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ABSTRACT

The AEAOD– ΔAEAEAOD grid proposed by Gobbi et al. (2007) is a graphical method

used to visually represent the spectral characterization of aerosol optical depth (AOD),

i.e.  Angström  exponent  (AE)  and  its  curvature,  in  order  to  infer  the  fine  mode

contribution  (η) to the total AOD and the size of the fine mode aerosol particles.)  to  the  total  AOD and  the  size  of  the  fine  mode  aerosol  particles.

Perrone  et  al.  (2014) applied  this  method for  the  wavelengths  widely  used in  lidar

measurements. However, in neither case does the method allow for a direct relationship

between η) to the total AOD and the size of the fine mode aerosol particles. and the fine mode fraction contribution to the total aerosol population. Some

discussions are made regarding the effect of shape and composition to the classical AE-

ΔAEAE plot.  The  potential  use  of  particle  backscatter  measurements,  widely  used  in

aerosol  characterization  methods  together  with  extinction  measurements,  is  also

discussed  in  the  AE-ΔAEAE grid  context.  A  modification  is  proposed  that  yields  the

submicron contribution to the total volume concentration by using particle extinction

data, and a comparison to experimental measurements is made. Our results indicate that

the  use  of  a  modified  AE-ΔAEAE  grid  plot  to  directly  obtain  submicrometric  and

micrometric mode fraction to the total aerosol population is feasible if a volume-based

bimodal particle size distribution is used instead of a number-based one.
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1. INTRODUCTION

The aerosol particles constitute a key climate forcing factor due to their impact

on the radiation balance of the Earth-atmosphere system. Thus, the monitoring of the

aerosol evolution of their optical and microphysical properties, and also their transport

in  the atmosphere,  becomes  essential  in  order  to  get  a  reliable  prediction  of  global

climatic  and  environmental  changes  all  over  the  world.  In  order  to  estimate  these

impacts,  a  large  variety  of  methods  for  monitoring  atmospheric  aerosols  were

developed. Among others, remote sensing methods, both active and passive, proved to

be fruitful and convenient. A variety of procedures to retrieve aerosol microphysical

particles from passive remote sensing measurements were developed in the 70s (e.g.

Herman  et  al.,  1971;  Shaw  et  al.,  1973,  1979),  and  applied  to  sun-photometry

measurements  in  the  90s  (Nakajima  et  al.,  1996).  Retrieval  of  column-integrated

properties  were  successfully  applied  to  ground-based  networks  such  as  AERONET

(Dubovik  and King,  2000;  Dubovik et  al.,  2006).  Further  developments  in  retrieval

techniques allowed to retrieve column-integrated aerosol microphysical properties from

space polarimetry measurements (e.g. Dubovik et al., 2011). 

Retrieval  of  aerosol  microphysics  vertical-profiles  is  possible  through  the

inversion of multiwavelength lidar measurements. The first such approach is based on

measurements from two extinction (α) and three backscatter (β) coefficients, the so-) and three backscatter  (β) coefficients, the so-) coefficients,  the so-

called 3β) coefficients, the so-+2α) and three backscatter (β) coefficients, the so- configuration, and the inversion scheme is based on regularization (Müller

et  al.  1999a,b;  Veselovskii  et  al.,  2002).  Inversion  by  regularization  yields  aerosol

physical  parameters  such  as  effective  radius,  volume,  surface-area,  and  number

concentrations,  with  uncertainties  between  20-30  %  (Pérez-Ramírez  et  al.,  2013).

Retrievals  of  complex  refractive  index  are  also  possible  although  with  large

uncertainties  ±0.05  for  real  part  and ±100% for  imaginary  part  (e.g.  Müller  et  al.,

1999a,b; Veselovskii  et al.,  2002). The inversion by regularization has proved to be

feasible  for  large  fine  mode populations,  although errors  in  the  retrieved properties

increase as preponderance of the coarse mode grows (e.g. Whiteman et al., 2018). The

large uncertainties and the limitations of the retrieval process to certain aerosol types are

explained by the lack of enough information for solving the ill-posed problem of lidar

inversion (Mishchenko et al., 2016). The problem of insufficient information content in

the 3β) coefficients, the so-+2α) and three backscatter (β) coefficients, the so- retrievals is common to different techniques (e.g. Burton et al., 2016).



To address the limitations on the 3β) coefficients, the so-+2α) and three backscatter (β) coefficients, the so- retrievals, additional approaches were

used, such as using non-spherical kernel functions for dust retrieval (e.g. Veselovskii et

al., 2018) or using optimized constraints for single scattering albedo (Pérez-Ramírez et

al.,  2019).  An  alternative  method  was  proposed  by  Gasteiger  et  al.  (2011),  which

combined  particle  extinction,  backscatter  and  depolarization  profiles  (3β) coefficients, the so-+2α) and three backscatter (β) coefficients, the so-+2δ) to)  to

obtain  concentration  values  of  ash  particles  in  the  atmosphere.  Instead  of  using  a

regularization method, their proposal was based on a statistical approach, where a set of

aerosol  ensembles  of  monomodal,  spheroidal  particle  distributions  was  found  to  be

comparable to experimental particle populations within experimental uncertainty. This

approach was also tested in the absence of depolarization measurements (Quirantes et

al., 2012). However, all these methods require good signal-to-noise ratio in the lidar

signals,  which  is  feasible  in  very  sophisticated  High Spectral  Resolution  Lidar  and

Raman  lidar  using  high-power  laser  beams.  Lidar  networks  such  as  EARLINET

(Pappalardo  et  al.,  2014)  and  LALINET  (Guerrero-Rascado  et  al.,  2016)  do  not

typically  run  many  of  these  highly  sophisticated  systems,  which  limit  network

monitoring of aerosol microphysics vertical-profiles capabilities mostly to night-time

hours (e.g. Müller et al., 2016). 

The limitations of 3β) coefficients, the so-+2α) and three backscatter (β) coefficients, the so- retrievals encouraged the development of methods that

includes additional measurements, and in the framework of EARLINET network the

synergic  combination  of  lidar  with  other  instruments  such  as  sun  photometry  or

moon/star photometers is the most extended approach. The LIRIC (Lidar Radiometer

Inversion  Code –  Chaikovsky  et  al,  2012,  2016)  algorithm relies  on  layer-by-layer

aerosol optical  information contained in three lidar elastic backscattered signals plus

aerosol microphysical information contained in column-integrated direct Sun and sky

radiance measurements previously retrieved by AERONET sun-photometers (Holben et

al., 1998). The LIRIC approach can estimate profiles of fine and coarse aerosols volume

concentration, discriminating between spherical coarse and spheroidal coarse scatterers

when depolarization lidar measurements are provided as input. On the other hand, the

GARRLiC (Generalized Aerosol Retrieval from Radiometer and Lidar Combined data –

Lopatin et al.,  2013) scheme uses LIRIC heritage but includes inversion of both the

coincident  lidar  (range-corrected  signal)  and the  Sun–sky photometer  measurements

(AOD  and  sky  radiances),  in  order  to  obtain  not  only  vertically-resolved  but  also



column-integrated aerosol optical and microphysical properties such as single scattering

albedo and refractive index for both fine and coarse modes separately.

Retrieving aerosol microphysical properties through remote sensing techniques

is  a  highly  sophisticated  task  that  requires  dealing  with  a  wide  range  of  different

problems, both physical and mathematical (Osterloh et al., 2013). To overcome such

complexity an alternative, graphical method was proposed by Gobbi et al. (2007), first

applied to Sun-photometric data and then used on to vertically-resolved lidar signals

(Perrone et al., 2014).

An additional limitation of all the inversion schemes for the retrieval of aerosol

microphysical  properties  from multiwavelength  measurements  is  the  requirement  of

complex mathematical codes. As each group typically develops their own code, there is

no common standard.  The GRASP code (Generalized  Retrieval  of  Atmosphere  and

Surface Properties – Dubovik et al., 2014) is trying to overcome all these problems but

still very little can be done to minimize the complexity of the numerical environment.

To  address  all  limitations,  estimates  of  size  distribution  properties  can  be  obtained

through  the  analysis  of  the  spectral  dependence  of  the  Angström  parameter.  Such

analyses are straightforward when compared with a typical inversion of an ill-possed

problem (e.g.  O´Neill  et  al.,  2001),  although the  number  of  retrieved  parameters  is

considerable lower. Similarly, the graphical method proposed by Gobbi et al., (2007) –

hereafter referred as Gobbi/like grid plots – yields a graphical estimation of fine mode

contribution to aerosol optical  depth and fine mode radius. Such approach has been

successfully  used to  analyze  different  aerosol  types  using  sun-photometry  data  (e.g.

Valenzuela  et  al.,  2014)  or  to  study  day-to-night  columnar  aerosol  properties  (e.g.

Pérez-Ramírez et al., 2012), and also particle populations in industrial flares (Guerrero-

Rascado et al., 2014). Further adaptations of the Gobbi/like grid plots are used for lidar

data (e.g. Perrone et al., 2014) with some limitations of backscattering when dealing

with non-spherical particles.

The objective of this work is to make a sensitivity analysis of a Gobbi/like grid

plot  under  different  assumptions  for  non-spherical  particles.  The  ALPHA  database

(Quirantes et al., 2010), calculated by means of the T-Matrix theory, is used. Changes in

the Gobbi/like grid plots are suggested to obtain direct estimation of particle volume in

both fine and coarse modes. Section 2 describes the details of the experimental setup

used to retrieve AOD data. A brief description of the Gobbi plot and its dependence on



AOD is  included  in  Section  3.  The  feasibility  of  our  modified  Gobbi  approach  is

discussed in Section 4. Summary and conclusions are given in the last section.

2. EXPERIMENTAL SITE & INSTRUMENTATION

The  experimental  data  used  in  this  study  were  acquired  at  IISTA-CEAMA

station,  located  at  Granada,  southeastern  Spain  (37.16º  N,  3.61º  W,  680  m  a.s.l.).

Granada is a non-industrialized, medium-sized city located in a natural basin surrounded

by mountains with altitudes of up to 3400 m a.s.l. in the East region (Sierra Nevada

mountain  range).  This  region is  characterized  by its  complex terrain  surrounded by

mountains, mainly affected by Mediterranean continental climate conditions. The region

has  cold  winters  (mean  daily  maximum  temperature:  10.6 ± 1.1 °C),  and  dry/hot

summers (mean daily maximum temperature of 28.8 ± 0.9 °C, mean daily maximum of

surface RH up to 55.0 ± 6.0%) at surface level (Bedoya-Velásquez et al., 2019). Due to

its  location  in the southwestern Mediterranean,  the area is  affected by different  air-

masses  coming  from Africa,  the  Atlantic  Ocean,  the  Mediterranean  and  inland  the

Iberian Peninsula and Europe (e.g. Pérez-Ramírez et al., 2016). Such air-mass patterns

explains why long-range transport of aerosol is predominantly affected by mineral dust

particles from the African continent (Lyamani et al., 2006 a, b; Guerrero-Rascado et al.,

2011; Córdoba-Jabonero et al., 2011; Titos et al., 2012; Navas-Guzmán et al., 2013a;

Valenzuela  et  al.,  2014;  Cazorla  et  al.,  2017).  Smoke  advected  principally  from

surrounded regions, Europe, Northern Africa, and the Iberian Peninsula, also affect the

region  (e.g.  Lyamani  et  al.,  2006a,b),  with  some  long-range  transport  from  North

America  (e.g.  Ortiz-Amezcua  et  al.,  2017).  The  region  has  been  also  reached  by

extraordinary aerosol events such as volcanic plumes (Navas-Guzmán et al.,  2013b).

Granada is also influenced by local anthropogenic sources such as traffic and domestic

heating in wintertime (Titos et al.,  2017). All these different situations make aerosol

over Granada very variable and complex, thus making the region attractive to test any

development in remote sensing retrievals (Moreira et al., 2018).

The instruments used in this study are described as follows. The Sun-photometer

CE-318-4,  included  in  the  AERONET  network  (Holben  at  al.,  1998),  is  used  for

column-integrated  characterization  of the atmospheric  aerosol.  This  instrument  takes

direct sun measurements with a 1.2º full field of view at 340, 380, 440, 675, 870, 940,

and 1020 nm. The full-width at half-maximum of the interference filters are 2 nm at 340



nm, 4 nm at 380 and 10 nm at all other wavelengths. Solar extinction measurements are

used to obtain aerosol optical depth at each wavelength except at 940 nm, which is used

to retrieve total column water vapour. A complete description can be found in Holben et

al. (1998).

The multi-wavelength Raman lidar MULHACEN (Raymetrics S. A., Greece) is

included in EARLINET (European Aerosol Lidar NETwork) (Pappalardo et al., 2014)

and also in SPALINET (Spanish and Portuguese Aerosol Lidar Network) (Sicard et al.,

2009). This lidar  system emits  laser pulses at  1064, 532 (parallel  and perpendicular

polarization channels)  and 355 nm, and receives backscattered radiation at  the same

wavelengths as well as Raman-shifted backscattered radiation at 607 and 387 nm from

N2 molecules and at 408 nm from H2O molecules. Atmospheric information retrieved

from lower regions is limited by the full overlap height, which is reached above 1.3 km

a.s.l. due to the system configuration (Guerrero-Rascado et al., 2010). In this work only

segments of the profile unaffected by incomplete overlap are considered. The vertical

resolution and temporal resolution for lidar backscattered signals is 7.5 m and 1 min,

respectively. A full description of this instrument can be found in Guerrero-Rascado et

al. (2008.

3. METHODOLOGY

3.1. Columnar data

The spectral dependence of the aerosol optical depth (AOD) can be evaluated

through the Angström exponent, AEAOD (λ1,λ2), defined as:

AEAOD ( λ1 , λ2 )=−
ln (AODλ 2

/AODλ 1)

ln (λ2/ λ1 )
             (Equation 1)

Similarly, the Angström exponent for scattering, absorption, and backscatter can

also  be  defined.  AEAOD is  a  good  indicator  of  the  dominant  size  of  the  scattering

particles  in  the atmosphere (Angström, 1929).  In  general  terms,  values  above 1 are

typically related to contributions of fine-mode aerosols (AEAOD=4 in the Rayleigh limit),

while AEAOD values lower than 1 are associated with a large presence of coarse (micron-

sized) particle populations (Kaufman, 1993). However, while large AEAOD values can be

directly associated to small particles, the case for small AEAOD  is not straightforward.



Aerosol  populations  in  nature  are  mostly  modelled  by  a  bi-modal  distribution.  For

instance,  a Saharan dust layer advected over an urban/industrial  region is a bimodal

particle population from the columnar point of view, with an underlying layer composed

by a fine mode of anthropogenic particles and a lofted layer composed by coarse mode

of mineral particles (Valenzuela et al. 2014). Nevertheless, a low AEAOD  value can be

attributed to a combined population of large and small modes as well as to a large mode

only (i. e. pure Saharan dust layer over desertic regions).

The information contained in AEAOD allows for extracting information about the

submicrometer component of a two-mode aerosol population (O'Neill et al. 2001). Since

the total AOD is the sum of the fine- and coarse-mode optical depths, the full AEAOD can

be written as:

AEAOD=AEAOD, f ⋅ η+AE AOD,c ⋅ [1−η ]      (Equation 2)

where η) to the total AOD and the size of the fine mode aerosol particles.=AODf/AOD is the relative contribution of the fine mode to the AOD. Eq. (2)

can  be  exploited  to  solve  for  AEAOD in  terms  of  measurable  quantities  under  the

assumption that the coarse-mode Angström exponent (AEAOD) is zero or close to zero.

Such assumption is reasonable for very large particles, for which the extinction optical

depth becomes dependent on particle size but not wavelength.

In order to describe both fine and coarse modes, a log-normal number particle

size distribution Ni is assumed with median radius Rni and width ln(σi):

       (Equation 3)

where i (=c,f) stands for fine or coarse mode, and Nci is the number concentration. Data

by O'Neill et al. (2001) yield AEAOD values about 0.1 or lower for a polydispersion of

particles with median radii as low as 0.43 μm (σ=2.2). Our computations under Miem (σ=2.2). Our computations under Mie

theory, based on a lower value of the size distribution width as suggested by Hansen and

Travis (1974), yield AEAOD<0.1 for median radii larger than about 1.5 μm (σ=2.2). Our computations under Miem, thus allowing

the nearly-zero Angström  exponent approximation to be safely used on some coarse

mode  aerosol  models,  e.g.  sea  salt  and  coarse  mineral  as  described  by  the  OPAC

database (Hess et al. 1998).

Following this concept, Gobbi et al. (2007) introduced a graphical framework

based on the AOD at three particular wavelengths. A graphical plot of three Angström



exponents is made in the two-dimensional form ΔAEAEAOD = AEAOD (λ1,λ2) – AEAOD (λ2,λ3)

vs. AEAOD  (λ1,λ3).  An average of four different coarse mode populations was assumed,

each with a different value of the coarse mode radius (0.75, 1, 2, and 4 μm (σ=2.2). Our computations under Miem), and the

same  value  for  the  coarse  mode  distribution  width  (σc=1.8)  and  fixed  fine-mode

distribution width (σf=1.5). These parameters are representative of AERONET aerosol

retrievals  for various sites,  source regions and particle  compositions  (Dubovik et  al.

2002). Mie calculations for such coarse mode populations in the case of a refractive

index m=1.4+i0.001 yield a range of  AEAODvalues from -0.05 to -0.21 at wavelengths

440-675, and 675-870 mn. The average AEAODvalues obtained for the coarse mode are

AEAOD,c=-0.1028 and ΔAEAEAOD,c=0.03. The assumption of nearly-zero  AEAOD  values for

such parameters is therefore reasonable. As a consequence, each point in the so-called

AEAOD – ΔAEAEAOD grid depends on two parameters, namely the fine-mode median radius

(Rf)  and  the  contribution  of  the  fine  mode  to  the  total  AOD (η) to the total AOD and the size of the fine mode aerosol particles.).  The  Gobbi  grid

crisscrosses  the  AOD  space  representing  the  values  with  either  Rf constant  or  η) to the total AOD and the size of the fine mode aerosol particles.

constant. Values typically chosen for grid representation are Rf=0.05, 0.1, 0.15, 0.2, 0.3,

and 0.5 μm (σ=2.2). Our computations under Miem, and η) to the total AOD and the size of the fine mode aerosol particles.=1, 10, 30, 50, 70, 90 and 99%.

Calculation of the Gobbi framework points can be a heavy and burdersome task,

as  they  depend  on  several  particle  parameters  such  as  shape  and  composition.  In

particular,  nonsphericity  demands  the  use  of  mathematical  methods  far  more

complicated and CPU-intensive that the usual Mie theory for spherical scatterers.  The

effect of nonsphericity is expected to have an impact on these results, and that impact

should be quantified in order to assess whether spherical shape can be assumed. It is

generally assumed that the effect of nonsphericity should be small since shape has little

effect on extinction for large particle size (Mishchenko, 1997; Gobbi et al, 2007).

The sensitivity of the Gobbi/like grid plots based on AEAOD  –  ΔAEAEAOD can be

seen in Fig 1. Spheroidal particles have been modeled as a 50% mixture of oblate and

prolate spheroids with the axial ratio (long to short axis ratio) e=1.8 and equal-volume

median radius,  and the resulting extinction values have been calculated by using T-

matrix theory (Waterman, 1971). In order to ease the computational burden, a set of

kernel functions was calculated and used (Quirantes et al., 2010) following a scheme

similar to Dubovik et al. (2006). Particle size and composition parameters in this work

are equal to those of Gobbi et al. (2007). 



Results show that the shape effect is negligible in most cases, and only becomes

noticeable for high Rf values (> 0.2 μm (σ=2.2). Our computations under Miem). The average coarse-mode value for AEAOD

change from -0.103 to -0.130,  while  ΔAEAEAOD remains  almost  unchanged (0.0299 to

0.0293).  The  assumption  by  Gobbi  et  al.  (2007)  that  aerosol  shape  should  not  be

expected to significantly affect grid plot coordinates is thus confirmed. In view of this

result,  it  can be safely assumed that the use of Mie theory for spherical  particles in

AEAOD – ΔAEAEAOD  plots is adequate without having to resort to other, more complicated

methods assuming nonspherical scatterers.

Regarding the well-known dependence of the grid on refractive index (Perrone

et  al.,  2014),  it  must be pointed  out that  sensitivity  studies typically  assumes equal

composition for fine and coarse modes, but natural  mixtures of different modes can

have different values of refractive index for fine and coarse modes (Eck et al., 2010;

Valenzuela  et  al.,  2014),  and  such  differences  between  modes  must  be  taken  into

account.

A set of comparisons using different values of the refractive index for both fine

and coarse mode show that the AEAOD  – ΔAEAEAOD grid point seems to be unaffected by

changes in the refractive index of the coarse mode. An example is shown in Fig. 2

where the change in coarse mode composition has little  effect on the grid points. It

follows that only the refractive index of the fine mode is relevant in creating a Gobbi

grid,  whereas  composition  of  the  coarse  mode  exhibits  a  negligible  impact.  The

retrieved fine median values Rf is, therefore, dependent on the value of the refractive

index chosen for the fine mode alone.

Classical AEAOD – ΔAEAEAOD Gobbi grids are known to show a clockwise rotation

about the origin of the constant radius curves for increasing refractive index. For a given

point, Gobbi et al., (2007) shows that maximum Rf indetermination ranges about ±25%

when the index of refraction varies from 1.33 to 1.53+i0.003, whereas η) to the total AOD and the size of the fine mode aerosol particles. spans a range

of about ±10%; similar values for other index of refraction and wavelengths values are

found in Perrone et al., (2014)

It  must  be  pointed  out,  however,  thar  the  index  of  refraction  is  a  complex

number  (the  imaginary  part  describing  the  effect  of  attenuation),  so  the  term

“increasing” is a bit confusing. Our tests confirm that a clockwise rotation is obtained

for both increasing real part (with constant imaginary part) and increasing imaginary

part (with constant real part) of the refractive index.



It is worth mentioning that the graphical classification of Gobbi et al (2007) can

be  seen  as  a  manifestation  of  deeper,  fundamental  analytical  relations  in  the  space

formed by the Angstrom exponent and its spectral derivative, which are in turn obtained

by means of a spectral deconvolution algorithm (SDA), as O'Neill (2010) pointed out.

3.2. Vertical resolved data

The multiwavelength Raman lidar MULHACÉN was used to retrieve vertically-

resolved  particle  extinction  and  backscatter  coefficients  at  355,  532  and  1064  nm.

Particle extinction and backscatter coefficients at 355 and 532 nm were independently

retrieved by the Raman method (Ansmann et al. 1992), with an uncertainty of 5% and

10% for  extinction  and backscatter,  respectively.  Particle  backscatter  coefficients  at

1064 nm were retrieved by the Klett-Fernald method (Klett 1985) using a particle lidar

ratio of 50 sr. The corresponding particle extinction coefficient at 1064 nm was obtained

multiplying the particle backscatter profile by the particle lidar ratio. The uncertainties

for backscatter  and extinction profiles  obtained by Klett-Fernald method are usually

20% and 25–30%, respectively.

3.3. Backscatter grid plot

Computation of aerosol backscattered profiles can be obtained by backscattering

lidar using assumptions about the extinction-to-backscattered ratio – typically known as

lidar  ratio  (LR).  The  use  of  Raman  or  HSRL  system,  however,  allows  a  direct

computation  of  backscattering  coefficients  without  the  need  of  LR  assumptions.

Multiwavelength backscattering coefficients can be used for determination of particle

mass  concentration  and  size  distribution  (Gasteiger  et  al.,  2011).  Combined  with

polarization  lidar,  multiwavelengthlidars  allow  for  the  separation  of  spherical  and

nonspherical particles as a function of height (Shimizu et al.,  2004; Quirantes et al.,

2012; Burton et al., 2014; Bravo-Aranda et al., 2015).

An AEβ– ΔAEAEβ plot might be an additional tool to infer particle properties from

the measured backscattered lidar signals. Layer-by-layer analysis is particularly helpful,

in a way similar to that used by Perrone et al. (2014) for particle extinction profiles.

This procedure is, unfortunately, unworkable in practical terms. An AEβ– ΔAEAEβ grid is

heavily dependent on particle composition (Fig. 3) and particle shape (Fig. 4), due to the



fact  that  the particle  backscatter  coefficient  is  highly sensitive to particle  shape and

refractive index (Ansmann et al., 2003).

In addition, plot lines do not always rotate in a clockwise direction for increasing

values  of  the  fine  mode  radius  Rf.  Instead,  rotation  is  first  counterclockwise  then

clockwise. As a consequence, there is no unique correspondence between a Rf value and

a particular location in AEβ–  ΔAEAEβ space. Even with an exact knowledge of particle

size,  shape,  and composition,  the  use of  AEβ–  ΔAEAEβ seems unsuitable  for  practical

applications. 

4. RESULTS AND DISCUSSION

4.1. Classification for particle concentration

As seen before, one of the variables for the AEAOD  –  ΔAEAEAOD grid is the fine

mode contribution to total AOD (η) to the total AOD and the size of the fine mode aerosol particles.). This raises the point, would it be possible to plot

data on a grid where the fine mode contribution is not measured as η) to the total AOD and the size of the fine mode aerosol particles., but as the fine

mode contribution to the full aerosol population, i.e. Fn=Ncf/(Ncf+Ncc) (where Ncf is the

number concentration of particles in fine-mode and Ncc is the number concentration of

particles in coarse-mode)? If so, a change in relative concentration of both modes could

be followed as a Fn-constant curve, and it could be separated from other causes like

particle growth.

While theoretically feasible, any such attempt encounters several difficulties, the

first being that such AEAOD  –  ΔAEAEAOD grid includes very high values of Fn. As Fig. 5

shows, most of the grid space is occupied by particle concentrations with large values of

fine mode concentration, and the range values for extinction Angström coefficients have

shrunk. As a consequence, small variations to values will translate into large changes in

Fn.

To  overcome  this  drawback,  a  particle-concentration-based  AEAOD  –  ΔAEAEAOD

grid is here proposed that is similar to the original Gobbi plot, with the main difference

being that a different size distribution is considered. A bimodal log-normal distribution

is still used, but is volume-based (Vi) instead of number-based (Ni):



       (Equation 4)

where the median radius and normalization constant for both distributions are related as:

    Rvi=Rn iexp (−3 ln2σ i )          (Equation 5)

 C cv=
4
3
π rn

3N ciexp (4.5 ln2σ i )      (Equation 6)

Now the fine-mode number ratio Fn=Ncf/(Ncf+Ncc) can be substituted by the fine-

mode volume ratio Fv=Cvf/(Cvf+Cvc). As an example, calculations for a bimodal particle

size  distribution  with  parameters  as  given  in  Table  1  yield  a  number  ratio  of

Fn=99.9947% and a volume ratio Fv =16.2%. In this way, it can be seen that number

ratio values close to 100% can correspond to low volume ratio values. 

Fig. 6 shows the Gobbi diagram, modified so that dotted lines represent constant

values  of  the  volume  fraction  Fv.  Experimental  data  can  be  plotted  and immediate

information  can  be  retrieved  regarding  the  relative  presence  of  the  fine  mode.  As

Equation 2 shows, the Angström exponent for the full bimodal distribution (AEAOD) can

be related to those for the separate fine (AEAOD,f) and coarse (AEAOD,c) modes by means

of η) to the total AOD and the size of the fine mode aerosol particles. (the AOD contribution of the fine mode to total extinction). If two coarse mode size

radii Rc1, Rc2 are considered, two AEAOD values (i=1,2) can be calculated: 

AEAOD ,i=AEAOD , fi ⋅ηi+AEAOD , ci⋅ [1−ηi ]     (Equation 7)

when the coarse mode size radii Rc1, Rc2 are chosen so that their contributions to the

Angström exponent  are similar (AEAOD,f1≈ AEAOD,f2),  then equal  η) to the total AOD and the size of the fine mode aerosol particles. values yield equal

AEAOD,i values, and are therefore represented as equal points on the classical AEAOD  –

ΔAEAEAOD grid. The Angström exponent for a coarse mode (AEAOD,c) can be then assumed

to be equal to the average of the two (or four, as in the case of the classical Gobbi

diagram).

This cannot be exported to a grid where one of the main parameters has changed

from η) to the total AOD and the size of the fine mode aerosol particles. to Fv. Equal Fv values does not necessarily mean equal η) to the total AOD and the size of the fine mode aerosol particles. values, and therefore

will not be translated as equivalent points on the AEAOD  – ΔAEAEAOD grid as even slight

variations can translate to large difference in the AEAOD  –  ΔAEAEAOD grid points. As an



example, Table 2 shows the values of the AEAOD – ΔAEAEAOD grid point for Rf=0.05 μm (σ=2.2). Our computations under Miem,

Fv=30%, and three different values for the coarse radius. Still, a direct representation of

volume fraction could be useful for particular purposes. Fig 7 shows AEAOD – ΔAEAEAOD

grid plot details for a refractive index m=1.44 + i0.0097 and a coarse mode volume

particle  distribution  (Rc=3.23  μm (σ=2.2). Our computations under Miem,  σc=2.2).  These  parameters  are  representative  of

aerosol  populations  by  transported  mineral  aerosol  as  given  by OPAC (Hess  et  al.

1998). Since our data indicates that the AEAOD – ΔAEAEAOD diagram is more influenced by

the refractive index of the fine mode, the value m=1.44+i0.0097 has been chosen as

suggested by Dubovik et al., (2002) for urban/industrial environments. Fine mode has

been set in both cases as σf=1.5. 

Numerical values for the plots in Figs. 6 and 7, for wavelength values 440, 675,

870, are given in Tables 3 and 4, respectively. The sensitivity of these modified Gobbi

plots have been tested by comparing results for m=1.33 and m=1.52+i0.0028. For a

given point, Rf indetermination has been found to be similar to those reported by Gobbi

et al., (2007) and Perrone et al (2014). The substitution of the variable η) to the total AOD and the size of the fine mode aerosol particles. by Cv does not

seem to alter its indetermination range either.

Additionally, plot data values are given in Table 5 for wavelengths 355, 532,

1064 nm, which have a wide range of applications in lidar measurements and will be

used in the next section.

4.2. Application to an experimental case with lidar measurements

Data gathered during ChArMEx-ADRIMED (Mallet et al., 2016) campaign at

Granada  on  16  and  17  June  2013  gives  us  an  excellent  opportunity  to  evaluate

algorithms for retrieving aerosol microphysical and optical profiles (Benavent-Oltra et

al., 2017) and in turn, these properties and data were used as inputs of the radiative

transfer model Global Atmospheric ModEl (Granados-Muñoz et al.,  2019). On these

days, Saharan mineral dust particles with origin in southern Morocco (near the border

with Algeria) where advected over Granada after a travel of around 4 days, according to

back-trajectories  analysis  (Benavent-Oltra  et  al.,  2017).  A homogenous mineral  dust

layer was monitored at up to 5 km a.g.l. on June 16, whereas on June 17 the dust layer

was decoupled from the atmospheric boundary layer and mainly located between 2 and

4.5 km a.g.l. The focus here is on the period from 20:30 UTC on 16 June to 01:30 UTC



on 17 June where 30-min optical lidar profiles where successfully retrieved, covering

layers in the height range 1600-5800 m for six 30-minute intervals.

Particle size distribution data provided by AERONET (June 16, 16:53h UTC can

be fitted to a bimodal volume size distribution with median radii and width (0.12 μm (σ=2.2). Our computations under Miem,

σ=1.78) for the fine mode and (1.85 μm (σ=2.2). Our computations under Miem, σ=1.89) for the coarse mode. The column-

integrated volume fraction for fine mode is estimated from AERONET data as 10% for

June 16, 16:53h UTC and 12% for June 17, 07:41h UTC.

Figures  9 a,b  show plotted  values  for  column-integrated  Angström exponent

values at different times, in two AEAOD – ΔAEAEAOD plots: constant AOD fraction (9a), and

constant volume fraction (9b). In all but two of the six values, fine-mode fraction fell

within the AERONET-retrieved data (10 - 12 %). Fine mode particle sizes values range

between 0.2 and 0.4 μm (σ=2.2). Our computations under Miem, somewhat larger than the AERONET-derived value (0.12 μm (σ=2.2). Our computations under Miem).

The reason for the discrepancy is not well known, but as both plots yield similar fine-

mode particle sizes, it seems to be a common feature with Gobbi-like plot grid schemes.

Regarding  the  characterization  of  volume  fraction  Fv values  obtained  from

Figure  8b  (6-15%) compare  well  to  the  AERONET-determined  value  of  8-11%.  A

comparison of Figures 8a and 8b show that the presence of such fraction range of coarse

particles contribute to 40-60% of the total (column-integrated) extinction.

4.5 Application to synthetic data (GEOS-5)

Synthetic data from the Goddard Earth Observing System, version 5 (GEOS-5,

Rienecker  et  al.,  2011;  Moled  et  al.,  2012)  are  used.  GEOS-5  includes  modules

representing  the  atmospheric  composition  and tropospheric/stratospheric  constituents

(Pawson et al., 2008). For aerosol particles, the GEOS-5 uses the GOCART module

(Chin et al., 2002) to simulate the emissions, transport, and deposition of dust, sea salt,

carbonaceous  and  sulfate  particle.  Dust  and  sea  salt  particle  size  distributions  are

resolved over five size bins (Colarco et al., 2014). Carbonaceous aerosols are resolved

into black and organic carbon, partitioned by hydrophobic and hydrophilic fractions.

GEOS-5 is highly configurable,  supporting various spatial  resolutions,  and in

this  work  the  so-called  “nature  run”  was  used

(https://gmao.gsfc.nasa.gov/global_mesoscale/7km-G5NR/), which is a two-year (June

2005 –  June  2007)  global  7-km horizontal  resolution  simulation  of  the  atmosphere



including forced aerosols. The nature run was performed as a climate simulation, forced

only  by  observed  sea  surface  temperatures  and  with  a  relaxation  of  the  model

convective parameterization as the non-hydrostatic dynamical core resolved more of the

relevant scales of motion. The model run had 72 vertical levels from the surface to 0.01

hPa and was run with a 5 minutes physics time step. For the data used here, the GEOS-5

model was used to simulate the atmospheric conditions along 24 h track of the CALIOP

lidar instrument valid for 24th July 2009, representative of many aerosol conditions for

the  evaluation  of  aerosol  retrievals  (e.g.  Whiteman  et  al.,  2018).  The  GEOS-5

simulation  was  run  using  assimilated  meteorology  from  its  own  Modern-Era

Retrospective  Analysis  for  Research  and  Applications  (MERRA -  Rienecker  et  al.,

2011).  GEOS-5  data  used  here  include  vertical  profiles  of  particle  backscatter  and

extinction coefficients at 355, 532 and 1064 nm, including also the contribution of each

aerosol specie.

Figure 9 shows an example of aerosol profiling for a study case over Northeast

Africa,  near  the  Senegal  coast.  Backscattering  and  extinction  profiles  and  also  the

fraction of each species to aerosol extinction are shown. A clear predominance of dust is

observed, although influence of sulphate (≈20%) and organic carbon (≈10 %) particles

is seen at high altitudes (above 4 km), probably due to transport of biomass particles

from  southern  latitudes.  Such  aerosol  situations  have  been  observed  in  the  real

atmosphere  from  real  lidar  measurements  (e.g.  Veselovskii  et  al.,  2018).  Effective

radius (graph not shown for clarity) takes values between 1 and 1.5 μm (σ=2.2). Our computations under Miem, which indicate

large predominance of coarse mode.  Also, 95% in volume is found in the first 7 km.

Classical Gobbi plots (Fig. 10a) reproduces the profile pattern well, revealing a dust

contribution to total extinction of 70% at the lowest level (625 m a.s.l.), decreasing to

about 40% at 7 km. Volume fraction plots (Fig. 10b) show a relative volume values for

dust fraction close ranging from 95% (at 625 m above ground level) to 85-90% (at 7 km

a.g.l.).  At  heights  above 8 km, contributions  come mostly from fine mode particles

(sulphate/carbon  species)  with  25-35%  volume  fraction,  which  agree  with  the

percentages  of  sulphate/carbon  particles  of  20-30%  showed  in  Figure  9c.  Volume

median  radius  differs  slightly  (0.2  μm (σ=2.2). Our computations under Miem according  to  volume plot,  0.31  according  to

OPAC data). The presence of additional small-size particle populations at heights above

8 km (mainly organic and black carbon, with a combined volume fraction of up to 15%,

and a volume median ratio 0.05 μm (σ=2.2). Our computations under Miem) might be a factor to account for the discrepancy.



Figure 11 shows an example of backscattering and extinction aerosol properties

for an example of aerosol pollution over East Asia. Fractions of each species to aerosol

extinction  are  also  shown.  Most  aerosol  contribution  occurs  within  the  planetary

boundary  layer  at  approximately  2200 m a.s.l.  In  this  layer,  sulphate  is  by  far  the

predominant  aerosol  specie,  but  other  aerosol  layers  are  encountered  in  the  free

troposphere: Above PBL GEOS-5 simulations reveal some remaining particles within

5-7  km,  mostly  associated  to  carbonaceous  (organic  and black  carbon).  Eventually,

another aerosol layer is found between 8-10 km where again largely sulphate particles

as found for the PBL predominate. The aerosol layers in the free troposphere would be

very difficult to detect and analyze from real measurements because of very low loads.

However, GEOS-5 allows for is characterization. Such layers might are not real but in

any case they are realistic situations that can happen in the real atmosphere.

Gobbi/like  plots  for  the  data  of  Figure  11  are  shown  in  Figure  12a.  Large

pollution particles spread mainly in the lower/medium (0.7-5.5 km) and upper (8-10

km) levels, while intermediate level (5-8 km) is populated by a mixture of organic and

black carbon particles. Volume plot (Fig. 12b) for both lower and upper levels suggest a

fine-particle population of about 0.3  μm (σ=2.2). Our computations under Miem volume median radius and 30-50% volume

fraction,  which  agrees  with  simulated  data  (0.31  μm (σ=2.2). Our computations under Miem,  20-40%).  In  the  intermediate

levels, the two-population hypothesis no longer holds, and three different populations

are present representing dust, organic carbon and black carbon. Still, Figure 12b shows

a shift towards fine-particle populations of smaller radii (0.17  μm (σ=2.2). Our computations under Miem, 40% fine particle

volume)  in  the  5-8  km  height  range.  Due  to  the  effect  of  clockwise  rotation  for

increasing refractive  index,  a tailored  volume fraction grid for  black/organic  carbon

would yield smaller particle radii, closer to the OPAC value of about 0.05 μm (σ=2.2). Our computations under Miem, which is

consistent with the radius values for black carbon given in GOCART/OPAC (Chin et

al., 2002). 

As  conclusion,  the  modified  Gobbi/like  plots  presented  here  have  been

demonstrated  to  distinguish  different  aerosol  layer  with  different  contributions  of

fine/coarse  volumes.  We  remark  that  our  analyses  from  GEOS-5  are  realistic  for

different  aerosol  conditions  presented  in  the  atmosphere.  However,  GEOS-5 do not

include internal mixtures for aerosol, and therefore many real cases are not included in

our analyses.



CONCLUSIONS

A modification of the classical Gobbi plot diagrams has been proposed to obtain

quantitative  information  on  the  atmospheric  aerosol  content  using  direct-sun

photometric observations at three wavelengths. This new plot yields fine-mode volume

fraction directly, instead of being based on the relative AOD contribution.

Grid curves yield the contribution of small particles to the full, two-population

size  distribution,  in  contrast  to  former  plots  where  only  the  contribution  to  light

extinction  was obtained.  The new grid plot  works  on the  condition  that  a  bimodal,

volume-based size distribution is used. Additionally,  Gobbi grid plots based on lidar

backscatter  measurements  have been tried  and ruled out,  showing that  they  are  too

sensitive to shape and composition to be useful by itself for particle characterization.

However, as a potential application in the future, our Gobbi grids plots can be easily

applied to perform a quality check on the particle backscatter retrievals in addition to

quality checks based only on the coherence in terms of backscatter-related Angström

exponent values. 
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TABLES

Table 1. Values of a particular particle size distribution (volume log-normal, bimodal)

Fine mode Coarse mode

Rv(μm (σ=2.2). Our computations under Miem) 0,097 1,295

Ln(σ) 0,726 0,549

Refractiveindex 1,478+i0.0005 1.518+i0.0005

Table 2. Values of the Gobbi grid points for several values of the coarse mode radius Rc assuming 
parameters Rf=0.05 μm (σ=2.2). Our computations under Miem, Fv=30% and m=1.4+i0.001

Rc(μm (σ=2.2). Our computations under Miem) AEAOD(440,870) ΔAEAEAOD

1 1.053 0.704

2 2.200 0.576

4 2.579 0.209

Table 3. AEAOD  –ΔAEAEAOD  grid points for Figure 6 (Gobbi diagram parameters, volume fraction 

values) Wavelengths: 440, 675, 870 nm. m=1.402+i0.00105

Fv Rf=0.05 μm (σ=2.2). Our computations under Miem Rf=0.1 μm (σ=2.2). Our computations under Miem Rf=0.15 μm (σ=2.2). Our computations under Miem Rf=0.2 μm (σ=2.2). Our computations under Miem Rf=0.3 μm (σ=2.2). Our computations under Miem Rf=0.4 μm (σ=2.2). Our computations under Miem Rf=0.5 μm (σ=2.2). Our computations under Miem

1% (-0.065, 0.066) (0.024, 0.124) (0.084, 0.131) (0.101,0.102) (0.063, 0.025) (-0.003, -0.024) (-0.057, -0.038)

10% (2.241, 0.328) (0.747, 0.465) (0.921, 0.305) (0.901, 0.116) (0.652, -0.149) (0.361, -0.280) (0.121, -0.309)

30% (0.821, 0.687) (1.556, 0.499) (1.624, 0.140) (1.471, -0.104) (1.022, -0.367) (0.591, -0.482) (0.243, -0.499)

50% (1.374, 0.867) (2.054, 0.333) (1.969, -0.057) (1.718, -0.270) (1.166, -0.479) (0.680, -0.571) (0.292, -0.577)

70% (1.986, 0.876) (2.433, 0.094) (2.189, -0.231) (1.863, -0.390) (1.246, -0.549) (0.279, -0.622) (0.319, -0.621)

90% (2.803, 0.535) (2.756, -0.200) (2.348, -0.383) (1.960, -0.481) (1.296, -0.596) (0.759, -0.655) (0.337, -0.649)

99% (3.369, 0.006) (2.891, -0.351) (2.407, -0.444) (1.994, -0.515) (1.313, -0.613) (0.770, -0.667) (0.343, -0.659)



Table 4. AEAOD  –ΔAEAEAOD  grid points for Figure 7, for a coarse mode log-normal distribution as 
given by OPAC Mineral-transported (MITR), m=1.44+i0.0097, Wavelengths: 440, 675, 870 nm.

Fv Rf=0.05 μm (σ=2.2). Our computations under Miem Rf=0.1 μm (σ=2.2). Our computations under Miem Rf=0.15 μm (σ=2.2). Our computations under Miem Rf=0.2 μm (σ=2.2). Our computations under Miem Rf=0.3 μm (σ=2.2). Our computations under Miem Rf=0.4 μm (σ=2.2). Our computations under Miem Rf=0.5 μm (σ=2.2). Our computations under Miem

1% (-0.102, 0.038) (-0.048,0.074) (-0.014, 0.077) (-0.008, 0.057) (-0.038, 0.008) (-0.078, -0.018) (-0.108, -0.020)

10% (0.117, 0.225) (0.517, 0.403) (0.680, 0.296) (0.665, 0.124) (0.441, -0.128) (0.190, -0.235) (0.002, -0.235)

30% (0.601, 0.564) (1.320, 0.548) (1.423, 0.179) (1.280, -0.090) (0.832, -0.363) (0.416, -0.458) (0.104, -0.438)

50% (1.105, 0.785) (1.849, 0.403) (1.804, -0.035) (1.554, -0.273) (0.990, -0.489) (0.508, -0.558) (0.147, -0.526)

70% (1.665, 0.847) (2.249, 0.159) (2.042, -0.223) (1.711, -0.403) (1.075, -0.564) (0.557, -0.615) (0.171, -0.575)

90% (2.342, 0.630) (2.573, -0.123) (2.208, -0.378) (1.814, -0.498) (1.128, -0.614) (0.589, -0.651) (0.186, -0.606)

99% (2.720, 0.365) (2.701, -0.255) (2.268, -0.438) (1.850, -0.532) (1.147, -0.632) (0.599, -0.664) (0.191, -0.617)

Table 5. Same as Table 4, for wavelengths: 355, 532, 1064 nm.

Fv Rf=0.05 μm (σ=2.2). Our computations under Miem Rf=0.1 μm (σ=2.2). Our computations under Miem Rf=0.15 μm (σ=2.2). Our computations under Miem Rf=0.2 μm (σ=2.2). Our computations under Miem Rf=0.3 μm (σ=2.2). Our computations under Miem Rf=0.4 μm (σ=2.2). Our computations under Miem Rf=0.5 μm (σ=2.2). Our computations under Miem

1% (-0.089, 0.077) (-0.033, 0.133) (-0.007, 0.118) (-0.009, 0.073) (0.044, -0.006) (-0.079, -0.031) (-0.103, -0.022)

10% (0.176, 0.457) (0.536, 0.612) (0.643, 0.354) (0.606, 0.073) (0.385, -0.280) (0.164, -0.378) (0.009, -0.318)

30% (0.680, 0.975) (1.259, 0.682) (1.323, 0.115) (1.186, -0.264) (0.769, -0.636) (0.392, -0.712) (0.123, -0.602)

50% (1.145, 1.193) (1.740, 0.435) (1.698, -0.184) (1.470, -0.520) (0.938, -0.819) (0.492, -0.861) (0.175, -0.727)

70% (1.637, 1.157) (2.131, 0.102) (1.956, -0.441) (1.647, -0.703) (1.035, -0.929) (0.549, -0.945) (0.204, -0.797)

90% (2.253, 0.788) (2.487, -0.279) (2.151, -0.658) (1.769, -0.839) (1.098, -1.003) (0.585, -0.999) (0.224, -0.843)

99% (2.634, 0.424) (2.644, -0.465) (2.225, -0.745) (1.813, -0.889) (1.120, -1.029) (0.597, -1.018) (0.230, -0.858)



FIGURES

Fig 1. AEAOD  –ΔAEAEAOD grid diagram for spheres (black) and for a 50-50 volume mixture
of oblate+prolate spheroids with an axial ratio 1.8 (blue). m=1.402+i0.00105. Size 
distribution values are those of Gobbi et al. (2007).
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Fig. 2 AEAOD  –ΔAEAEAOD  grid diagram for three bimodal distributions of spherical 

particles with index of refraction m1=1.4+i0.001, m2=1.518+i0.0097. Black: m1 for 
both modes. Blue: m2 for both modes. Red: m1 for fine mode, m2 for coarse mode.
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Fig 3. Ångström backscattering for refractive index values m1=1.4+i0.001 (black), 
m2=1.518+i0.0097 (blue). m1 values have been shifted upwards  (ΔAEAE=+1) for ease of 
viewing.

-1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0
-1,0

-0,5

0,0

0,5

1,0

1,5
m1
m2

α(440,870)

ΔAE= AE(440,675) – AE (675,870)
A

E
 =

 A
E

(4
4

0
,6

7
5

) 
- 

A
E

(6
7

5
,8

7
0

)

0.05 μmm

0.1 μmm
0.15 μmm

0.2 μmm

0.3 μmm

0.4 μmm0.5 μmm



Fig 4. Ångström backscattering at m=1.4+i0.001 for spheres (black) and spheroids 

(blue). Values for spheres have been shifted upwards (ΔAEAE=+1) for ease of viewing.
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Fig.5 AEAOD  –ΔAEAEAOD  grid for constant number fraction values (dotted lines). Same 
size/composition parameters as the original Gobbi diagram.
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Fig. 6 AEAOD  –ΔAEAEAOD  grid for constant volume fraction values (dotted lines). Same 
size/composition parameters as the original Gobbi diagram.

Fig. 7 AEAOD  –ΔAEAEAOD  grid (constant volume fraction plot) for OPAC MITR (mineral, 
transported) model m=1.44 + i0.0097.
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Fig. 8a AEAOD  –ΔAEAEAOD grid (constant AOD fraction plot) for OPAC MITR (mineral, 

transported) model m=1.442 + i0.0097, and experimental data.
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Fig. 8b AEAOD  –ΔAEAEAOD grid (constant volume fraction plot) for OPAC MITR (mineral,
transported) model m=1.44 + i0.0097, and experimental data.

Figure  9:  (a)  Backscattering,  (b)  extinction  and  (c)  fraction  of  each  aerosol  specie
profile for a dust outbreaks over Africa from GEOS-5 simulated data.





Fig. 10a AEAOD  –ΔAEAEAOD  grid (classical Gobbi plot) for a simulated dust outburst based

on GEOS-5 data.
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Fig. 10b Same as Fig. 10a for a constant-volume-fraction grid.



Figure 11: (a)  Backscattering,  (b) extinction  and (c)  fraction  of each aerosol  specie
profile for pollution study cases over East Asia from GEOS-5 simulated data.



Fig. 12a AEAOD  –ΔAEAEAOD  grid (classical Gobbi plot) for a simulated pollution episode 

based on GEOS-5 data.

Fig. 12b Same as Fig. 11b for a constant-volume-fraction grid.
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