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Abstract

In this work, an exhaustive study for a low level vision engine is presented.

Our hypothesis is based on recent development and advantages of FPGA

devices (reduced power consumption, high processing capabilities) and the

performance of new HDLs and synthesis tools. Thus we address with these

powerful means the novel target of a low level vision engine on the same

chip. The study aims to demonstrate that is possible the integration of

multiple complex algorithms thanks to a proper adaptation and good design

techniques. In particular we focus our architecture to a fine grain pipeline

in opposition to the multi-core approach largely used in last architectures.

Our approach benefits the power consumption and the size of the final

implementation providing a very competitive system useful for industrial,

robotic and research fields. For the first time is afforded a multi-scale and

a multi-orientation optical flow and stereo on FPGA. The iterative nature

of this approach degrades the processing speed but achieves an important

accuracy and significantly enhances the working range. Final results in

synthetic and real sequences demonstrate the competitive performance of

the presented system.
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1

Introduction

Historia magistra vitae est. Exploring the ancient theories, is possible to find in the

old Greek philosophy some rudimental definitions or concepts of human vision inter-

pretation. Aristotle in his book ”On Sense and the Sensible” affirms that ”Of the two

last mentioned, seeing, regarded as a supply for the primary wants of life, and in its

direct effects, is the superior sense; ... The faculty of seeing, thanks to the fact that

all bodies are coloured, brings tidings of multitudes of distinctive qualities of all sorts;

whence it is through this sense especially that we perceive the common sensibles, viz.

figure, magnitude, motion, number ...”. After these first preliminary steps, a lot of

relevant philosophers and scientists have contributed to build many theories for the

human vision system. This great and long history demonstrates how much important

is for our life vision understanding. In day life, for example in a sport environment, all

kind of trainer agrees with colleagues thinking that a good player has to be rapid in

the vision of the game and in the interpretation of the play before the adversary. If we

move to a more dramatic environment such as a driving scenario, a person driving in

bad environmental or physical conditions need a very fast reaction to a sudden pres-

ence of an object in his way. The reaction will be faster if the processing capabilities

need less time to understand the danger. Both cases depend strongly from the velocity

of vision system. In a hunting scenario, also vision is critical and the major advan-

tage resource of many natural hunters (such as eagles). With three simple citations

we remark importance of vision, velocity and size. In this work we want to collect

these three challenges in a single one: a fast and small vision engine. The realization

of this ambitious task will take advantage of recent developments in technology and

1



1. INTRODUCTION

research of these last years and it is possible only with an accurate and intelligent use

of previous contributions. Despite the great advance of computational processing in

general purpose machines we focus our attention on small embedded systems that can

afford at the same time our three aims (low power consumption, high performance,

and physical size). As we can see from everyday experience, our life is more and more

rounded of small electronic devices powered with powerful and fast chips. In this work,

we contribute to this research field adopting Field Programmable Gate Array (FPGA)

devices and defining novel architectures of image processing.

1.1 Vision Framework

One of most complex and perfect example of vision systems is the human sight. As

reported by Kandel in his book [6] ”Studies of artificial intelligence and of pattern recog-

nition by computers have shown that the brain recognizes form, motion, depth, and color

using strategies that no computer can achieve. Simply to look out into the world and

recognize a face or enjoy a landscape requires an immense computational achievement

more difficult than that required for solving logic problems or playing chess.” Beginning

with the firsts neural and biological studies, scientists have been attracted from this

wonderful system that is the human ”machine”. Observing and understanding the na-

ture mechanisms, researchers try to reproduce its functioning. Human vision system

is not an exception. Following this philosophy has been born photography and video

cameras and now a lot of vision algorithms are inspired by nature. At the moment the

human visual system is not completely understood. We know that the complex process

of vision and scene interpretation can be divided in different level of processing. As

displayed in Fig. 1.1 and taking inspiration from neuroscience, a vision system can be

divided into low-level, middle-level and high-level [7]. With respect with other process-

ing parts of the brain we know that visual cortex occupy a significant area. For example

in the macaque neocortex the 50% is dedicated to process the visual information while

only the 11% is somatosensory cortex and 3% is auditory cortex. Furthermore as stated

in [6] we know that among the different parts of visual cortex the biggest ones are the

V1 and V2 (low level vision) that occupy over 1100 mm2, while one of the smallest is

the MT (middle temporal) that occupies only 55 mm2. In an analogical way a visual

system in computer vision requires a larger computational effort for the low-level part

2



1.2 Vision processing platforms: State of the Art

with respect to the middle or high level. Despite a quite detailed information about low-

level and middle-level vision in the human vision, we have not much information about

high-level. The well-known binding problem is not clear yet and opens a complicate

relationship with neural studies and psychological ones. In computer vision, researchers

disagree about a common canonized division of roles among vision levels. [7] explains

that if a representation is based on arrays of numerical data that correspond directly

to image data (pixel-wise operations), it is low-level vision. Representations based on

symbolic descriptions of extracted image events, or view-specific symbolic instantia-

tions of stored models and knowledge are intermediate level [7, 8, 9]. Representations

that are view or scene independent are high level. A high-level representation thus

characterizes general models and knowledge, as well as view independent 3-D models

and knowledge of the current environment.

Thus low-level vision represents the basis on which other levels build a scene un-

derstanding. Such complex vision systems are currently fascinating researchers and

advances in technology benefits great improvements in the computer vision. Currently

vision systems are of extreme importance in many application fields and our world

is rounded of cameras and displays. Industrial processes use robotic platform eyes

equipped to control chain productions. All public buildings get a vision system for

security purposes and surveillance. Automotive industry is exploring the possibility of

a new concept of sensor based on smart cameras that advice the driver of unexpected

dangers [10]. Many other applications, as military [11] or medical, benefit of computer

and machine vision [12].

1.2 Vision processing platforms: State of the Art

Currently to afford the implementation of a vision system, different technologies are

available. For research purposes and algorithm development, the faster and practical

solution for a method validation is the high level programming in conventional general

purpose processors. The processing power of these machines has grown up very quickly

rising the Moore’s law and the presence of many programming languages offers to

the researcher a lot of possibilities for a rapid implementation. For instance, a very

common platform for validation in engineering is the MATLAB environment. Imaging

tools, information representation libraries for this language and the big efficiency with

3
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A yellow object

A yellow pencil

? My new yellow pencil

Figure 1.1: Vision Levels - Division of different vision levels (figure adapted from [6]).

At low level (V1 and V2 regions of the human vision system) we process the whole image

extracting cues: major effort. At middle level (V4, inferior temporal cortex) we associate a

determinate object. At high level (binding problem) we recognize a specific object accessing

to information external to the scene.

matrix operations allow a very short time of implementation and validation. Due to

the time of realization this step can be considered the first one to address a faster

implementation of a model.

To speed up the code and going on to potential industrial products different steps

are required (Fig.1.2). Depending on our purposes we can stop on every one of these

steps. If we have no constraint in size and power we can stop the implementation to a

PC based code but we can speed up the low performance implementation with a more

optimized code like in [13] or adopt specific hardware accelerators such as Graphic

Processing Units (GPU). In the first case the optimization adopted can follow differ-

ent strategies: from a simple compiler optimization to a low level code (assembler).

The second one is generally a C-like implementation with specific environments such
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Figure 1.2: Development Stages - Different development steps for a vision system.

Process begins with a simple high level language until the synthesis on a VLSI industrial

product. Steps are situated in a complexity vs. time plot.

as CUDA [14] that vary depending from the hardware platform. Currently due to the

game industry the technology of GPU has grown up enormously and this platforms use

the best solutions in parallelism and memory accesses. A more optimized work in terms

of size and power consumption is a prototyping board implementation, for example on

an FPGA based platform. This approach achieves a very high level of parallelism in

operations with a reduced clock frequency: about two orders of magnitude less than a

conventional processor or a GPU device. It benefits the power consumption and the

use in portable applications. The last and more complex step for an optimized imple-

mentation is the design of a specific purpose system. Starting from the prototyping

board previously validated is possible to produce a VLSI chip for industrial purposes

that can be adopted for specific portable applications and can abates costs with a large

production. Depending on our target application we could stop at different design

stages or continue towards more complex steps. For example if we are interested in
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mobile robotics for research applications, a specific hardware platform provided with

DSPs or FPGAs is the target choice and we can eliminate the optimization of the

software code for commodity processor or the implementation on GPU that do not

contribute to final work. Nevertheless, basic implementation using a simple language

such as MATLAB, Octave or equivalent are appropriate. The last step (much more

oriented to commercial purposes) needs an extra time for design and validation and

involves other issues as system certification according to the target application and

its respective Security Integrity Level (SIL). This last stage is a necessity of industry

and generally is not addressed by most of the research fields. Currently, the litera-

ture presents different approaches for the diverse implementation steps presented. The

first one (model in software) and the second one (optimized code and/or coprocessors

boards) are the most active fields.

High performance has been achieved in accuracy for the many low level applications.

Some contributions as [15] and [1] help us to understand the state of the art in the

stereo and motion implementation approaches. Researchers contribute to the litera-

ture with the generation of diverse sets of images benchmark [2]. This valorous work

allows an important validation for algorithms but, though we have reached a high level

of accuracy for these synthetic benchmarks, new implementations are voted to an ex-

asperate attempt to improve the actual level of accuracy with these benchmarks and

do not address many of the practical aspects of the real world (real-time, illumination

changes, unconstrained environments, etc). This problem is due to the evident difficulty

of quantitative validation of real sequences. Current image correspondence techniques

are mainly divided into two categories: local approaches and global approaches. Lo-

cal (window-based) algorithms, where computation at a given point depends only on

pixel values within a local spatial window, usually make smoothness assumptions for

aggregating support implicitly. In order to increase the accuracy of estimations, par-

ticularly along depth borders, state-of-the-art algorithms deploy a variable support to

compute the local matching cost rather than using, as in the traditional approaches, a

fixed squared window. Conversely, most global methods attempt to minimize an energy

function computed on the whole image area by employing minimization strategies such

as variational techniques, Markov Random Field model, Graph Cuts (GC) approaches,

Belief Propagation (BP), etc. [15, 16, 17]. Since this task turns out to be an NP-hard

problem, the estimation is approximated by efficient strategies [15, 16, 17]. Moving
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towards an optimized implementation or a hardware specific architecture (right part of

plot in Fig. 1.2) fewer contributions are presented in the literature. This means that

the complexity of the implementation grows up significantly. We can find diverse GPU

implementation of previous studied approaches but only some simple algorithms have

been implemented in FPGA or DSPs processors. The reason for this actual tendency is

the easier programming environment and the shorter “time to market” for commodity

processors compared to DSP or FPGA based solutions. The evident problem of the uti-

lization of standard PC based solutions is the power consumption and the considerable

size unviable for many portable applications. For the other part an FPGA and DSPs

implementation can afford a portable application and evolve into an industrial product.

The comparison between DSPs and FPGAs shows that DSPs are better suited for low

power applications whilst FPGAs are better option if the performance requirements

are very high [18] or we plan to address the development of ASIC solutions. Works

such as [19] and [20] represent very important contributions to the FPGA based vision

on chip but at the same time lack of generic applicability. The main problems for ex-

isting FPGA approaches are the processing speed and the adaptation to large changes

in the scene as in movements or in camera variations. Multi-scale approaches that can

solve some of these problems present a high computational cost and are not hardware

friendly. For this reason they are rarely adopted for hardware implementations. If we

move to the last step of Fig. 1.2 we can find only few works as [21] that represent a

very appreciable contribution for a specific purpose vision system on-chip.

1.3 Our contribution

In this work we start from existing vision models. We study and validate these models

adapting algorithms to a hardware implementation and analyzing error due to the

utilization of fixed point arithmetic (quantization degradation). Previous works of

the literature as [19] and [20] lead directly to the step 4 of Fig. 1.2 without passing

through the optimized code or the GPU implementation. We introduce for the first

time vision architectures of a very high complexity and design methodologies. Range

problem of existing approaches are solved with a multi-scale implementation. Hardware

unfriendly operations such as warping are included in architectures with up to 4 clock

domains. We introduce and optimize fine sharing strategies and study the performance

7
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vs. hardware utilization trade-off. The general idea is to obtain a balanced throughput

reduction and a parallel processing unit sharing as it is displayed in Fig. 1.3. Diverse

chip implementations have been explored to validate the modularity and scalability of

the architecture.

   

Figure 1.3: Sharing strategy - A fully parallel implementation (left) vs. a shared

approach (right). With sharing we lose in throughput but save hardware recourse.

We study the adaptation of the design to the chip size and system requirements.

Our minimum requirement is a real-time processing (25 frames per second) for an image

resolution of 512x512 pixels. This work contributes to the advances in computer vision,

especially in machine vision. We try to compare our approach with the state of the art

providing quantitative results. Well-known benchmarks [2] with ground truth are used;

furthermore we validate qualitatively the stability of the algorithm with real sequences

exploring possible industrial applications as automotive.
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1.4 Project Framework

1.4 Project Framework

The low level vision system has been developed within the European project ”Learning

to emulate Perception-Action Cycles in a driving school scenario” (DRIVSCO) [22] in

collaboration with six different universities. The goal of DRIVSCO is to devise, test

and implement a strategy of how to combine adaptive learning mechanisms with con-

ventional control, starting with a fully operational human-machine interfaced control

system and arriving at a strongly improved, largely autonomous system after learning,

that will act in a proactive way using different predictive mechanisms. The research

group at the University of Granada was involved in the implementation of the process-

ing engine on chip. Inside our group, five different persons contributed to this work.

The final implementation includes the development of a co-processing system with a

FPGA-based platform. As indicated in Fig. 1.4 the complete work is composed by:

• External interface controller for GPIO, PCI-Express, Ethernet (for communica-

tion with PC, vehicle, robot, etc..)

• Memory Controller Unit

• Processing cores (optical flow, stereo and local features)

• Condensation modules

• Embedded processors (particulary suited for middle-high level vision algorithms

development)

Our work, presented in this thesis, focuses mainly in the vision processing cores and the

multi-scale architecture. The work in group obviously means a crossed collaboration

with other members especially in testing tasks and validation of algorithms and models.

1.5 Outline

We start this work with a brief description of the harmonic representation used by our

vision algorithm and a hardware friendly adaptation of it. Technological constraints and

real-time requirements compel us to specific algorithm simplifications. On chapter 2 we

study these changes for each single vision modality that we estimate: stereo, motion and

local features (magnitude, orientation and phase). Following chapters describe every
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Figure 1.4: Project framework. - Block diagram of the DRIVSCO system developed

by the Granada University group. Red parts have been addressed in this work. The system

may be used as co-processor for a PC or as stand-alone platform (for example in a car).

single modality implementation and its multi-scale architecture. Chapter 3 presents

a stereo architecture and chapter 4 an optical flow system. These two architecture

architectures themselves represent a very important innovation for the state of the

art. Furthermore another important step towards a vision system on chip is made

in chapter 5 with the description of a large low level vision engine that includes all

previous modalities in the same chip. A novel architecture and its design strategies are

presented in this section. Further vision primitives can be easily incorporated in such

system.
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2

Preliminary study towards a

Hardware implementation

In this chapter we present a brief description of the original phase based algorithms

used for our system development, ranking them with respect to other state of the art

approaches. We remark here the stability of the phase information and compare it with

other approaches. The original model complexity compels us to a specific hardware

adaptation. This part aims to examine each of these hardware motivated modifications

and how they affect the error. For this study we use a software simulation and leave

the hardware evaluation for the following chapters. We repeat the study for every one

of the single vision modalities that we have designed: disparity, optical flow and local

features (magnitude, orientation and phase).

2.1 Optical flow and stereo computational models review

In order to address the initial goal of a high quality vision system, the preliminary stage

is a proper study of the existent approaches and their possible adaptation for a hardware

implementation. The method we are looking for has to possess a good trade-off between

performance and computational cost. For example linear operation and well defined

access to memory are hardware friendly operations. At the same time the algorithm has

to provide an integrated framework for different vision modalities extracted based on the

same features. In general optical flow methods can deal with a disparity computation

with just some integration of epipolar constraint and a few modifications. Our goal is

11



2. PRELIMINARY STUDY TOWARDS A HARDWARE
IMPLEMENTATION

to find general methods with high potential sharing capabilities. Currently, exploring

optical flow literature we can catalogue existing approaches as explained in [23] and

add some novel techniques:

• Differential methods

– Local

– Global (typically variational approaches)

– Surface models

– Contour models

– Multi-constraint models

– Hierarchical approaches

• Frequency-based methods

– Orientation selective filtering

– Phase-based filtering

– Hierarchical approaches

• Correlation based methods

– Correlation-based matching

– Hierarchical approaches

• Multiple motion methods

– Line processes

– Mixed velocity distribution

– Parametric models

– Temporal refinements methods

Among existing methods the best solutions in terms of accuracy for single modality

vision are global approaches such as the variational ones. Variational methods as [24]

are hybrid (local-global) approaches and achieve very high accuracy. But due to its

iterative nature (minimization of energy functional) they are difficult to implement in
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real-time using reconfigurable hardware (typically slow for iterations due to the low

clock frequency). Nevertheless there are some implementations using commodity pro-

cessor and sophisticated minimization methods [24] or GPU based implementations

[25] that are able to achieve the real-time processing. Unfortunately, for embedded

applications, these techniques are not affordable. Frequency based algorithms follow

variational approaches in accuracy. They present a robust response to unconstrained

and unstable scenarios. A software comparative between different approaches can help

us to make a choice. Discarded the variational methods we can focus on the other ones.

By exploiting, on a local basis the spectral information content of the image signal

(amplitude and phase), it is possible to derive perceptual entities, useful to gain inter-

pretative elements of the observed scene, such as edges/contours, motion, and binocu-

lar disparity. Although most of the classical algorithms available in the literature rely

upon the amplitude information, in the last two decades alternative techniques based

on phase measures have been asserted themselves. The importance of global (Fourier)

phase has been first demonstrated with respect to image coding and representation, by

comparing modulus-only and phase-only image reconstructions [26], [27], and has been

confirmed also in case of the local phase spectrum [28]. On that ground, the popularity

of the phase information, as a robust feature descriptor, has risen in relation with the

numerous important properties that have been reported and analyzed [29, 30, 31, 32],

such as: (1) the capability of measuring changes much smaller than the spatial quanti-

zation (giving sub-pixel accuracy without a sub-pixel representation of the image, due

to its continuous nature); (2) the stability with respect to small geometric deforma-

tions of the input; and (3) - perhaps the most desirable property - the invariance with

both mean luminance and contrast (e.g., with respect to smooth shading and lighting

variations), which makes phase, in principle, robust against typical variations in image

formation. For these reasons, during the recent past, the phase from local bandpass

filtering has gained increasing interest in the Computer Vision community and has led

to the development of a wide number of phase-based feature detection algorithms in

different application domains [19, 29, 33, 34, 35]. The harmonic representation will be

the base for a systematic phase-based interpretation of vision processing, by defining

perceptual features on measures of phase properties. From this perspective, edge and

contour information can come from phase-congruency, motion information can be de-

rived from the phase-constancy assumption, while matching operations, such as those

13
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used for disparity estimation, can be reduced to phase-difference measures. In order to

motivate quantitatively the choice of a phase-based method we take for example the

optical flow. Optical flow is the pattern of motion that results from the projection of

object and induced scene motion on the retina of a, possibly moving, observer. It is rep-

resented by a vector field that contains a 2D velocity vector for every spatial location.

The optical flow can be thought as the instantaneous positional velocity field (Gordon

1965) which associates with each element on the retina the instantaneous velocity of

that element. Horn and Schunck [36] defined optical flow as follows: ”The optical flow

is a velocity field in the image which transforms one image into the next image in a

sequence. As such it is not uniquely determined. The motion field, on the other hand,

is a purely geometric concept, without any ambiguity it is the projection into the im-

age of three-dimensional motion vectors.” As described before, a lot of mathematical

algorithms [29, 37, 38] try to find the velocity vectors that transform a frame of a se-

quence into the following one. One of the motivations for implementing a phase-based

approach is its robustness against illumination changes that appears on real systems in

unconstrained scenarios.

In order to demonstrate robustness of the phase-based method we have processed se-

quences with artificial illumination changes using several well known algorithms: Lukas

and Kanade (local), Horn and Schunk (global) and a high accuracy model (that can be

seen as an improved version of the Horn and Schunk one) that is based on the work of

Brox et al. [39] and that we shall call as the variational method. We use a synthetic di-

verging sequence generated with a previous assigned ground truth as shown in Fig. 2.1.

After the generation of the input sequence, we simulate the different local luminance.

For each variation we measure the Angular Error (AE), the standard deviation (STD),

and the density for valid values as described in [2]. In 2.2, we report the behavior of the

system for the different variations (image artifacts). The variational method is based

on [39] where, however, the data terms are based on the gradient and L2 norm of the

gradient thus making the method more robust against illumination changes. Since the

LK (Lukas and Kanade) and the HS (Horn and Schunk) methods are based on inten-

sity levels we expect that they will not be robust with respect to illumination changes

whereas the variational method should yield more stable results. Another version of

this method based on the phase input achieves a further improvement. This confirms
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our hypothesis on phase robustness applied to a different approach with a significantly

higher computational complexity.

Figure 2.1: Optical Flow - Central frame of the input sequence (on the left), its cor-

respondent ground truth (on the middle), and the optical flow computed in standard

(original) conditions.

As we can see in Fig. 2.2, the phase-based algorithm is robust to variations com-

pared with other methods. Obviously the variational method achieves a better accuracy

in lack of variations but as shown in the plots its final error is worst than ours. Although

a phase input to the variational method (dashed line in Fig. 2.2) gives more stability

to this approach, it is worthwhile to remind that such large computational effort is

not suitable for FPGA implementations. Note that in the case of brightness variation

(additive noise) both approaches of variational method behave in a stable way: this is

due to the nature of gradient, in this case the derivative is not affected by an additive

constant. The algorithm has been applied with the same parameters and changing

the input images. For contrast variation, we multiply each image by a 1-α where α

is a variable in the interval [0:0.4]. For brightness variation, we add a global constant

to the pixels of the image. We use a variable β in the interval [0:25] considering an

image gray color map from [0:255]. Taking into account that we have three temporal

images, we applied a positive variation to the future frame, a negative variation to the

previous one and no variations to the middle frame. Interestingly enough, for both the

contrast and the brightness variations, the AE increases with the variation in the case

of the LK method and the HS but it seems to maintain its base value for the phase-

based approach. It confirms the hypothesis that phase information is very robust and,

on the other hand, shows the well known problem of gradient models to illumination

variations. Note that for all tests, we have a density of 98% valid values.
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Figure 2.2: Phase robustness - System behavior for different camera variations (image

artifacts). On the left side, a variation in contrast; on the right, a variation in brightness.

On the y axis the AE value is reported; on the x axis, α is reported for the contrast while

β is shown for the brightness.

2.1.1 Reference optical flow computation model

We have focused on the phased-based computing model proposed in Sabatini et al.

[40] and [41] which is a multi-scale extension of the Gautama and Van Hulle origi-

nal approach [33]. The advantage of phase-based approaches has been pointed out

by different authors because their robustness against luminance variations and cam-

eras imbalance problems. Furthermore, these phase-based approaches lead to a better

behavior against affine transformations (for instance due to different cameras perspec-

tives) [29, 30]. Spatially localized phase measurements can be obtained by filtering

operations with quadrature-pair filters. It is possible to use the original Gabor filters

or some Gabor-like approach as band pass steerable filters based on Gaussian deriva-

tives as described in [42]. The filter response, obtained by convolving the images with
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the oriented quadrature filters is used as input to the phase-based algorithm. For every

spatial orientation θ and location x, the temporal phase gradient in time t, noted as

φθ(x, t), is computed through a linear least-squares t to the model as indicated in (2.1).

φθ(x, t) ≈ cθ(x) + φt,θ(x)t (2.1)

A simple unwrapping technique is used to cope with the periodicity of the phase. Next,

for each orientation θ a component velocity is computed directly from φt,θ(x):

vc,θ(x) =
−φt,θ(x)

2π(f2x,θ + f2y,θ)
(fx,θ, fy,θ) (2.2)

Where fx, and fy, are the spatial frequency values at θ orientation. The f components

are not explicitly computed assuming phase linearity that allows translating the sum

of squared frequency values to a constant characteristic which is the peak frequency

of the filter used. Note that the spatial phase gradient is substituted by the radial

frequency vector. The reliability of each component velocity at each orientation θ is

measured by the Mean Squared Error (MSE) of (2.3), where n is the number of frames

and ∆φθ(x, t) = (cθ(x) + φt,θ(x)t)− φθ(x, t).

MSE =
∑
t

(∆φθ(x, t))
2

n
(2.3)

Therefore, a linear regression value gives a temporal derivative of the phase and the

quality of this linear fit provides a good reliability estimator. Please note that, for

uniform motions (no acceleration), the flow computation benefits of the use of a large

number of temporal frames. Unfortunately, real-time and (accessible) memory con-

straints reduce this number to few frames, using typically 3-5 frames. Finally, provided

that a minimal number of reliable component velocities are obtained (threshold on the

MSE of each orientation (2.3)), an estimate of the full velocity is computed for each

pixel by integrating the valid component velocities at that pixel only, as indicated in

(2.4).

v∗(x) = argmin
v(x)

∑
θ∈O(x)

(
‖vc,θ(x)‖ − v(x)T

vc,θ(x)

‖vc,θ(x)‖

)2

(2.4)

Where O(x) is the set of orientations at which the valid component velocities have been

obtained for pixel x. As a summary, the following are the different processing stages

for the mono-scale optical flow:
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S1 Convolution with 8 Quadrature pair filters tuned at different orientations.

S2 Phase calculation for each orientation with an arctangent core.

S3 Temporal filter: wrapping of phase values considering their periodicity for temporal

derivative estimation. Three temporal frames are used.

S4 Velocity component computation as described in [40, 41] and indicated in 2.2.

S5 Threshold operation based on confidence values and combination of valid values

for each orientation for the final velocity vector estimation. Depending on the

final confidence value, the optical flow vector or a tag indicating non valid data is

generated for each pixel.

2.1.2 Reference binocular disparity computation model

This model can be extended to stereo computation: disparity can be calculated as an

optical flow with only two frames (left and right). In our case we adopt a simplification

that uses the phase difference between left and right image, as described in [43]. In this

case, the phase difference is computed from 2.5.

φ(x) =
(φL(x)− φR(x))

k(x)
=

1

k0
atan2(CRSL − CLSR, CLCR + SLSR) (2.5)

where we note with φL and φR the left and right local image phases, CR and CL

correspond to the values of left and right image pixels after convolving with the even

part of the quadrature filter, while SR and SL are the results after convolving to the

odd quadrature filter outputs, arctan2 stands for the principal part of the argument

(i.e. the argument belongs to [−π, π]) and finally, k(x) is the average instantaneous

frequency of the band pass signal, which can be approximated by k0, the quadrature

filter peak frequency. Basic steps of mono-scale computation can be summarized as

follows:

1. Even (C) and odd (S) filtering with quadrature filters pairs of left and right

images.

2. Disparity computation using equation 2.5 at each orientation and threshold op-

eration assuming k(x) ≈ K0
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3. Chose of final disparity estimation between different orientations: median value.

We remark that threshold operations are based on the energy of the signal and the

last choice of the final values is evaluated through a median value as described in [40].

The median value can be replaced by a more accurate method that for example takes

information from exterior; this information can be provided from another algorithm or

from a middle or high level control as in the novel concept of Signal to Symbol loop

[44].

2.1.3 Local features: magnitude, orientation and phase

Starting from filter response is possible to calculate local features from real part Cθ

and from imaginary part Sθ. We extract the magnitude and the phase directly from

the information of the filter at each orientation. As described in [45] and [46], different

methods can be used for accurate edge detection. Quality of the first filtering stage

influences the final results and as described in [46] better performances are obtained

with second order Gaussian derivatives filters. If we consider 8 oriented filters (comput-

ing using Gabor or Gaussian Derivatives), is likely that the local orientation of some

features do not fit this discrete number of orientations. Under this circumstance, we

require to interpolate the feature values computed from this set of outputs in order

to estimate the filter output at the proper signal orientation. Different methods can

be used. We note Ei and Pi to the magnitude and phase of the filter oriented with

angle = i ∗ π/N and noted by hi. This filter is expressed by:

hi = ci + jsi (2.6)

And the primitives features are computed with this filter orientation and computed as:

Filter energy → Ei = [ci]
2 + [si]

2 (2.7)

Filter phase→ Pi = arg(ci, si) (2.8)

If only the main orientation information is required (1-D local signals), we can apply

several strategies to interpolate the primitives from this multi-valued set:

i Winner- take-all. We will take for each pixel the phase, energy and orientation of

the filter with maximum energy.

Elocal = Emax Plocal = Pmax θlocal = θmax (2.9)

19



2. PRELIMINARY STUDY TOWARDS A HARDWARE
IMPLEMENTATION

ii Weighted-average: (we consider linear case, though the energy can be power to

different orders).

Elocal =
∑
i

ENi Plocal =

∑
i PiEi∑
iEi

θlocal =
∑
i

θiEi∑
iEi

(2.10)

where all angles are properly shifted for avoiding angle wrapping effects.

iii Tensor-based method [45]. Based on a local tensor that projects the different ori-

entations, information can be computed as follows (where j stands for the complex

unit):

Elocal =
∑
i

ENi (2.11)

θlocal =
1

2
arg

(∑
i

4

3

√
c2i + s2i exp(j2θi)

)
(2.12)

Plocal = arctan
(s
c

)
(2.13)

c =
∑
i

ci cos2 θi − θlocal (2.14)

s =
∑
i

si · sign cos(θi − θlocal) · cos2(θi − θlocal) (2.15)

iv Energy Fourier series expansion for Gaussian derivatives based approach. As de-

scribed on [42], using the nth Gaussian derivative Gn and its Hilbert transform Hn as

band pass filter oriented to the angle θ, we have that the energy at this orientation

is expressed by:

En(θ) = [Gθn]2 + [Hθ
n]2 (2.16)

Writing these functions using the separable basic filter outputs, this equation can

be expressed as a Fourier series in angle and described as:

En(θ) = C1 + C2 cos(2θ) + C3 sin(2θ) + high order terms (2.17)

Note that values of coefficients Ci can be found on [42] for n=2 case. From equation

2.12, local orientation is computed based on the lowest frequency term as:

θlocal =
arg(C2, C3)

2
(2.18)

The previous equations work only for the Gaussian derivatives filters case. For the

sake of generality, the energy is estimated using equation 2.16 and the phase using
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2.8 taking into account that, for n even, ci is Gn and Hn is si and the opposite for

odd values of n.

We basically based our approach on the iii method because it is independent from

filtering stage (Gabor or steerable filters) and it achieves a high accuracy.

2.2 Model modifications towards a hardware friendly im-

plementation

The original algorithm presents some high cost operations for a hardware system. For

example we know that in FPGA we have to reduce memory accesses as much as possible

and also to reduce the memory utilization. Thus it is better a limitation in data width

and in quantity of stored data. Critical operations for memory are for example the

compensations (warping) of values in the pyramidal processing. In this section we

analyze all the hardware friendly modifications and their accuracy loss. The analysis is

repeated for all different features extraction and includes typical simplification as fixed

point representation.

2.2.1 Optical flow model modifications for hardware implementation

As previously explained, we study different modifications with respect to [40] and how

they affect the optical flow computation. They can be summarized as follows:

1. Warping on images

2. Gabor filters vs. Steerable filters

3. 5 frames vs. 3 frames in the temporal window

4. Floating point vs fixed point arithmetic

Before starting the hardware implementation, we explore all these changes or simpli-

fications in a software simulator of the algorithm and report the results of accuracy

degradation for all these cases. This study is of crucial importance in order to evaluate

the impact of these modifications in the system accuracy. The impact in terms of com-

putational resources and performance are estimated based on our previous experience

and partial implementation of critical stages. The proposed modifications are applied
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Table 2.1: Comparison of warping techniques in optical flow (phase vs image) for

”Yosemite” sequence.

Measure Warp on Phase Warp on Image

3 scales 4 scales 3 scales 4 scales

Density 81.05 81.81 74.44 71.83

Ang. error 2.38 2.14 3.16 3.17

Std deviation 3.20 3.12 3.35 3.54

progressively. First of all, we study the warping simplification. Original method pro-

posed in [40] operates with a warping on the 8 oriented local phases of the image. This

implies the repetition of a large number of warping operations, one per each orientation

but has the advantage of reducing errors produced by wrong matching values across

the pyramid (wrong warping values provide artifacts on the warped image that produce

wrong phase values and reduce accuracy over the scales). Although some accuracy is

lost, a hardware friendly implementation requires a warping operation on images before

the filtering operation. This is a mandatory simplification for a FPGA based system

but for example can be not a problem for GPU based system where memory capacity

and bandwidth benefits of last advances on memory technologies. We cannot avoid

this change but we report drawbacks of the new implementation. On Table 2.1 we

appreciate the accuracy loss of the warping on images and in Fig. 2.3 a qualitative

result for the Yosemite sequence.

Next simplifications are tested on the mono-scale version. The first is the reduction

of the number of frames in the temporal sequence the original approach use 5 frames

but we will work only with 3 frames. This choice is motivated by the restriction of

external memory resources and accesses. Note that in certain situations where the

velocity constancy assumption over 5 frames is violated, the current approach leads

to better solutions. Unfortunately this is not the case for most of the situations and

therefore we should consider this modification as a degradation of the model: detailed

values are reported in Table 2.2. The accuracy loss is measured with respect to the

original algorithm with warping on phases.

The modification of the filters (steerable filters instead of Gabor ones) significantly

affects the accuracy for a mono-scale approach but it is not so important for multi-

scale schemes (Table 2.4). For the steerable filters we adopt the second order derivative
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100 200 300 400 00 600

Figure 2.3: Optical flow: warp on phase vs image - On the first row the true

optical flow for the Yosemite sequence. The gray-scale image represents the module (bright

colours represent fast motion) and the coloured image the velocity direction. The warping

on images scheme is displayed in the second row. Both design choices use a multi-scale

scheme with three scales on the left and 4 scales on the right. The third row shows the

warping on phase scheme.

approximation with 9 taps as described in [42]. The steerable filters choice implies a

smaller computational cost but it leads to a significant degradation of the error. Thus

this simplification has a high cost in terms of accuracy loss and shall only be adopted in

case of addressing low cost approaches. On a multi-scale extension we can consider also

this approximation. One of the drawbacks of the original Gabor filters is that they are

not separable, which means that a hardware implementation of them requires a huge

amount of hardware resources. For this reason, we adopt a separable version of these

filters (Gabor filters) as described in [47] and extended to 8 orientations by Pauwels

[48]. The kind of arithmetic used plays a key role in terms of the accuracy and resources

utilization of embedded systems. Nowadays FPGA are able to synthesize floating point
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Table 2.2: Accuracy loss due to the reduction of frames in the temporal window. The

AE is expressed in degrees. Note that the density is also changed.

# frames AE STD Dens

3 4.06 7.33 96.7

4 2.33 3.43 86.8

5 1.83 2.25 80.1

units but as high cost in terms of resources. Therefore, we shall make an effort on using

fixed-point arithmetic and properly studying the quantization error motivated by this

choice. For the fixed point study, we made an exhaustive bank of tests changing bit

width for all the five stages of the architecture described in Section 2.1.1 accordingly

to the method described in [20]. As error measure we use Mean Absolute Error (MAE)

for the stereo algorithm and the Angular Error (AE) for the optical flow defined as:

MAE =
1

n

n∑
i=1

|fi − yi| =
1

n

n∑
i=1

|ei| (2.19)

AE = cos−1(ĉ · ê) (2.20)

Quantization is applied gradually and when a choice is made on a processing stage this

quantization is fixed and the test goes on with following stages. The quantization error

produced by previous stages is lossy and cannot be restored. Final bit width for all

stages is reported in Table 2.5. Note that in the convolution we are loosing precision

for the sake of hardware saving, in a high performance circuit it is possible tune this

parameter. In all the others stages we generally maintain the accuracy; for example in

case of addition or difference we add a bit more to the result, in case of multiplications

we give to the results the sum of factors bit width while in case of division is needed a

study of possible results. We apply the same simplifications of Table 2.3 to the multi

scale approach and repeat all tests; results are reported in Table 2.4.

2.2.2 Disparity model modifications for hardware implementation

In the disparity computation we adopt, where possible, the same modifications. Start-

ing from the warping on images and analyzing results of Table 2.6 and Fig. 2.5, we

appreciate again how the accuracy lost due to this modification. In the case of disparity

we cannot obviously operate a reduction of frames but we can proceed as in the optical
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Table 2.3: Percentages of accuracy loss and final model error for different model simpli-

fications using the single scale approach and ”Yosemite” synthetic sequence [1]. The %

Lost is computed taking as reference the error obtained with the warping on images algo-

rithm. AE stands for Angular Error as defined in [1] and is presented in the last column.

The regularization includes a cascade of two 3x3 median filters at each scale output (see

Appendix A).

Change % Loss AE(dens)

Original (warp on images) 0 9.53°(58.72%)

Original + median filter -11% 8.52°(60.12%)

3 frames + Gabor filters +50% 14.37°(58.84%)

3 frames + Steerable filters +140% 22.88°(54.21%)

3 frames + Gabor filters + Fixed point +50% 14.15°(59.59%)

3 frames + Gabor filters + Fix. point + regularization +44% 13.81°(59.19%)

3 frames + Steerable filters + Fix. point + regularization +139% 22.94°(52.78%)

Table 2.4: Percentages of accuracy loss and final model error for different model simplifi-

cations using the multi scale approach with warping on images and the Yosemite synthetic

sequence [1].

Change % Loss AE(dens)

Original (warp on images) 0 4.57°(88.36%)

Original + median filter -28% 3.28°(94.02%)

3 frames + Gabor filters +84% 8.44°(96.38%)

3 frames + Steerable filters +140% 10.99°(96.84%)

3 frames + Steerable filters + Fixed point +166% 12.18°(86.99%)

3 frames + Steerable filters + Fix. point + regularization +82% 8.34°(99.11%)

3 frames + Gabor filters + Fix. point + regularization +23% 5.64°(95.32%)
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Table 2.5: Bit-depths of the input of each processing stage as described in Section 2.1.1.

The first values represent the signed integer part and the second values, the fractional one.

Output of S5 has [8 4] that is the representation for the final optical flow values.

Stage Input bits

S1 [8 0]

S2 [8 2]

S3 [3 7]

S4 [5 5]

S5 [7 5]

Output [8 4]

Table 2.6: Comparison of warping techniques in stereo (phase vs image) for ”Tsukuba”

sequence.

Measure Warp on Phase Warp on Image

3 scales 4 scales 3 scales 4 scales

Density 100 100 91.64 100

Avg error 1.63 0.32 2.05 0.39

Std deviation 3.75 0.61 1.99 0.63

flow for the filters and for the fixed point representation. A comparative between sec-

ond order derivative Gaussian filters and Gabor filters with 11 taps shows that we have

an affordable accuracy loss in the well-known ”Tsukuba” sequence (Fig. 2.6). At the

same time we can remark that steerable filters approach needs more scales to achieve

similar results.

As commented before reconfigurable devices are very well suited for parallel pro-

cessing operations but if we instantiate large number of parallel computing elements

they need to be small and therefore are limited in terms of data representation and

arithmetic. Though floating point processing units can also be synthesized, they are

requiring a larger amount of resources and this motivates the utilization of fixed-point

arithmetic. For all our operations we use a fixed point notation so system precision

is strongly dependent from bit precision of fractional part. Different precisions in

fractional part of variables may produce large quantization errors. To avoid error prop-

agation we study bit width at first processing stage and we go on studying bit width

in the next stages maintaining a suitable bit precision for previous ones. In Fig. 2.7
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Figure 2.4: Optical flow: bit width study - Bit-width study for the different stages of

the mono-scale optical flow core for the Yosemite sequence. a) AE for different convolution

fractional bit-widths (S1 output). b) phase fractional bit-width (S2 output). c) unwrap-

ping fractional bit-width (S3 output). d) component fractional bit-width (S4 output). e)

fractional part of optical flow vectors (S5 output). Our different choices are indicated on

the Figures by means of square marks.

are plotted several critical stages beginning from kernel bit width and ending with dis-

parity bit width. In the choice of final bit-width we overestimate the number of bits

required for several critical stages. This is because the bit-choice is sequence dependent.

Therefore, in order to avoid over fitting for a particular scenario, it is better to increase

the variables bit-width (at cost of higher resources utilization). For a specific scenario,

more constrained bit-width values could be chosen but we do not go this way for the

sake of circuit generality. For a high performance circuit it is possible to increment

precision for stages or even implement customized floating point units.

Study is done on mono-scale disparity core variables because this stage mainly

constraints the system accuracy. After this study we choose a suitable bit precision to
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Figure 2.5: Stereo: warp on phase vs image - On the left the true disparity for the

”Tsukuba” sequence. The qualitative result for the warping on phase (centre) and the

warping on image (right).

reduce hardware consumption and obtain a feasible final MAE of 0.60 pixels for the

multi-scale system. The MAE is computed comparing the final hardware simulation

results with the ground truth. For each stage, we take the bit-width where the system

accuracy starts to be approximately constant. In such a way, even working with a very

limited number of bits we can achieve accuracy quite close to the software version.

2.2.3 Local features model modifications for hardware implementa-

tion

For the computation of magnitude, orientation and phase the hardware adaptations are

the fixed point representation and an algorithm simplification to reduce computational

effort. Equations of Section 2.1.3 are converted in the simpler versions, as follows::

M =

√∑N
θ=1Eθ
N

(2.21)
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Figure 2.6: Stereo: iteration Steerable vs Gabor - Average error evolution for the

Tsukuba sequence with the change of iterations.

φ = atan2(
∑
θ

Cθ,
∑
θ

Sθ) (2.22)

Where N is the number of different θ orientations and Eθ is the energy calculated for

the orientation θ:

Eθ = C2
θ + S2

θ (2.23)

Local orientation is calculated starting from mean energy along orientations with some

simplification of methods described in [45].

θlocal =
1

2
atan2(

∑
θ

Eθ sin 2θ,
∑
θ

Eθ cos 2θ) (2.24)

The major benefit for this kind of processing is the quality of filtering operations. In

this work we optimize the algorithm for good stereo and optical flow estimation, thus

if we share the adopted filters for a further calculation of local features we fix also the

precision for this stage. Thus the local features precision depends strongly from the
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Figure 2.7: Stereo: bit width study - a) MAE for varying convolution kernel integer

bit width. b) for trigonometric fractional bit width. c) for convolution fractional bit width.

d) for fractional part of disparity.

other modalities. Especially we see in next chapters how local features are integrated

in the stereo core.

2.3 A hierarchical approach

One of the main important contributions of this work is the implementation of the multi-

scale version of the algorithm into the FPGA. As difference to hardware devices that

include warping circuitry (for instance texture units in GPUs), we have had to develop

our own high performance warping circuits. This is a very memory intensive operation

for reconfigurable devices that, as we will shown, has motivated the development of a

customized memory control units for access scheduling. Due to phase periodicity, phase-

based techniques can only detect shifts that do not exceed half the filter wavelength [30].

To extend this range, a coarse-to-fine control strategy can be used [49]. An efficient
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solution involves the use of an image pyramid, in which the image resolution is halved at

each level [50]. Specifically, a coarse-to-fine Gaussian pyramid [51] is constructed, where

each layer is separated by an octave scale. Accordingly, the image is increasingly blurred

with a Gaussian kernel and sub-sampled to build the image pyramid. At each pyramid

level k, the sub-sampling operation reduces the image resolution to a half in height

and width respect to the previous level k-1, reducing also the values range presented

at this scale and helping the filters to properly tune their response. By applying the

original filters to each level of the pyramid, the detectable range of shifts is doubled each

time. The control strategy starts at the lowest resolution and uses stereo estimation

obtained with a mono-scale method to warp the images at the next higher resolution

so that the estimated values are removed [52]. The residual estimation is then within

the range of the filters applied at that level. The algorithm which we use is particularly

suitable for this warping strategy since it uses strictly local information. Propagation

of reliable values along scales is different depending on the algorithm. For example

in stereo implementation, only disparity values that can be reliably computed at the

highest resolution are retained. In other words, if the refinement made at the highest

resolution to a lower resolution estimate (that was reliable at that lower resolution) is

unreliable, the disparity value is discarded and not included in the density counts of the

next section. The procedure starts at the lowest resolution. The phases computed at

this level and the estimations for this level are estimated accordingly to the algorithm.

Estimated values are then transformed (multiplied by two) to the next scale and the

filter outputs at that level are warped to compensate for the effects of these phase

differences. All estimation is recalculated with new information and is propagated to

the next level; the procedure is repeated until the original resolution is obtained [53].

Moreover, we have included a multi-oriented analysis of the image that computes the

values with filters tuned at 8 different orientations, in the case of stereo we have only

7 (vertically oriented filters cannot be used because they do not have projection on the

horizontal axe where the displacement takes place). All operations can be summarized

as follows:

1. Selection of the number of scales according to the image resolution and expected

values range presented in the scene. A pyramid representation is produced for

the left and right images: only left if we are not calculating disparity.
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2. Processing iteration for each scale:

• Computation of estimated values using the proper algorithm: stereo or op-

tical flow.

• Merge with previous values (not necessary in the first step).

• A simple median filter is used to regularize the results (see Appendix A).

• Expansion of merged estimations multiplying values by two. Bilinear inter-

polation of values during up-sampling operations (this step is not operated

for the last scale).

• Warping pyramid images with expanded images to cancel already computed

values reducing ranges (this step is not operated for the last scale).

These operations are implemented at each scale and propagated from coarser scales to

finer scales along the multi-scale pyramid. It is worthwhile to mention that the warping

operation uses a backward scheme with sub-pixel accuracy (computed using bilinear

interpolation). Each warped pixel generally requires 4 neighbour pixels and therefore,

a smart memory access scheme will be necessary for the algorithm implementation

in order to avoid performance penalties. This multi-scale extension allows increasing

the estimations range compatible with our approach. Moreover, the multi-oriented

scheme allows to properly tune (optimize) the phase estimations according to the image

structure presented at each pixel and, therefore, to increase the system accuracy.

2.4 Multi-scale operation vs temporal oversampling ap-

proach

Such multi-scale approach represents a high computational effort especially in the com-

pensation of values along scales. It is possible also some mono-scale versions of algo-

rithms but they present limitation in accuracy. In the case of optical flow, for example,

the accuracy loss of this simplification can be compensated with a high frame rate

camera operation. In Fig. 2.8, we visually illustrate how the Motion Range per Second

(MRS) for a mono-scale algorithm with a high frame rate is equivalent to a multi-scale

one with a low frame rate. We assume that accordingly with the size of the spatial fil-

ters, the Motion Range (MR) between two images is approximately 1.8 pixels. We also
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remind that multi-scale operations such as warping, image pyramid, and expansion

increase the computational errors by introducing outliers in wrong matching values.

The equivalence of multi-scale and mono-scale range is approximately valid up to an

implementation with three scales for an oversampling temporal factor of around 6 (Fig.

2.8). If we require a higher detection range with a mono-scale version we need a very

prohibitive frame rate. While one scale more allows us an MRS of 675, for the same

MRS we need a frame rate of 375 frames per second. Furthermore a good behavior of a

mono-scale algorithm in optical flow depends from several factors as sensor speed, final

application and sequence scenario.

Figure 2.8: Motion Range for multi-scale methods versus mono-scale ones - MR

and MRS stand for the Motion Range and Motion Range per Second, respectively. Using

3 scales, the MR of a multi-scale implementation is 12.6 pixels but only 1.8 for the mono-

scale version. Nevertheless, to properly compare both approaches, we should use MRS that

includes the information about the different frame-rates. A mono-scale algorithm working

at 160 frames per second is approximately equivalent to a multi-scale one working with 3

scales at 25 fps.

In the case of the stereo algorithm a mono-scale version needs a proper choice of
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filters to cope with the disparity ranges. Large filters can detect high disparities but

at cost of spatial resolution lost. Thus a mono-scale approximation of the disparity

algorithm is not viable for unconstrained scenarios and therefore a multi-scale scheme

is preferred. Fig. 2.9 shows how the error for the ”Tsukuba” sequence decrease with

increasing the filter size but it doesn’t reach the accuracy level of a hierarchical ap-

proach and loses the spatial resolution. At the same time bigger filters require a higher

computational effort that grows proportionally with the size of the kernel. On the other

hand a multi-scale approach maintains the same computational effort increasing only

the number of iterations: the processing takes more time.

Figure 2.9: MAE variation for different filter sizes - Error decreases increasing the

size of filters (left). On the right a qualitative result with a 51 taps filter: spatial resolution

is clearly affected.
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2.5 Conclusions

After a comparative study between existing algorithms we can state that the phase-

based methods for vision on chip represent good trade-off between accuracy and com-

putational effort. In addition, the harmonic decomposition base of the reference models

allows the exploration of many sharing resources approaches as well as the implemen-

tation of many low and middle level vision features in a single framework [54]. Note

that high performance approaches like variational methods are not hardware friendly

and can be unsuitable for an FPGA implementation. A comparative study with other

approaches demonstrates quantitatively that phase-based method is robust to scene

variations in contrast and brightness, as well as small affine distortions. They are key

elements for real-world systems that need to work on unconstrained environments and

significantly contribute to choose phase based approach as our target algorithm. After

the choice of the candidate for our vision system, different modifications of the orig-

inal models towards their implementation on hardware are described and evaluated

(in terms of their impact on the final error). All changes are simulated with software

tools and accuracy loss is measured quantitatively. Algorithm simplifications reduce

the system accuracy, final results maintain good quality that allows for utilization in

most of the target applications. After these studies we are ready to properly start the

design stage of the hardware system. It will be described in next chapters.
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3

Stereo and Local Features

architecture

3.1 Abstract

In this chapter, we present a real-time implementation of a stereo algorithm on FPGA.

The approach is a phase-based model that allows computation with sub-pixel accuracy.

The algorithm uses a robust multi-scale and multi-orientation method that optimizes

the estimation extraction with respect to the local image structure support described

in Chapter 2. With respect to the state of the art, our work increases the on-chip power

of computation compared to previous approaches in order to obtain a good accuracy

of results with a large disparity range. In addition, our approach is specially suited

for unconstrained environments applications thanks to the robustness of the phase in-

formation, capable of dealing with severe illumination changes and with small affine

deformation between the image pair. This work also includes the rectification images

circuitry in order to exploit the epipolar constraints on chip and avoid software pre-

processing of input images or complex (and low accuracy) manual camera calibrations.

The dedicated circuit can rectify and process images of VGA resolution at a frame

rate of 57 fps. The implementation uses a fine pipelined method (also with superscalar

units) and multiple user defined parameters that lead to a high working frequency and

a good adaptability to different scenarios. In the chapter, we present different results

and we compare them with state of the art approaches.
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3.2 Introduction

Stereoscopy has been always a wide faced problem. Current dense stereo techniques

are mainly divided into two categories: local approaches and global approaches. As

described in Chapter 2 we use a phase-based which belongs to local approaches. The

advantage of phase-based approaches has been pointed out in previous sections. Cur-

rently, one important goal is the disparity computation on real time with a stable and

robust technique able to extract this feature in multiple unconstrained scenarios. Real-

time computation leads to its applicability on very diverse scenarios (robotic platforms,

driver assistance, etc.). The architecture proposed in this chapter wants to realize a real

time system useful also for driving scenarios as proposed in the EU project DRIVSCO

[22]. For this reason, we need a good choice for the system implementation capable of

working on very difficult illumination scenarios as well as dealing with multiple image

artifacts (as the ones caused by rain, foggy days, motion blurred images, etc). With

the increasing computational power of machines, software approaches have improved

their computational performance. In previous works such as [55], authors achieved a

real time stereo system using parallel computation. Current alternatives are GPU im-

plementations [41] that can provide a fast and accurate result. Unfortunately, all these

systems require considerable power consumption and their applicability on portable

embedded systems is questionable. A good alternative towards on-chip implementa-

tion is the use of FPGA based approaches. As FPGA devices progressed both in terms

of resources and performance, the latest FPGAs have come to provide ”platform” solu-

tions that are easily customizable for system connectivity, DSP, and/or data processing

applications. As platform solutions are becoming more and more important, leading

FPGA vendors are coming up with easy-to-use design development tools. Carefully

designed systems do not loose accuracy as compared to a software implementation and

at the same time, feature a high data rate and portability. Further advantages are

the low power consumption and reduced size of the whole system as pointed out in

the introduction. These important advantages allow a large use in robotic platforms

or in an automotive scenario. Previous works proof the validity of FPGAs in stereo

computation with very high frame rate [56, 57] but with restricted accuracy compared

to other software approaches. Our purpose is to maintain a good accuracy due to the

use of a phase-based method and robustness against image artifacts and illumination
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problems and at the same time, a high data throughput. In [19], a similar implemen-

tation of an algorithm in a mono-scale version is described. The problem with this

system is the limited disparity range and its strong relationship with the filter size.

Our work improves previous works with a multi-scale and multi-orientation approach

that allows a very large disparity range and fits properly the image structure thanks

to the different oriented filters employed. Our system performs a multi-orientation and

a multi-scale technique with a very complex design that is justified in order to reach

a robust solution. This approach is a novel hardware system for calculating disparity

using a phase-based algorithm with the latest design techniques. The design strategy

is based on the construction of deep pipelined data paths composed by heterogeneous

computing units and a combination of high level abstraction descriptions as well as RT

level ones, in order to keep performance and at the same time keep short the design

times of very algorithmic system descriptions.

3.2.1 Algorithmic vs. RTL description

In a traditional design flow, crafting the hardware architecture and writing VHDL or

Verilog for RTL synthesis requires a considerable effort and time. The code must follow

a synthesis standard, meet timing, implement the interface specification, and function

correctly. Without time constraints (very unrealistic situation in real-time systems), a

design team is capable of meeting all these constraints. However, deadlines imposed by

time to market often imposes pressure and forces designers to compromise in area by

re-using blocks and IPs that are over-designed for their application. The complexity

of our target design leads us to use faster algorithmic hardware description languages

(HDLs). As studied in [58], algorithmic languages allow a faster circuit and system

definition but achieve slightly less efficient systems than others defined with traditional

RTL descriptions using VHDL or Verilog. In order to optimize some critical parts of

the design, the system architecture is described in a hybrid form. Generally, physical

interfaces such as memory access and external communication represent the bottleneck

for hardware architecture due to the inherent sequential operation at the interfaces.

Therefore, high clock frequencies and an optimized circuit description are required.

Often, processing stages of an architecture have to interact directly with off-chip RAM

memory (for temporal results storage) and it reduces speed due to physical constraints

of this communication. For this reason, a specific memory controller has been defined in
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VHDL in order to abstract the complex memory access in a shared memory scheme and

to deliver high-level ports to connect process-stages to physical memory [59]. Bearing in

mind multiple accesses on shared memory, we adopt a memory controller architecture

with multiple Abstracted Access Ports (AAPs) for accessing to external memory chip

which is completely designed in VHDL by M. Vanegas (see 8).

3.3 Hardware architecture

The whole design has been implemented for a Xilinx Virtex 4 xcv4fx100 FPGA [3].

The chip includes 94896 configurable logic cells and different embedded recourses: two

Power PCs, 160 DSP blocks and 6768 Kb of Block RAM (divided in blocks of 18 Kb).

The architecture has been described with a high level hardware description language

(Handel C [4]) which optimizes work at an algorithmic description but has proven to

be competitive to lower level abstraction levels [58]. Critical stages as the memory

controller unit (MCU on Fig. 3.1) or communication with PCI-Express interface have

been implemented with VHDL language in order to optimize the performance of these

critical elements as previously explained. As described in Chapter 2 and in Fig.3.1,

the system could be decomposed in two different parts: pyramid and processing (dis-

parity, merge, median filter, expansion, and warping). The design strategy consists of

a fine pipelined circuit which takes full advantage of the high parallelism of FPGA;

nevertheless, some parts need a sequential execution due to the iterative multi-scale

extension. Loop unrolling of these stages is a valid technique for performance improve-

ment but has the drawback of high latency penalty and therefore, is not feasible for

our target applications. This section focuses on different circuit stages explaining this

hybrid (parallel-sequential) structure.

3.3.1 Rectification and image pyramid

In the first stage, rectification consists in a bilinear interpolation of input images with

a LUT of ∆ values previously calculated off line for the camera system configuration.

For calculating each rectified pixel it is necessary to read from the x-matrix and y-

matrix the pair (x; y) that corresponds to each point P. The integer part of (x; y) is

used for retrieving from memory the four pixels of the original image that together

with the fractional part of (x; y) produce the rectified pixel with a weighted bilinear
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3.3 Hardware architecture

Figure 3.1: Multi-scale architecture of the complete stereo system. - The design

is divided in two sequential basic steps: the pyramid stage (on the left upper part) and

the processing loop (right block). Memory banks are organized in two different kinds: two

Double Buffer (DB) banks and a Stereo Buffer (SB) bank. All directions have 36 bits; soft

gray data have 8 bits per pixel and are stored in groups of four, hard gray data have 12 bit

per pixel and are stored in pairs (PCI interface uses only 32 bits), middle gray data have

12 bits and are stored in groups of three.

interpolation. The rectification process needs to do four memory accesses per clock

cycle for calculating one warped pixel in order to achieve the maximum throughput.

This is another reasons for the choice of the specific memory controller unit (MCU)

created by Mauricio Vanegas [59] that manages data with different Abstract Access

Ports (AAP). This critical architecture is optimized in VHDL and described in [59].

The rectification architecture uses a reading AAP of the MCU for access to the original

image. In total, two reading-AAPs are used by the two different rectification blocks:

left and right image. The MCU provides 36-bits of bus-length allowing a four pixels

per memory access in the case of image data. X-matrix and y-matrix are provided from

the expand circuit through two blocking FIFO. Bearing in mind that the rectification

needs a neighborhood of four pixels and that the number of data available per memory
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access is limited to four in a same line, it is evident that in the best case, one access to

image data brings two pixels of the same line; nevertheless, it is impossible to access the

four pixel window in a single memory access. In the worst case, we access four different

memory words, this occurs each four consecutive memory accesses on image data. This

hardware constraint restricts the performance up to 4 pixels each 10 memory accesses.

After rectification, the pyramid is built by a smoothing and down-sampling circuit (see

Fig. 3.2). Left and right circuits are replicated and work in parallel. Each pyramid

scale is obtained sequentially one after the other (mainly, due to limitations of the

sequential access to the external memory). Rectification and first image reduction are

executed in parallel, input and output images are directly read/stored into an external

RAM memory. The main operations at this step are the bilinear interpolation locally

calculated in 2 by 2 windows for the rectification and a 2D convolution with a low pass

Gaussian filter of 5 taps before every down-sampling in order to smooth input images.

The kernel is a 5 by 5 matrix decomposed in two vectors like:

K = [1 4 6 4 1]/16 (3.1)

Thus, convolution with the input image is separated into x and y operation in order

to benefit the FPGA parallelism. Five different image lines are stored in an embedded

multi-port BlockRAM which is used like a FIFO. After the pre-processing, we send to

output (external SRAM) a pixel every two clock cycles: one pixel is discarded (sub-

sampling).

3.3.2 Stereo core

Stage two (right part of Fig. 3.1) starts after the first one and is sequentially repeated

for every scale. Disparity, merge, expansion, warping, and median filter circuits work all

in parallel. For the smallest scale, the merge circuit is omitted and the disparity block

works directly on the pyramid output. Disparity calculation, as described in Section

2.1.2, is divided in three main steps and benefits from a fine pipelined design. It uses

two (left and right) Gabor filters of 11 taps, 7 atan2 cores with CORDIC core [3, 60]

for calculating (2.5) and a simple median circuit for choosing final disparity between 7

different orientation-based estimations. On Fig. 3.3, we describe these three different

steps with specification of pipeline stages. The filtering part also takes another 4 (half
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Figure 3.2: Circuit architecture for the image reduction. - This circuit is required

for building the image pyramid and is used sequentially along scales.

filter size) image line cycles to fill temporary FIFO convolution, which this time will

be added as latency to the total disparity computation.

3.3.3 Multi-scale architecture

The following merging circuit is simply the result of adding old and new disparity

values provided respectively from a FIFO and from the disparity circuit (Fig. 3.1).

Non valid values at the smallest scales are discarded; only in the last step we consider

also the invalid values of the finest scale. The rest of blocks in the processing stages

interact with memory trough a memory controller unit that multiplexes in time the

huge amount of data to read/store [59]. In detail, the memory data flow is displayed

in Fig. 3.1 and can be summarized as follows:
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Figure 3.3: Pipeline stages for a mono-scale system. - Filters need four more lines

of latency to fill half blockRAM of convolution (at the beginning of the computation).

1. Expand circuit, read old partial disparity and up-sample it with a bilinear in-

terpolation (new values are multiplied by 2 to adapt disparity values to the new

scale).

2. Warping circuit, read pyramid images and shift those using expanded disparity

as ∆ LUT.

3. Median filter stores the partial/final result.

As we can see, the interaction with memory is a very critical problem that needs a

dedicated circuit and a specific memory mapping (Fig. 3.1). Parallel accesses to RAM

are allowed with a multiple bank strategy and sequential operations.
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3.3.4 1-D warping for disparity range extension

In order to get a further reduction of memory accesses, the warping architecture has also

been optimized with the use of embedded memory (on-chip memory resources). The

nature of stereo algorithms is to compute distances between positions of corresponding

points only along the direction of the epipolar lines (x direction) and therefore, we do

not need a random memory access of the whole image at every cycle, but only a partial

access to some specific lines; thus, we use a multi-port embedded RAM as cache to

store two input lines and obtain in this way a fast access to pixel and disparity (LUT)

values. Values are continuously refreshed as in a circular FIFO buffer. A double buffer

technique is used to operate multiple accesses and optimize data throughput. We have

a line of latency necessary to store the first values. Processing takes 7 clock cycles

more of latency for the search of the new pixel and the bilinear interpolation. Due to

the fine grain pipeline, the circuit can process a pixel every clock cycle at a maximum

frequency of 55 MHz (Table 3.1).

Figure 3.4: Warping architecture for the stereo case. - The circuit processes a

pixel every clock cycle as input data is previously stored in a multi-port RAM.

On Fig. 3.4, we present the basic architecture of the warping block for the stereo

case. MPRAM memories are embedded in the Virtex 4 and they do not use any logic
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Table 3.1: HW resources for different system parts (functional blocks) in an xcv4fx100

device.

Circuit Total 4 input LUTs Slice Flip Flops Slices DSP Block RAM Freq.

(out of 84352) (out of 84352) (out of 42176) (out of 160) (out of 376) (MHz)

Board interface, 9943 (11%) 9097 (10 %) 9894 (23 %) 32 (20 %) 43 (11 %) 50.8

undistorsion and rectification

Mono-scale disparity (sharing) 19835 (23 %) 10421 (12 %) 13783 (32 %) 115 (71 %) 20 (5 %) 42.2

Mono-scale disparity (no sharing) 30238 (35 %) 11882 (14 %) 17975 (42 %) 97 (60 %) 20 (5 %) 52.6

Mono-scale disparity (sharing) 33459 (39 %) 20011 (23 %) 20789 (49 %) 115 (71 %) 20 (5 %) 41.6

+ Local features

Total system 58374 (69 %) 30273 (35 %) 35715 (84 %) 131 (81 %) 99 (26 %) 50.5

Total system sharing 47971 (56 %) 28824 (34 %) 31169 (73 %) 149 (93 %) 99 (26 %) 41

resources. Parallel multipliers are also implemented in embedded DSPs. The other

operations are simply shifts and bit selection to separate integer from fractional part in

the LUT values; finally we have an adder which sums the interpolated values to obtain

the final average value (a further shift operation).

3.3.5 Implementation and hardware utilization

According to the bit width choice and architecture described in Section 3.3, we synthe-

size different circuit parts to estimate the hardware consumption for each functional

block. On Table 3.1, we report hardware consumption for an xc4vfx100 Virtex 4 chip.

For the whole system, we have to replicate filter consumption by 2 (left and right image),

atan2 core by 7 (orientation number minus the vertical one); being total occupation

reported on the last rows. In order to reduce hardware consumption, it is possible to

operate in different ways. First of all, we can reduce bit depth with a consequent loss

of precision already described in Section 2.2.2. Another possible way to avoid precision

loss is sharing recourses. On Fig. 3.3, we can see how some blocks are repeated in the

architecture; the idea is to share a block by multiplexing input data in time. Sharing

the same circuit for two different processes can save up to 50% of hardware resources

for this processing unit, but it restricts the final system data throughput: one data

for every two clock cycles. Possible targets for sharing recourses are the pre-processing

filters and cross phase blocks; in the first case, the same kind of filter is repeated for

the left image and right image for filtering, the most expensive operation can be shared

for the image pair. In Fig. 3.3, it is also evident the repetition in the second step of

mono scale block disparity: seven different atan2 cores are used for computing phase
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(one for each orientation). In this case, we can use only 4 cores and share them for all

seven processes. With these two optimizations, the system requires 13% less in avail-

able LUTs and 10% less in slices. We can also move on the other side of optimization

and dedicate larger hardware effort to achieve higher accuracy. A previous study on

software states that some kind of regularization at the end of each scale iteration can

drop a lot of erroneous values and get a more homogeneous output. Our process is

a simple bi-dimensional median filter. We apply regularization directly after merging

output; median filter is operated on a 3x3 window and discards non valid numbers

depending on a user defined threshold: if non valid values in a window are higher than

the threshold median output, it will be a non valid number; otherwise, the block pro-

vides as output the median value among valid numbers. This precision oriented change

increases requires 2% more LUTs and 4% more slices with respect to the non sharing

system. On Section 3.4, we discuss the qualitative and quantitative improvements.

3.3.6 Local features integration

As described in [54] the phase-based method presents high analogies for multiple fea-

tures extraction. In particular is possible share the harmonic representation and the

first filtering stage for a further local features extraction [54]. As previously explained

in Section 2.2.3 we adapt some of the algorithms described in [45] to a hardware friendly

implementation. In the same time we integrate it in the mono-scale disparity core in

order to share the onerous filtering stage and save hardware resources. In this way, for

each processing scale we obtain a local estimation of energy, phase and orientation a

part from the disparity. Local energy is directly extracted from the phase difference

thresholding of the stereo computation: in fact energy is already obtained for each

orientation in the second stage of Fig. 3.3 as a confidence measure. Local orientation

is obtained also starting from magnitudes calculated in phase difference block. After a

first multiplication by cosine and sine value (respectively with squared even and odd

part of filter output), orientations are merged with a summation and final orientation

is given by an arctangent module. Local phase is simply calculated as the output of

an arctangent of the summation of even filter responses and odd filter responses. This

further processing generates three output channel more in the disparity core of Fig.

3.3. New data output are stored directly in external RAMs in three different memory

addresses and with words of 32 bits: four contiguous pixel informations of 8 bits in
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each address. The hardware utilization of the complete core with local features inte-

gration is reported in Table 3.1. It is possible to integrate the local features core also

in a phase-based optical flow processing but as we will see in the Chapter 4, the huge

quantity of memory accesses for this computation limits any further data transfer.

3.4 System results

The final circuit is optimized and set up to run on a XircaV4 board produced by

Seven Solutions [61]. Although in this work the platform is used as co-processing

board, the great advantage is the possibility of using it in a stand-alone mode for

robotic issues and for driving scenarios. We have implemented a hardware/software

platform to work as an interface between the external world (sequences captured from

on-line cameras) and the FPGA platform. It provides the input images and shows the

results of the disparity processing on-line. The whole system consists of a co-processing

FPGA board and a host computer connected through the PCI Express interface (for

further details see Appendix 8). The communication using the PCI Express interface

is performed with a simple handshaking protocol. The double buffer scheme optimizes

the system speed and regularizes the read and write operations on external SDRAM

banks. For each couple of frames, the application and the FPGA board wait for each

other to commute the memory bank. The application writes the input image in the

first memory segment (reserved for the input images in the memory map, Fig. 3.1) or

reads the previous results. FPGA manages the bank memory map, allocates a bank for

its processing and commutes the other bank to the application. This software (created

by Francisco Barranco) is available as Open Source at http://code.google.com/p/

open-rtvision/

3.4.1 System accuracy

In order to evaluate our system, we have used some benchmarking images. This allows

to compare the results with other approaches and with ground truth if it is available.

Unfortunately, for the majority of road sequences there is not ground truth, so results

can be evaluated only qualitatively. We have used a software version (with double pre-

cision floating point arithmetic) to compare the results. We have used the previously

described software interface to process stored sequences in different approaches. For
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Table 3.2: Mean Absolute Error (MAE), standard deviation, density, and percentage of

error major than 1 for different image pairs

Image MAE SAE Dens Err≥1

Tsukuba 0.84 1.44 91.72 18.8

Venus 0.74 1.38 86.96 13.1

Cones 2.52 6.25 85.4 26.8

Teddy 2.97 5.89 68.22 36.8

Monopoly (E0-E0) 1.05 1.94 31.64 18.4

Monopoly (E2-E2) 1.73 4.5 31.64 23.9

Monopoly (E0-E1) 1.02 1.86 31.64 18.6

error estimation, we use MAE (Mean Absolute Error), SAE (Standard deviation of

Absolute Error), density, and percentage of error major than one as described in [15].

We have processed different image pairs downloaded from the Middlebury database [2];

processed disparities are compared with ground truth for a multi-resolution computa-

tion which changes depending on image resolution. Quantitative results are provided

in Table 3.2. Comparing the system with other approaches in the literature [2], we

obtain a lower accuracy of results, but this is still high enough for our target applica-

tion on the driving scenario [22] and they are good taking into account the constraints

of a hardware implementation on a embedded device. In addition, it is relevant to

remember that the model is especially robust and stable for real world unconstrained

scenarios (Fig. 3.5) which is of crucial importance for outdoor-scenario applications.

In fact the robustness of the phase signal allows the same accuracy under different il-

luminations. The same sequence has been processed with different conditions available

from [2], moreover left and right frames has been chosen with different illumination.

Results maintain a good accuracy level also in very complicated conditions (fourth row

of Fig. 3.5).

3.4.2 Performance analysis

Our hardware implementation is optimized for the Xirca platform [61] but FPGA ex-

ternal interface with memory and PCI interface can be easily adapted for other kind

of board and system maintaining the power of processing cores. On the other hand, if
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we have fewer resources on the target platform, the solution is dropping frequency and

sharing resources as described in Section 3.3.

For the specific platform, we have used a third additional memory bank as stereo

buffer (SB) just to obtain parallel access to memory. Memory mapping is generated

from FPGA at initialization time and depends on the image size (user defined param-

eter). Memory space is organized as indicated in Fig. 3.1, DB bank is only used for

input and output images, while rectified images, pyramid, partial disparities, and recti-

fication LUTs are stored in SB. Thus, the operation sequence described in this section

writes at time t the correspondent output image in DB. All circuits work at a data rate

of one pixel per clock cycle. For this reason, processing time takes a number of clock

cycles equal to:

c = (RI + sI) + (s+ 1)I = I(2s+ 1 +R) (3.2)

where R is the inverse of data rates for the rectification circuit and is R=2,5; I is the

image resolution (x size multiplied by y size) and s is the scale factor and depends on

the number of scales as indicated in (3.3).

s =
N∑
n=1

2−2n (3.3)

Where N is the number of scales. With (3.2) and (3.3), we can calculate the frame

rate for different image sizes simply by dividing the frequency of the circuit by C.

We discuss now some speed up for the processing system in a specific board with at

least four memory banks. For the described architecture, we are using now only 3

banks, so we can implement a second double buffer for SB in order to run in parallel

rectification/pyramid with disparity calculation. (3.2) becomes now:

c = max({RI + sI}, {(s+ 1)I}) (3.4)

The problem for this new architecture is the frame of latency, in fact, at time t, FPGA

writes on DB bank output image for time t-1.

For the three different versions of our architecture and for embedded purposes we

also analyzed power consumption with the Xpower tool and report the results in Table

3.3.

On Table 3.4, we provide the final frame rates for some usual image resolution

and for the faster system architecture described: using 4 memory banks and with-

out any sharing. On the other hand, if the target platform includes larger hardware
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Table 3.3: Power consumption for stereo circuits in a Virtex 4 xc4vfx100: estimated with

Xpower tool.

System Power (W)

Total System (sharing) 3.64

Total System (not sharing) 3.78

Total System (Gabor filters sharing) 4.34

resources and more memory banks available, the design can take full advantage of a

multi-core implementation. It is important to take into account that the system is a

real-time processing module which is faster than most existing systems, see for instance

[62, 63]. It is important to remark that, except for the mono-scale phase-based version

presented in [19], our approach overcomes the performance of all the other available

contributions. The image rectification stage together with the coarse-to-fine nature

of the algorithm limits the frame rate performance, but as we indicated in the pre-

vious section, provides reliable results especially in non controlled environments and

no image preprocessing is required. The mono-scale phase-based implementation such

as [19] achieves a higher frame rate but is not capable of solving high range dispari-

ties and many times produces oversmoothed results with reduced spatial localization

capabilities. Note that our approach achieves a higher Point × Disparity per Second

(PDS). This measure is commonly used in the literature as performance metric (see for

instance [16, 19, 21, 56, 63]) and evaluates the throughput and the disparity range at

the same time. It is the multiplication of the frame rate per the image resolution per

the disparity range. In literature, we can also find a multi-resolution architecture [35]

that simply computes disparity for different scales in parallel but does not propagate

information among them and as a consequence, they reduce the hardware resource re-

quirements. It is worthwhile indicating that the warping operations have a very high

complexity mainly due to the non-deterministic data access scheme (this is why they

are rarely implemented in the literature) but they are justified for the accuracy im-

provements. In Table 3.4, we compare our best implementation with some works in

the state of the art. Obviously, this solution is the most expensive configuration and

can be replaced with a more economic one based on hardware sharing depending on

the final application and the platform constraints. We achieve a very high processing

speed (17.6 Megapixels per second) which is the second fastest approach in the table.
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Table 3.4: Comparison with other approaches described in the literature. We indicate

the throughput in MegaPixels per Second (MPPS) and the Point × Disparity per Second

(PDS=MPPS X D)

Work Image resolution Frame rate MPPS PDS x 106 (Disp. range) Method Processor type

640x480 57.5 17.6 2252 (128) Custom FPGA,

Presented work 800x600 36.8 17.6 4505 (256) Phase-based Virtex 4 (50 MHz)

1024x768 22.4 17.6 4505 (256)

Sang-Kyo Han et al. [21] 320x240 140 10.7 707 (64) SAD ASIC at 150 MHz

Gibson et al. [64] 450x375 5.9 0.99 63.7 (64) Semi global NVIDIA G80 GPU

matching

Li [65] 640x480 31.2 9.58 2875 (300) Spherica Sony PC VGNK704 with a

2.8 GHz Processor

Diaz et al. [19] 1280x960 52 63.89 1885 (29) Phase-based Custom FPGA Virtex 2

(65 MHz)

Murphy et al. [66] 320x240 150 11.52 230.4 (20) Census transform Custom FPGA Spartan 3

(26 MHz)

Gong et al. [63] 384x288 11.3 1.2 30-60 GORDP ATI Radeon X800

Wang et al. [62] 320x240 43 3.3 52.8 (16) Dynamic prog. 3.0 GHz PC with an ATI

Radeon XL1800

Darabiha et al. [35] 360x256 33 3 55.2 (20) Phase-based Custom FPGA, 4x Xilinx

Virtex 2

Masrani et al. [56] 640x480 30 9.21 1179 (128) Local weighted Custom FPGA, 4x Altera

phase correlation Stratix S80

Woetzel and Koch [67] 704x576 3.57 1.44 28.9 (20) TSSD P4 with a NVIDIA

GeForce FX5600

Miyajima et al. [68] 640x480 20 6.14 1228 (200) Matching Custom FPGA Virtex 2

(40 MHz)

But the most important comparative result is that we obtain 4505x106 PDS which is

the best comparative mark (more than 35% better than the second best approach) of

the table and takes into account the large disparity range achievable by our multi-scale

approach. Finally note that if the undistorsion and rectification stage is not used (it is

the case in most of the literature solutions), the processing speed achieves up to 35.7

MPPS.

3.5 Conclusions

This chapter describes a stereo system of high complexity and performance imple-

mented on a reconfigurable device. We have improved existing FPGA approaches with

a higher accuracy and a larger disparity range thanks to an optimized data bit-width

utilization and a coarse-to-fine multi-scale processing scheme. The final system can

process video sequences at a high frame rate (for instance SVGA resolution at a frame

rate of 36 fps), achieving real time for large resolution images. A comparison with

the literature asserts that our approach is among the fastest approaches in terms of
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pixels per second and the best approach in terms of PDS (i.e. taking into account

the disparity range covered). Furthermore, it is an on-chip approach which is very

well ranked among other approaches addressed with diverse technologies. Since we use

reconfigurable hardware, we can exhaustively adapt the architecture to different chip

sizes and application domains. Thanks to a sharing strategy, the same algorithm can be

synthesized for different devices and platforms. This sharing strategy affects the system

data throughput but not its accuracy. The described stereo system is robust against

illumination variations between the two cameras and local contrast differences since it

is based on phase and uses multi-orientation estimations to better optimize accuracy

for different local contrast structures. This feature is obtained by the multi-orientation

phase-based stereo model. The outstanding computing power of the system in terms of

Megapixels per second has been achieved by adopting a fine grained pipelined process-

ing data-path with superscalar units at several stages. This represents a global circuit

with more than 2000 processing elements working in parallel. Such a complex design

has been carried out by adopting a modular design strategy. We have validated the

stereo processing engine in the framework of a co-processor solution that uses a soft-

ware interface as frame-grabber and real-time visualization tool. The same board can

be used to implement a stand-alone system and work on embedded applications with

reduced occupation in space and low power consumption compared to other approaches

as high performance processors, GPUs, etc. This makes the presented processing engine

of specific interest for a wide variety of application fields, which include robotic issues,

driving scenarios, mobile video surveillance, etc. As future work, we will deal with the

stand-alone version of the system, developing an Ethernet-based frame grabber with a

direct connection of cameras on this interface. This structure would be adapted for a

car system and integrated with feedback signals from/to the vehicle and the driver.
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Figure 3.5: Qualitative results of the stereo system. - Left image input (first

column), right image input (center) and disparity results are displayed. The three first

rows shows the results for the ”Monopoly” stereo pair with different expositions. Special

consideration should be made for the third row where two different expositions have been

used for the left and the right images. In the last row is presented a result for a real driving

scenario.
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4

Optical Flow architecture

4.1 Abstract

The accurate estimation of optical flow is a problem widely experienced in computer

vision and researchers in this field are devoting their efforts to formulating reliable and

robust algorithms for real life applications. These approaches need to be evaluated, es-

pecially in controlled scenarios. We describe here the implementation of a phase-based

optical flow in a FPGA device. The system benefits from phase-information stability as

well as sub-pixel accuracy without requiring additional computations and at the same

time achieves high-performance computation by taking full advantage of the parallel

processing resources of FPGA devices. Furthermore, the architecture extends the imple-

mentation to a multi-resolution and multi-orientation implementation, which enhances

its accuracy and covers a wide range of detected velocities. Deep pipelined datapath

architecture with superscalar computing units at different stages allows real-time pro-

cessing beyond VGA image resolution. The final circuit is of significant complexity and

useful for a wide range of fields requiring portable optical-flow processing engines.

4.2 Introduction

Beginning in the early 1980s, with important contributions such as that provided

by Lucas and Kanade [37], the study of optical flow has generated high interest in

computer-vision research and the potential multiplicity of its applications. Since then

diverse optical-flow algorithms have been developed and many studies published con-

cerning motion estimation [1, 23, 38, 69]. Motion perception is useful in very di-
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verse real-life environments. Some potential fields of application are video surveil-

lance [70], autonomous robot navigation [71], driving assistance [72], sports analy-

sis (http://www.spinsight.co.uk/index.htm) [73, 74] and so on. Furthermore, current

global computer-vision approaches include motion estimation as one of the low-level

cues used for higher level vision stages and for the extraction of more complex fea-

tures such as independent moving objects (IMOs) [75] or motion in depth [34]. For all

of these applications we obviously need a real-time processing engine, a problem that

has been partially solved as far as modern commodity processors are concerned [13]

but remains an open issue for embedded applications in which computing resources

are constrained. To avoid this problem some implementations simplify the model to

increase processing speed; for instance, mono-scale versions are often used [20], but

they only work accurately over a restricted working speed and furthermore, this also

limits their adaptability to different scenarios. This has motivated the search for high-

performance customized computing architectures with a high level of parallelization

in order to achieve real-time processing and robustness to deal with input instabil-

ity due to limited scene-contrast structure. Within this context we have proposed

different solutions that represent valid technologies which can be used to implement

high-performance approaches. Thus it is possible to take full advantage of commod-

ity processor parallelism [13] or use some specific co-processor devices such as GPU

boards [41] or a cluster of processors to achieve real-time [24]. These options adapt

well to different environments that require simulation accelerators, but are unsuitable

for many industrial products that demand reduced power consumption, size, and price.

In this case a better alternative is offered by processing architectures customized for

embedded systems (based on FPGA devices for instance) [20, 46]. We describe here

the implementation of a phase-based multi-scale algorithm in a FPGA platform, the

optical-flow model of which is described in [40]. Phase information allows us to reach

the desired stability, as described and justified in [29]; furthermore, with reconfigurable

hardware capabilities and on-chip high parallelism we achieve real-time processing. The

final system described here can process images very accurately at a resolution of 512 x

512 up to 36 fps over a wide speed range.
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4.3 Implementation on FPGA

We have implemented the algorithm described above using different hardware descrip-

tion languages. Critical parts of the design, such as memory interfaces [memory control

unit (MCU) designed by M. Vanegas [59] in Figure 4.4] and PCI-express interface with

FPGA, are described in VHDL language. For the optical-flow algorithm, on the other

hand, we use an algorithmic hardware description language (Handel-C) because, as

pointed out in [58], this abstraction level does not affect hardware requirements or per-

formance significantly and the design process is faster than with VHDL. According to

Ortigosa et al. [58] the same algorithm can be described using less development time

with a C-like language. Furthermore, we used IP cores from Xilinx CoreGenerator [3]

to optimize such complex mathematical operations as divisions, trigonometric func-

tions etc. The whole circuit is synthesized for a Xilinx Virtex 4 xc4vfx100. The device

used includes 94,896 configurable logic cells, 2 embedded PowerPCs that work up to

300MHz, 160 embedded DSP and 6,768 Kb of embedded Block RAM memory (each

elementary block has 18 kb). Although the FPGA includes PowerPCs we do not make

use of them in this specific low-level vision algorithm: such an approach needs massive

parallel processing, which is better suited for FPGA logic resources. An additional

middle-level vision processing can run in embedded processors, as stated in [76] but

this issue is not addressed in this work.

4.4 System architecture

For such a complex system we chose to adopt a modular design strategy based on a

long pipelined datapath capable of processing one pixel every clock cycle. Nevertheless,

there are iterative stages (due to the multi-scale approach) and because of the limited

hardware resources available we need some sequential parts that communicate with

the other components through an external RAM. In this way, memory access increases

and the implementation of a MCU is essential. In the architecture we have adopted a

specific MCU that manages memory access by using abstract access ports (AAPs) as

described in Appendix 8. These allow us to handle the different memory modules as

multi-port ones with as many ports as the number of configured AAPs. Arbitration

circuitry distributes access equally so as to optimize memory bandwidth. The AAPs

save the effort of dealing with problems related to memory-access scheduling, thus
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increasing memory-use bandwidth and helping to reduce coding times significantly. As

can be seen in Figure 4.1, the MCU synchronizes the following blocks:

1. Pyramidal calculation of input frames

2. Optical-flow processing for each scale: the main processing part.

Both stages are repeated as often as the scale number: the pyramid stage is a top-down

implementation and the processing of the optical flow is a bottom-up one.

   

Figure 4.1: Optical flow system architecture. - The pyramid iteration appears on

the upper right-hand side, and the optical-flow processing stage is on the left-hand side.

Both stages communicate with memory through the MCU.

Stage 1 finishes just before the iteration in Stage 2, executing an anti-aliasing filter

and a sub-sampling of input frames. The anti-aliasing filter consists of a Gaussian

smoothing with a 5x5 kernel. The sub-sampling circuit reads frames from an external

memory and stores them in an embedded memory (circular buffer) for convolution
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with the kernel; this takes 2 lines of latency. Output values are sub-sampled and stored

on the same external memory in another location next to the previous one. Stage 2

includes the five blocks described in Section 2.1.1: expansion circuit, warping circuitry,

optical-flow computation core, merge core and a median filter. The first block expands

previously computed optical-flow values to adapt them to the new image size, i.e. it

enlarges the image by a factor of two using bilinear interpolation. On output, this block

multiplies values by 2 and also adapts velocity vectors to the new scale. In following

subsections we focus on the warping circuit and on the mono-scale optical-flow core of

Fig. 4.2.

4.4.1 Warping module

There are two different warping circuits, one for the previous and one for the future

frame; the current (middle) frame is not warped. Warping adds the motion estimation

obtained from the previous scale in order to reduce the movement range in the input

frames and adapt it to the filter size of the optical-flow core. This block takes the

new pixel and operates a bilinear interpolation with neighboring pixels in a 2x2 sized

window. The motion compensation (warping) operation in the multi-scale algorithm is

a problematic issue for an FPGA circuit. This kind of devices are in fact well suited for

local memory accesses but present some difficulty with random memory accesses. The

neighborhood of four pixels and the limited memory accesses (four pixels in the same

line) make evident that in the best case one access to image data brings two pixels

of the same line; nevertheless it is impossible to access to the four pixels window in a

single memory access. In the worst case, this operation needs four different accesses

to memory. This is another reason for the development of the specific MCU [59]. The

warping architecture for optical flow uses a reading AAP of the MCU for access to

the original image. In total, two reading-AAPs are used by the two different warping

blocks: previous and future frame of the temporal sequence. The sequential accesses

restrict the performance down to 4 pixels each 10 memory accesses. A similar circuit

is used for rectification and undistortion in the stereo circuit.

4.4.2 Filtering stage

The first operation for the processing is the spatial filtering with quadrature pair fil-

ters. This part of the circuit is further divided in two steps. The first one operates the
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convolution with seven different kernel masks: three of them that represent the Gaus-

sian basis function and four of them, the Hilbert transforms as described in [42]. Each

kernel convolution mask has 9 different taps that are previously hardware wired. Due

to the symmetry (or asymmetry) of basic functions, we use only five of them and define

for the convolution circuit a flag for the different case: a value 1 means a symmetric

vector while a -1 represents an asymmetric one. Multiplication and sum for convolution

are optimized with the embedded resources of the FPGA: DSP48 for a Xilinx Virtex4

and MULT18x18 for a Virtex2 [3]. The second stage of this block makes a linear com-

bination of the convolution outputs for each of the 8 orientations using trigonometric

polynomials up to second order. This operation steers the filters and builds the quadra-

ture filters for the different orientations. Again, values of the polynomial are hardware

wired. The convolution operations use embedded FPGA memory as circular line buffer

with a total latency for the whole filtering part of 2589 clock cycles (4 lines and 29

clock cycles for a VGA image). But this latency depends on the number of columns of

the image. Since we are using 9x9 pixels filters, the first four lines of the image results

are discarded. The input for stage S0 is a channel containing the three pixels of the

temporal sequence. Filter banks are replicated three times: one for each input pixel.

On the output, the circuit produces for each pixel 8 real values and 8 imaginary values

(a complex value for each orientation): fixed point representation for this stage has 8

bits for the integer part and 2 for the fractional part.

4.4.3 Phase computation

Phase for each orientation is calculated starting from real and imaginary values of the

previous step. This operation needs an arctangent core. We use a Xilinx [3] IP core

generated with the Core Generator tool and based on the CORDIC algorithm [60]. For

this stage, we need 24 different cores, one for each orientation and input frame. Every

core has a throughput of one pixel per clock cycle and a latency equal to the output

bit width plus 4 more clock cycles. Arctangent cores have 10 bit width variables on

the input and 10 bit width on the output; consequently, we have 14 cycles of latency.

On the output of this core, the 2QN fixed point representation is used (1 bit of sign, 2

of integer part, and the rest, for the fractional part) and values in the range [−π,+π]

are provided: in our case, for the fixed point representation, we use 1 bit for the sign,

2 bits for the integer part, and 7 bits for the fractional part.
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4.4.4 Unwrapping the phase values

In this stage, we compute a temporal filter among the phase of the three temporal input

frames. With this operation, we eliminate discontinuities of the phase due to its peri-

odicity. The first temporal frame phase value is not changed, the other two are trans-

formed by applying a subtraction operation that subtracts 2π at points with disconti-

nuities. Basically, we apply the following basic operation

1: for n = 2 to N do

2: if φ(x, y, θ, fn)− φ(x, y, θ, fn−1) > π then

3: φ(x, y, θ, fn) = φ(x, y, θ, fn)− 2π

4: end if

5: end for

Where N is the number of frames of the temporal sequence: we indicate for each

variable spatial position (x,y), orientation θ and frame f. This circuit consists of 32

adder circuits (4 for each orientation) and 16 comparators (2 for each orientation). For

this block, we implement a pipeline of 6 clock cycles of latency. Output values of this

stage use 5 bits for the integer part and 5 bits for the fractional part.

4.4.5 Component velocities estimation

The fourth stage computes component velocities at each orientation as described in

Section 2.1.1. Basically, temporal information is used to determine velocity magni-

tudes and velocity orientation is provided by the filter orientation. The temporal phase

gradient is computed from the previous unwrapped data. This information is pro-

cessed to compute local velocities. A linear threshold is calculated for each pixel and

assigns a reliability weight to each output value. This block takes 24 values as inputs (8

unwrapped phases for each input frame), the block produces 8 values (one for each ori-

entation) and another 8 that represent the related thresholds for each orientation-based

estimate. Divisions in this block are avoided using the following strategy. Considering

that for denominator we have constant values, we approximate division with a multi-

plication and a right shift operation in order to save logic resources and benefit from

the embedded arithmetic resources of the FPGA. If we have to divide by D, then the

multiplication factor is computed by 2N/D, being N the value to shift the data that
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properly approximates the division operation. The latency of this stage is 9 clock cycles

as indicated in Fig.4.2.

4.4.6 Final velocity vectors

Information of different orientations is finally merged in the fifth stage. For each com-

ponent velocity computed in stage four, we apply the reliability threshold and consider

as good velocity vector values the ones that have, at least, a number of reliable com-

ponents higher than a defined threshold. A sum among valid orientations is operated

as indicated in (2.4). At this stage, we have variable denominators, thus, we need the

implementation of two hardware dividers (one for the x component and one for the y

one). We use Xilinx IP dividers from the Core Generator. This pipelined stage has a

latency of 5 clock cycles plus the divider latency: 5+ (D+4) where D is the bit depth

of the divider input. Non reliable values are sent to the output as NaN; we codify

NaN values with the reserved signed value of ”0b100000000000” assuming that output

values have 12 bits.

4.5 Coprocessing and interface to standard PC

The complete system has been implemented in a Xirca V4 board described in the

Appendix 8. The system described in this section works as a co-processing board

where input images are written in the SRAM memory banks from a host PC, which

receives the sequence from a camera. All these operations are managed by software

developed for this specific application but this software is easily adaptable to other

real-time vision applications: a screen capture of the user interface and a real-time

processing is shown in Figure 4.3. The processing system uses an additional memory

bank (Fig. 4.4) to store the pyramid information and synchronize data between this

block and the one that computes optical flow (see Fig. 4.1). The memory map is

calculated when processing begins and depends on the host parameters. The input

parameters can define the size of the input image and various processing thresholds.

This software is currently available as open source software (built up by F. Barranco)

at http://code.google.com/p/open-rtvision/.
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4.6 Architecture optimizations: tuning for low resources

or high performance

Depending on the chip size and the platform used, especially the number of banks, the

circuit can be optimized towards different targets: the first involves an optimization

of the frame rate and the second an optimization of hardware use. This allows us

therefore to adapt the basic design to high-performance application or low-cost appli-

cation requirements. The former is obviously constrained by the resources available on

the target chip. For instance, a simple way of increasing processing performance is to

replicate the processing circuit and synthesize it for a larger FPGA. As pointed out in

[3], our chip is not the most powerful device available on the market. The design can

be adapted to a Virtex 6 device, which can provide up to 8 times more resources than

the Virtex 4 device in our board. In this case, the multi-core architecture can simply

replicate the processing cores and split the input image into a number of parts equal to

the replication of cores (with a slight overlap to handle image boundaries). Although

this option is feasible and easy to address in the future we do not intend to focus on

it here because prices and power consumption increase significantly and these are very

valuable resources for embedded devices. Instead we will concentrate on architectural

modifications. The most critical part of the complete circuit is the warping block. All

the circuits except this one work at a data rate of 1 pixel per clock cycle, but warping

takes on average 2.5 clock cycles to process a single pixel because it depends on the

number of memory accesses needed for reading the neighboring pixels, and this is an

unpredictable process, depending as it does on the fractional optical-flow values of the

x and y components. Improvements during this stage, which is the bottleneck of the

system’s performance, will improve the overall performance of the circuit considerably.

Furthermore, warping occupies all the memory channels available in the OFB bank and

therefore we need an additional memory bank if we want two new warping cores. If

we take 2.5 clock cycles as a reference, we can improve on this processing by a factor

of 2. The FPGA processing time takes a number of clock cycles that can be estimated

using:

C = (1 + s)I + (s+R)I = I(2s+R+ 1) (4.1)

where R is the inverse of the data rate for the warping, I is the image resolution (height

image resolution multiplied by width image resolution) and s is the scale factor, which
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depends on the number of scales, as indicated in:

s =
N∑
n=1

2−2n (4.2)

where N is the number of scales. The first term in Eq. (4.1) is related to pyramid

computation (right-hand block 1in Fig. 4.1) and the second is related to the processing

(left-hand block in Fig. 4.1). These equations do not take into account the computing

times necessary for priming (filling in) the pipeline because these terms are fairly small

compared to the processing time and are therefore negligible. Using Eq. (4.1) and

taking the worse case of R, we can calculate the frame rate for different image sizes

simply by dividing the frequency of the circuit by C. Thus, in the original version for

image resolution of 512x512 and with R=2.5 we obtain a frame rate of approximately

36 fps; if R=1.25, on the other hand, the frame rate increases to 48.2 fps. Now,

if we want to optimize the use of hardware resources we need an architecture that

exploits the resource-sharing capacity of this computing scheme. This means that we

use some blocks in a further sequential code, thus increasing the processing time but

reducing hardware resources. As an example we developed a shared version of the

mono-scale core which removes the repetition of similar blocks. As shown in Figure

4.2, the architecture contains the repetition of the same filtering circuit for each frame

and also the atan2 cores. If we share the same block for the three different frames we

reduce hardware use by approximately 22% and increase processing time by a factor of

three. In Table 4.1 we describe hardware use and compare the basic design with this

sharing optimization. With the last low-cost version, Eq. (4.1) becomes:

C = (1 + s)I + (s+ 3)I = I(2s+ 4) (4.3)

in which we replace R with 3 because we know that n processes running in parallel take

as long as the slowest process, which in this second case is optical-flow computation.

The final frame rate calculated with Eq. (4.3) will be one of approximately 31 fps.

This represents a very moderate reduction in performance at a lower cost (in terms of

hardware resources).

Table 4.1 also shows the total hardware resources required. The whole system uses

86% of the available slices in a Virtex 4 xc4vfx100 for the fastest version. The sharing

version saves about 9% of total resources (close to 4,000 slices) allowing a possible
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Table 4.1: Hardware use for a Virtex 4 xc4vfx100. We describe the recourses used for

different circuit parts. Here we compare three different architectures: the first is the original

implementation, the second is an alternative with a sharing strategy and the third is a high-

accuracy version with Gabor filters. The table is divided into four different parts: total

system resources, hierarchical blocks and interface, mono-scale parts and total mono-scale

cores.

Circuit Total 4 inputs LUTs Slices Flip Flops Slices DSP Block RAM Freq.

(out of 84352) (out of 84352) (out of 42176) (out of 160) (out of 376) (MHz)

Total System 45415 (53%) 36468 (43%) 32744 (77%) 132 (82%) 106 (28%) 43.6

(Sharing)

Total System 60564 (71%) 40073 (47%) 36603 (86%) 132 (82%) 106 (28%) 45.05

(not sharing)

Total System 51368 (60%) 38905 (46%) 35023 (83%) 147 (91%) 112 (29%) 41.3

(Gabor, sharing)

Board Interface 4774 (5%) 5195 (6%) 5288 (12%) 0 36 (9%) 112.4

Interface + warping 9943 (11%) 9097 (10%) 9894 (23%) 32 (20%) 43 (11%) 50.8

Reduction 364 (1%) 244 (1%) 235 (1%) 0 4 (1%) 106.7

Expansion 413 (1%) 270 (1%) 367 (1%) 0 1 (1%) 85.7

Filter 3904 (4%) 2540 (3%) 2343 (5%) 59 (36%) 8 (2%) 77.9

Phase 2544 (3%) 2715 (3%) 1814 (4%) 0 0 68.9

Unwrapping 341 (1%) 240 (1%) 256 (1%) 2 (1%) 0 123.4

Component velocity 587 (1%) 442 (1%) 391 (1%) 9 (5%) 0 82

Full velocity 1227 (1%) 2153 (2%) 1412 (3%) 13 (8%) 0 85.6

Mono-scale Optical 18439 (21%) 17651 (20%) 15691 (37%) 100 (62%) 24 (6%) 51.9

Flow (sharing)

Mono-scale Optical 32569 (38%) 22645 (26%) 20024 (47%) 100 (62%) 24 (6%) 59.7

Flow (not sharing)
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Table 4.2: Power consumption for optical flow circuits in a Virtex 4 xc4vfx100: estimated

with Xpower tool.

System Power (W)

Total System (sharing) 4.35

Total System (not sharing) 4.17

Total System (Gabor filters sharing) 4.47

implementation in cheaper devices such as Virtex 4 xc4vfx60. It should be noted

that the sharing option slightly decreases the total clock rate, which is coherent with

the mono-scale optical-flow results. This can be easily understood when bearing in

mind that arbitration logic is required for the shared modules and that this increases

logic depth. Table 4.1 also shows a further high-accuracy version of the algorithm

that uses the separable Gabor approach for the filtering stage; the quantitative results

for synthetic benchmarks using this version are set out in Section 4.7. For the three

different versions of our architecture and for embedded purposes we also analyzed power

consumption with the Xpower tool and report the results in Table 4.2.

On the other hand, it is possible to reduce hardware resources in a mono-scale

version, which saves all the hierarchical circuitry. The architecture is reduced to a

single mono-scale core and the board interfaces. Because of its high parallelism, this

mono-scale architecture can achieve a frame rate of 160 fps for VGA images but is

unable to compute large displacements between subsequent frames. Within the context

of this idea, the mono-scale architecture of the LK algorithm is described in [20], in

which an explanation of high-frame-rate architectures is proposed. Due to its inherent

limitations the mono-scale approach is suitable only for high SNR and high-frame-

rate cameras, which are not frequently used in normal conditions. With this kind of

camera the algorithm tunes the higher spatial frequencies better than the more complex

multi-scale architecture proposed in this work but it loses estimation density in low-

textured areas and general adaptability in sequences involving large pixel movement

(fast motion).
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Table 4.3: Frames per second at different image sizes and number of scales. In a mono-

scale approach the system can process up to 186.26 fps using images of 512x512, but this

approach is limited in range.

Size # scales Frame per second Frame per second

(sharing) (not sharing)

512x512 4 29.61 36.8

640x480 4 25.25 31.5

640x480 5 25.1 31.09

720x576 4 18.75 23.26

4.7 System results

As seen in Section 4.3, the system’s architecture combines both parallel and sequential

parts and so the platform processes the final image at a lower speed than the corre-

sponding data rate of each individual processing block. The final performance (Table

4.3) will depend on the number of scales (computed sequentially) and on the image size

as described in Section 4.3. This drawback can be solved by loop unrolling but this

involves the disadvantage of significantly increasing system latency, which may not be

very suitable for real-time applications. We measured the frame rate experimentally

by simply computing the processing time to transfer 5,000 images; note that the frame

rate was higher than the value expected from (4.3) in which R was set to the worst

case. In fact we measured a real case: access to memory for the warping operations

benefited from spatial data coherence and therefore the average time was slightly lower

than 2.5 cycles.

The system’s accuracy was assessed with tests on the synthetic ”Yosemite” sequence

because this is widely used in the literature. For this sequence we have the ground truth

information so it is possible to measure errors in the algorithms and compare them with

the existing methods, as explained in [77]. Our errors do not include the area of the

sky. In Table V we describe the angular error in degrees (AE), the standard deviation

from the angular error and the density of the valid values (eliminating the total number

of pixels in the sky area).

A comparison of our work with some real-time implementations in the literature

[20, 78] reveals how the final system is more accurate but results in a lower frame-rate

performance for the multi-scale case. In some solutions, such as in [20], the high frame
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Table 4.4: Angular errors for different Middlebury sequences [2]. We use four scales for

all sequences.

Sequence AE Std Dens

Yosemite 4.69° 7.01 82.81

RubberWhale 11.2° 20.6 79.09

Grove3 12.08° 19.34 92.62

Urban3 13.72° 25.94 49.28

rate is the result of the mono-scale origin of the algorithm, with an evident loss in

accuracy and density. For the Yosemite sequence and a dense optical-flow map in [20]

the system has an AE of 18.3°and in [78] the authors achieve 6.7°, whilst our system

achieves 4.69°, as shown in Table 4.4. Our work improves both the accuracy and motion

range of these contributions. More importantly, our algorithm in the mono-scale version

can also achieve a very high frame rate even when using the PCI-express interface

restrictions. Compared with these other works, our architecture surpasses them in

complexity (Section 2.1.1), which allows it to be used in complex scenarios thanks to the

proven stability of the phase information against affine deformations and illumination

changes [29]. A comparison of our system with the GPU-based implementation of the

same algorithm provided by Pauwels et al. [41] is extremely interesting. They achieved

a similar processing speed with a smaller error of 2.7°. The increase in error engendered

by our hardware system compared to theirs is mainly due to the fact that they use

floating-point arithmetic and five temporal frames. Nevertheless, this difference is

acceptable if we bear in mind that our approach can be included in embedded systems,

where parameters such as size, power and certification capabilities are key elements

that are unachievable by GPU-based approaches. There is also a novel contribution

for commodity processors [13]. Despite the impressive performance that Anguita et al.

achieved in software, their system involves the same drawbacks as those in [20] as far

as accuracy and motion range are concerned because of their using a simple mono-scale

engine. The qualitative results of our system for different benchmarks are set out in

Fig. 4.5. Input images are chosen from an exhaustive dataset available in [2].

Additional results for a real sequence are shown in Figure 4.3 together with the soft-

ware interface and demonstrate the validity of our system for non-controlled scenarios

as well; in this case we cannot evaluate the numerical errors but the satisfactory motion
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Table 4.5: Comparison with other approaches described in the literature. Our mono-scale

engine achieves 24.8 MPPS.

Work Image Frame rate MPPS Method Processor type

resolution

Presented work 640x480 31.5 9.6 Phase-based Custom FPGA,

Xilinx Virtex 4 (45 MHz)

Presented work 640x480 81 24.8 Phase-based Custom FPGA, Xilinx Virtex 4 (45 MHz)

mono-scale Xilinx Virtex 4 (45 MHz)

Botella et al. [79] 128x96 16 0.19 Multi-Channel Gradient Custom FPGA

Xilinx Virtex 2

Anguita et al. [13] 1280x1026 68.5 86.8 LK Core 2 Quad

Q9550 (2830 MHz)

Diaz et al. [20] 800x600 170 82 LK Custom FPGA,

Xilinx Virtex 2 (82 MHz)

Pauwels et al. [53] 640x512 48.5 15.8 Phase-based NVIDIA GeForce

8800 GTX

Wei et al. [78] 640x480 15 4.6 Tensor-based Custom FPGA,

Xilinx Virtex 4 (100 MHz)

Murachi et al. [80] 640x480 30 9.2 PLK VLSI

(332MHz)

Bruhn et al. [24] 160x120 63 1.2 Variational Intel P4

3060 MHz

Sosa et al. [81] 256x256 30 1.9 Change-Driven Custom FPGA,

Altera EP20K1000C (33 MHz)

Martin et al. [82] 256x256 60 3.9 H&S Custom FPGA,

Altera EP20K300EQC240-2

Niitsuma et al. [83] 640x480 30 9.2 SAD Custom FPGA,

Xilinx Virtex 2

Correia et al. [84] 256x256 25 1.6 LK MV200 [85]

estimation for a driving scenario in which environmental factors are not controlled is

evident. Apart from the accuracy results in the various benchmark sequences set out

in Table 4.4 and Figure 4.5, we also compared our system with some other approaches

in the literature to emphasize the validity of our contribution: a brief resume is set out

in Table 4.5.

4.8 Conclusions

We describe here the implementation of a co-processing system that is capable of achiev-

ing a frame rate above that of traditional software implementations in a conventional

processor. Thanks to the stability of the phase information and the high parallelism of

FPGA devices we have been able to implement a motion-estimation system that works

in real time with high performance and is also useful for various different applications

and problems. Since the architecture is customized for FPGA devices it represents a
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very valid alternative for embedded image-processing systems. The system’s architec-

ture uses a highly complex multi-scale, multi-orientation algorithm which involves the

implementation of 1,750 parallel processing units for the mono-scale core alone, and

this number increases to more than 2,000 basic processing elements with the multi-

scale implementation. Due to the high complexity and computational effort which our

system represents it is, as far as we know, one of the most complex motion-estimation

systems implemented in FPGA devices to date. This is justified by its great robust-

ness both in synthetic scenes and real sequences. The multi-scale extension allows the

detection of movements of more than 10% of the input image size. The final circuit

processes VGA images up to 31 frames per second with 4 scales. The main advantage

of the FPGA implementation is its eminent portability; in fact the same co-processing

board used in this work can be used as a very useful standalone platform in industrial

systems, such as in assisted or autonomous navigation in automotive fields. Most other

approaches defined in FPGAs only implement a mono-scale model. The implementa-

tion of a multi-scale approach is indeed complex because the warping operation requires

the displacement of pixels along the different axes (depending on the estimated motion

in previous scale). This represents an operation requiring a large amount of random

memory access. Therefore, an efficient access to external off-chip memory resources

is critical in this multi-scale approach. The implementation of a multi-scale approach

renders the system described in this chapter easily adaptable to different scenarios with

high motion ranges. We are currently working on the use of the Gigabit Ethernet inter-

face as camera input in order to obtain a completely autonomous system. Future work

will also include the use of embedded PowerPC processors to explore more complex

system-on-chip (SoC) and Hw-Sw co-design strategies to explore the reconfiguration

capabilities of the processing engine, as well as to be able to extract complex motion

information such as estimates of ego-motion, time to contact etc., all using advanced

co-design techniques.
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Figure 4.2: Optical flow processing core. - The mono-scale optical-flow core is divided

into 5 different stages, as detailed in Section 2.1.1: S0 is the filtering stage, S1 the phase

calculation, S2 the phase unwrapping, S3 the determination of component velocities and

S4 the choice of final velocity. The S0, S1 and S2 data-paths are repeated for each temporal

frame. Horizontal arrows represent graphically the super-pipeline depth (the exact number

of pipeline stages for each part is specified in brackets) and the vertical repetition of data-

paths represents the super-scalar depth (each line corresponds to a different orientation).

The final design contains a significant number of parallel processing units and is fully

pipelined to achieve high performance. The number of pipelined stages for each block

presented is shown in brackets. The total number of processing units is 1,750 (the number

of pipelined stages multiplied by the number of scalar units). This illustrates the high

complexity of the system architecture.

71



4. OPTICAL FLOW ARCHITECTURE

Figure 4.3: Screen capture of the optical flow application. - The optical-flow

computation in real-time for the left input camera is displayed in the lower right screen.
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Figure 4.4: Memory mapping for optical flow. - Memory mapping, including the

double buffer (DB) used for data transfer with the PC and the optical-flow buffer (OFB)

used as support for the main processing. The DB bank (on the left) contains: input images

(first/second white rows), the final result (third/fourth, light-gray rows) and information

about previous scales (fifth/sixth, dark-gray rows). The pyramid of the input frames is

stored in the OFB. The SRAM banks work with words of 36 bits. White data have 8

bits for each pixel and are packed in vectors of 4 pixels per memory address. Light gray

represents data with 12 bits, which are packed in vectors of 2 data, and finally, dark-gray

data have 12 bits and are packed in vectors of 3. Arrows between MCU and memory banks

represent the different AAPs used: 1 read and 1 write for the DB bank, 1 read and 3 write

for the OFB bank.
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Figure 4.5: Qualitative results for different Middlebury sequences. - On the left

we display one of the input frames, in the middle the ground truth, and on the right our

system’s results.
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5

Low level vision engine

5.1 Abstract

In this chapter we illustrate how FPGA devices and novel design techniques and meth-

ods could be applied for high performance low level vision systems. As previously

justified in Chapter 2 we adopt a phase-based algorithm and integrate architectures of

Chapters 3 and 4 to extract multi-scale optical flow, disparity, energy, orientation and

phase. Depending on the system target application, we demonstrate that it is possi-

ble to develop diverse hardware implementations with different performances, resources

utilization and accuracies trade-offs tuned according the required specifications (power,

price, performance, accuracy, etc.). Making use of all these strategies, we implement a

high performance low level vision engine that achieves real-time processing on the same

chip. The system computes multi-scale optical flow, stereo and local contrast descrip-

tors (energy, orientation and phase) at 28.6 fps (image resolution of 512x512). Rather

than a single implementation, this chapter presents a design and integration strategy, it

evaluates different resources sharing techniques and illustrates the versatility of FPGA

based system that can be easily adapted to diverse target platforms to fulfil cost vs.

performance specifications. We analyze multiple hardware sharing strategies as well as

different memory resources utilization alternatives. Finally we study the impact in the

design of different architectural decisions. The exploration of the design space allows

us determining the best solution for a target application and generalizing our results

to other vision algorithms.
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5.2 Introduction

The Field Programmable Gate Array introduction in the large scale industry allows

that a lot of application fields benefit its easy customization of massive computing

resources. Important works on video surveillance [86], medical imaging [87], robotic

[88], biology [89, 90, 91] and on many other areas reveal the great importance acquired

by FPGAs. But how many kinds of architectures can be designed for the same target?

Reconfigurable devices make possible an easy prototyping of hardware designs and

accurate preliminary studies for complex systems. Beyond this idea, current FPGA

devices are a stable platform for many final system applications. In this chapter we

address the implementation of a complex low-level vision engine which will illustrate

novel design methodologies for systems with high computational effort. In the machine

vision community, a huge amount of contributions state how parallelism of FPGA

devices suites very well for pixel-wise operations as in low-level vision. Previous works

(previous chapters) implement different features extraction as optical flow [20] and

disparity [19] or image processing as denoising [92], deblurring [93] or segmentation [94].

Generally most of them propose a single vision task and does not compel with hard

requirements in terms of device size or power consumption. For this reason architectures

offered are often focused on a specific device where the design fits without problem and

does not need of specific algorithm adaptations. In order to present an exhaustive study

of different possible implementations of the same architecture we choose to integrate in

the same chip the extraction of optical flow, disparity, energy, orientation and phase.

A phase-based algorithm described in [40] has been adopted for its robustness and

performance. To the best of our knowledge, this is the first time that a low level vision

engine with these features computed in real-time has been developed in a single chip

and it is one of the most complex image processing systems described so far on FPGA.

After a study of a proper algorithm adaptation to hardware, we examine the sharing

capabilities of the complete system and we demonstrate the possibility of changing the

architecture according to different system requirements. The main contribution of this

work is a new design methodology independent from hardware platform and generally

applicable to other vision algorithms. The final system implemented represents a great

advance in the area of the vision on chip. The architecture is able to process up to

420 Mb/sec achieving the real time for images of 512x512. It benefits from all FPGA

76



5.3 Design strategies for a hardware implementation

capabilities (reduced size, high performance, low power consumption, etc.) and can

potentially be converted in a system for industrial purposes. Efficient integration of

different high performance cores on a single chip is not straightforward. In this chapter

we describe how a complex architecture including the on-chip computation of different

vision primitives can be addressed adopting different resources sharing strategies. The

system includes vision engines such as optical flow (originally composed of 1810 parallel

processing elements, description of Chapter 4), stereo (originally composed of 1145

parallel processing units, description of Chapter 3) and local features (originally using

312 parallel processing units as described in [95]). We study different implementation

alternatives, adapting the system to a low, medium and high cost version arriving at

different performance vs. cost trade-offs.

5.3 Design strategies for a hardware implementation

Depending on final system requirements, the architecture can be tuned to fulfill different

target specifications. Main interests are performances and hardware costs, of course

the first one depends directly on the second one. Thus if we need high performance

we have to increment the hardware recourses. Performance can be estimated in terms

of processing speed and accuracy. The first one can be improved with a fully parallel

implementation and at the other hand is limited with sequential execution or lower

frequency clock. As displayed in Fig. 1.3 a sequential execution allows a recourse

sharing and it can optimize the hardware utilization. Hardware utilization can be

reduced also by reducing accuracy. Main strategies for this aim are the reduction of bit

width in the fixed point representation and an algorithm simplification based on simpler

or hardware friendly operations. The high complexity of the system developed allows to

explore multiple approaches in a deeper way than previous works (and chapters) about

on-chip computer vision architectures. In this section we analyze all these variables

starting from those which affect the accuracy and we report how they affect the system.

As previously explained in Section 2.2, we study different modifications with respect

to [40] and how they affect the computation. Different filter banks study described in

Section 2.2 give us a general idea of accuracy achieved using different strategies. Basi-

cally we study two solutions: a separable implementation of Gabor filter as in [47] and a

Gabor-like version based on the second order derivative of Gaussian as explained in [42].
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The first solution is a more accurate approach but with a considerable computational

cost where we need 25 1D convolutions with a kernel of 11 taps. As an alternative,

with the second derivative approximation it is possible to reduce convolutions to only

13 units with 9 taps. Another important simplification is the reduction of the number

of frames in the temporal sequence from five to three, this implies saving two filter

banks and consequently a minor memory effort. Cost reduction in filter stage is quite

significant on the overall system. A further algorithm simplification is in the choice

of the number of orientations: again with this approach are reduced the convolution

units. All main modifications include a change in the filtering stage, as we can see from

Table 5.1 there is a very high difference from the high performance version to the low

one. Table reports at the same time the computing power saving and the accuracy on

final system in both, stereo and optical flow processing for ”Yosemite” and ”Tsukuba”

sequences.

5.3.1 Analysis of sharing capabilities

After the analysis of simplification on accuracy we address now to the hardware re-

duction analysis by sharing resources. In general a sharing strategy implies the storing

of partial results for a future utilization. The alternative is a parallel replication of

circuits. The choice depends obviously from the availability of memory in the first case

or hardware recourses in the second. For this reason, known the algorithm and the

hardware platform, it is mandatory a proper analysis of sharing capabilities and the

accurate evaluation of different solutions for the final requirements. Basically after a

first block diagram we focus our attention on block repetitions. For example in our

case we find the parallel processing for filtering stage along temporal sequence and

evaluation of different orientations along the same frame. The idea is to generate a

hybrid parallel/sequential system where expensive operations are shared by multiplex-

ing of input data in time into a single processing core. As previously underlined the

most critical operation for our example is the first harmonic analysis and the band-pass

filtering, thus it is a good candidate for sharing. For this purpose we have three filter

banks for optical flow, two for stereo and another one for local features which can be

reduced to only one. In a fully shared approach (Fig. 5.1) the filter core will attend four

different data streams in a correspondent number of clock cycles; the local feature core

can reuse the output of one of them and the input is shared between stereo and optical
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Table 5.1: Computing resources and accuracy for different kinds of filter banks: Steer-

able stands for the second order Gaussian derivatives steerable filters and Gabor for the

Gabor filters. Hardware utilization is estimated for a Xilinx Virtex xc4vfx100 [3] with the

Agilent DK5 tools [4]. Accuracy columns reports the optical flow Angular Error (AE) for

the ”Yosemite” sequence and the stereo Mean Absolute Error (MAE) for the ”Tsukuba”

sequence. In brackets we indicate the density. Hardware utilization is referred to only

one bank, depending on the algorithm (stereo or optical flow) this will be approximately

multiplied by the number of input frames.

Filter Orientations Convolution units Slices Accuracy (Dens.)

Steerable 2 13 995 AE=11.62(82)

MAE=1.92(95)

Steerable 4 13 1974 AE=8.82(86)

MAE=1.3(95)

Steerable 8 13 2754 AE=8.04(85)

MAE=1.26(95)

Gabor 2 7 1624 AE=8.45(77)

MAE=1.88(94)

Gabor 4 15 2816 AE=5.5(82)

MAE=0.99(95)

Gabor 8 25 6273 AE=4.58(79)

MAE=0.79(95)
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flow: in this case the rectified image is used also for optical flow, otherwise different

inputs imply a further cycle for the central frame of optical flow. Two different filter

sharing mechanism are possible:

1. Complete filter sharing by storing intermediate data on external memory (full

filter sharing option).

2. Arithmetic filter sharing (each input stream keeps their local memory buffers and

only arithmetic units are shared).

The second option has the advantage of no additional writing/reading operation, there-

fore, circuit performances can be computed as Fclock/N. We use this option because

current FPGAs are plenty of on-chip memory resources. Note that the first approach

(typically used in processors), do not fit properly here because it increases the number

of memory accesses that is one of our bottleneck due to the slow interfaces. Obviously

the used approach increases logic resources to manage and store temporary data but

save hardware compared with the fully parallel approach. In Fig. 5.1 a brief clock

cycles diagram is shown for three different methods: the first one is a fully parallel im-

plementation, the second is a sequential approach that share filters only inside different

processing cores (stereo and optical flow separately) and the last is another sequential

one with sharing of data between different processing cores.

From a frequency point of view, using sharing strategies, we have a new block that

works at f/N MHz where f is the system clock frequency and N the number of cores

shared. Thus we need a proper signal control to order data in input and output from

slower block. We also need specific circuits responsible of the sorting of data and the

temporal storing in further pipeline stages that prevent a mixing of data. If the shared

block operates with more adjacent pixels, the internal circular buffers are repeated a

number of time equal to shared processes in order to differentiate paths. After these

critical and accurate synchronization strategies the final throughput will be divided by

4 in the slower case or by 3 in the balanced solution and the hardware utilization will be

reduced as displayed in Table 5.2. Compared with a traditional sharing strategy, some

logic is added for the management of the multiplexing in time and for the temporal

buffers. Various intermediate solutions especially for phase processing can be adopted

for specific speed vs. data throughput trade-offs. In the second solution in Fig. 5.1 we

split the filtering stage in two parallel blocks, one for the optic flow that shares 3 filter
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Figure 5.1: Different sharing strategies are shown with a timing diagram. A fully parallel

implementation provides one data per clock cycle throughput while the slower sequential

approach achieves only one pixel in four clock cycles. The fully parallel architecture works

for 3 temporal images of optical flow and 2 images (left and right) for the stereo case.

The local features could use the input from the middle frame of the flow and therefore no

additional filter bank is required.
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Table 5.2: Hardware utilization for different number of steerable shared filters. Results

are provided by DK synthesis tool for 4 orientations filters.

# Banks Slices

1 1855

2 2829

3 3925

4 4275

banks and one for the stereo algorithm that shares 2 banks. With these intermediate

approaches the throughput will depends on the slower process, in this case we obtain

one pixel every three clock cycles (Fig. 5.1).

Note that, if required, the sharing strategies may also be extended through the

different filter orientations (using the same FIR filter circuitry but modifying the filter

taps values). In our case the reduction of hardware resources is only marginal because

sharing across orientation requires fully implementation of multipliers for the FIR filter

operation. Using fixed multipliers coefficients (no sharing), allows using FPGA logic to

implement simple multiplications (for instance for factor power of two). Consequently,

we do not get a significant hardware resources reduction by FIR filters sharing across

orientations and therefore this option has not been taken into consideration (in fact,

depending on the filters coefficients, there are situations where the ”sharing approach”

could even be more expensive). Going on with the analysis of sharing strategies we

realize from the first block estimation that a further parallelism of blocks is present

along orientations and frames. Both, optical flow and stereo, need arctangent cores for

the phase calculation with a total repetition of this core in 24 units for the first case

and 8 for the second (we are using the approximation of equation (2.5) described in

[43]). Adopting a proper management of data as previously described, the hardware

saved can achieve a maximum factor of 32 but with a drastic limitation in the global

throughput. In this case we can achieve a high number of sharing processes but the

maximum is not the optimum choice. First of all we opt for a first division in two big

cores, one for optical flow and another for stereo: arctangent for stereo has a different

input (crossed components) from optical flow. This allows a hardware saving in the

input data management. With this first separation we can share up to 24 arctangent

processing units (Fig. 5.2). Now for a further simplification on logic it is possible to
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Figure 5.2: Different sharing phase solutions: atan2 cores are the sames of stage 2 in Fig.

3.3 for stereo and in Fig. 4.2 for optical flow. Frame rates for a 512x512 resolution are

reported. Note that without sharing strategies the system uses 32 modules and achieves

57 fps.

adopt a sharing strategy along orientations or along frames, thus the maximum sharing

factor is 8 (number of orientations). In order to maintain the throughput obtained

with the shared filters, we choose a sharing along frames also for phase computation

in optical flow, while for stereo we share along orientations always maintaining the

throughput: only 8+4 (optical flow + stereo) arctangent cores are used.

5.4 System architecture exploration

As described in previous sections the whole system which includes the three different

functional blocks of Section 2.2 can be designed with multiple designer choices. After

the first general study we take advantage of the reconfigurable capabilities of FPGAs
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and we try to define a general solution that can be fitted in diverse platforms. This

can be customized in specific solutions, we focus on three different approaches: a low

cost approach that can be fitted in an economic platform, a balanced version with a

good cost vs. performance trade-off and a high performance version for system with

very competitive requirements. The implementation is synthesized for three different

chips in order of economic value and size.

5.4.1 Balanced implementation

The implementation of the algorithms presented in Section 2.2 is a significant design

challenge itself. If we want parallelize them and synthesize all of them in the same

chip, the complexity of the goal becomes even higher. A simple integration of existing

cores as the ones described in Chapter 3 and 4 is not affordable for a single device as a

Virtex4 xc4vfx100: our target device for a balanced medium cost implementation. The

previous analysis of Section 5.3 leads us to a performance vs. accuracy trade-off with

the following main choices:

• Sharing resources. This strategy is applied to stereo and optical flow separately

with a partial replication of filters paths.

• Use of 8 orientations for each algorithm.

• Steerable filters.

• 8 integer and 2 fractional bits limitation in convolution.

An important problem for this complex architecture is the memory utilization. Storing

the final output results requires 60 bits for each pixel: 12 bits for disparity, 24 bits for

optical flow, 8 bits for energy, 8 bits for local orientation and 8 bits for phase. Taking

into account that external memory addresses use words of 32+4 bits and that we

need reading and storing input images and partial results, it is clear that the memory

management becomes a very complicated task. In the optimal case we access to an

external memory address using only one clock cycle, but wrong memory management

scheduling can degrade this performance significantly. Therefore, we conclude that it

is definitely necessary a special memory controller unit (MCU) to manage the huge

quantity of data accesses. As described in [59], we adopt a special architecture with
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different Abstract Access Ports (AAP). This critical circuit is optimized in VHDL.

The whole system includes two main cores, one for the optical flow and the other

for the disparity; the local features (local contrast descriptors) processing is wrapped

in the stereo core (Fig. 5.3). The multi-scale architecture is replicated twice. The

optical flow expansion and warping are replicated, one module for the x component

and one for the y; the pyramid stage is shared between circuits and operates just

before the processing. It reads/stores images directly from/to external memory where

processing circuits (expansion and warping) read input images. Each block of the

Fig. 5.3 represents a complex design; in following sections we analyze some of them,

especially the mono-scale cores (gray boxes). All system modules have been described in

detail in Chapters 3 and 4 and are now integrated adopting a very fine design strategy

as described in Section 5.3. The first overview of the complete scheme in Fig. 5.3

illustrates the complexity of this novel architecture. A fine synchronization is needed

to interconnect different parts. We adopt basically special structures such as blocking

channels and FIFOs to connect in a large pipeline most of the processing circuits. Only

the synchronization between different scales is obtained by memory operations. This

is a further justification for the intensive use of the MCU module.

Warping module

The motion compensation (warping) operation in the multi-scale algorithm is a prob-

lematic issue for an FPGA circuit as we have seen in previous chapters. This kind of

devices are in fact well suited for local memory accesses but present some difficulty with

random memory accesses. The sequential accesses to memory restrict the performance

down to 4 pixels each 10 memory accesses. A similar circuit is used for rectification and

undistortion in the stereo circuit while warping for the stereo case can be simplified as

described in Chapter 3.

Optical Flow core

As described in Chapter 4 the optical flow core receives as input 3 different frames, a

control word, the clock and the image size; it computes velocity vectors and sends them

in an output channel (Fig. 4.2). It is divided in 5 different ”functional” stages that run

in parallel. To limit the hardware utilization we need to share the filtering stage and

the phase computation, so the processing core achieves a data rate of 1/3 pixels per

85



5. LOW LEVEL VISION ENGINE

Figure 5.3: Whole system architecture.

clock cycle: we have finally only one filter bank (Fig. 4.2) shared in three different clock

cycles and 8 arctangent modules for the phase. Summarizing the different processing

stages of the core, we have:

S1 Convolution with Quadrature pair filters.

S2 Phase calculation for each orientation with an arctangent core.

S3 Temporal filter: wrapping of phase values considering their periodicity.

S4 Velocity component computation as described in [40] and according to (2.2).

S5 Threshold operation and combination of valid values for each orientation for the

final velocity vector estimation according to (2.4).

In Fig. 4.2 we can appreciate different pipeline stages of the optical flow computing

core circuitry. In S1 and S4 we use some IP cores from Xilinx [3] to compute complex

operations such as arctangent (S1) and division (S4). Every line of arrows in the

figure represents a logic path that generally is related with an orientation. All the

different paths/orientations are computed in parallel. Parallel processing units adopting

a sharing strategy are reduced by 47% with respect to a fully parallel implementation

as presented in [96].
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Stereo core

The disparity core, as described in Chapter 3, is divided in three main steps and

similarly to the previous circuit it benefits from a fine pipelined design:

1. Even (C) and odd (S) filtering with quadrature filters pairs of left and right

images.

2. Disparity computation using equation (2.5) at each orientation and threshold

operation assuming k(x) ≈ K0

3. Choice of final disparity estimation between different orientations: median value

among orientations.

For a fully parallel architecture, this system needs two (left and right) second derivative

Gaussian filters of 9 taps, 7 atan2 cores with CORDIC algorithm [60] for the calculation

of equation (2.5) and a simple median circuit for choosing final disparity between 7

different orientations-based estimations. The filtering part takes also further 4 (half

filter size) image lines cycles to fill temporary FIFO convolution, this time represents

an extra latency to the total disparity computation. As in the optical flow system,

we have to share the filtering stage in time (multiplexing it) for hardware recourses

optimization, thus we finally have only one filter bank that processes left and right

input frames. Therefore, processing takes two clock cycles. Arctangent modules are

also shared: the final implementation uses only 4 cores.

Local features: energy, orientation and phase

Local features are embedded as a block included in the stereo core (Fig. 5.3). The choice

is motivated by the resource utilization strategy. Phase based local features and stereo

allow a high sharing strategy for these two cores. In fact energy, orientation and phase

need the same filtering stage; furthermore energy of images is used in stereo pipeline

to detect reliable disparity values. Orientation uses also energy components modulated

by trigonometric functions; a further arctangent core computes the final orientation

from the sum of real and imaginary parts modulated as in (2.24). The phase is a

hardware friendly version which consists in two adders (for real and imaginary sum of

filter output) and in an arctangent module (2.8). A similar approach for local features

in FPGA is described in [72].
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5.4.2 Low cost version

A low cost/performance implementation for a smaller Virtex 4 will need a reduced

accuracy and a different design strategy solution. We chose a xc4vfx60 chip with a

reduction in economic cost (price) of about 65% and in logic resources of 40%. This

implies a stronger sharing of resources and a consequent reduction of frame rate. In

this case only one bank filter is used for the whole processing. Filter output is stored

in circular buffers that provide data to three different cores: stereo, optical flow and

local features. We reduce also the number of orientations to only 4 accepting the loss

in accuracy studied in Section 5.3. The throughput is represented by the slowest case

of Fig. 5.1 and is equal to four pixels per clock cycle. As shown in Table 5.3 the system

achieves a frame-rate of 22.8 fps working with 512x512 pixels resolutions and save a

considerable amount of logic resources.

5.4.3 High performance version

If requested by a specific application and allowed by technologic and economic availabil-

ity, it is possible to increase the computational power and the accuracy of the system.

First of all, this approach can benefit from a fully parallel architecture as discussed in

section 5.3.1 and achieves a throughput of one pixel per clock cycle. A modification

to the warping module is necessary in order to preserve this high processing capability

as described in next section. This approach is not possible in an economic platform in

which memory banks are not sufficient. A modern chip as a Virtex 5 is equipped with

a large amount of logical resources compared with a older technology as a Virtex 4:

approximately up to 4 times more in logic cells. An improvement in accuracy is afford-

able with a change of steerable filters for the more accurate and expensive separable

Gabor filters. Accuracy gains in synthetic and real sequences obtaining errors equal to

system described in [96] and [97] and reported in Table 5.3.

Improved warping

A fully parallel circuit for warping also in optical flow can be obtained with a major

use of external memory. The original circuit operates in a sequential approach for a

random external memory access. A parallel access can be adopted with a previous allo-

cation of four pixels neighborhood (window for the bilinear interpolation) in the same
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Figure 5.4: Warping improvement. For each pixel of the input image we store in external

memory all the values of its 2x2 neighborhood. In the traditional approach (upper part)

consecutive pixels are stored. In the improved warping (bottom) the same pixel is repeated

4 times.

memory address. This approach needs more external memory resources: input data

are replicated four times. The preallocation is operated before the warping operation.

Pyramid data are previously stored in internal circular buffers and 2x2 windows are

reallocated in the same memory address. In this way the warping process need only

one clock cycle to access to them. In this way the fast access of FPGA to local data

benefits the future random processing. As indicated in Fig. 5.4 the cost in terms of

memory addresses increases with a factor 4 for all the image pyramid.

5.5 Case study: Implementation on a XircaV4

We present in this section an example of co-processing board that uses the balanced

architecture of Section 5.4.1. The circuit runs on a XircaV4 board produced by Seven
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Table 5.3: Comparison for different platform implementations. Frame rates are for

512x512 resolutions and power consumption is estimated by Xpower tool. Errors are

reported for ”Tsukuba” and ”Yosemite” sequences (further validations are in Chapters 3

and 4). Prices are taken from [5].

FPGA LUTs Power Frame Freq. Price GigaOPS Accuracy

occupied Consumption rate (MHz) (US Dollars) (MAE / AE)

Virtex4 xc4vfx60 46202 3.8 W 22.8 42 904 25.9 1.31 / 12.9

Virtex4 xc4vfx100 76828 7.2 W 28.6 42 2,084 92.3 0.97 / 9.99

Virtex5 xc5vlx330t 168534 5.5 W 57.2 53 12,651 165 0.84 / 4.69

Solutions [61] and described in Appendix 8. We use the hardware/software interface

described in [98] for communication between the user, the cameras and the FPGA plat-

form. The whole system consists of a co-processing FPGA board and a host computer

connected by the PCI Express interface.

5.5.1 Memory organization and access scheduling

A proper memory mapping has been realized to maximize the parallel access to all

memory resources. A balanced and optimized solution is that the MCU provides 3

reader AAPs and 2 writer AAPs for each external memory bank. This memory mapping

detailed in Fig. 5.5 has been optimized for the XircaV4 platform and for 4 memory

banks. Two banks are used for the double buffer (DB1 and DB2), a third bank is used

as Optical flow buffer (OFB) and the last one as Stereo buffer (SB). Green data in Fig.

5.5 use 8 bits for each pixel, red and gray data use 12 bits, the first ones store 2 pixels

per address and the second 3 pixels per address. This scheme can be improved with

a different platform where more banks are available. Concurrent accesses are possible

thanks to the use of multiple banks and to the faster clock domain of the MCU.

5.5.2 System performance

We adopt a sharing strategy in which some parts of the circuit work in a sequential

mode (see Section 5.3) for saving power consumption and fit into a Virtex 4: a fully

parallel implementation can fit in a modern FPGA (Virtex 5 or 6). This leads to a

limitation in the processing speed. For both cores we share the input filters stages and

limit the data rate to one pixel every two clock cycles for stereo and to one pixel every
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Figure 5.5: Memory mapping for a XircaV4 platform. Note that an MCU is mandatory

for a parallel access to all this data.

three clock cycles in the optical flow. The two cores run in parallel with different data

paths; the worst one is the optical flow for which the processing takes:

C = 1 + sI + (s+ 3)I (5.1)

Where I is the image resolution (width by height) and s is the scale factor and depends

on the number of scales as indicated in (3.3). First term in (5.1) is related to the

pyramid computation operation (first operation before starting the flow computation)

and the second one is related to the processing engine: the number 3 is because the

processing core takes 3 clock cycles because of sharing the filter bank between input

frames. Circuit latency is negligible compared to the number of cycles of the whole

processing data-path. With equations (5.1), (3.3) and the clock frequency we can

calculate the frame rate for different image sizes simply dividing frequency by C; if we

choose the maximum clock frequency allowed by the circuit (42 MHz) we obtain a frame

rate of approximately 28 fps for a 512 by 512 image. Table 5.4 reports the frame rate for

different image resolution and number of scales. The frame rate of the first row (a mono-

scale version) is limited by the PCIe interface bandwidth that for our platform has 130

MB/s (empirical measure). For this reason compression techniques or more advanced

schemes as the condensation mechanism presented in [99] can be realized in order to

reduce the transferred data and improve the frame rate. Due to the novelty of this
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Table 5.4: Frames per second at different image size and number of scales (results experi-

mentally measured with the balanced system running). Clock set to 42 MHz. A mono-scale

processing will be faster but is not accurate for large/fast movements and significant dis-

parities.

Size # scales Frames per second

512x512 1 53.4

512x512 4 28.6

640x480 4 24.2

640x480 5 24

720x576 4 17.8

work it is difficult to make a direct comparison with the state of the art. There are no

other approaches including all these different primitives on the same chip. Nevertheless

we can remark the main features of the system and its significant computation power.

Existing systems as [20] include a considerable number of parallel processing units. This

approach was a processing engine with a computational power of 12.4 Giga-Operations

per second (GigaOPS). Our system, with 2221 parallel processing units and a frequency

of 42 MHz is able to compute 93.3 GigaOPS (see Table 5.3). Furthermore if we take

in account the low power consumption, near 7.2 W (estimation obtained by Xilinx

Xpower analysis), we have 12.9 GigaOPS/W. Other engines as DaVinci from Texas

Instruments or Blackfin from Analog Devices obtain respectively 4 MegaOPS/W (4.8

MIPS / 1.2 W according to datasheet [100]) and 2.16 GigaOPS/W (1512 MMACs / 1.4

W according to datasheet [101]). Their computation power is far below the our system

performance, therefore several of these engines would be necessary to process all the

primitives included in our system. This would lead to a multi-core implementation of

high complexity. Taking into account that the low-level vision represents the higher

computational cost in a vision system, it becomes clear the importance of this high

performance vision engine.

5.5.3 Results in real and synthetic sequences

As we saw the system processes at the same time, optical flow, disparity, energy, phase

and orientation. In the literature is not available a sequence with ground truth for
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Figure 5.6: Screen shot of software interface while running a full processing in a driving

scenario. First row, left to right, input left image, local orientation, phase information

and stereo information. Second row, local energy, user interface and optical flow direction

according to the color code at the image frame. Note that all these features are running

simultaneously on the same chip.

all these primitives. So we adopt existing data sets for separate features, especially

stereo and optical flow. Data sets and their respective ground truth are available in

[2] where is possible a comparison with the state of the art approaches. For each

single modality we achieve the same accuracy detailed in previous chapters. Due to

the limitation in hardware recourses (Table 5.3), for the XircaV4 it is not possible

to operate any kind of post-processing or regularization on-chip, therefore we have

raw results worst in quality than the evaluation rates reported in [2]. Nevertheless, just

using simple techniques such as median filters (see Appendix 7) and a high performance

architecture we can significantly reduce the error rate (Table 5.3). Therefore, median

regularization operations will be included, if more resources are available (as in the high

performance version on larger devices). Fig. 5.6 gives a qualitative representation of a

real sequence result for all modalities running in parallel. It is possible to see also the

software interface; in the main window the user can choose on the loop the primitives

to display.
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5.5.4 Results discussion and potential applications

This work is the result of research and development in FPGA platforms. We can un-

derline the long time-to-market for this complex architectures especially if compared

with the methodology adopted in GPUs [102]. The design strategy addresses a fine

pipeline architecture in opposition to a multi-core implementation, typical in modern

approaches (GPUs, general purpose processors). Our approach produces large pipelines

affording glitches and reduces the power consumption. Despite working at low frequen-

cies (42 MHz for the balanced implementation) the architecture can achieve a great

processing power. Advantages of a multi-core architecture can be added in more ex-

pensive chips: with a throughput higher than one pixel per clock cycle. Novelty of

work does not allow a comparison with other approaches but we have estimated and

compared the achieved on-chip computing power with other alternatives. Our system

can be included in smart cameras for industrial applications where our device is able to

handle massive pre-processing operations such as local features, disparity and motion.

A secondary stage (based on commodity processors) could process the produced data

stream for a specific application (pick and place, quality inspection, motion analysis,

etc). Currently in the industry we have low level vision solutions integrated as smart

cameras specialized or image processing tools [103, 104]. Local features information

(mainly energy for edge detection) is provided for many systems. Our system improves

current systems in terms of processing speed. There are systems that provide dis-

parity computation information [105, 106]. These approaches mainly represent a low

accuracy processing based on simple algorithms as Sum of Absolute Differences (SAD).

Our approach overcomes these existing solutions in terms of accuracy and robustness (a

critical issue for industrial applications) because the adopted model is based on phases.

Finally, no smart cameras are extracting optical flow in real-time. As alternative, we

could compute it in software using a PC with vision libraries [107, 108] but due to the

large processing time required, this approach drastically constraints the final feasible

applications. The presented architecture is able to provide at the same time diverse

primitives easy to integrate with a software application running on a PC. This facil-

itates the development of a powerful vision system for many industrial applications,

from vision inspection systems (working as a high performance smart camera), to more

complex system (for instance for dynamic robotics applications). In fact, with this
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architecture is even possible to control complex and novel industry processes such as

the fluid control that require real-time constraints and that are not feasible for state of

the art industry processors [109, 110].

5.6 Conclusions

A complete study for hardware design techniques is presented. The main purpose is

the presentation of different strategies for a complex low level vision processing engine

with different requirements and available resources. This work demonstrates that with

specific techniques it is possible to target different system specifications. Limitations are

defined by user and depends on available technology, cost and time-to-market. Strict

requirements need obviously more developing time. In order to proof our hypothesis we

choose a complex algorithm of the computer vision field especially well suited for real-

world applications due its robustness to noise or illumination changes. The algorithm

adopted is a high performance phase-based approach previously studied in various

works [54].

The chapter describes a high performance low level vision engine implemented on

a single chip. It computes in real-time different vision modalities: motion, stereo and

local contrast descriptors such as energy, orientation and phase. Integrating processing

cores of these different modalities on a single architecture is a complex task. The simple

adding of the single modality cores would require 3268 parallel processing units and

an unaffordable memory access rate. This work describes resources sharing techniques

that allow the implementation of specific architectures addressing different performance

vs. cost trade-offs. A balanced system uses only 2221 parallel processing units and rep-

resents an approximate hardware resource reduction of 32% with respect to the simple

add-on of the different cores, while maintaining high accuracy: 50% of performance re-

duction in terms of Megapixels per second and only 28% of accuracy reduction (joined

stereo and optical flow).

A lot of parameters can be set for an ad hoc solution. Detailed studies for bit-

width, sharing strategies and algorithm modifications are illustrated in this work. A

balanced architecture that achieves real-time in 512x512 images is presented with a

deeper detail level. At the same time two further designs are evaluated in order to fulfil

other user requirements as low power/resources consumption or high performance. The
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high performance implementation computes 165 GigaOPS (with a system clock at 50

MHz) at low power consumption (approximately 30 GigaOPS/W). This represents an

outstanding processing power vs. energy consumption trade-off. Rather than a single

implementation, this work presents a design and integration strategy, it evaluates dif-

ferent resources sharing techniques and illustrates the versatility of FPGA based system

that can be easily adapted to diverse target platforms to fulfil cost vs. performance

specifications. The high number of parameters and their combination lead to a very

complex study, but it is useful to illustrate the versatility of the designs and its easy

adaptation to different design constraints. The methodology adopted in this example

can be generalized to many other processing tasks. The experience of the designer

plays an important role in this cases and affects the time-to-market and the quality of

adopted solutions. To the best of our knowledge this study and this architecture repre-

sent a novel contribution. In fact, it represents one of the most complex vision engines

ever designed on a single FPGA device. It can cover an important role as well in indus-

trial applications as research fields. The natural evolution of this novel low-level vision

engine in the oncoming future is to study its integration with with middle-level vision

in hybrid hardware/software co-design. Further optimization in pipelines and synthesis

efforts can be adopted for future improvements in the maximum clock frequency. This

future study implies a larger hardware utilization but allows in the same time a better

throughput.
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Discussion

6.1 General work motivation

The main aim of this work is the study and the implementation of a low level vision

system on chip. Preliminary studies and experiments demonstrate that a phase-based

approach is a good candidate for a complex and accurate multi-modal vision engine.

Despite the algorithm is not the best option in terms of accuracy amongst all the

works proposed in the literature, our choice is justified not only by the robustness of

the phase in unconstrained scenarios but also by the general purpose of the phase for

different features detection as stereo, local energy, local orientation and local phase

besides optical flow computation, ego-motion, phase congruency, etc. [54]. Thus this

multi-orientation algorithm allows addressing all these vision cues computations with

the possibility of sharing a significant amount of circuits for the early and middle vision

processing. Previous works address the single modality problem (motion or stereo) with

very high frame rates or accuracy but the majority of them do not conjointly study the

complementary benefits of computation accuracy and high frame rates (for instance in

optical flow processing) on the same approach. For this purpose the work methodology

is based on a fine grain pipeline and on a novel multi-scale architecture. The first one is

rarely used in literature (since it requires a very structured design) and it is substituted

for multi-core approaches, more expensive in terms of power consumption. The second

one, as far as we know, has been never implemented in reconfigurable devices. It

represents a novel contribution and the definition of this architecture can be reused for

different kinds of image processing models or algorithms. After an exhaustive study and
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the implementation of different single modalities such as stereo (Chapter 3), optical flow

(Chapter 4) and local descriptors (Chapter 3), the work focuses on the study of a global

low level vision engine that assembles all the previous architectures. This ambitious

aim has been never afforded in the literature and represents a novel contribution to the

research and the development of architectures based on FPGA devices. The design of

the system includes the study and the definition of many parameters and architecture

choices that can generate a widespread range of solutions. We demonstrate in Chapter

5 that an architecture can be defined following different user requirements and its final

implementation will be significantly different in terms of hardware utilization and power

consumption. Our initial aim of a global low level vision engine in the same chip has

been completely solved and an accuracy vs. costs trade-off solution is implemented as

a co-processing board. The system computes multi-scale optical flow, stereo and local

contrast descriptors (energy, orientation and phase) at 28.6 fps (image resolution of

512x512). The balanced implementation offered for a Virtex 4 chip consists of 2221

parallel processing units on the same chip, computing 92.3 GigaOPS (with a system

clock at 42 MHz) at low power consumption (approximately 12.9 GigaOPS/W). A

further high performance architecture for Virtex 5 has been studied and achieves a

throughput of 165 GigaOPS (30 GigaOPS/W). Such solutions may be of interest in

many application fields as medical imaging, robotics, industrial and automotive areas.

6.2 Future works

As we know the low level vision stages require the major part of the computational

power for a vision system. With this massive processing implemented in a single chip

it will be possible integrating diverse middle or high level vision tasks at a reduced

cost. These tasks may be addressed with the co-design HW/SW of novel and powerful

embedded systems: current FPGAs include embedded processors as PowerPCs. Fur-

thermore it is possible to build more complex visual descriptors based on second-order

motion properties. For example the perception of motion in depth, the computation

of heading, ego-motion or detection of Independent Moving Objects (IMOs) in which

are absolutely necessary the first-order primitives computed by our low level vision

system. In order to improve the system portability it is possible the development of a

stand-alone board starting from the defined architecture. New interface with cameras
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and video output can be included in the adopted platform for robotics issues. In terms

of circuitry, further optimizations of logic and major efforts in synthesis can improve

the working clock frequency. This implies more hardware utilization but in the same

time a major throughput.

6.3 Publication of results

Our research work has been evaluated in the framework of international conferences

and scientific journals (with impact factor on the JCR).

[1] M. Vanegas, M. Tomasi, J. Dı́az, E. Ros, Multiport abstraction layer for FPGA

intensive memory exploitationapplications, accepted to Journal of System Archi-

tecture (2010)

[2] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, High performance optical

flow architecture based on a multiscale and multi-orientation phase-based model,

accepted to IEEE Trans. on Circuits and Systems for Video Technology (May 2010)

[3] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, E. Ros, Real-time architecture for

a robust multiscale stereo engine, submitted to IEEE Trans. on Image Processing

(submitted in 2009)

[4] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, Fine grain pipeline archi-

tecture for high performance phase-based optical flow computation, submitted to

Journal of System Architecture (Submitted in 2009, reviewed with minor revision)

[5] M. Tomasi, M. Vanegas, F. Barranco, J. Dı́az, E. Ros, Arquitectura multiescala de

cálculo de flujo óptico basado en la fase, in: IX Jornadas de Computación Reconfig-

urable y Aplicaciones. JCRA2009, 2009, pp. 295–304, IX Jornadas de Computación

Reconfigurable y Aplicaciones. JCRA2009

[6] M. Tomasi, J. Dı́az, E. Ros, Real time architectures for moving-objects tracking,

in: (ARC2007), Lecture Notes in Computer Science, Vol. XXX, 2007, pp. 365–372

[7] M. Tomasi, M. Vanegas, F. Barranco, J. Dı́az, E. Ros, A novel architecture for a

massively parallel low level vision processing engine on chip, ISIE2010. Accepted to
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[8] F. Barranco, M. Tomasi, M. Vanegas, S. Granados, J. Diaz, Entorno software

para visualización y configuración de procesamiento de imágenes en tiempo real

con plataformas reconfigurables, in: IX Jornadas de Computación Reconfigurable y

Aplicaciones. JCRA2009., 2009, pp. 327–336, IX Jornadas de Computación Recon-

figurable y Aplicaciones. JCRA2009

6.4 General Scientific Framework

This scientific work has been done and funded by the European Project DRIVSCO:

Learning to emulate perception action cycles in a driving school scenario (IST-016276-

2). This has represented an excellent collaborative framework with diverse research

groups at other European Universities and research institutions. The presented work

represents the major contribution of the University of Granada in this DRIVSCO con-

sortium. Therefore, a high responsibility in obtaining timely the planned results was

necessary during the whole investigation process. Besides the required technical reports,

presentations for EU scientific reviews, a final demo (proof of concept) was required and

implemented. The effort invested in this demo is significant but allows easy evaluating

of the system performance and also facilitates the dissemination of results beyond a

pure scientific scenario, towards industrial future collaborations and also impact in the

media (newspapers, TV, etc).

The work required a very close collaboration with different researchers at the lab.

It required a lot of efforts in making the different modules and designs easy to be

integrated in other architectures and also the inclusion of modules designed by these

collaborators. This has required high collaborative and coordinated work with the

working team.

6.5 Main contributions

We now summarize the main contributions of the presented work:

• Among different algorithms in computer vision a phase-based approach has been

chosen. A comparative study of robustness is done justifying that the approach

is suitable for an accurate low level vision computation.
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• An algorithm modification is adopted in order to adapt it to a proper hardware

implementation. An exhaustive study of accuracy vs. performance trade-off is

done.

• The system has been designed as a deep finely grained pipelined datapath (with

several superscalar stages) to maximize the processing parallelism. This design

strategy is very exigent in terms of synchronization, external memory support

and data dependencies.

• A novel multi-scale architecture with warping is presented. Comparison with

mono-scale approaches confirms that this algorithm extension is useful for accu-

racy improvements and working range enhancement. To the best of our knowl-

edge, in hardware this approach has never been addressed before.

• The defined architecture has been applied to different single modality algorithms

as stereo, optical flow and local descriptors (energy, orientation and phase). A

comparative evaluation study with the state of the art rates the presented imple-

mentation as a very competitive one with respect to existing hardware solutions.

• A global early processing system including optical flow and stereo has been im-

plemented. A lot of parameters are analyzed in order to relate structural changes

(design decisions) with their impact onto the final system performance. A proper

performance vs. cost trade-off is obtained.

• The study of system parameters conclude with an interesting comparison of three

different architectures: a low cost one, a balanced one with a good performance

vs. cost trade-off, and a high performance version.

• The implementation of the balanced solution in a co-processing board achieves a

very high computational power. The system consists of 2221 parallel processing

units on the same chip, computing 92.3 GigaOPS (with a system clock at 42 MHz)

at low power consumption (approximately 12.9 GigaOPS/W). This represents an

outstanding processing power vs. energy consumption trade-off.

• The high performance architecture studied achieves up to 165 GigaOPS (30 Gi-

gaOPS/W), but due to its high cost, it can be adopted only in few critical appli-

cations.
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Appendix A

7.1 Optical Flow and Stereo regularization

In order to improve results in accuracy, it is possible introduce multiple regulariza-

tion techniques to properly average values and reject noisy estimations of the algo-

rithm. Many techniques are possible such as simple values averaging, complex iterative

schemes such as anisotropic diffusion, spatial Kalman filtering, etc. [34, 116]. A good

trade-off between robustness to noise and complexity is possible with a simple median

filter. This has motivated our choice as regularization method for the hardware system.

Nevertheless, note that depending on the size of the median filter, the spatial accuracy

can be affected and the mean error increases. In this section we study the variation

of error with different kinds of median filters. A final hardware implementation will

depend on available resources and from accuracy level.

7.2 Regularization on Optical Flow

To the original algorithm we apply a median filter: along each scale and after the

merging of values. The hierarchical process uses four scales of the Gaussian pyramid

and Gabor filters with 11 taps. Evaluation tests are made with a software simulator of

the hardware system (described on MATLAB code) and for different input sequences.

Results on different tables and figures show that starting from a kernel size larger than

a 5x5 window over-regularize the results, decreasing the accuracy of the system. The

median filter does not take into account rejected low confidences (considered as invalid

values or NaN) and calculates the median value only over the valid ones. Note that for
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Table 7.1: Errors for the Yosemite sequence. HW Matlab model.

Median AE Std Dens

0 10.93 13.7 70.37

3x3 4.87 9.47 83.5

3x3 (2 times) 4.5 9.07 89.12

5x5 4.24 8.95 89.6

7x7 4.58 10.15 94.75

9x9 4.91 10.48 96.82

11x11 5.68 12.7 98.11

Table 7.2: Errors for the Urban2 sequence. HW Matlab model.

Median AE Std Dens

0 22.08 26.54 66.04

3x3 17.38 23.26 72.52

3x3 (2 times) 16.95 22.73 79.54

5x5 18.08 24.13 80.52

7x7 19.34 24.82 89.2

this reason the density increases with the size of the filter. Optical flow quantitative

results are offered only for sequence with ground truth, available in [2]. We process also

a real driving sequence from [117], in this case is possible evaluate only the qualitative

results.

As shown in the figures the quality improvement is remarkable. The best choice is

the 5x5 kernel or alternatively a coarse approximation based on two consecutive 3x3

median filters operations.

7.3 Regularization on stereo

For the stereo algorithm we repeat the same procedure. According to the results found

for the optical flow, we demonstrate that median filter kernel size has an inflection

point. Better results are achieved with the cascade of two 3x3 median filters. Note the

great improvement from raw results to the regularized ones, especially in real sequences

(Fig. 7.6).
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Figure 7.1: Optical flow regularization: yosemite. - Vx component for Yosemite

optical flow with a HW model computation: red values represent a positive velocity, blue

a negative.

7.4 Hardware implementation

After a preliminary study we evaluate different median implementation approaches.

The best results are found using 5x5 kernels (which requires a large number of FPGA

resources) and by the cascade 3x3 filter approach. The bigger computational effort is

represented by the sort operation. It obviously grows with the size of the filter. In order

to reduce this problem as stated in [118], a 3x3 median filter can be applied recursively

and is equivalent to a bigger one depending from the number of iterations. For this

reason we implement a median filter composed by two cascade 3x3 median filters. A

larger number of cascade filters could be employed in order to better approximate the

5x5 median filter but we do not found relevant improvements in our results thus we

do not increase the number of filters beyond two. Two different schemes for the 3x3

median filters have been implemented. The first one is a classic method with a nine
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Figure 7.2: Optical flow regularization: urban2. - Vx component for Urban2 op-

tical flow with a HW model computation: red values represent a positive velocity, blue a

negative.

values sorting and a tree based architecture that swap values in N clock cycles. Properly

pipelining techniques are used to translate this delay into latency avoiding performance

degradation at cost of large number of flip-flops utilization. The second alternative uses

the properties of the sliding windows as stated in [119] and operates with only sorting

of 3 values. In this second case, synthesis tools instantiate a multiplexer. Table 7.5

reports the hardware utilization for the two methods.

7.5 Conclusions

Experiments with a regularization filter demonstrate its key role in an iterative hier-

archical model as the phase-based one adopted in this work to reduce model error due

to matching outliers. Note that wrong values produce wrongly warped images and

these errors propagate along the image pyramid. The application of a simple median
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Table 7.3: Errors for the Tsukuba sequence. HW model.

Median MAE Std Dens

0 1.06 1.43 97.22

3x3 0.98 1.39 98.44

3x3 (2 times) 0.96 1.4 99.14

5x5 1.09 1.55 99.22

7x7 1.15 1.68 99.74

9x9 1.32 1.9 100

Table 7.4: Errors for the Venus sequence. HW model with 5 scales.

Median MAE Std Dens

0 1.54 2.64 97.91

3x3 1.62 2.85 100

3x3 (2 times) 1.6 2.8 100

5x5 1.96 3.48 100

7x7 2.44 3.98 100

9x9 2.98 4.46 100

Table 7.5: Hardware utilization for two different implementations of a 3x3 median filter.

The design run in a Xilinx Virtex4 xc4vfx60. The edif netlist generated by the DK Suite

5.

Circuit Slices LUTs DSP48 BRAM Max. Freq.

Median Sorting 3 1554(6%) 1848(3%) 0 8(3%) 125 MHz

32 bit

Median Sorting 3 570(2%) 697(1%) 0 2(1%) 128.5 MHz

8 bit

Median Sorting 9 1443(5%) 1903(3%) 0 8(3%) 131.5 MHz

32 bit

Median Sorting 9 616(2%) 827(1%) 0 2(1%) 159.2 MHz

8 bit
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Figure 7.3: Optical flow regularization: real sequence. - Vx component for a

real driving sequence optical flow with a HW model computation: red values represent a

positive velocity, blue a negative.

filter improves accuracy and density as shown in synthetic and in real scenarios. The

quantitative evaluations have been estimated for synthetic sequence with ground truth

validating our qualitative hints. Quantitative results indicate that the optimum solu-

tion for the majority of analyzed cases is the cascade of two median filters with a 3x3

kernel. Different hardware implementations of a 3x3 median filter have been studied.

A recursive application of the same 3x3 median is equivalent to a bigger median filter:

depending from the application and the chip size is possible replicate the implemented

filter to obtain optimum results. In our case we adopt for the phase-based algorithms

the optimum solution found with a previous study. Further replications of the median

filter mean a bigger hardware utilization that is not translated in a significant accuracy

improvement. The median based regularization can be applied also to different hierar-

chical approaches. Implemented median filter can be used for these other algorithms

after a proper preliminary study as a solution with a good trade-off performance-effort.
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Appendix B

8.1 Co-processing platform: software and hardware inter-

faces

This appendix explains the global environment of the system implementation. In fact

in order to obtain such a complex system diverse designers have participated. As

previously asserted in the introduction, our work focuses mainly on processing cores

and the multi-scale architecture. However for the complete implementation we need

other important parts developed by other engineers of the group. For the sake of

clarity in this appendix we give a brief description of this parts (Memory Controller

Unit, software interface) and of the system platform manufactured by Seven Solutions

[61]: spin-off company from the University of Granada. The final system is represented

by a co-processing platform connected to a host with a stereo pair of cameras (Fig.

8.1).

8.2 FPGA board

The XircaV4 platform used for our system implementation includes as input/output

interfaces:

• 1 PCIe 1x interface

• 2 ethernet ports

• 1 RS232
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Eth t FPGAEthernet FPGA

PCI Express
St CStereo Cameras

Figure 8.1: Co-processing platform. - The XircaV4 is used as a co-processing board

and communicates with host through the PCIe interface. Stereo pair of cameras can be

adapted to user requirements.

• 1 jtag port

• 2 rocket IO transceivers (SMA)

• 20 expansion pins

It includes a Xilinx Virtex 4 xc4vfx100 FPGA and can include every FPGA with

package ffg1152. The platform represent a powerful co-processing board and it can

be configured as stand-alone board thanks to its independent DC alimentation. For

processing purpose it includes 2 different oscillators (125 MHz, 100 MHz) and one

more for the PCI interface at 66 MHz. Furthermore this platform is suitable for video

processing thanks to its amount of external memory:

• 4 SRAM memories of 72 Mbits (2Mx36)

• 2 DDR memories of 512 Mbits
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• 4Kb IIc EEPROM

One of the advantages is the presence of many memory banks with independent accesses,

it allows parallel memory operations. One of the problems is the PCIe bandwidth,

experimentally we measure 130 MB/s and this is not sufficient for a fast massive process.

Our system saturates the bandwidth at 44 fps for VGA images.

8.3 Memory Controller Unit

The Memory Controller Unit (MCU) has been designed by M. Vanegas and is fully de-

scribed in [59]. It controls the external SRAM banks through different Abstract Access

Ports (AAPs). Taking into account that hardware designs on FPGA technology are

generally slower than memory chips, the shared memory scheduler uses communication

port arbitration based on a fast memory controller with AAPs running slower than the

memory controller. Hence the whole design has two clock domains, thus the hardware

accessing to data through ports can be concurrent in the AAP clock domain if the

ratio between clock frequencies (memory controller frequency over the AAP frequency)

is at least the number of AAPs. To achieve a better level of abstraction, the MCU is

provided with two kinds of AAPs for reading and writing over memory and consists

of several ports (readers and/or writers) depending on the system requirements. The

interface scheme is shown in Fig. 8.2, where a block diagram of the MCU with two

channels (three request interfaces) is presented. The port interface is based on standard

FIFO structures.

AAP arbitration incorporates a scheduler attendant based on hierarchical priority

for ensuring global attendance to the same bandwidth per AAP. This does not simply

a multiplexing scheme but rather a continuous uniform bandwidth distribution per

access. The scheduler attendant just ensures access to memory from all AAPs without

trading emerging behaviour necessities of upper levels in the system.

8.4 Software interface

The co-processing board solves only processing tasks but in our case does not have a di-

rect connection with input cameras or output devices. Thus a host PC with a software

interface is needed to perform this task. The software used (designed by F. Barranco)
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Figure 8.2: MCU interface scheme. - Block diagram of MCU architecture for a 2

AAPs configuration case.

is available in http://code.google.com/p/open-rtvision/ and has been developed

in the Granada University for the DRIVSCO project. The application runs in the com-

puter, acquiring the images from the cameras and sending this processed information to

the co-processing platform using the PCIe or the PCI interfaces depending from plat-

form. Once, the hardware computation is completed, the application reads the results

from the board memory and post-processes the results for an appropriate visualization

or storage. Software and hardware interface libraries provides the communication be-

tween the computer and the platform. This communication is implemented using two

different handshaking protocols: the first one is needed for the parameter pass and the

communication channel establishment, the second one performs the transmission using

a double buffer or ping-pong scheme. The list of parameters is useful for the processing

and for the reuse of the circuits with different environment or camera configurations.
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8.5 Camera set-up

In this way we fully benefits the advantages of a reconfigurable device. The software

interface has been developed using the Visual Studio .Net 2003 and 2005 environments.

Furthermore, it uses different libraries and software packages for the optimization of

the data management: OpenCV, OpenMP, IPP. Further optimization of the code are

used for the fulfilling of a real-time communication: minimization of the read and write

operations to disk and the cache faults, loops unroll and use of threads for the recording

computation.

8.5 Camera set-up

Different stereo pair cameras have been adopted to validate the architectures. For all

of them an off-line processing for the undistortion and calibration LUTs has been done.

The calibration tool for the MATLAB environment has been developed by Jarno Ralli

for the DRIVSCO [22] framework. In particular, these three different setups have been

validated:

1. Philips SPC 1300NC webcams

2. AVT Guppy F036C firewire cameras (high frame rate)

3. Dalsa Coreco cameras with camera-link interface (high resolution)

They represent different solutions suitable for any kind of application. For low cost

applications the Philips webcams are the better choice, for mono-scale optical flow

algorithms we used the Guppy cameras (90 fps) and for the validation in the DRIVSCO

project we used the Dalsa cameras (mounted also for a car system prototype).
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[91] R. Aǵıs, E. Ros, J. Dı́az, R. Carrillo, E. M. Ortigosa, Hardware event-driven

simulation engine for spiking neural networks, International Journal of Electronics

94 (5) (2007) 469–480. 76

[92] T. Q. Vinh, J. H. Park, Y.-C. Kim, S. H. Hong, FPGA implementation of real-

time edge-preserving filter for video noise reduction, Computer and Electrical

Engineering, International Conference on 0 (2008) 611–614. doi:http://doi.

ieeecomputersociety.org/10.1109/ICCEE.2008.61. 76

[93] M. E. Angelopoulou, C.-S. Bouganis, P. Y. K. Cheung, G. A. Constantinides,

Robust real-time super-resolution on FPGA and an application to video enhance-

ment, ACM Trans. Reconfigurable Technol. Syst. 2 (4) (2009) 1–29. doi:http:

//doi.acm.org/10.1145/1575779.1575782. 76

[94] R. Bannister, D. Gregg, S. Wilson, A. Nisbet, FPGA implementation of an image

segmentation algorithm using logarithmic arithmetic, Vol. 1, 2005, pp. 810–813.

doi:10.1109/MWSCAS.2005.1594224. 76

128

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.89
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.89
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ReConFig.2009.53
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ReConFig.2009.53
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/AHS.2009.59
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/AHS.2009.59
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICCEE.2008.61
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICCEE.2008.61
http://dx.doi.org/http://doi.acm.org/10.1145/1575779.1575782
http://dx.doi.org/http://doi.acm.org/10.1145/1575779.1575782
http://dx.doi.org/10.1109/MWSCAS.2005.1594224


BIBLIOGRAPHY

[95] J. Diaz, E. Ros, S. Mota, R. Carrillo, Local image phase, energy and orientation

extraction using FPGAs, International Journal of Electronics 95 (July 2008) 743–

760(18). doi:doi:10.1080/00207210801941200. 77

[96] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, High performance optical

flow architecture based on a multiscale and multi-orientation phase-based model,

accepted to IEEE Trans. on Circuits and Systems for Video Technology (May

2010). 86, 88

[97] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, E. Ros, Real-time architecture for

a robust multiscale stereo engine, submitted to IEEE Trans. on Image Processing

(submitted in 2009). 88

[98] F. Barranco, J. Dı́az, E. Ros, B. n. Del Pino, Visual system based on artificial

retina for motion detection, Trans. Sys. Man Cyber. Part B 39 (3) (2009) 752–762.

doi:http://dx.doi.org/10.1109/TSMCB.2008.2009067. 90

[99] S. Granados, S. Mota, J. Dı́az, E. Ros, Condensación de primitivas visuales de

bajo nivel para aplicaciones de procesamiento en tiempo real, in: VIII JCRA.

Madrid (Spain), 2008, p. XX, vIII JCRA. Madrid (Spain), Pp.XX. 91

[100] M. Bhatnagar, Tms320dm6446/3 power consumption summary, Tech. rep., Texas

Instruments, application report SPRAAD6A (February 2008). 92

[101] J. B., Estimating power for adsp-bf561 blackfin processors, Engineer-to-engineer

note ee-293, Analog Devices (June 2007). 92

[102] B. Cope, P. Y. Cheung, W. Luk, L. Howes, Performance comparison of graphics

processors to reconfigurable logic: A case study, IEEE Transactions on Computers

59 (2010) 433–448. doi:http://doi.ieeecomputersociety.org/10.1109/TC.

2009.179. 94

[103] PtGrey products: http://www.ptgrey.com/products/bumblebee2/index.asp.

94

[104] NI Smart Camera: http://sine.ni.com/nips/cds/view/p/lang/en/nid/

205959. 94

129

http://dx.doi.org/doi:10.1080/00207210801941200
http://dx.doi.org/http://dx.doi.org/10.1109/TSMCB.2008.2009067
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2009.179
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2009.179
http://www.ptgrey.com/products/bumblebee2/index.asp
http://sine.ni.com/nips/cds/view/p/lang/en/nid/205959
http://sine.ni.com/nips/cds/view/p/lang/en/nid/205959


BIBLIOGRAPHY

[105] ISRA vision webpage: http://www.isravision.com/. 94

[106] OMRON products webpage: http://industrial.omron.eu/en/products/. 94

[107] MVTec webpage: http://www.mvtec.com/halcon/technical-data/. 94

[108] CVB products: http://en.commonvisionblox.de/en/pages/cvb/main.php.

94

[109] W. Zuo, Q. Chen, Fast and informative flow simulations in a building by using

fast fluid dynamics model on graphics processing unit, Building and Environment

45 (3) (2010) 747 – 757. 95

[110] K. Wong, R. Kelso, S. Worthley, P. Sanders, J. Mazumdar, D. Abbott, Theory

and validation of magnetic resonance fluid motion estimation using intensity flow

data, online, pLoS One (March 2009). 95

[111] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, Fine grain pipeline archi-

tecture for high performance phase-based optical flow computation, submitted to

Journal of System Architecture (Submitted in 2009, reviewed with minor revi-

sion).

[112] M. Tomasi, M. Vanegas, F. Barranco, J. Dı́az, E. Ros, Arquitectura multiescala
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Resumen

En este trabajo de tesis presentamos un amplio estudio sobre motores para

procesamiento masivo de algoritmos de visión. Nuestra hipótesis de trabajo

se centra en las caracteŕısticas y las ventajas de los dispositivos basados

en FPGAs (bajos consumos de potencia, altas prestaciones) ademas de los

grandes avances en las herramientas de śıntesis y los lenguajes HDL. Gra-

cias a estos valiosos medios presentamos y afrontamos la novedosa idea

de un sistema de visión de bajo nivel. El estudio que presentamos busca

demonstrar las múltiples posibilidades de integración de algoritmos com-

plejos gracias a una atenta adaptación y a nuevas técnicas de diseño. En

particular enfocamos nuestra arquitectura a un diseño con cauces de gra-

no fino contrariamente a la implementación de los actuales multi-core muy

utilizados hoy en d́ıa. El sistema final representa un motor de procesamien-

to de vanguardia con un consumo de potencia y un tamaño útiles para

aplicaciones industriales, robóticas y para investigación. Por primera vez

se diseña una arquitectura multi-orientación y multi-escala en dispositivos

FPGAs. El carácter iterativo del algoritmo degrada la velocidad de proce-

samiento pero al mismo tiempo permite una gran mejoŕıa en precisión. Los

resultados finales para secuencias sintéticas y reales demuestran el alto nivel

de competitividad de nuestro innovador sistema.
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1

Introducción

Historia magistra vitae est. Si buscamos en las teoŕıas de la antigüedad es posible en-

contrar rudimentos de filosof́ıa sobre la interpretación de la visión humana ya en la época

de la antigua Grecia. Aristóteles en su libro ”De los sentidos y de lo sentido”(Parva Nat-

uralia) afirma que ”De las dos últimas, la visión, como exigencia primaria para la vida

y sus efectos directos es el sentido superior; ... La facultad de la visión, gracias a que

todos los cuerpos tienen color, nos lleva a una gran variedad de diferentes cualidades

de todo tipo; por cual es a través de este sentido que somos capaces de percibir las cosas

comunes como figuras, tamaños, movimiento, cantidad ...”. Después de estas primeras

teoŕıas, una gran cantidad de filósofos y cient́ıficos han contribuido a la fundación de

múltiples postulados sobre el sistema de visión humano. Esta notable y larga historia

demuestra la importancia que en nuestra vida tiene el comprender como funciona la

visión. En el d́ıa a d́ıa nos encontramos con desaf́ıos que tienen que ver con la visión,

por ejemplo en el ámbito deportivo, los entrenadores de un equipo coinciden todos en

que un buen jugador tiene que ser rápido en la visión del juego y en la interpretación de

la jugada antes que su adversario. Si nos movemos a un entorno más cŕıtico como puede

ser la conducción de veh́ıculos en carretera, podemos afirmar que un conductor necesita

una reacción muy rápida frente a la presencia súbita de un obstáculo en su camino; para

ello el conductor necesita estar entrenado de forma tal que su sistema de procesamiento

requiera menos tiempo para detectar y evitar el peligro. En ambos casos tenemos una

fuerte dependencia del sistema de visión. Con estos simples ejemplos queremos resaltar

la importancia de la visión. En este trabajo se quiere diseñar y construir un sistema

de visión que reúna algunas de las caracteŕısticas del sistema de visión humano en un

1
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sistema de visión artificial. Para realizar esta dif́ıcil tarea nos hemos beneficiado de los

grandes avances tecnológicos y en la masiva investigación realizada en estos últimos

años; para ello hemos hecho un atento y preciso estudio de las soluciones existentes del

problema de visión artificial. No obstante la evolución y el incremento de prestaciones

en procesadores de propósito general, nosotros proponemos la utilización de pequeños

sistemas empotrados que puedan ser rápidos y eficientes en el procesado de v́ıdeo. Cada

vez estamos más rodeados de pequeños dispositivos electrónicos equipados con potentes

y valiosos chips. En el trabajo propuesto intentamos aportar una nueva contribución

al campo de los dispositivos basados en FPGA (Field Programmable Gate Array) e

introducir nuevas arquitecturas de procesamiento de v́ıdeo.

1.1. Sistema de visión

Un sistema de visión de los más complejos y perfecto es la vista humana, como lo

afirma Kandel en su libro [1] y cito textualmente: Estudios de inteligencia artificial y

de reconocimiento de patrones por computador han demostrado que el cerebro reconoce

formas, movimiento, profundidad y color usando estrategias que ninguna clase de com-

putador puede alcanzar. Simplemente mirar el mundo y reconocer una cara o disfrutar

de un paisaje requiere un enorme esfuerzo computacional mucho más dif́ıcil del que

se necesita para resolver problemas lógicos o jugar al ajedrez. Desde los primeros estu-

dios de bioloǵıa y neuroloǵıa, los cient́ıficos han estado fascinados por ese maravilloso

sistema que es la ”máquina”humana. Observando y entendiendo los mecanismos nat-

urales, los investigadores intentan reproducir su funcionamiento. El sistema de visión

humano en este sentido no representa una excepción. Gracias a esta forma de actuar

han nacido la fotograf́ıa y las cámaras de v́ıdeo, incluso muchos algoritmos de computo

se inspiran en la naturaleza. Al d́ıa de hoy el sistema de visión humana queda todav́ıa

sin ser entendido por completo. Ya sabemos que el complejo proceso de visión y de

interpretación de las escenas se divide en diversos niveles de procesamiento. Como se

muestra en Figura 1.1 y basándose en la neurociencia, un sistema de visión se puede

dividir en bajo, medio y alto nivel [2]. Comparado con otras partes del cerebro, sabemos

que la corteza visual ocupa un gran porcentaje de la totalidad de funciones. Por ejem-

plo en los monos el 50 % se dedica al procesamiento de la información visual mientras

que el 11 % se dedica al tacto y solo el 3 % al procesamiento auditivo. De igual forma

2
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sabemos que entre las diferentes partes de la corteza visual las más grandes son las

areas V1 y V2 (visión de bajo nivel) que ocupan unos 1100 mm2, mientras que una de

la más pequeñas es la MT (Middle Temporal) que ocupa solo 55 mm2 según se puede

leer en [1]. De forma similar en vision por computador un sistema de vision artificial

necesita un mayor esfuerzo computacional para la parte de bajo nivel comparado con

la de medio o alto nivel. Aunque se tiene un buen conocimiento del bajo y medio nivel

de visión del sistema visual humano, aún se sabe muy poco de la capa alta de visión.

La forma en que se relacionan los objetos que vemos y la información dada por la expe-

riencia pasada (binding problem) aún es poco clara y da lugar a complicados debates

entre estudios neurofisiológicos y psicológicos del proceso de percepción humana. En

visión por computador los investigadores discrepan con respecto a una exacta catalo-

gación de roles entre los distintos niveles. Weems [2] explica que si una representación

esta basada en vectores de datos numéricos que corresponden directamente a cada dato

de la imagen (operaciones pixel a pixel) podemos hablar de visión de bajo nivel. Una

representación basada en descripciones simbolicas de eventos extraidos de la imagen o

en la instancia de modelos conocidos y almacenados en memoria representa el nivel de

visión intermedio. Por último las representaciones independientes de la escena o de la

visual pertenecen al alto nivel. Por lo tanto el alto nivel se caracteriza por modelos y

conocimientos generales, como por ejemplo el conocimiento del entorno actual de una

escena.

Actualmente los sistemas de visión adquieren gran importancia en muchos campos

de aplicación y nuestro mundo se rodea de cámaras de v́ıdeo y pantallas. Muchos

procesos industriales utilizan plataformas robóticas dotadas de visión artificial para

controlar sus cadenas de producción. Todos los edificios públicos están equipados con

sistemas de visión con función de v́ıdeo vigilancia para la seguridad. La industria del

automóvil estudia la posibilidad de un nuevo concepto de sensor basado en cámaras de

v́ıdeo inteligentes que alerten al conductor sobre la presencia de peligros [3]. Muchas

otras aplicaciones, en el campo militar [4] o el médico, hacen uso de la visión por

computador [5].

3



1. INTRODUCCIÓN

A yellow object

A yellow pencil

? My new yellow pencil

Figura 1.1: Diferentes niveles de visión - A bajo nivel (regiones V1 y V2 del cere-

bro humano) procesamos la imagen entera extrayendo las caracteŕısticas: mayor esfuerzo

computacional. A nivel medio (V4, corteza temporal inferior) asociamos un determinado

objeto. Finalmente en el nivel alto (binding problem) reconocemos un objeto espećıfico

accediendo a informaciones que no dependen de la escena. Esta figura es una adaptación

de [1].

1.2. Plataformas de procesamiento para visión: estado del

arte

La tecnoloǵıa actual ofrece una gran variedad de soluciones para la implementación

de sistemas de visión; en el campo de la investigación y el desarrollo de algoritmos, la

forma de validación de métodos más práctica y rápida es la programación de alto nivel

en procesadores de propósito general, el poder computacional de estas máquinas ha cre-

cido según la ley de Moore y la presencia de diversos lenguajes de programación ofrece

al investigador un amplio abanico de posibilidades para una rápida implementación.

Por ejemplo una herramienta muy utilizada para validar modelos en ingenieŕıa es la
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herramienta de software Matlab. Esta herramienta incluye varias utilidades para el

procesamiento de imágenes y tiene una gran eficiencia en operaciones matriciales que

se traduce en tiempos de validación cortos. Debido a esta rapidez y a la facilidad de

implementación de modelos, se puede considerar el uso de Matlab como la forma más

fácil de implementar cualquier modelo.
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Figura 1.2: Pasos para el desarrollo de un sistema de visión - El proceso empieza

con un simple lenguaje de programación de alto nivel para llegar hasta una śıntesis en

productos industriales (VLSI). Los pasos se sitúan en una gráfica tiempo/complejidad.

Para aumentar la rapidez de la ejecución del código y llegar hasta un producto

industrial se pueden seguir diferentes pasos (Figure 1.2). Dependiendo del tipo de apli-

cación es posible parar el proceso en cada uno de estos pasos. Si no tenemos ninguna

restricción de tamaño o de consumo de potencia, podemos quedarnos en un código soft-

ware para procesadores de propósito general e incrementar las prestaciones con técnicas

de optimización de códigos a bajo nivel como se explica en [6] o incluso utilizar aceler-

adores gráficos (GPU) como alternativa. En el primer caso la optimización adoptada se
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pueden seguir distintas estrategias: una simple optimización del compilador o una im-

plementación con código de bajo nivel como el ensamblador. La segunda solución es una

implementación con lenguajes similares al C en entornos espećıficos de programación

que cambian según la plataforma que se utilice: para las tarjetas Nvidia por ejemplo se

utiliza el CUDA [7]. Hoy en d́ıa gracias a la importancia del mercado de los juegos, la

tecnoloǵıa de las GPUs ha mejorado enormemente con un alto nivel de paralelismo y

rápidos accesos a memoria. Si tenemos restricciones de tamaño o de consumo de poten-

cia la solución para nuestra implementación se mueve hacia el campo de las plataformas

de procesamiento como por ejemplo la que se basan en FPGAs. Este último método se

beneficia de un alto nivel de paralelismo en las operaciones con una frecuencia de reloj

muy reducida: unos dos ordenes de magnitud menos que un procesador normal o una

GPU. Esto va a beneficiar el consumo de potencia y su uso en aplicaciones empotradas.

El último paso y el más complejo es el diseño en sistemas de propósito espećıfico. A

partir de una plataforma de procesamiento y su previa validación es posible producir

un chip VLSI para aplicaciones industriales que, debido a su gran escala de integración,

puede disminuir los costes de producción a través de la gran cantidad de unidades que

pueden ser fabricadas. Según la aplicación final es posible pararse en una determinada

etapa de diseño o seguir hasta el producto más óptimo. Por ejemplo si estamos in-

teresados en plataformas robóticas para aplicaciones de investigación, una plataforma

con hardware espećıfico equipada con DSPs o FPGAs es la solución más adecuada; no

será necesario pasar por una optimización del código o una implementación en GPU que

seŕıan inútiles para el resultado final, de hecho es suficiente una implementación básica

con simples lenguajes de programación como Matlab, Octave o equivalentes para definir

si el modelo es válido. Finalmente y sólo para fines comerciales se necesita de un ulterior

esfuerzo en términos de tiempo de diseño y validación que incluyen la certificación de

seguridad con el respectivo nivel SIL (Security Integration Level). Estas certificaciones

son indispensables para el mundo industrial y habitualmente no se otorgan en el cam-

po de la investigación. Podemos encontrar en la literatura diferentes soluciones para

cada uno de los pasos presentados, pero en general los más comunes son el primero

y el segundo: modelos software y optimización de códigos. Ya hemos alcanzado un al-

to rendimiento en la precisión para muchas de las aplicaciones de bajo nivel. Algunas

contribuciones como [8] y [9] exponen en detalle diferentes algoritmos para el cálculo

de visión estéreo y movimiento. Los investigadores contribuyen a la literatura con la
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generación de diversos conjuntos de imágenes de referencia que se utilizan como bancos

de prueba común [10]. Este trabajo valioso permite una importante validación de algo-

ritmos, pero aunque hemos llegado a un alto nivel de precisión para el procesamiento de

estas secuencias sintéticas, las nuevas implementaciones intentan obtener un nivel muy

elevado de precisión sobre las secuencias sintéticas y no abordan muchos de los aspectos

prácticos del mundo real (el tiempo real, los cambios de iluminación, ambientes no con-

trolados, etc.) Este problema se debe a la dificultad evidente de validación cuantitativa

de las secuencias reales. Las actuales técnicas de correspondencia entre imágenes se

dividen principalmente en dos categoŕıas: enfoques locales y los enfoques globales. Los

algoritmos locales (window-based), donde el cálculo en un punto dado sólo depende de

los valores de ṕıxeles en una ventana espacial local, por lo general operan suavizaciones

dentro de las regiones para un mejor procesamiento. Con el fin de aumentar la precisión

de las estimaciones, en particular a lo largo de las fronteras, los algoritmos de última

generación utilizan tamaños de ventanas variables para calcular las correspondencias

en lugar de utilizar, como en los enfoques tradicionales, una ventana cuadrada fija.

Por el contrario, la mayoŕıa de los métodos globales intentan minimizar una función

de enerǵıa calculada en el área de toda la imagen mediante el empleo de estrategias de

minimización, como las técnicas variacionales, el modelo de Markov (Random Field),

métodos Graph Cuts (GC), Belief Propagation (BP), etc. [11, 12? ]. Ya que esta tarea

resulta ser un problema NP-hard, se aproxima una estimación por medio de estrate-

gias eficaces [8, 11, 12]. Si nos movemos hacia una implementación optimizada de una

arquitectura con hardware espećıfico (parte derecha del gráfico de la figura 1.2) encon-

tramos menos contribuciones en la literatura. Esto significa que la complejidad de la

aplicación crece significativamente. Podemos encontrar diversas aplicaciones en GPU

de los enfoques vistos anteriormente, pero sólo algunos algoritmos sencillos se han im-

plementado en FPGA o en procesadores DSP. La razón de esta tendencia actual es el

entorno de programación más fácil y el ”time to market”más corto para las aplicaciones

en procesadores de propósito general en comparación con soluciones basadas en DSP

o FPGA. El problema evidente de la utilización de soluciones basadas en PC estándar

es el consumo de enerǵıa y el tamaño considerable del producto final que es inviable

para aplicaciones portátiles. Por otra parte una implementación en FPGA o DSP puede

facilitar una aplicación portátil y convertirse en un producto industrial. La compara-

ción entre DSPs y FPGAs muestra que los DSPs son más adecuados para aplicaciones
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de baja potencia, mientras las FPGAs constituyen una mejor opción si los requisitos

de rendimiento son muy altos [13]. Para aplicaciones aún más eficientes necesitaremos

el desarrollo de soluciones en ASIC. Trabajos como [14] y [15] representan una con-

tribución muy importante para la visión en chip basados en FPGAs, pero al mismo

tiempo carecen de aplicabilidad genérica. Los principales problemas para los actuales

enfoques en FPGA son la velocidad de procesamiento y la adaptación a los grandes

cambios de la escena: como por ejemplo los movimientos o las variaciones de la cámara.

Un enfoque multi-escala puede resolver algunos de estos problemas pero presenta un

alto coste computacional y no se puede considerar un método de facil implementación

hardware. Por esta razón estas metodoloǵıas se adoptan pocas veces y no se encuentran

en implementaciones hardware. En lo que respecta a la última etapa de la figura 1.2

es aún mas raro encontrar aplicaciones, algunos trabajos como [16] representan una

contribución muy apreciable para los sistemas espećıficos de visión en chip.

1.3. Nuestra aportación

Este trabajo parte de modelos de visión existentes. En particular proponemos un

estudio y una validación de algoritmos y su adaptación a plataformas hardware. Al

mismo tiempo ofrecemos un análisis detallado del error debido a la utilización de una

aritmética en punto fijo (errores de cuantización). Por primera vez se introducen arqui-

tecturas de visión con una complejidad muy alta y metodoloǵıas de diseño innovadoras.

El problema de precisión en amplios rangos de movimientos presentados por los enfo-

ques existentes se resuelven con una metodoloǵıa de trabajo multi-escala. Operaciones

no totalmente apropiadas para sistemas hardware como la compensación iterativa de

las correspondencias (warping), están incluidos en las nuevas arquitecturas que para tal

propósito utilizan hasta cuatro dominios de reloj. Se introducen y optimizan varias es-

trategias de compartición de recursos y se estudian los compromisos entre el consumo

de recursos y la precisión. La idea general es obtener una reducción de rendimiento

aceptable frente a un ahorro de unidades de procesamiento paralelas como se muestra

en la figura 1.3. Se han explorado diversas implementaciones en chip para la validación

de la modularidad y de la escalabilidad de nuestra arquitectura.

Al mismo tiempo se estudia la adaptación del diseño al tamaño del chip y a los

requisitos del sistema. Nuestro requisito mı́nimo es un procesamiento en tiempo real
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Figura 1.3: Compartición de recursos - Una implementación completamente paralela

(izquierda) comparada con una implementación en la que se comparten recursos (derecha).

Al compartir recursos se pierde en rendimiento pero se gana en consumo de recursos.

(25 cuadros por segundo) para una resolución de imagen de 512x512 ṕıxeles. Este

trabajo ofrece una buena contribución al avance de la visión por ordenador en sistemas

portátiles ya que al d́ıa de hoy no existen aportaciones de tal complejidad y poder de

computación. Intentamos comparar nuestra propuesta con el estado del arte en términos

cuantitativos. Secuencias de referencia muy conocidas como la de [10] se utilizan como

validación cuantitativa, por otro lado la estabilidad de nuestro sistema ha sido validada

también en secuencias reales de forma particular en entornos de posibles aplicaciones

industriales como el campo de la automoción.
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1.4. Marco del proyecto

Nuestro sistema de visión a bajo nivel ha sido desarrollado en el marco del proyec-

to europeo DRIVSCO [17] (Learning to emulate Perception-Action Cycles in a driving

school scenario) en colaboración con seis universidades europeas. El objetivo del proyec-

to es desarrollar, testar e implementar una estrategia que combine nuevos métodos de

aprendizaje adaptativos con métodos de control clásico, empezando por un sistema de

control con interfaz hombre-máquina y acabando por sistemas autónomos que actúen de

forma independiente después de haber aprendido del comportamiento humano. La Uni-

versidad de Granada fue participe del proyecto en la parte de implementación del motor

de procesamiento en chip. En particular en nuestro grupo han colaborado cinco distin-

tas personas. El producto final incluye la realización de una placa de co-procesamiento

con una plataforma basada en FPGA. As indicated in Fig. 1.4 the complete work is

composed by:

Interfaz software con el PC

Controlador de memoria (Memory Controller Unit)

Cores de procesamiento

Arquitectura multi-escala

Módulos de condensación de la información

Retroalimentación con informaciones de alto nivel: signal to simbol loop.

El trabajo presentado en esta memoria se enfoca principalmente en los cores de proce-

samiento y en la arquitectura multi-escala. Obviamente el trabajo en grupo supone una

colaboración cruzada entre los distintos miembros de forma especial en la parte de test

y validación.
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Figura 1.4: Marco del proyecto. - Diagrama de bloques del sistema DRIVSCO desar-

rollado por el grupo de la Universidad de Granada. Los bloques en rojo representan nuestra

aportación.
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2

Discusión

2.1. Motivación general del trabajo

El objetivo principal de este trabajo es el estudio y la aplicación de un sistema de

visión de bajo nivel en un mismo chip. Los estudios preliminares y los experimentos

demuestran que un enfoque basado sobre la fase representa un buen candidato para

un motor de visión multimodal complejo y preciso. A pesar de que el algoritmo no

es la mejor opción en términos de precisión entre todos los trabajos presentes en la

literatura, nuestra elección se justifica no sólo por la robustez de la fase en escenarios

sin restricciones, sino también por la validez de la detección de la fase para la ex-

tracción de diferentes caracteŕısticas como enerǵıa, orientación y fase locales, estéreo

y computación de flujo óptico. Aśı, este algoritmo multi-orientación permite abordar

todas estas caracteŕısticas de visión con la posibilidad de compartir una gran cantidad

de circuitos para el procesamiento de la visión temprana. Trabajos anteriores abordan

este problema por separado (movimiento o estéreo) con velocidades de fotogramas muy

alta o buena precisión, pero la mayoŕıa de ellos no llegan a estudiar conjuntamente los

beneficios de un cálculo que sea a la vez preciso, de alta velocidad y capaz de extraer

múltiples modalidades en el mismo chip. Para ello la metodoloǵıa de trabajo se basa

en un cauce de grano fino y en una nueva arquitectura multi-escala. El primero es rara-

mente utilizado en la literatura (ya que requiere un diseño muy estructurado) y suele

ser sustituido por enfoques multi-núcleo, más caros en términos de consumo de enerǵıa.

El segundo, por lo que sabemos, nunca ha sido implementado en dispositivos reconfig-

urables. Esto representa una contribución novedosa y la definición de esta arquitectura

13



2. DISCUSIÓN

se puede reutilizar para diferentes algoritmos o modelos de procesamiento de imágenes.

Después de un exhaustivo estudio y la implementación de diferentes modalidades por

separado como estéreo, flujo óptico y descriptores locales, el trabajo se centra en el

estudio de un motor global de visión de bajo nivel que reúne a todas las arquitecturas

anteriores. Este ambicioso objetivo nunca ha sido ofrecido en la literatura y representa

una aportación novedosa para la investigación y el desarrollo de arquitecturas basadas

en dispositivos FPGA. El diseño del sistema incluye el estudio y la definición de muchos

parámetros y opciones para la arquitectura que pueden generar un amplio conjunto de

soluciones. Nosotros demostramos que una arquitectura se puede definir según los difer-

entes requisitos del usuario y su implementación final será muy diferente en términos

de consumo de recursos y de potencia. Nuestro objetivo inicial de diseñar un motor

de procesamiento para visión de bajo nivel en un sólo chip ha sido completamente re-

suelto y un buen compromiso entre precisión y coste viene ofrecido e implementado

en una plataforma de co-procesamiento. El sistema calcula el flujo óptico y el estéreo

de múltiples escalas, los descriptores de contraste local (la enerǵıa, la orientación y la

fase) con una velocidad de 28,6 cuadros por segundo (con una resolución de imagen de

512x512 ṕıxeles). La implementación final de alto rendimiento consta de 2221 unidades

de procesamiento en paralelo en el mismo chip, un rendimiento de 92,3 GigaOPS (con

un reloj de sistema a 42 MHz) y un alto numero de operaciones ejecutadas por vatio

de potencia consumida (aproximadamente 12,9 GigaOPS / W). La solución puede ser

de interés en muchos campos de aplicación como en imágenes médicas, en robótica, en

la industria y la automoción.

2.2. Trabajo futuro

Como sabemos las etapas de visión de bajo nivel requieren la mayor parte del

coste computacional de un sistema de visión. Con este procesamiento masivo llevado

a cabo en un solo chip será posible la integración de diversos algoritmos de medio o

de alto nivel a un costo reducido. Estas tareas pueden ser tratados con técnicas de

co-diseño HW/SW gracias a la integración en FPGAs de procesadores empotrados: por

ejemplo hoy en d́ıa muchas de las FPGAs incluyen procesadores como los PowerPCs

dentro de sus arquitecturas. Además, es posible construir descriptores visuales más

complejos basados en procesamiento de segundo orden del movimiento. Por ejemplo,
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la percepción del movimiento en profundidad, el calculo del movimiento propio (ego-

motion) o detección de objetos con movimiento independiente (IMO) en el que son

absolutamente necesarias las primitivas de primer orden calculadas por nuestro sistema

de visión. Con el fin de mejorar la portabilidad del sistema es posible el desarrollo de

una placa independiente a partir de la arquitectura definida. Se puede incluir una nueva

interfaz con las cámaras y la salida de v́ıdeo en la plataforma diseñada de forma que el

sistema de procesamiento pueda ser utilizado en aplicaciones como la robótica.

2.3. Publicación de resultados

Nuestro trabajo de investigación ha sido evaluado en el marco de conferencias in-

ternacionales y revistas cient́ıficas (con factor de impacto en el JCR).

[1] M. Vanegas, M. Tomasi, J. Dı́az, E. Ros, Multiport abstraction layer for FPGA

intensive memory exploitation applications, submitted to Journal of System Archi-

tecture (2009)

[2] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, High performance optical

flow architecture based on a multiscale and multi-orientation phase-based model,

submitted to IEEE Trans. on CSVT

[3] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, E. Ros, Real-time architecture for a

robust multiscale stereo engine, submitted to IEEE Trans. on Image Processing

[4] M. Tomasi, F. Barranco, M. Vanegas, J. Diaz, E. Ros, Fine grain pipeline archi-

tecture for high performance phase-based optical flow computation, submitted to

Journal of System Architecture

[5] M. Tomasi, M. Vanegas, F. Barranco, J. Dı́az, E. Ros, Arquitectura multiescala de

cálculo de flujo óptico basado en la fase, iX Jornadas de Computación Reconfig-

urable y Aplicaciones. JCRA2009 (Sept. 2009)

[6] M. Tomasi, J. Dı́az, E. Ros, Real time architectures for moving-objects tracking,

in: ARC, 2007, pp. 365–372
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[7] M. Tomasi, M. Vanegas, F. Barranco, J. Dı́az, E. Ros, A novel architecture for a

massively parallel low level vision processing engine on chip, iSIE2010. Accepted for

IEEE Internetional Symposium on Industrial Electronics, Bari (Italy) (July 2010)

[8] F. Barranco, M. Tomasi, M. Vanegas, S. Granados, J. Diaz, Entorno software para

visualización y configuración de procesamiento de imágenes en tiempo real con

plataformas reconfigurables, iX Jornadas de Computación Reconfigurable y Apli-

caciones. JCRA2009. (2009)

2.4. Marco cient́ıfico general

Este trabajo cient́ıfico se ha realizado y financiado por el Proyecto Europeo DRIVS-

CO: ”Learning to emulate perception action cycles in a driving school scenario” (IST-

016276-2). Esto ha representado un excelente marco de colaboración con diversos grupos

de investigación de otras universidades europeas y centros de investigación. El trabajo

presentado representa la mayor contribución de la Universidad de Granada en este con-

sorcio. Por lo tanto, una alta responsabilidad en la obtención de los resultados previstos

en tiempos definidos ha sido necesaria durante el proceso de investigación. Además de

los informes técnicos necesarios, presentaciones para los exámenes cient́ıficos de la UE,

se ha realizado una demostración final de la aplicación. El esfuerzo invertido en esta

demostración es significativo, pero permite una fácil evaluación del rendimiento del sis-

tema y también facilita la difusión de los resultados más allá de un escenario cient́ıfico

puro, por ejemplo hacia futuras colaboraciones industriales además del impacto en los

medios de comunicación (periódicos, TV, etc).

El trabajo ha requerido una colaboración muy estrecha con diferentes investigadores

en el laboratorio. Se ha requerido una gran cantidad de esfuerzos en la fabricación de

los diferentes módulos y diseños para su facilidad de integración en otras arquitecturas

y también para la inclusión de módulos diseñados por estos colaboradores. Esto ha

supuesto una alta coordinación del trabajo en equipo.

2.5. Aportaciones principales

A continuación presentamos un resumen de las principales aportaciones de nuestro

trabajo:
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2.5 Aportaciones principales

Entre los diferentes algoritmos de visión por computador ha sido elegido un en-

foque basado en la fase. Un estudio comparativo de la robustez justifica que el

planteamiento es adecuado para una correcta computación de visión de bajo nivel.

Se utilizó una modificación apropiada del algoritmo con el fin de adaptarlo a una

aplicación hardware. Además se hace un estudio exhaustivo del compromiso entre

precisión de los resultados y prestaciones del sistema.

El sistema ha sido diseñado con cauces de grano fino (con varias etapas su-

perescalares) para maximizar el paralelismo de procesamiento. Esta estrategia

de diseño es muy exigente en términos de sincronización, soporte para memoria

externa y dependencias de datos.

Se presenta una nueva arquitectura multi-escala. La comparación con los enfoques

mono-escala confirma que esta extensión del algoritmo es útil para mejorar la

precisión y la reducción del rango de trabajo. Este enfoque no ha sido abordado

antes en sistemas hardware.

La arquitectura definida se ha aplicado a diferentes algoritmos por separado como

cálculos de estéreo, de flujo óptico y descriptores locales (enerǵıa, orientación y

fase). Un estudio de evaluación comparativa con el estado del arte demuestra como

nuestras implementaciones son muy competitivas con respecto a las soluciones

existentes.

Ha sido realizado un sistema conjunto de procesamiento que incluye cálculo de

flujo óptico y estéreo. Una gran cantidad de parámetros son analizados con el fin

de relacionar los cambios estructurales (las decisiones de diseño) con su impacto

en el rendimiento del sistema final. Se ha obtenido un buen compromiso entre

prestaciones y coste.

El estudio de los parámetros del sistema concluye con una interesante comparación

de tres arquitecturas diferentes: una de costo bajo, una mediana y una versión de

alto rendimiento.

La implementación de la solución de medio coste en una plataforma de co-

procesamiento alcanza una potencia de cálculo muy elevada. El sistema consta

de 2221 unidades de procesamiento en paralelo en el mismo chip, un rendimiento
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de 92,3 GigaOPS (con un reloj de sistema a 42 MHz) y un alto numero de op-

eraciones ejecutadas por vatio de potencia consumida (aproximadamente un 12,9

GigaOPS / W). Esto representa una excelente potencia de procesamiento frente

a un bajo consumo de enerǵıa.

La solución de altas prestaciones alcanza un rendimiento aun más elevado pero

con costes muy altos en términos de consumo de recursos. Esta arquitectura

consta de más de 3000 unidades de procesamiento que consiguen procesar hasta

165 GigaOPS (30 GigaOPS/W).
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