantage of existing advances in biological knowledge to
be implemented in the health field and that can help in patient care. However,
it is still necessary to find personalised solutions that satisfy the patient in a

univocal improvement of his state of health under suffering from any disease.

Since throughout this thesis all experimental analyses have been carried
out on skin cancer diagnosis, it must be said that promising and fascinating
advances are expected for its early detection and effective treatment. The
advanced computational techniques developed here have to be accompanied not
only by other biological views translated into biological quantification of the
patient’s vital state, but also by image analysis algorithms of the disease area
itself. It is expected the immediate irruption of strategies of integration of
diverse sources of omic information together with own characteristics of the
analysis of histopathological and dermoscopic images. The process of selection of
relevant features and classification under operation of powerful machine learning
algorithms and other approaches will be clearly enriched. Extensively, the
personalised and strict follow-up of the patient must be translated into highly
reliable and reliable clinical data. This fact would help to promote the discovery
of biological knowledge that until now was probably unpredictable, avoiding the

introduction of errors (deviations) in experimental analyses.

Although Science is in a vertiginous wave of scientific and technical advances
that help us to delegate in automatic processes in favor of our wellness, the tools
of intelligent diagnosis here exposed are not thought to eliminate the work of
the specialist. On the contrary, they are directly designed to help and facilitate

medical diagnosis. For example, the diagnosis of cutaneous melanoma under the
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signs ABCDE will be accompanied by automatic analysis of histopathological
and dermoscopic images together with transcriptomic and genomic analysis of
the patient’s sample. In the search for personalised attention, it is increasingly
valuable to determine mechanisms for detecting biomarkers that promote the
disease. In this sense, under a biomarker diagnostic kit offering a generalised
background of the disease determined by methodological approaches such as those
presented in Chapters 3, 4 and 5, it will be necessary to contrast with clinical data
of the patient and look for which biomarkers can be specifically the triggers of the
appearance, development and mutation of the disease. This will be the case of
diseases such as skin cancer, which throughout this thesis has been described as a
highly complex, heterogeneous and mutable disease. In addition to advancing in
the improvement of the findings made in the Section 6.1 (re-annotation, effective
deletion of batches, integration with more platforms, etc.), it would be desirable
to enhance the realignment of samples that were sequenced in a genome prior to
the current one. This would help to apply an update of the resources available for
the discovery of new knowledge as well as correction and refinement for having
improved biological precision (for example, new pseudogenes).

Specifically, and under the views previously argued and the proposals made
in this thesis, it is intended to continue contributing in the future with new

methodological approaches considering:

1. Integration with other omic points of view: Preferably using data
from the same cohort of patients (such as those used for the study of the
Chapter 5), it would be highly fascinating and challenging to process and

integrate together proteomic, metabolomic, epigenomic data, etc.

2. Integration with associated image characteristics: Extensively, to
have disease data in this format to extract new characteristics that help

improve the classification process.
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3. Extension to cell line analysis: It was based on Section 2.1.1.1 that
only tissue samples were analysed. It is thought that valuable results could
also be added by considering cell lines, serving at least as a reference or

contrast in the analyses.

4. Application of meta-analysis techniques: It is just as important to
offer generalised diagnoses in order to have a broad background as it is to
compare with possible different genetic signatures coming from the different

isolated and integrated studies.

5. Immersion in the analysis of biomarker networks: Considering
different evaluations of enrichment analysis, one could take advantage of
diagnostics based on evaluating groups of genes operating under predictably

known biological mechanisms.







Conclusiones y Trabajo Futuro

Conclusiones

Esta seccién retne y subraya las conclusiones generales y mas relevantes de esta
tesis doctoral, asi como ahonda en aquellas conclusiones mas especificas que
surgieron de la realizaciéon de los diferentes estudios que conforman el desarrollo

de esta tesis, previamente apercibidas en cada capitulo correspondiente.

Conclusiones acerca de integrar exclusivamente microarrays

En base a los resultados obtenidos en el Capitulo 3, queda de manifiesto que
el potencial informativo de esta ampliamente usada tecnologia de secuenciacion
es extremadamente alto. Como ha sido introducido y motivado en la
Seccion 3.3, la disposicién de un gran ntimero de experimentos sobre una misma
enfermedad puede contribuir al desarrollo de estudios mucho maéas robustos
y estadisticamente fiables que aquellos llevados a cabo aisladamente. Es
precisamente ahora, cuando los repositorios de datos se encuentran repletos
de informacién heterogénea, cuando hay que hacer un esfuerzo cientifico para
tratar de explotar dicha informacion. Esto pasa irrevocablemente por desarrollar
estrategias de computo avanzadas que tengan en cuenta miultiples factores para
la consecucién de una integraciéon fiable de fuentes de datos. Es ahora el
momento de extender el conocimiento sobre la aparicion y desarrollo de multiples

enfermedades, aprovechando que existen miltiples algoritmos ampliamente
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usados y estandarizados para procesamiento de microarrays. Sin embargo,
sOlamente se conseguira extraer mayor provecho de las estrategias de integracion

si se abordan los siguientes puntos débiles detectados:

1. Reanotaciéon de las plataformas de microarrays: Se postula como
fundamental que la comunidad cientifica haga un esfuerzo adicional en
tratar de implementar herramientas que reanoten las diferentes plataformas
de microarrays. Esto es debido a que las especificaciones y anotaciones
entre ellas varian sensiblemente. Este hecho influye directamente en la
extraccion de potenciales biomarcadores relevantes debido a que muchos de
ellos no apareceran tras la fase de integracién. Por ejemplo, examinando
la Tabla 3.4, puede ser vislumbrado que el nimero potencial de simbolos
de gen oficial identificados (bajo estdandar HUGO) varia entre 12441 y
21035. Podria ser esperado que si aquellos simbolos son comunes entre
ellos y especificos para cada plataforma, el nimero de simbolos comunes
aspiraria a alcanzar 12441. Sin embargo, tras la integracion, inicamente se
obtuvieron 9978 genes comunes. Esto demuestra que existe al menos una
divergencia del 20% aproximadamente entre plataformas que impedird el
analisis subsecuente y la posible pérdida de biomarcadores potencialmente
importantes para la mejora del diagnostico de la enfermedad analizada. En
gran medida, también viene influenciado por el momento temporal en que
los experimentos son realizados, ya que la calidad de ensamblado del genoma
y la cantidad de anotacién incrementa, y los nuevos experimentos pueden

mejorar en este aspecto sensiblemente con respecto a los predecesores.

2. Borrado efectivo de efectos de batch: Aunque el procedimiento
abordado para la minimizacion de eventuales efectos de batch por parte
de la integracion propuesta en el Capitulo 3 es considerado altamente

robusto, profundizar en esta problematica es extremadamente necesario.
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Como ya fue motivado en la Seccion 3.3, lidiar con este factor técnico
es altamente retante. Ademas de aplicar aproximaciones metodolédgicas
emergiendo genes robustos a la existencia de hipotéticos efectos de batch
como la propuesta en esta tesis, hay que aseverarse de que la correcion esta
teniendo lugar. Disponer de la mayor cantidad de informacién con respecto
a la realizacion de los experimentos, condiciones, suposiciones, etc. pueden
ayudar a mejorar las prestaciones de los diversos métodos de correccién de
efectos de batch existentes en la literatura. Extensiblemente, correcciones
de efectos de batch de manera iterativa podria ayudar a comprender
y a determinar cudles son las potenciales desviaciones emergentes por
plataforma y tecnologia de microarray. La relevancia biologica del anélisis
subsequente se ve profundamente influenciada por este reto técnico. A
tenor de los resultados obtenidos en lo que respecta a implicacién bioldgica
de los biomarcadores propuestos y la tasa de clasificacién (superior al
92% para discernir 7 patologias con 17 genes), es pensado que el pipeline
de integracion propuesto puede satisfacer en parte esta problematica y
se presume que pueda ser extensiblemente aplicado por la comunidad
cientifica bajo la idea de seleccionar genes robustos a efectos de batch. Esta

contribucion se considera alcanzada.

3. Integracién con un mayor nimero de plataformas: Esta tesis ha
sido cimentada sobre la utilizacién de datos procedentes de las principales
firmas en el sector de microarrays: Affymetrix e Illumina. Sin embargo,
los repositorios cuentan con experimentos de microarrays llevados a cabo
por Agilent, Tagman, Exon, etc. En el caso de aplicar procedimientos
adecuados en pos de disponer de expresion de gen desde estos proveedores,
retos adicionales entrarfan en juego. Por un lado, factores retantes
como lidiar con los mencionados anteriormente a mayor escala dada la

heterogeneidad intrinseca de considerar nuevas fuentes de datos; por
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otro lado, aumentaria la complejidad computacional para evaluar aquellos
biomarcadores emergentes en un proceso de clasificacion. Por el contrario,
a favor se encontrarian 2 cuestiones: por un lado, la reducciéon del margen
existente por curso de la dimensionalidad: mas muestras (n) frente a mismo
nimero de genes (p) o inferior debido a la integracién sin mejora por
la reanotacion; por otro lado, la robustez y fiabilidad estadistica deberia
verse aun mas reforzada. La opcién contraria supondria considerar para
la integraciéon un selecto grupo de muestras provenientes de especificas
plataformas donde el niimero de genes anotados es mas alto y evita pérdidas
en la integracién. Esto implica irremediablemente sacrificar robustez en
reconocer ciertos estados patoldgicos siempre y cuando ese sacrificio merezca

la pena en términos de eficiencia de diagnostico en clasificacién superior.

Conclusiones acerca de co-integrar microarrays y RNA-seq

La probada consistencia de integrar ambas fuentes de datos transcriptéomicos
ha extendido las posibilidades de andlisis. Aplicando un proceso riguroso
de integracién, se ha pensado una forma sencilla e intuitiva de determinar
biomarcadores relevantes para el diagnostico: comprobar el nimero 6ptimo de
genes discerniendo entre cada par de patologias que son necesarios para mejorar
el diagnostico inteligente. Nuestra aproximacion metodolégica demostrd que
simplemente seleccionando el DEG con mayor LFC entre cada par de estados
patoldgicos, es posible reducir dramaticamente el conjunto de genes candidatos
para obtener un diagnéstico inteligente de la enfermedad analizada. Por tanto,
este estudio que fue pensado como una extension del estudio presentado en el
Capitulo 3, ademas consigue lidiar y solventar de forma sencilla el problema del
curso de la dimensionalidad: aquellos "p” miles de genes pasan a ser decenas y
practicamente unidades de genes. Esta contribucion experimental es pensada a

ser de gran valor para el abordaje de aproximaciones cimentadas en soluciones
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inexactas pero altamente eficientes como las planteadas bajo el paradigma de
“computacion flexible”.  Ademads, se consigue invalidar algo completamente
habitual en un proceso experimental: el criterio subjetivo del investigador, que
no tiene que establecer ningtn tipo de umbral estadistico, simplemente tiene
que escoger el mejor gen para cada par de patologias (eso si, esta apreciacion
hay que tomarla con matices). En este sentido, la segunda contribucién general
es pensada a haber sido ampliamente satisfecha por el resultado satisfactorio
ofrecido por la implementacion metodolégica presentada. Como extension a
las conclusiones puntualizadas anteriormente en la Seccién 6.2, se puede insistir
en que considerando ahora mas potenciales datos transcriptémicos pudiendo ser
integrados, los retos planteados deben ser ain méas cuidadosamente abordados.
Desde esta perspectiva analitica y promotora de mejorar lo previo, en el Capitulo 4
se opté por considerar la correccion de potenciales efectos de batch bajo el
método ComBat, que es altamente recomendado y eficaz frente a la integracién
de plataformas de microarrays y de RNA-seq como fue introducido, justificado
y motivado en la Seccién 4.3. Como aprendizaje del estudio presentado en el
Capitulo 3, se evalu6 el sacrificio entre dejar fuera de la integracién algunas series
de datos en favor de no perder genes potencialmente relevantes. La introduccién
de andlisis de enriquecimiento de los genes fue también una mejora con respecto

a la aproximacién metodologica anterior.

Conclusiones acerca de co-integrar microarrays, RNA-seq y

variacion de nimeros de copias

Como una vuelta de tuerca mas, la correlaciéon informativa entre la expresion
de gen y las variaciones somaticas en copias de gen es el pilar fundamental del
estudio presentado en el Capitulo 5. En esta ocasion, dado que la expresién de
gen es usada habitualmente para discernir entre estados patoldgicos, se trato

de ver hasta qué punto aquellos genes apareciendo como DEGs podrian ser
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realmente fiables. La consideracién de informacién genémica desde el mismo
cohorte de pacientes que para informacion transcriptomica fue determinante
en este estudio. Las variaciones somaticas ayudaron a establecer un filtro de
seleccion de DEGs por presentar adicionalmente alteraciones génicas. FEsta
aproximacion es altamente innovativa y a tenor de los resultados presentados
en el Capitulo 5, se puede remarcar la consecucién de otro objetivo con esta
contribuciéon. Evaluando los diferentes factores influyentes previos que pueden
ser determinantes en el andlisis subsecuente, hay que destacar la seleccion de
excelentes biomarcadores informando sobre la hipotética progresion del melanoma
cutaneo. Estas apreciaciones son mas ampliamente comentadas y concluidas en

la Seccién 6.2.

Conclusiones a nivel biolégico sobre los paneles de

biomarcadores

Estas observaciones pueden ser especificamente comentadas para cada estudio
llevado a cabo, con diferencias sutiles en lo que respecta a los puntos de vista
6micos considerados y las patologias envueltas en el andlisis. Sin embargo, uno
de los aspectos mas positivos de la aplicacion de las técnicas de integracion
propuestas por esta tesis reside en que fueron secuencialmente testeadas sobre
una misma enfermedad cancerosa: el cancer de piel. De esta manera, a pesar de
las pequenas divergencias a nivel experimental a las que se encuentra uno sujeto,

es posible extraer una serie de conclusiones enriquecedoras al respecto:

1. Panel de biomarcadores desde analisis de microarrays: Entre
las averiguaciones experimentales més importantes, hay que destacar el
poder informativo conjunto de los genes DSC3, SCGB2A1 y BNC2 en
un potencial diagnéstico inteligente evaluando las principales patologias

cancerosas epidermales (ver Figura 3.9 donde 4 estados patolégicos ya
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superan el 80%). Més importante ha sido comprobar la implicacién
biologica de estos biomarcadores (ver S3 Appendix en la publicacién
asociada a este estudio [131] con informacién mas detallada): por un lado,
DSC3 ha mostrado un caracter contradictorio y su simple desregulacién en
pacientes con melanoma parece implicar predisposicion a padecer procesos
tumorigénicos en la piel. Se trata de un gen codificando proteina de la
familiar de desmosomas que se encarga de mantener la adhesién de las
células. BNC2, asociado a riesgo de desarrollar SCC, es considerado un gen
supresor de tumor durante desarrollo del cdncer. Una mencién especial
merece SCGB2A1, que atn no habiendo sido relacionado directamente
a cancer de piel, la aproximaciéon metodologica considerando una amplia
integracion de datos heterogéneos presentada en esta tesis lo sacé a la luz,
mostrando niveles bajo expresados para practicamente todas las patologias
de piel excepto MCC (ver Figura 3.7 para més detalle). Aun asi, se
vislumbra que este gen podria tener alguna implicacion biolégica en el
desarrollo de cancer de piel por haber sido ya relacionado al desarrollo de
otros canceres epiteliales, cuyas células se encargan de cubrir las superficies

internas y externas del cuerpo.

2. Panel de biomarcadores co-integrando las tecnologias
transcriptomicas: Ademdas de aunar datos transcriptomicos de
ambas tecnologias co-existentes, este estudio fue enfocado a comprobar
adicionalmente la predisposicion a degenerar en cancer de piel aquellas
enfermedades ya consideradas pre-cancerosas de la piel como son la
keratosis actinica y la psoriasis. Genes altamente discriminatorios respecto
al resto como ADAMTS3 y LTF (discerniendo BCC y PS frente al
resto, respectivamente) pueden ofrecer valiosos conocimientos cientificos
para detectar precozmente el desarrollo de cancer de piel. Ademas de

destacar el rol de genes como MMP1 gracias al analisis de enriquecimiento,
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resulta nuevamente curioso e interesante ver como otro gen de la familia
secretoglobin, SCGB2A2, ha sido destacado como altamente relevante.
Futuras investigaciones tendran que determinar la validez de este gen como
biomarcador diferencial en el diagndstico de cancer de piel. También, la
aparicion como candidato de una keratina, KRT14, altamente relacionada

a la piel.

3. Panel de biomarcadores considerando transcriptémica y genémica
simultaneamente: Hasta 18 de los 26 genes destacados como DEGs
y presentando CNVs somaticos se encuentran relacionados con la
region extracelular segin el término GO. Interesantemente, KRT14 fue
nuevamente destacado y se encuentra relacionado con los hemidesmosomas
que guardan adheridos los keratinocitos epidermales a la matriz
extracelular.  Las interacciones con esta region son criticas ya que
alteraciones pueden provocar disrupcion. Como potencial contribucion
biolégica, ha sido hipotetizado que la bajo-expresion generalizada de los
biomarcadores destacados pueden denotar claramente el caracter invasivo y
progresivo del melanoma cutaneo. Otras percepciones fueron justificadas en
base al uso de datos clinicos para la determinacién de dichos biomarcadores,
lo que le otorga un punto mas de rigurosidad experimental al estudio llevado

a cabo.

En base a todas las apreciaciones bioldgicas derivadas de la realizacién de los
tres estudios de investigacion presentados en esta disertacion, es valorable la
interseccion de resultados semejantes entre las diferentes aproximaciones. Entre
ellas, destacan la aparicién de genes a priori inesperados (como SCGB2A1 y
SCGB2A2 en los estudios exclusivamente usando expresién de gen) y la influencia
en procesos biologicos de angiogenesis, tumorigenesis y melanogenesis de genes

como DSC3 o KRT14 junto con otros biomarcadores como MLANA, S100A7
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o MMP1. Es conscientemente pensado que estudios futuros reforzando atun
mas las iniciativas de investigacion llevadas a cabo para el desarrollo de esta
tesis contribuirdn a la confirmacién de algunos de estos biomarcadores como
determinantes en el diagnéstico de cancer de piel. Gracias al conocimiento
adquirido durante esta etapa, es posible indicar algunos posibles proyectos futuros

que confirmen los argumentos presentados a lo largo de estas conclusiones.

Trabajo Futuro

Los principales esfuerzos de investigacion llevados a cabo durante el transcurso
de esta tesis fueron enfocados en el desarrollo de estrategias de integraciéon de
datos heterogéneos con caracter global. Esto fue especialmente remarcado por los
estudios transcriptémicos en los que se consideraron multiples estados patolégicos
de la piel (7 para el estudio del Capitulo 3 y 10 para el estudio del Capitulo 4).
Sin embargo, este tipo de estrategia debe ser complementada irremediablemente
por otras que ahonden en la busqueda de lo exclusivo y especifico de la
emergencia patogénica. Cada vez con més reclamo popular y traducido en
extendida implicacion econémica y gubernamental, las lineas marcadas para el
tratamiento de las enfermedades del hoy y del futuro convergen en un tnico
punto: la aplicaciéon de la terapia y la medicina personalizada y orientada al
paciente. Evidentemente, la Ingenieria Biomédica aprovecha por completo los
avances existentes en conocimiento biolégico para ser implementados en el &mbito
sanitario y que puedan ayudar en la atencién del paciente. Sin embargo, sigue
siendo necesario encontrar soluciones personalizadas que satisfagan al paciente
en una mejora univoca de su estado de salud bajo padecimiento de cualquier

enfermedad.

Puesto que a lo largo de esta tesis se han llevado a cabo todos los

analisis experimentales sobre diagnostico del cancer de piel, cabe decir que
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prometedores y fascinantes avances son esperados para su detecciéon precoz y
efectivo tratamiento. Las técnicas de cémputo avanzadas desarrolladas aqui
tienen que ser acompanadas no sélamente por otros puntos de vista bioldgicos
traducidos en cuantificacion bioldgica del estado vital del paciente, si no
por algortimos de analisis de imagenes de la propia zona de la enfermedad.
Es esperada la inmediata irrupcién de estrategias de integracion de diversas
fuentes de informaciéon Omicas junto con caracteristicas propias del analisis
de iméagenes histopatologicas y dermoscépicas. El proceso de seleccion de
caracteristicas relevantes y clasificacion bajo operacién de algoritmos poderosos
de aprendizaje maquina y otras aproximaciones se vera francamente enriquecido.
Extensiblemente, el seguimiento personalizado y estricto del paciente debe
traducirse en unos datos clinicos altamente fehacientes y fiables. Este hecho
ayudaria a potenciar el descubrimiento de conocimiento biolégico hasta ahora
probablemente impredecible, evitando la introduccién de errores (desviaciones)

en los analisis experimentales.

Aunque estamos en una vertiginosa ola de avances cientificos y técnicos que
nos ayudan a delegar en procesos automaticos en favor de nuestro bienestar,
las herramientas de diagnostico inteligente aqui expuestas no son pensadas para
eliminar la labor del especialista. Al contrario, son directamente pensadas
para ayudar y facilitar el diagnostico médico. Por ejemplo, el diagnéstico
del melanoma cutdneo bajo los signos ABCDE serda acompanado por analisis
automaticos de imdgenes histopatologicas y dermoscépicas junto con andlisis
transcriptémicos y genémicos de la muestra del paciente. En la busqueda de
una atencién personalizada, resulta cada vez mas valorable la determinacién de
mecanismos de detecciéon de biomarcadores promotores de la enfermedad. En este
sentido, bajo un kit de diagnoéstico de biomarcadores ofreciendo un background
generalizado de la enfermedad determinado por aproximaciones metodolégicas

como las presentadas en los Capitulos 3, 4 y 5, serd necesario contrastar con
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datos clinicos del paciente y buscar qué biomarcadores pueden ser especificamente
los detonantes de la aparicion, el desarrollo y la mutacién de la enfermedad.
Este serd el caso de enfermedades como el cdncer de piel, que a lo largo de
esta tesis se ha descrito como una enfermedad altamente compleja, heterogénea
y mutable. Ademéas de avanzar en la mejora de las apreciaciones realizadas en
la Seccién 6.2 (reanotacién, borrado efectivo de batches, integracion con maés
plataformas, etc.), serfa deseable potenciar el realineamiento de muestras que
fueron secuenciadas en un genoma anterior al actual. Esto ayudaria a aplicar
una actualizacion de los recursos disponibles tanto para descubrimiento de nuevo
conocimiento como correccién y refinamiento por haber mejorado en la precisién
biolégica (por ejemplo, nuevos pseudogenes).

Especificamente, y bajo las visiones previamente argumentadas y las propuestas
realizadas en esta tesis, se pretende continuar aportando en lo venidero con nuevas

aproximaciones metodologicas considerando:

1. Integraciéon con otros puntos de vista émicos: Preferiblemente bajo
la utilizacién de datos provenientes del mismo cohort de pacientes (como los
usados para el estudio del Capitulo 5), seria altamente fascinante y retante
procesar e integrar conjuntamente datos protedémicos, metabolémicos,

epigenémicos, etc.

2. Integraciobn con caracteristicas de imagenes asociadas:
Extensiblemente, disponer de datos referentes a la enfermedad en
este formato para extraer nuevas caracteristicas que ayuden a mejorar el

proceso de clasificacion.

3. Extensiéon al analisis de lineas celulares: Fue fundamentado en
Seccion 2.1.1.1 que tinicamente se analizaron muestras de tejido. Es pensado
que resultados valuables podrian ser también anadidos por considerar lineas

celulares, sirviendo al menos como referencia o contraste en el analisis.
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4. Aplicacion de técnicas de meta-analisis: Tan importante es ofrecer
diagnosticos generalizados para tener un background amplio como cotejar
con eventuales firmas genéticas diferentes provenientes de los diferentes

estudios aislados e integrados.

5. Inmersién en el analisis de redes de biomarcadores: En torno a la
consideracién de diferentes evaluaciones del andlisis de enriquecimiento, se
podria tomar ventaja de diagnésticos basados en evaluar grupos de genes

operando bajo mecanismos biol6gicos previsiblemente conocidos.
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