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Introduction

With the only exception of neutrino oscillations, the last decade experiments have confirmed the
validity of the Standard Model of particle physics for the description of physical phenomena at
energies below few hundred of GeV. In particular, with a precision in many cases of the order of 1h,
the electroweak precision data coming mainly from experiments performed at CERN and Tevatron
have tested the model to the level of radiative corrections showing an excellent agreement. The
model, however, is not completely satisfactory as it leaves too many open questions and suffers
from several fine-tuning problems. This motivates our belief that new physics may complete it
when we move to higher energies. In particular, if our understanding of electroweak symmetry
breaking is correct, one would expect that new physics explaining why the electroweak scale is
stable under quantum corrections must be present at energies of the order of the TeV. Many
different scenarios have been proposed to address this question: supersymmetry, extra dimensions,
composite or Little Higgs models, ... which, in turn, hold many different possible realizations.
Irrespective of the nature of the new physics, this must be consistent with the existing electroweak
precision data. Thus, within a given model a comparison of the extra corrections to the precision
observables with the available data is required in order to test its viability. But, as emphasized
before there are too many different scenarios and it is also possible that none of them is correct.
Ultimately, given our ignorance about nature at high energies, a model-independent approach is a
suitable choice for the analysis of the implications of new physics. On the other hand, the excellent
agreement of the Standard Model predictions with the data does not leave too much room for new
effects. This typically implies that the characteristic mass scale of the new particles is well above
the energies where the experiments take place, as it is a rather general property of nature that high
energy effects have little impact in the low energy physics. There is also the possibility that the new
physics may come in the form of complex combinations of different particles in such a way that their
effects approximately cancel, giving a small neat contribution to most of the precision observables
and thus preserving, or hopefully improving, the agreement between the model predictions and
the data. Therefore, an approach that allows to easily compare and combine the dominant effects
of different types of new physics is very convenient.

Effective Field Theories offer a natural framework for studying physics beyond the Standard
Model when the characteristic scale of the new particles is distinctively separated from the energies
we have explored so far. If these heavy particles exist, even though they have not been directly
produced, they can be exchanged as virtual states in physical processes and then result in observable
effects. These new virtual effects are the ones that can be described by using an effective theory.
Suppose we know the form of the high energy Lagrangian describing the observed light particles
as well as a set of extra heavy fields. For the purpose of describing the physics at energies below
the lowest threshold of the non-standard particles, one can integrate the heavy degrees of freedom
out of the theory, and obtain an effective Lagrangian where the virtual effects of heavy modes
are either absorbed in the renormalization of the existing operators of mass dimension d ≤ 4 in

1



2 Introduction

the Lagrangian for the light degrees or freedom, or encoded in the coefficients of an infinite set of
new operators with mass dimensions d > 4. As higher dimensional operators come suppressed by
inverse powers of the heavy mass scale, ordering such infinite set according to their dimensionality
provides a systematic way of classifying the relevant effects of the new particles since the higher
the scaling dimension of the operators, the more suppressed their effects. As we can only achieve
a finite accuracy in the experimental data, in practice only a certain finite subset of the effective
operators needs to be considered. For the accuracy of the current data, it suffices in general to use
the effective Lagrangian up to dimension six. Another advantage of effective field theories is that
they can be used for completely model-independent analyses, using only the light field content and
the required symmetries, which in our context are both given by the Standard Model. Therefore,
this approach combines the two qualities mentioned in the above paragraph: it is an excellent tool
to isolate and compare the leading effects of different sources of new physics via their contributions
to the higher dimensional operators, and it does not necessarily require to know the nature of the
underlying theory, so it can be used for model-independent studies.

In this thesis we use effective Lagrangian techniques to perform a semi model independent
analysis of physics beyond the Standard Model. Most of our attention is focused on the study of the
effects resulting from the presence of new matter fields (heavy extra fermions with special attention
to the case of new leptons) or new interactions (heavy extra vector fields), which are predicted
in a large class of Standard Model extensions. We do not make any assumption regarding the
underlying theory where these new particles may come from. In this sense, our results are model
independent and therefore have a wide range of applicability, being of special interest for model
building. In order to yield contributions to physical observables, the heavy particles must be
coupled to the Standard Model ones. This requirement together with renormalizability as well as
gauge invariance of such interactions allow us to classify all the possible additions according to
their quantum numbers. We construct the most general Lagrangian that can be built assuming
the Standard Model symmetries and using both the standard and the extra particles, and then
integrate the latter out of the theory to find the corresponding effective Lagrangian. This is one
of the results of this thesis: we provide general expressions for the coefficients of the operators in
the dimension-six effective Lagrangian in terms of the couplings and masses of the extra particles.
In the next step, we study the implications the extra virtual corrections would have on precision
observables. As mentioned above, the data leaves small room for new physics. This reduces the
dominant effects to be of the order of the experimental accuracy and then, together with our
requirement that the new particles interact at tree level with the Standard Model ones, justifies
to restrict ourselves to a leading tree-level approach for the computation of the extra corrections.
All these results are finally used to extract the experimental restrictions on the parameter space
describing the new physics, by confronting the theoretical predictions for the precision observables,
including the new corrections, with the experimentally measured values. For that purpose, a global
fit to the existing electroweak precision data is performed. A detailed discussion of the experimental
data is also given in an appendix. The results of the fit are expressed in terms of limits on the
values that the masses and couplings of the new particles can have. Obtaining these limits, as well
as identifying “holes” in the data that could be eventually filled by some kind of new physics, is
the main goal of this thesis. The constraints obtained here are of relevance for the simulation of
the production and decay of the heavy particles at large colliders. This kind of analysis, however,
lies beyond the scope of this thesis and we will restrict at most to a qualitative description of the
implications of our results for the Large Hadron Collider or future lepton colliders.

Along most of this work we will deal with the implications of the “standard” effective La-
grangian, constructed by assuming no more than the Standard Model particles and symmetries.
Extending the method to different scenarios is straightforward: it only requires to incorporate
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additional light fields. This enlarges the number of operators that can be built at each order in
the effective Lagrangian expansion. On the other hand, we can impose extra symmetries of the
high energy theory, restricting the possible terms that can be written. While the latter has no
limitation a priori, as long as the Standard Model symmetries become manifest at low energies,
the absence of experimental confirmation on the existence of extra particles greatly constrains the
freedom we have for enlarging the light spectrum. One possible extension is to consider the exis-
tence of light right-handed neutrino singlets, which would be necessary in order to explain neutrino
masses if these were of Dirac type. These particles have no interactions within a minimal extension
of the Standard Model, so they manifest only through neutrino masses, and are unobservable in
laboratory experiments where the relevant energies are much larger. They may however come
accompanied by some non-standard interactions if they arise from some more complicated exten-
sion, as it is the case of models with an enlarged gauge symmetry. Thus, the interesting question
is whether these light right-handed neutrinos have further observable interactions beyond their
masses, which motivates the study of the suggested effective Lagrangian extension. If sizable, it
may be possible that these new interactions may result in observable effects that could eventually
guide us in the search for these elusive particles. This is considered in the last part of this thesis
which, in turn, closes our analysis on extra leptons.

The thesis is organized as follows:

In Chapter 1 the Standard Model is briefly reviewed, and the problems that suggest the presence
of new physics are described. Then, the formalism of the effective Lagrangian approach for the
study of an arbitrary extension of the model is presented, explaining all the hypotheses that will
apply throughout the rest of this work, and establishing the notation for the operators relevant to
our analysis.

Chapter 2 is devoted to a fully model-independent analysis of the phenomenology of the ex-
tension of the Standard Model with the new effective operators. We compute the corrections to
the masses and couplings of the standard particles induced by the presence of the dimension-six
operators in the Lagrangian after electroweak symmetry breaking. Then the resulting Lagrangian
is used to compute the corrections to the electroweak precision observables which will enter in
the global fits in the subsequent chapters. We also discuss here what operators can be actually
constrained by the available precision data.

The analysis of the implications of the presence of new particles is covered by Chapters 3 and 4.
Chapter 3 presents the analysis of the implications of new extra fermions in the spectrum, focussed
in the case of new leptons. Chapter 4 covers the analysis of extra vector bosons. The effective
Lagrangian corresponding to the integration of the heavy particles is computed, and the values of
the coefficients of the dimension-six operators are reported. As announced, these results are used
to perform a global fit to the electroweak precision data and to derive the existing experimental
bounds on these new particles.

The last chapter of this thesis covers the corrections that must be applied to the “standard”
effective Lagrangian approach used in the previous chapters in order to extend the formalism to
describe the presence in the spectrum of light right-handed neutrinos. As an application of the
method we explore the possibility of finding evidence of the existence of these particles at neutrino
factories if some non-standard interactions are large enough. As we will see, this seems to be
allowed by the data but requires a precise cancellation between different effects.

The main results of this Ph. D. thesis are finally summarized in the Conclusions. These are
followed by one appendix where we explain the experimental data included in our fits as well as
the methodology followed. Details of the Standard Model fit, used through out the discussion in
the main text, are also given here.

The material contained in this thesis has lead to several publications. The analysis of the
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implications of new leptons studied in Chapter 3 has been published in Refs. [1, 2, 3, 4]. For the
new vectors discussed in Chapter 4 our studies have also lead to one publication [5]. Finally, the
main discussion in Chapter 5 can be found in references [6, 7]. 1

1My works with A. Falkowski, M. Pérez-Victoria and S. Pokorsky [8], and with P. Langacker, G. Paz and L-T.
Wang [9] lie somewhat apart from the main topic of this thesis and have not been included here.



Introducción

Con la única excepción del descubrimiento de las oscilaciones de neutrinos, los experimentos reali-
zados en las últimas décadas han confirmado la validez del Modelo Estándar de f́ısica de part́ıculas
para la descripción de los fenómenos f́ısicos a enerǵıas por debajo de unos cientos de GeV. En par-
ticular, con una precisión en muchos casos del orden del 1h, los datos electrodébiles de precisión
obtenidos mayormente en los experimentos realizados en el CERN y en Tevatron han comprobado
las predicciones del modelo al nivel de las correcciones cuánticas, encontrando un acuerdo exce-
lente. El modelo, sin embargo, no es completamente satisfactorio ya que deja muchas cuestiones
abiertas y padece de varios problemas de naturalidad. Esto motiva nuestra creencia en que debe
haber nueva f́ısica a enerǵıas más altas. En particular, si la forma en que entendemos la rotura de
la simetŕıa electrodébil es correcta, esperamos que, a enerǵıas del order del TeV, haya nueva f́ısica
que explique el por qué la escala electrodébil es estable frente a correcciones cuánticas. Varios tipos
de escenarios han sido propuestos para intentar explicar esta cuestión: supersimetŕıa, dimensiones
extra, modelos de Higgs “pequeño” o compuesto, . . . , cada uno de ellos con muchas realizaciones
posibles. Independientemente de cual sea la naturaleza de la nueva f́ısica, ésta debe ser compa-
tible con los datos electrodébiles de precisión de los que disponemos. De esta forma, de cara a
comprobar la validez de un modelo dado, es necesario comprobar que las nuevas contribuciones a
los observables de precisión están de acuerdo con los valores obtenidos experimentalmente. Para
este propósito, dada la gran cantidad de modelos existentes, con la posibilidad de que ninguno sea
el correcto, y, en última instancia, nuestra ignorancia acerca de la naturaleza a altas enerǵıas, el
uso de una descripción independiente de modelo es una opción recomendable. Por otro lado, el
excelente acuerdo de los datos con las predicciones del Modelo Estándar deja muy poco lugar para
nuevos efectos. Esto implica t́ıpicamente que la escala de masa caracteŕıstica de las nuevas part́ıcu-
las debe ser considerablemente mayor que las enerǵıas a las que disponemos de datos, pues es una
propiedad bastante general de la naturaleza que la f́ısica a una escala dada de enerǵıas tiene un
impacto reducido a enerǵıas mucho menores. Otra posibilidad diferente es que la nueva f́ısica sea lo
suficientemente compleja como para las contribuciones de distintas part́ıculas cancelen de manera
aproximada, dejando una contribución neta que permita preservar o incluso mejorar el acuerdo
entra los datos y la teoŕıa. Por lo tanto, un método de trabajo que permita comparar y combinar
los efectos dominantes de diferentes tipos de nueva f́ısica resulta también muy conveniente.

Las teoŕıas de campos efectivas ofrecen un marco de trabajo natural para el estudio de f́ısica más
allá del Modelo Estándar en aquellos casos en los que la escala de masas de las nuevas part́ıculas
esté significativamente por encima de las enerǵıas que hemos explorado. Si tales part́ıculas existen,
aunque no han podido ser producidas directamente aún, pueden ser intercambiadas como estados
virtuales en procesos f́ısicos y por lo tanto pueden tener efectos observables. Este tipo de efectos
virtuales son los que se pueden describir usando una teoŕıa efectiva. Supongamos que conocemos
la forma del Lagrangiano a altas enerǵıas que describe las interacciones de las part́ıculas conocidas
y de un conjunto dado de campos pesados. Si lo que nos interesa es la f́ısica a enerǵıas muy por

5



6 Introducción

debajo del umbral de producción de las part́ıculas extra, podemos integrar estas últimas de la
teoŕıa, obteniendo un nuevo Lagrangiano para los modos ligeros, donde los efectos virtuales de los
modos pesados son reabsorvidos en la renormalización de los campos ligeros y sus acoplamientos,
o aparecen en la forma de contribuciones a los coeficientes de un conjunto infinito de operadores
con dimensiones de masa d > 4. Dado que estos últimos vienen suprimidos por potencias inversas
de la escala de masas de las part́ıculas pesadas, el ordenar los nuevos operadores de acuerdo a su
dimensión es un método sistemático para clasificar los efectos de las nuevas part́ıculas, ya que cuanto
mayor sea la dimensión del operador más suprimidos estarán sus efectos. En consecuencia, dado que
sólo podemos conseguir una precisión experimental finita, en la práctica sólo un subconjunto finito
de los operadores efectivos es relevante. Para la precisión actual, en general es suficiente considerar
el Lagrangiano efectivo hasta dimensión seis. Otra ventaja de las teoŕıas de campos efectivas es
que pueden usarse para estudios independientes de modelo, ya que para construir el Lagrangiano
efectivo más general sólo necesitamos conocer el contenido de campos ligeros aśı como las simetŕıas
de la teoŕıa, y ambos vienen dados por los del Modelo Estándar. Por lo tanto, este método de
trabajo combina las dos cualidades mencionadas en el parrafo anterior: es una herramienta excelente
para aislar y comparar los efectos dominantes de diferentes tipos de nueva f́ısica a través de sus
contribuciones a los operadores de dimensión superior, y no requiere necesariamente conocer la
naturaleza de la teoŕıa subyacente de manera que puede utilizarse para estudios independientes de
modelo.

En esta tesis usamos técnicas de Lagrangianos efectivos para realizar análisis de f́ısica más
allá del Modelo Estándar cuasi-independientes de modelo. La mayor parte de nuestra atención se
centra en el estudio de los efectos resultantes de la presencia de nuevos campos de materia (nuevos
fermiones pesados, con especial atención al caso de nuevos leptones) o nuevas interacciones (campos
vectoriales masivos adicionales), los cuales son predichos por una clase amplia de extensiones del
Modelo Estándar. No realizamos ninguna suposición adicional en relación a la teoŕıa de donde estas
part́ıculas pudieran venir. En este sentido, nuestros resultados son independientes de modelo y tie-
nen un amplio rango de aplicación. Para poder dar contribuciones a los observables f́ısicos medidos
hasta el momento, las part́ıculas pesadas deben acoplarse a las del Modelo Estándar. Este requisito
junto con la renormalizabilidad, aśı como la invariancia gauge de las interacciones, nos permite cla-
sificar todos los casos posibles de acuerdo con los números cuánticos de las nuevas part́ıculas. Para
cada uno de ellos construimos el Lagrangiano más general compatible con las simetŕıas del Modelo
Estándar y la extensión correspondiente del contenido de campos, e integramos los pesados de la
teoŕıa obteniendo el correspondiente Lagrangiano efectivo. Este es uno de los resultados de esta
tesis: proporcionamos expresiones generales para los coeficientes de los operadores de dimensión
seis en términos de los acoplamientos y masas de las nuevas part́ıculas. Utilizando el Lagrangiano
efectivo resultante, estudiamos las implicaciones de las nuevas contribuciones a los observables de
precisión. Estas son calculadas usando una aproximación a nivel árbol, la cual da en general los
efectos dominantes y está justificada por el hecho de que estos deben ser del orden de los errores
experimentales, dado el buen acuerdo entre los datos y las predicciones del Modelo Estándar. Los
resultados de todos estos cálculos son finalmente empleados para obtener las restricciones experi-
mentales sobre el espacio de parámetros de la nueva f́ısica, confrontando las predicciones teóricas
que incorporan las nuevas contribuciones, con los datos experimentales. Para ello realizamos un
ajuste global de las extensiones propuestas a los datos electrodébiles de precisión existentes. Una
discusión detallada de los datos empleados se incluye en un apéndice. Los resultados del ajuste
son expresados en términos de ĺımites sobre los valores de las masas y acoplamientos de las nuevas
part́ıculas. El objetivo principal de esta tesis es obtener dichos ĺımites, aśı como identificar los
posibles “huecos” en los datos que pudieran ser eventualmente cubiertos por algún tipo de nueva
f́ısica. Los ĺımites obtenidos son relevantes para la simulación de la producción y desintegración
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de las part́ıculas pesadas en grandes colisionadores. Ese tipo de análisis, sin embargo, va más
allá del objetivo de esta tesis y como mucho nos restringiremos a una descripción cualitativa de
las implicaciones de nuestro resultados en el LHC o futuros colisionadores de leptones.

El Lagrangiano efectivo utilizado durante la mayor parte de este trabajo está construido supo-
niendo nada más que las part́ıculas y simetŕıas del Modelo Estándar. Extender el método a otros
escenarios diferentes es sencillo: tan sólo necesitamos añadir nuevas part́ıculas ligeras. Esto aumen-
ta el número de operadores que podemos construir a cada orden en la expansión del Lagrangiano
efectivo. Por otro lado, se pueden imponer simetŕıas de la teoŕıa a altas enerǵıas, restringiendo los
términos que pueden escribirse. Mientras que el segundo procedimiento no tiene limitación en prin-
cipio, siempre que las simetŕıas del Modelo Estándar sean manifiestas a bajas enerǵıas, la ausencia
de confirmación experimental sobre la existencia de part́ıculas adicionales limita significativamente
la libertad que tenemos para aumentar el espectro de part́ıculas ligeras. Una extensión posible seŕıa
considerar la existencia de neutrinos singlete con quiralidad positiva, los cuales son necesarios para
explicar las masas de los neutrinos si estas son de tipo Dirac. Estas part́ıculas no tienen interaccio-
nes en una extensión minimal del Modelo Estándar, de forma que sólo pueden manifestarse a través
de la masa de los neutrinos, y por lo tanto no son observables en los experimentos de laborato-
rio, donde las enerǵıas relevantes son mucho mayores. Podŕıan sin embargo venir acompañados de
nuevas interacciones si surgen de extensiones más complicadas, como modelos con simetŕıa gauge
extendida. De este modo, la cuestión interesante es si estos nuevos neutrinos tienen interacciones
observables aparte de sus masas, lo que motiva la extensión del Lagrangiano efectivo sugerida. Si
tales interacciones son apreciables podŕıan dar lugar a efectos observables que nos guiáran en la
búsqueda de estas part́ıculas. Este tema es estudiado en la última parte de la tesis, la cual cierra
además nuestro análisis de nuevos leptones.

En las siguientes lineas se detalla la estructura de esta tesis, resumiendo brevemente el contenido
de cada caṕıtulo:

En el Caṕıtulo 1 se introduce el Modelo Estándar de f́ısica de part́ıculas, explicando los pro-
blemas que sugieren la presencia de nueva f́ısica. Tras esto, se presenta el formalismo de la apro-
ximación de Lagrangianos efectivos para el estudio de nueva f́ısica. Aqúı se explica en detalle las
hipótesis que utilizaremos a lo largo de este trabajo. Asimismo se establecen los operadores de
dimensión seis relevantes para nuestros análisis.

El Caṕıtulo 2 está dedicado a un estudio totalmente independiente de modelo de la fenome-
noloǵıa de la extensión del Modelo Estándar con los nuevos operadores introducidos. Estudiamos
cuáles son los efectos de los mismos sobre las masas y acoplamientos de las part́ıculas estándar una
vez se rompe la simetŕıa electrodébil, distinguiendo entre contribuciones directas e indirectas, don-
de las últimas se deducen de la influencia de los operadores en procesos f́ısicos a partir de los cuales
se derivan los parámetros de la teoŕıa. Usando el Lagrangiano resultante calculamos las correccio-
nes dominantes a los observables electrodébiles de precisión, proporcionando fórmulas expĺıcitas
para las nuevas contribuciones. Este análisis nos permite distinguir de entre todos los operadores
considerados aquellos de los que podemos obtener información usando los datos experimentales
actuales. Las principales restricciones de los datos electrodébiles de precisión sobre cada uno de
dichos operadores son estudiadas. También discutimos el impacto de estos en la determinación
indirecta de la masa del Higgs.

En el Caṕıtulo 3 nos centramos en las implicaciones de la existencia de nuevos fermiones pe-
sados no-quirales. Clasificamos todos los nuevos leptones y quarks que pueden mezclarse con los
fermiones del Modelo Estándar, y calculamos el Lagrangiano efectivo resultante de su integración.
Asimismo, realizamos un análisis fenomenológico de los efectos de los nuevos leptones sobre los da-
tos electrodébiles de precisión, y obtenemos ĺımites sobre la mezcla de estos con los leptones ligeros.
También discutimos la correlación entre los efectos de dicha mezcla y los del Higgs, centrándonos
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en los casos en los que dicha correlación nos permite relajar los ĺımites sobre la masa del escalar.
De manera análoga al Caṕıtulo 3, en el Caṕıtulo 4 analizamos los efectos de nuevas part́ıculas de

tipo vectorial. Siguiendo una estructura similar, realizamos una clasificación de los nuevos vectores
que puedan dar un efecto observable dentro de nuestras aproximaciones, y los integramos de la
teoŕıa obteniendo los coeficientes de los operadores de dimensión seis en el Lagrangiano efectivo.
Realizando el correspondiente ajuste a los datos electrodébiles de precisión, obtenemos de nuevo los
ĺımites sobre los parámetros f́ısicos de las nuevas part́ıculas, discutiendo en particular la relevancia
de los datos de LEP 2 en su obtención. El efecto sobre la asimetŕıa angular del quark b, una de las
pocas discrepancias con la predicción del Modelo Estándar, y aquellos casos en los que los nuevos
vectores permiten acomodar un Higgs pesado con los datos experimentales son también estudiados
en detalle.

El último caṕıtulo de esta tesis se dedica a las modificaciones que deben aplicarse al Lagrangiano
efectivo empleado en los caṕıtulos anteriores de cara a extender el formalismo para poder describir
la presencia en el espectro de neutrinos singlete con quiralidad positiva. Como una aplicación del
método investigamos la posibilidad de encontrar evidencia de la existencia de estas part́ıculas en
factoŕıas de neutrinos, si ciertas interacciones no estándar son lo suficientemente grandes. Como
alĺı se discute, estas son permitidas por los datos aunque requieren una cancelación adecuada entre
distintos efectos. En ese caso se espera un déficit en el número de eventos observados en un detector
cercano, que puede ser tan grande como ∼ 10%. Una realización posible de este escenario también
es presentada.

Finalmente, se encuentra un apéndice donde explicamos los datos experimentales incluidos en
nuestros análisis aśı como la metodoloǵıa utilizada. También se proporcionan detalles del ajuste
del Modelo Estándar, los cuales son utilizados o mencionados a lo largo de la discusión en el texto
principal.

El material contenido en esta tesis ha dado lugar a varias publicaciones. El análisis de las
implicaciones de los nuevos leptones en el Caṕıtulo 3 ha sido publicado en [1, 2, 3, 4]. Para los
nuevos vectores discutidos en el Caṕıtulo 4 nuestros estudios han dado lugar a otro trabajo [5].
Finalmente, la discusión principal del Caṕıtulo 5 puede encontrarse en las referencias [6, 7].2

2Mis trabajos en colaboración con A. Falkowski, M. Pérez-Victoria y S. Pokorsky [8], y con P. Langacker, G.
Paz y L-T. Wang [9] no están directamente relacionados con el tema central de esta tesis y por lo tanto no han sido
incluidos aqúı.



Chapter 1

Effective field theories:
The Standard Model and beyond

In 1961 Sheldon Glashow [10] proposed a model combining the electromagnetic and weak inter-
actions, which was completed in 1967 by Steven Weinberg [11] and (independently in 1968) Abdus
Salam [12]. Together with Quantum Chromodinamics (QCD) for the description of the strong
interactions, it gave rise during the early seventies to what today is accepted as the Standard
Model (SM) of particle physics. With the exception of the sector responsible of the electroweak
symmetry breaking (EWSB), all particles in the spectrum of the electroweak model have been
discovered up to complete three families in subsequent years1, whereas the electroweak precision
tests performed at the Large Electron-Positron collider (LEP), at the Slac Linear Accelerator Cen-
ter (SLAC) and at Tevatron have confirmed the validity of the description of their interactions to
the level of radiative corrections. There are, however, some issues that are either not addressed
or not satisfactorily explained by the model and nowadays it is believed that, though it is a very
good description of nature at energies up to the electroweak scale, it cannot be considered as the
ultimate theory and needs to be extended in order to describe the physics at higher energy scales,
i.e., it must be thought of as an effective theory.

In this chapter, apart from the mandatory review of the SM, we introduce the formalism of
effective field theories, for physics beyond the Standard Model, which will be used in our analysis
in the subsequent chapters of this thesis. Some good reviews of the SM (and beyond) used as
reference for this chapter are [13, 14, 15, 16, 17, 18]. For reviews on effective field theories see for
instance [19, 20, 21, 22, 23, 24].

1.1 The Standard Model of particle physics

The interactions in the SM are described by a renormalizable gauge quantum field theory with
gauge group SU(3)c⊗SU(2)L⊗U(1)Y , whose quantum numbers are known as color, weak isospin
and hypercharge, respectively. The corresponding gauge fields are denoted by GAµ , W

a
µ and Bµ,

with gauge indices A = 1, 2, . . . , 8 and a = 1, 2, 3 labeling directions in the SU(3)c and SU(2)L Lie

1In 1974 the charm quark was uncovered, in 1975 the first evidence of the τ lepton was found and in 1977
the bottom quark was seen. We had to wait until 1995 for the discovery of the top quark and until 2000 for the
confirmation of the τ neutrino, both observed at Fermilab. Meanwhile, during the eighties, the mediators of the
electroweak charged and neutral current interactions were discovered at CERN.

9
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algebras, respectively. The covariant derivative of the model is then given by

Dµ = ∂µ + igsG
A
µTA + igW a

µTa + ig′BµY, (1.1)

where gs, g and g′ are the SU(3)c, SU(2)L and U(1)Y gauge coupling constants and TA, Ta and
Y the corresponding generators. The same notation as for the gauge fields is used for the field
strengths

GAµν = ∂µG
A
ν − ∂νG

A
µ − gs f

A
BCG

B
µG

C
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g εabcW b

µW
c
ν ,

Bµν = ∂µBν − ∂µBµ,

(1.2)

with fABC and εabc the SU(3)c and SU(2)L structure constants:

[TA,TB] = ifABCTC and [Ta, Tb] = iεabcTc. (1.3)

Matter is chiral respect to the electroweak gauge group, SU(2)L ⊗ U(1)Y , and consists of three
fermion generations (or families) with left-handed (LH) components transforming as weak iso-
doublets and right-handed (RH) ones as weak iso-singlets. Within each generation, labelled by
lower case latin indices i, j = 1, 2, 3, there are three color-triplet species describing quarks

qiL =

(

uiL
diL

)

∼ (3, 2) 1
6
, uiR ∼ (3, 1) 2

3
, diR ∼ (3, 1)− 1

3
, (1.4)

and two color-singlet species describing leptons

liL =

(

νiL
eiL

)

∼ (1, 2)− 1
2
, eiR ∼ (1, 1)−1 . (1.5)

We have used the short notation (dc, dL)Y to specify the corresponding SM irreducible repre-
sentations (irreps), where dc and dL stand for the dimensions of the SU(3)c and SU(2)L irreps
while Y is the field hypercharge. The hypercharge assignment, chosen to reproduce the fermionic
electric charges, ensures that this chiral structure is free of gauge anomalies. In the minimal SM
there are no RH counterpart for neutrinos, which are massless. The electroweak symmetry is
spontaneously broken at low energies to the electromagnetic U(1)em, describing Quantum Elec-
trodynamics (QED) with electric charge defined by Q ≡ T3 + Y [25, 26, 27, 28]. The Higgs field
transforms as an iso-doublet of hypercharge 1/2

φ =

(

φ+

φ0

)

∼ (1, 2)− 1
2
, (1.6)

The SM Lagrangian is

LSM =− 1

4
GAµνG

A µν − 1

4
W a
µνW

a µν − 1

4
BµνB

µν+

+liL i��D liL + qiL i��D qiL + eiR i��D eiR + uiR i��DuiR + diR i��DdiR+

+(Dµφ)
†
Dµφ− V (φ)−

(

yeii l
i
Lφe

i
R + ydii q

i
Lφd

i
R + V †

ijy
u
jj q

i
Lφ̃u

j
R + h.c.

)

,

(1.7)

where we have introduced the hypercharge −1/2 scalar iso-doublet φ̃ = iσ2φ
∗ and the scalar

potential
V (φ) = −µ2

φ |φ|2 + λφ |φ|4 . (1.8)
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The Lagrangian is the most general renormalizable one with the given gauge symmetry and field
content. For µ2

φ < 0 the minimum of the potential occurs for a non-zero vacuum expectation value

(vev) of the neutral scalar field,
〈

φ0
〉

= v/
√
2, with v =

√

µ2
φ/λφ ≈ 246 GeV, spontaneously

breaking the electroweak symmetry SU(2)L ⊗ U(1)Y → U(1)em. In order to quantize around the
classical vaccum we expand:

φ =
1√
2
eiξ

aTa

(

0
v +H

) unitary gauge

−→ φ′ = e−iξ
aTaφ =

1√
2

(

0
v +H

)

, (1.9)

where ξa are the massless pseudoscalar Nambu-Goldstone bosons (NGB) [29, 30] associated to
each broken generator and H is the Higgs boson. The Higgs is the only physical scalar degree of
freedom as it is apparent going to the unitary gauge where the NGB are gauged away and become
the longitudinal components of the corresponding massive gauge bosons. Replacing Eq. (1.9) into
the scalar kinetic term results in masses for all the electroweak gauge bosons other than the
combination coupled to the electric charge, which remains massless. We can classify the physical
sector of spin-1 particles in the SM according to this conserved charge, distinguising between a
charged sector with massive vector bosons

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, MW =
g

2
v, (1.10)

and a neutral sector containing both a massive vector and the massless combination corresponding
to the unbroken gauge symmetry vector boson, the photon:

Zµ = − sin θWBµ + cos θWW
3
µ , MZ =

√

g2 + g′ 2

2
v,

Aµ = cos θWBµ + sin θWW
3
µ , MA = 0.

(1.11)

The mixing in this neutral sector is described by the weak angle, with tan θW ≡ g′

g . Comparing

(1.10) and (1.11) we observe that at tree level theW and Z masses are related byMW =MZ cos θW .
Radiative corrections change these parameters but, if ρ ≡ M2

W /M
2
Z cos θW

2, one still finds ρ ≈ 1.
This is implied by an approximate accidental global SU(2) symmetry in the scalar sector of the
Lagrangian, called custodial symmetry because it protects the tree-level relation ρ = 1. As we will
see below there are other accidental global symmetries in the SM Lagrangian but they affect only
to the fermionic sector.

The Higgs mechanism is also responsible of giving masses to fermions which, being chiral under
the electroweak gauge group, do not admit any mass term in the Lagrangian (1.7). Under the
unbroken gauge symmetry the two chiralities for each fermion transform in the same way, and are
then paired by the Yukawa couplings in Eq. (1.7) into the mass term

Lfm = −me
i l

i
Lφe

i
R −md

i q
i
Lφd

i
R − V †

ijm
u
j q

i
Lφ̃u

j
R + h.c., (1.12)

with masses given by

mf
i =

v√
2
yfii. (1.13)

Note that in writing the Yukawa terms we chose a fermion basis such that ye and yd are diagonal.
Within the SM this can always be done without loss of generality. Had we started from an arbitrary
basis

LYuk = −yeij liLφejR − ydij q
i
Lφd

j
R − yuij q

i
Lφ̃u

j
R + h.c., (1.14)
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the general Yukawa matrices, which do not have to be real nor hermitian, can be diagonalized by
bi-unitary transformations

yfij =
(

UfL
)

ik
yfkk

(

UfR
)†

kj
, (1.15)

with yfii the square root of the (real and positive) eigenvalues of the hermitian products yf
(

yf
)†

and
(

yf
)†
yf , which are diagonalized by the unitary matrices UfL and UfR, respectively. Note now

that, if we exclude the Yukawa terms from the Lagrangian, each fermion type spans a global U(3)
symmetry allowing for arbitrary unitary redefinitions in family space. For quarks, one can use this
freedom to diagonalize only one of the Yukawa matrices, since by SU(2)L gauge symmetry LH u and
d quarks must be rotated by the same transformation. We choose as a convention to diagonalize
the d Yukawa matrix. For the charged leptons, the absence of RH neutrinos guarantees that
their Yukawas can always be rotated to diagonal form. Therefore, we have rotated (1.14) defining
lL → UeLlL, eR → UeReR, qL → UdLqL, uR → UuRuR and dR → UdRdR to obtain the Lagrangian in

(1.7). With this convention V ≡ (UuR)† UdL in Eq. (1.7).
Note that not all the U(3)5 global symmetry is broken by the Yukawa terms. Actually there are

four global accidental U(1) symmetries left unbroken. Their charges are given by baryon number
(B), which assigns B = (−)1/3 to (anti) quarks, and by the three lepton flavors (Li, i = e, µ, τ),
with Li = (−)1 for (anti)leptons in the i-th generation. In consequence, total lepton number
(L = Le+Lµ+Lτ ) is also preserved. It must be noted though, that B and L are exact symmetries
only at the perturbative level, while the combination B − L is exact.

In order to write Eq. (1.7) in the fermion mass eigenstate basis we only need to rotate the
LH u quarks. In general, since generators corresponding to broken symmetries can mix different
components of the fermion multiplets, going to the physical basis will imply that flavor mixing
encoded in the mass matrices translates to the gauge currents. However, this mixing only appears
in the quark charged currents through V , known as the Cabbibo-Kobayashi-Maskawa (CKM) ma-
trix [31, 32], because of the particular SM algebraic structure with diagonal neutral couplings.
Thus, the interactions between physical fermions and charged and neutral vector bosons are given
by:

LCC = − g√
2
W+
µ

(

νiLγ
µeiL + VijuiLγ

µdiL

)

+ h.c. ,

LNC = − g

cos θW
Zµ
∑

ψ

ψγµ
(

gψLPL + gψRPR

)

ψ ,

Lem = − e Aµ
∑

ψ

Qψ ψγµψ ,

(1.16)

with the electric charge e ≡ g′g/
√

g2 + g′ 2 = g′ cos θW = g sin θW , the neutral current couplings

gψL ≡ TψL3 − sin2 θW Qψ and gψR ≡ − sin2 θW Qψ, and the chirality projectors PL,R ≡ (1∓ γ5)/2.

Finally, the same Yukawa couplings generating masses for the fermions, couple them to the
physical Higgs field. In the fermion mass eigenstate basis

LH = − 1√
2
H
(

yeii e
i
Le

i
R + yuii u

i
Lu

i
R + ydii d

i
Ld

i
R

)

+ h.c. , (1.17)

where interactions are diagonal, for they are proportional to fermion masses. In consequence,
looking at (1.16) and (1.17), we observe that the SM is free from tree-level flavor-changing neutral
currents (FCNC) and that all the flavor structure is contained in the charged currents and solely
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described by the CKM matrix. This unitary matrix is also the only source of CP violation in the
model. Morevoer, using the fact that all the other terms in the Lagrangian are invariant under
rephasing of quark fields, it can be easily shown that all CP violation is governed by only one
complex phase.

The current status of the Standard Model

The SM is in excellent agreement with available data. Besides the observation of all fermions
as well as of the neutral and charged current mediators, precision measurements have probed
the model including radiative corrections, and have found no significant deviation from the SM
predictions. For instance, electroweak precision tests performed during the first run of LEP and
at SLC have provided extremely accurate measurements of the properties of the neutral current
sector. On the other hand, during the second run of LEP, LEP 2, the available center of mass
energy allowed to pair produce the W and measure its mass, decay width and branching fractions.
Moreover, since two of the three tree-level diagrams contributing to W pair production contain
the triple gauge boson coupling, the non-abelian nature of the electroweak interactions has been
also tested. Further measurements of the W parameters were also performed at Tevatron where
in addition W ’s can be single produced with a large cross section. Up to now, and despite a few
discrepancies that might be eventually interpreted as hints of the existence of new physics and
will be discussed below, all experimental data are consistent with the SM, with the only exception
of neutrino oscillations, which require the neutrinos to be massive particles and then to extend
the SM. Putting neutrino masses aside, we can quantify the degree of agreement of the SM with
experimental data by performing a global fit to the model. The detailed results of the SM global
fit to the electroweak precision data (EWPD) as well as the methodology we used are described
in Appendix A, where we also list all the data included in the fit. Here, the results are illustrated
in Fig. 1.1, where the discrepancies between the experimental measurements and the theoretical
predictions for the most relevant observables are given in terms of the pulls: the difference between
measurement and prediction normalized to the experimental error. As can be seen the agreement
is very good, even if a few measurements show discrepancies ∼ 2 - 3 standard deviations (σ). It is
important to note that when many different observables are included in the fit, the presence of a
few of these discrepancies is expected as a consequence of statistical fluctuations and, therefore,
they should not be necessarily taken as an indication of a problem in the model. They could also
have an experimental origin, coming for instance from underestimated systematics. In any case,
the quality of the fit can be globally evaluated attending to the value of the χ2 over the number
of degrees of freedom (d.o.f.) or, better, by reporting the p-value2. For the SM fit we get good
overall results3

χ2

d.o.f.
= 1.08, p = 0.34.

Now, the fact that a few discrepancies do not necessarily point to a problem of the model does
not mean that they should not be analyzed as possible hints of new physics. Therefore, it is worth
reviewing which are the major disagreements between the model and data, in order to determine
whether they follow any pattern that may be predicted by some extension of the SM. The most
significant discrepancy with the SM predictions comes from the anomalous magnetic moment for

2For a given χ2, the p-value is the probability that the hypothesis would lead to a χ2 value larger than the one
obtained. This means that if one would repeat the experiments many times and with the obtained data in each
iteration perform a new fit, the expected value for the χ2 would be worse than the one obtained in 100 · p % of the
cases.

3This fit corresponds to the “standard” fit as described in Appendix A. More details such as the best fit values
and errors for the SM parameters or the results of different fits are also given there.
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Figure 1.1: Pulls for the SM theoretical predictions for some of the most representative observables
included in the fit.
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the muon aµ ≡ (gµ − 2)/2. This has been computed within the SM including up to four loops
and leading five-loop estimates for the QED contribution. For the electroweak part the full two-
loop result is also known, as well as the leading logarithm three-loop contribution. Finally, there
are hadronic vacuum polarization and light-by-light scattering corrections. These are the major
sources of the theoretical uncertainty. In particular, the vacuum polarization piece is extracted
from the e+e− → γ∗ → hadrons cross section making use of a dispersion relation. Combining
the existing e+e− data for the hadronic corrections, including the latest ones from Babar [33],
and adding the result to all the other contributions, one finds that the SM prediction departs
by ∼ 3.2 σ respect to the experimental value measured at BNL [34] by the E821 experiment4.
The deviation could be accounted by contributions of new physics, such as supersymmetry with
large tanβ. The main problem at the Z pole is with the value of sin2 θlepteff , which is distinctively
higher when derived from hadronic asymmetries than when derived from the leptonic ones. The
statistical probability that the set of asymmetry data is consistent with the SM hypothesis is only
3.7 % [36]. This low probability is driven by the two most precise determinations of sin2 θlepteff ,
obtained from the leptonic asymmetry parameter Al by the SLD collaboration at SLAC and of the
bottom forward-backward asymmetry AbFB at LEP, respectively. These measurements differ by 3.2
σ. The best-fit value gives a prediction for AbFB that is 2.7 σ above its experimental value, while
the leptonic asymmetries differ by less than 1.8 σ [37]. For this reason, it is common to speak of
an AbFB anomaly, and to implicitly consider that the leptonic data are in good agreement with the
SM. This bottom anomaly could be interpreted as an indication of the presence of new physics
strongly coupled to the third quark family. Finally, the measurement of the effective neutrino-
quark couplings in deep inelastic neutrino-nucleon scattering by the NuTeV collaboration, which
was at ∼ 3 σ a few years ago, has also recently entered in the class of minor discrepancies, as it
has been reduced to ∼ 2 σ [38].

The only SM prediction not confirmed experimentally thus far is the existence of the Higgs
boson, responsible of the spontaneous breaking of the electroweak symmetry. In consequence, its
mass, MH , is the only input parameter in the model that has not been measured. Direct searches
at LEP 2 and Tevatron have put, however, constraints on the possible values that this parameter
may have. Assuming a pure SM Higgs, LEP 2 searches put a direct lower bound MH ≥ 114.4 GeV
at 95% C.L. [39] and Tevatron searches have recently excluded 163 ≤ MH ≤ 166 GeV at 95%
C.L., window that is expected to be extended to 159 ≤ MH ≤ 168 GeV for the same confidence
level [40] 5. It is noteworthy that, as a result of some excess events seen by both collaborations,
when the results of both direct searches are combined there is a significative preference for a Higgs
mass of ∼ 116 GeV. As can be seen in Figure 1.2 (Left), there is a relatively pronounced dip in the
observed log-likelihood ratio of data probabilities comparing the hypothesis of SM background to
background plus Higgs signal. This preference for a light Higgs is extended up toMH . 155 GeV by
Tevatron searches, sensitive to masses up to 200 GeV. On the other hand, since the SM predictions
depend through quantum corrections on the unknown value of the Higgs boson mass, the global fit
provides indirect information about the value ofMH . In particular, electroweak data tend to prefer
a relatively light Higgs, MH = 101+32

−26 GeV, slightly below the direct LEP 2 lower bound. The
upper bound at 95 % C.L. is MH < 159 GeV. Note that this indirect determination of MH does
not seem compelling, as it arises from the combination of somewhat contradictory measurements
if the SM gives a complete description of nature: MW and the leptonic asymmetries at the Z pole
point to a very light Higgs, whereas the hadronic asymmetries prefer a heavy one [42]. On the other
hand, it has been argued that there is some tension between the indirect determination of the Higgs

4One could however use τ decay data instead of e+e−, reducing the discrepancy in such case to the 1 σ level [35].
5It has been noted recently however that these last exclusion limits should be reconsidered in the light of the

large theoretical uncertainties affecting the production cross sections of the Higgs at Tevatron [41].
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mass and the direct limit because the former is below of the latter [43]. However the direct bound is
nowadays well within the 1 σ confidence interval of the indirect measurement. It is also important
to note in this regard that the indirect determination of the Higgs mass is rather correlated with
the assumed top quark mass, which matches its experimental value since it is measured with a
good precision. This implies that a shift in the central value of mt can ameliorate or worsen the
tension between direct and indirect determinations. For instance, in these last years mt has been
changing between 170.9± 1.8 GeV and the current value of 173.1± 1.3 GeV. For the lowest value,
MH = 86+30

−23 GeV while for mt & 175 GeV, with the current error, the best fit value is above the
direct LEP 2 constraint. In any case, this mild tension will be meaningless if a ∼ 120 - 140 GeV
Higgs is eventually found at the LHC, and only in the case that it is significantly heavier the
presence of extra physics would be necessary to explain the data. Having in mind these different
preferences for the Higgs mass between different data sets, and the small tension between direct
and indirect results, what one should in principle do is to include all the available information in
the fit, and in particular the Higgs direct searches limits. This is what we will do in our analysis,
giving a Higgs mass value centered in the dip of Figure 1.2 (Left) at MH ≈ 116 GeV. The results
from direct searches also affect the upper limit which is reduced to MH < 138 GeV at 95% C.L. .
The χ2 distribution as a function of the Higgs mass including direct searches and ignoring them is
shown in Figure 1.2 (Right). Obviously, both profiles coincide in the region MH > 200 GeV where
there are no bounds from direct searches, but in the favored region around MH ∼ 116 GeV the fit
including the Higgs searches data gives a deeper minimum. It is important to note that, although
we will systematically include these direct searches limits in our fits, one needs to be careful as
these are referred to a SM Higgs and may not necessarily apply in a generic SM extension.

Apart from these experimental constraints, there are also theoretical bounds on MH . In par-
ticular, tree-level unitarity constraints in longitudinally polarized WW scattering imply that the
Higgs mass should not be larger than 1 TeV [44]. Triviality limits are derived assuming the SM
to be valid up to some energy scale and requiring that the quartic coupling λφ does not blow
up in the running. For a value of the cut-off scale not much larger than MH this implies that
MH . 800 GeV, while MH . 150 GeV if we assume perturbativity up to the reduced Planck
scale κP ∼ 1018 GeV [45]. Theoretical considerations about the stability of the scalar potential
provide lower bounds on MH , also depending on the scale until which we assume the SM to be
valid. If, again, we assume it is valid up to the reduced Planck scale, vacuum stability requires
MH & 130 GeV, and MH & 115 GeV if we simply require a sufficiently long-lived metastable
vacuum [46].

At this point, despite a few experimental disagreements, there is no strong experimental reason
to believe in the existence of new physics beyond the SM 6. The main reasons why nowadays
most physicist are convinced that the SM cannot be a fundamental theory come from theoretical
and/or ”aesthetic” considerations. The model has too much arbitrariness to begin with, with a
total of 20 free parameters. Apart from that, there are several open questions such as why only the
electroweak gauge group is chiral, why there are three fermion families and, more intriguing, why
there is such a hierarchical pattern for their masses and mixings, . . . . It also suffers from several
fine-tuning problems such as the strong CP problem [47], or the well known hierarchy problem.
This directly affects to our understanding of the EWSB mechanism. As explained above, for the
SM to be consistent with the data, the Higgs should not be very heavy and, in particular, from
theoretical arguments we know that its mass should not be in any case larger than ∼TeV. Now, it
is a fact that the Higgs mass is very sensitive to high energy scales through radiative corrections.
This becomes apparent if one computes the one-loop corrections to the mass squared using a cut-off
Λ to regulate the integrals. In such a case one finds that these corrections diverge quadratically

6Apart from providing a mechanism for neutrino masses.
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Figure 1.2: (Left) Higgs direct searches results from LEP 2 (red dotted line), Tevatron (blue dashed
line), and the total combined contribution (black solid line) to the observed log-likelihood (LLRobs).
(Right) Minimum of the χ2 in the SM as a function on the Higgs mass for the “standard” fit (blue
dotted line) described in Appendix A and the fit including the Higgs direct searches results (black
solid line). Note that the latter has been normalized to agree with the former for large MH .

with the cut-off,

M2
H =Mbare 2

H +O
(

λφ, g
2, y2f

)

Λ2. (1.18)

Note that this is not strictly a problem if the SM is valid at all scales, since only MH and not
Mbare
H is observable. Consider, however, the case where there is a real physical cut-off, i.e., an

energy scale where new physics enters altering the high energy behaviour of the theory. In such a
case, the SM Higgs mass receives physical corrections from threshold effects at that scale which,
as in Eq. (1.18), depend quadratically on the cut-off 7. We know that in the absence of any other
new physics beyond the SM, the theory has at least one physical cut-off at the reduced Planck
scale, where the gravitational effects start to be important. Then, one-loop threshold effects at κP
imply that MH ∼ κP , well above the electroweak scale, unless some fine-tuning is at work between
the bare parameters and loop corrections in order to cancel more than 30 figures in the mass
square. Moreover, this cancellation must take place at every order in perturbation theory since,
even assuming that the parameters have been tuned to cancel the one-loop quadratic divergence,
another quadratic divergence appears at two loops and so on. This means that the fine-tuned
values depend on all the parameters of the theory. Therefore, the origin of the hierarchy problem
is, as its name suggests, the large spacing between the electroweak and the Planck scales, which
is not stable in a natural way. This is why most physicists expect that new physics explaining the
stability of the electroweak scale must cut-off the SM, and that it must do it not much beyond
1 TeV. Finally note that unlike for the Higgs mass, this hierarchy poses no problem for fermion
masses or dimensionless couplings, for these are only logarithmically sensitive to the cut-off.

As we have tried to emphasize in this section, the SM explains very well the results of the
experiments performed up to now, but our theoretical understanding suggest that the model must
be completed when we go to higher energies. In other words, the SM can be considered just as

7These threshold effects arise from demanding the ”continuity” of the low-energy correlation functions across the
cut-off energy.
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a low-energy approximation to a more fundamental theory. Theories of this kind are known as
effective theories.

1.2 The effective Lagrangian approach for the description
of new physics

There are many different scales in nature and it is a fact that the knowledge of the exact physical
details at all of them is not necessary in order to describe phenomena that occur at a given one. In
other words, one does not need the fundamental theory to describe physics, which is a good thing
because nobody knows it. Actually, even in the case we knew it, a simpler description where the
details of little relevance for the phenomena we are interested in are “ignored” could be a more
convenient quantitative approach. Effective theories are a tool which allows us to simplify the
study of physical systems with very different scales. In particle physics, where the mathematical
formalism used to describe nature is quantum field theory (QFT), these techniques configure the
framework known as effective field theory.

Consider a renormalizable QFT involving light and heavy fields denoted by φ and Φ, respec-
tively. Such a theory would be described by a Lagrangian that can be splitted into three different
pieces

L [φ,Φ] = Lℓ [φ] + Lh [Φ] + Lℓh [φ,Φ] , (1.19)

where Lℓ [φ] and Lh [Φ] describe interactions involving only light and heavy fields, respectively,
whereas the interactions between both are contained in Lℓh [φ,Φ]. If we are interested in describing
physical processes involving only the light fields at energies E ≪ Λ, with Λ the characteristic mass
scale of the heavy fields, the Φ degrees of freedom can be integrated out of the theory to obtain
an effective Lagrangian valid to describe the interactions of the light fields at low energies:

exp

(

i

∫

Leff [φ] d4x

)

=

∫

Dφ (x)|p>ΛDΦ (x) exp

(

i

∫

L [φ,Φ] d4x

)

. (1.20)

In general, the effective Lagrangian Leff [φ] can be expanded as

Leff [φ] = Lℓ [φ] +
∑

i

CiOi (x) , (1.21)

with Oi being a set (in general infinite) of local operators built from the light modes φ. The
coefficients Ci of such operators are known as Wilson coefficients and encode the effects of the
high-energy physics at energies E ≪ Λ. These coefficients scale according to the mass dimension
of the operator di = [Oi]

Ci =
αi

Λdi−4
, (1.22)

with αi a dimensionless number. Thus, we have a finite number of operators with mass dimension
di ≤ 4 that renormalize the action of the light fields, and an infinite number of operators with
di > 4, whose effects become irrelevant as we go to lower energies, i.e., as Λ is taken to infinite. This
particular structure of the effects of the high energy dynamics over the low-energy physics is known
as decoupling. In field theory, decoupling was first made rigorous in the Appelquist-Carazzone
theorem [48] which essentially states that, apart from coupling constant and field strength renor-
malization, the effects of the heavy degrees of freedom are suppressed by some inverse power of
the cut-off Λ. This will be our first assumption about the nature of the physics beyond the SM:
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� Hypothesis 1: The new physics satisfy the conditions of the Appelquist-Carazzone theorem
and decouples in the limit Λ → ∞, with Λ some characteristic scale of the new physics acting
as a cut-off. This can be the mass of the heavy particles, for instance.

It is important to note that, although decoupling is a rather general property, there are inter-
esting physical cases where the decoupling theorem does not apply. For instance, the fermions in
the electroweak theory cannot be decoupled by taking their masses to be large.

Although in the above discussion we have used an up-bottom approach, using the Lagrangian
of the fundamental theory as a starting point from which the effective Lagrangian is derived, via
the integration of the heavy degrees of freedom, it must be emphasized that we do not need to
know what the theory at high energies is in order to build a useful effective theory for a given
set of light states. In general, the methods of QFT allow us to use a bottom-up approach and
construct a general effective Lagrangian, provided we know a few of its ingredients. This remark
can be made precise in the form of a theorem [49] 8:

Theorem. For a given set of asymptotic states, perturbation theory with the most general La-
grangian containing all terms allowed by the assumed symmetries will yield the most general S-
matrix elements consistent with analyticity, perturbative unitarity, cluster decomposition and the
assumed symmetries.

This is very convenient when we are interested in new physics studies, for in that case the
high-energy theory is unknown. What we know is that at low energies (up to the electroweak
scale at least) the SM is a good effective theory. Then, we can set it as our starting point and
use the SM fields and symmetries to construct an effective Lagrangian which apart from the SM
interactions contains an infinite set of operators of mass dimension d > 4. Such a theory provides
a model-independent description of physics beyond the SM and, in particular, must include the
“true” effective field theory if our understanding of the physics at low energies is correct. In this
regard, as the Higgs has not been discovered yet, we will make an assumption about the content of
the light scalar sector 9. In general it suffices to consider the SM Higgs, since scalar singlets which
can acquire a vev do not transform under the SM and scalar triplets or higher representations can
only get very small vevs, vR, as otherwise they would give sizable contributions to the ρ parameter,
which are experimentally very constrained. Then, their effects are suppressed by vR/v and can be
neglected in most cases. Finally, there can be several scalar doublets but we can always identify
the SM one as the combination getting the vev v. Therefore:

� Hypothesis 2: We parametrize new physics in terms of the most general effective La-
grangian that can be built from the minimal SM field content and symmetries. This implies,
in particular, that we consider only the SM Higgs.

According to the scaling behaviour (1.22), the effective Lagrangian can be ordered according
to the mass dimensions of the operators as follows

Leff =

∞
∑

d=4

1

Λd−4
Ld = L4 +

1

Λ
L5 +

1

Λ2
L6 + . . . , (1.23)

where Λ is the (unknown) threshold energy scale up to which the effective Lagrangian description
is valid, and each Ld contains all the local operators of canonical dimension d allowed by the

8The exact formulation presented here has been directly taken from Ref. [21].
9A chiral effective theory with a nonlinear realization of the SM symmetry, including the Goldstone bosons but

no physical Higgs field, is also possible [50].
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symmetry requirements:

Ld =
∑

i

αdiOd
i ,

[

Od
i

]

= d. (1.24)

Note that Eq. (1.23) contains an infinite tower of operators. This might seem to pose a problem for
computational purposes. But, following the effective theory philosophy, we do not need to know
the effects of all operators (otherwise the use of the fundamental theory would be simpler and then
there would be no reason to use the effective description) but only of those that are relevant for the
physical observables we are interested in and up to the required precision. Here is where the idea
of ordering operators according to their mass dimension becomes meaningful, since it also classifies
them according to the size of their corrections to the relevant observables. By power counting,
the operators in Ld will give contributions ∼ (E/Λ)n ≥ d−4 ≪ 1, with E the typical energy of the
process. Thus, in practice, the presence of this infinite set of operators in the effective Lagrangian
is not a problem because a given physical observable can only be determined experimentally with
a finite experimental precision σexp. Therefore, among the whole set of operators in Eq. (1.23) we
only need to consider operators of mass dimension d ≤ N + 4, with N fixed by

σexp ∼
(

E

Λ

)N

. (1.25)

For new physics around the TeV scale, we expect terms of dimension d > 6 to give small corrections
compared to the current experimental precision. This can be justified by the fact that most of the
electroweak precision measurements are taken at the Z pole or at lower energies and (MZ/TeV)

N
<

0.8h for N ≥ 3, while for LEP 2 measurements, although there are data taken up to energies of
209 GeV, the precision is significantly lower. Therefore, we will consider the effects of operators
up to dimension six in our analysis. This will be our third working assumption:

� Hypothesis 3: We assume that the precision of current electroweak precision data allows
to test only operators up to dimension six in the effective Lagrangian.

Once we have the operators entering in the effective Lagrangian and have established a way of
truncating the infinite sum in Eq. (1.23), we still need to know the coefficients αdi . These encode the
effects of the virtual exchange of the heavy degrees of freedom and can be obtained by comparing
the exact and the effective Lagrangian results for a certain set of S-matrix elements involving only
the light degrees of freedom around the threshold energy Λ, for the effective and the fundamental
theories must provide the same results at that scale. This process is illustrated in Fig. 1.3 and it is
known as matching. If perturbation theory can be applied to the high energy theory, performing
the matching at the desired order provides the corresponding perturbative expansion for each
coefficient. This is the way the Fermi theory can be derived from the SM, for instance.

There are situations where the above procedure cannot be applied either because the underlying
theory is unknown, as in the case of the SM, or because it is non-perturbative, as for instance in
Chiral perturbation theory where the high energy theory is known, QCD, but it is strongly coupled.
In these cases one can still obtain the values for the higher dimensional operator coefficients by
comparing the predictions for the S-matrix elements in the effective theory with the experimental
measurements of the corresponding observables. Since a given operator can contribute in principle
to several different observables this is best done by performing a global fit of the operator coefficients
to data.

The comparison of a given theory beyond the SM with data requires evaluating its contributions
to the corresponding observables, and this must be repeated for each theory. In contrast, the
effective Lagrangian approach offers an unified framework for the computation of the corrections
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E ≥ Λ E ∼ Λ E ≪ Λ

←→

Figure 1.3: For an S-matrix element involving only light particles (thin lines) in the initial and
final states, the effect of the exchange of the heavy (M ∼ Λ) particles (thick lines) is mimicked in
the effective theory by the presence of new interactions and/or corrections to the existing vertex
and propagators. The exact correspondence between both theories is performed by matching their
results at the threshold E ∼ Λ.

to the different observables given the light fields and symmetries. Thus one only needs to compute
them once in terms of the higher dimensional operator coefficients and then translate whatever
model we may want to consider to the corresponding effective theory, instead of computing the
corrections to all physical quantities again for any possible new physics scenario.

Completely model-independent studies of new physics using the effective Lagrangian set-up have
been performed in the past, see for instance [51, 52, 53]. In practice, they are not very illuminating
if one is interested in extracting some details of the structure of the high energy theory. This is
so because model-independent results are given in terms of central values, errors and correlations
of the operators coefficients, but there can be many different types of new physics contributing
to the same operators and a careful comparison of the resulting correlations with definite models
is necessary. Given the large number of possible operators, this is a highly non-trivial task. One
should also be careful since these results may be not unique. In this thesis we will follow a slightly
different approach. We will perform model-independent studies within a class of models,in the
sense that we will assume some of the structure of the high-energy theory by introducing by hand
different particles that may be present in the spectrum, but with completely general couplings and
masses. They must be rather heavy -otherwise they would have been observed- and therefore the
use of the effective Lagrangian description is justified. The advantage of this method is that, upon
integration of the new fields, only some of the operator coefficients in the effective Lagrangian
will be different from zero and they will also exhibit some degree of correlation. Then, the fit is
directly sensitive to the assumed structure but the results can be still rather model independent
as we are not assuming further details about the underlying theory where the new particles may
be embedded. In general, if one is interested in which ingredients of a possible high energy theory
are favored or excluded by data, this is a convenient approach.

As we will use matching in order to compute the effective Lagrangian for each kind of extra
particles we need to require that the high energy physics is perturbative. Regarding perturbativity
a second comment is in order: independently of whether the fundamental theory is known or



22 Chapter 1 Effective field theories: The Standard Model and beyond

not, perturbativity guarantees that the term ordering according to their mass dimensions as in
Eq. (1.23) is stable. This is so because under quantum corrections the scaling relations, Eq. (1.22),
are modified to

Ci =
αi

Λdi−γi−4
, (1.26)

with γi the anomalous dimension of the operator Oi. Thus, in order for the scaling behaviour of
the Wilson coefficients to be unaltered the γi must be small, which is ensured if the new physics
is weakly coupled. Therefore we will assume:

� Hypothesis 4: The new physics is weakly coupled. Thus, we can use perturbation theory to
compute the operator coefficients and the classification of the relevance of the extra operators
attending to their mass dimension is stable under quantum corrections.

Finally, upon the integration of the heavy particles we will only consider the effects from those
operators which receive non-vanishing contributions at tree level. More than an extra restriction,
this can be actually thought as a consequence of the considerations we made on the effective
Lagrangian expansion and the current experimental precision, together with the above assumption
requiring that the new physics must be weakly coupled. Indeed, loop corrections to dimension-
six operators are suppressed by additional 1/16π2 factors, so they are expected to be beyond
the experimental sensitivity. In general, tree-level contributions provide the largest effects and
therefore allow to derive the strongest constraints. On the other hand, and also related to the
consistency of the truncation in the expansion (1.23), we must note that when computing new
physics corrections to physical observables only the interference with the SM amplitudes needs to
be taken into account, as quadratic effects are expected to be comparable with interference effects
from higher order terms.

� Hypothesis 5: We limit our study to new physics with non-vanishing tree-level effects 10.
For the computation of physical observables, unless otherwise is stated, only the interference
with the SM contributions will be taken into account, so the results are consistent at the order
in the effective Lagrangian expansion we are working at.

Performing the matching at tree level reduces to inserting in the high energy Lagrangian the
classical solution for the heavy fields, obtained by solving their Euler-Lagrange equations. In this
process a lot of many different operators arise, and therefore it is convenient to work in a definite
operator basis. At a given dimension, one can always construct a complete basis of independent
operators. Complete here is understood in the sense that it contains all the possible effects in
S-matrix elements at that order. Independent means that each operator in the basis cannot be
written in terms of the others using algebraic relations or perturbative field redefinitions11. One
of such basis for the operators of dimension d ≤ 6 was presented long ago by W. Buchmuller and
D. Wyler in [57]. That was complete with the exception of one missing operator, to be added
later by the authors of [58]. (In this last reference the operators were also classified according to
whether they can be generated at tree level or at the loop level in SM extensions with an arbitrary
number of extra fermions, vector bosons or scalars.) There is only one dimension-five operator,
and this violates lepton number. At dimension six, a total of 81 operators (without taking into
account flavor) were found if we impose independent conservation of baryon and lepton number.
In what follows we review what will be relevant in this thesis. As we will see, actually not all the

10Scenarios where the leading corrections enter at the loop level are therefore not considered. This is the case
of theories with a “parity”, such as R-parity in supersymmetric theories, T-parity [54] in Little Higgs models or
Kaluza-Klein parity [55] in universal extra dimensions.

11Being computed via the Lehmann Symanzik and Zimmermann (LSZ) reduction formula [56], a perturbative
redefinition of fields has no effect on S-matrix elements at a given order.
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operators in Ref. [57] are independent so the basis is somewhat smaller [59]. The main effect of
each type of operator will be studied in more detail in the next chapter.

1.2.1 The dimension-six effective Lagrangian

As mentioned above there is only one dimension-five operator that can be made up of SM fields.
This is the Weinberg operator [60] in the first line of Table 1.1 and its effect is to provide Majorana
masses for the SM neutrinos. At dimension six we can find a large variety of operators that can
be generated at tree level. Before introducing them, let us first point out that in this thesis we
will find situations where the assumptions of baryon and lepton number conservation in Ref. [57]
do not apply. Therefore we have also included operators that violate B and L, but preserve B−L.
There is no dimension-six operator violating B − L [61]. Extending the basis of Ref. [57] to one
where B and L are not necessarily preserved is trivial. By Lorentz invariance fermions must come
in pairs and by dimensional analysis we can have only operators with two or four fermions. Since
quanta of B comes in units of ±1/3 while L comes in units of ±1, it is impossible to construct a
B and L violating but B − L preserving quantity with just two fermions. Thus, the extension of
the basis only requires to add extra four-fermion interactions. Now, in a L violating four-fermion
operator we can compensate at most ∆L = 1 for it is the largest ∆B we can get with three quarks.
Hence the kind of operators we are considering are made up of the color antisymmetric combination
of three quarks and one lepton. U(1)Y invariance then requires the quark combination to carry
Y = 1/2 (qLqLqL and qLuRdR) if coupled to lL or Y = 1 (uRuRdR and qLqLuR) if coupled to eR.
Finally, SU(2)L invariance fixes the final form of the operator.

The list of dimension-six operators we will deal with contains:

• Operators involving only fermionic fields with different chiralities. These appear in sets 2 to
5 in Table 1.1. We refer to them using the list of chiralities of the fermionic fields: LLLL,
RRRR, LRRL and LRLR. Here we must note that some of the interactions listed in [57]
as independent are actually redundant. This can be seen by direct application of several

Fierz identities. For instance, the operator O(3)
ll = 1

2

(

lLγ
µσalL

) (

lLγµσalL
)

can be written

in terms of O(1)
ll by using (γµPL)12 (γµPL)34 = − (γµPL)14 (γµPL)32 and the properties of

the Pauli matrices12:
(

O(3)
ll

)

ijkl
= 2

(

O(1)
ll

)

ilkj
−
(

O(1)
ll

)

ijkl
. (1.27)

We can do the same for O(8)
uu and O(8)

dd , using the analogous Fierz reordering for the Gell-Mann
matrices13

(

O(8)
uu(dd)

)

ijkl
= 2

(

O(1)
uu(dd)

)

ilkj
− 2

3

(

O(1)
uu(dd)

)

ijkl
. (1.28)

This cannot be done however to write O(1,3)
qq nor O(8,1)

qq only in terms of O(1,1)
qq because they

carry both isospin and color indices and the direct application of the corresponding Fierz
identity over the Pauli or Gell-Mann matrices would lead to an operator where the other

type of indices (color or isospin, respectively) are not paired as in O(1,1)
qq . The most we can

do here is to get rid of one of the three operators. For instance,

(

O(8,1)
qq

)

ijkl
=
(

O(1,1)
qq

)

ilkj
− 2

3

(

O(1,1)
qq

)

ijkl
+
(

O(1,3)
qq

)

ilkj
. (1.29)

12In particular, δijδkl =
1
2
δilδkj +

1
2
(σa)il (σa)kj , where sum in a = 1, 2, 3 is implicit. For one of the relations

below we will also need (σa)ij (σa)kl =
3
2
δilδkj − 1

2
(σa)il (σa)kj .

13In this case, δijδkl =
1
3
δilδkj +

1
2
(λA)il (λA)kj .
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The operator O(8,3)
qq can also be rewritten in terms of O(1,1)

qq and O(1,3)
qq :

(

O(8,3)
qq

)

ijkl
= 3

(

O(1,1)
qq

)

ilkj
− 2

3

(

O(1,3)
qq

)

ijkl
−
(

O(1,3)
qq

)

ilkj
. (1.30)

Note that the LLLL operators (O(1)
ll )ijkl, (O(1,1),(1,3)

qq )ijkl and the RRRR operators (Oee)ijkl

and (O(1)
uu(dd))ijkl are symmetric under the interchange {ij} ↔ {kl} but only (Oee)ijkl is also

symmetric under j ↔ l (or equivalently under i ↔ k) as can be seen by using another Fierz
reordering. This symmetry does not apply for any of the others since, as mentioned above,
they also carry SU(2)L and/or SU(3)c indices. Finally, the new B and L violating operators
correspond to the last three rows of LRRL operators and the last one of the LRLR (note
that (qLiσ2q

c
L) is color anti-symmetric while

(

ucRuR
)

and
(

dcRdR
)

are color-symmetric but
the latter can appear in the operators since there are also flavor indices that must be taken
into account). Any other operator violating B and L can be rewritten in terms of the five
operators presented here by using the properties of charge conjugation and suitable Fierz
transformations.

• One operator built-up exclusively with scalar fields. This is the one named Oφ6 in set 6 of
Table 1.1. There we have also included for notational purposes the dimension-four operator
(

φ†φ
)2
, as it will appear in some cases when we integrate the extra particles. These two

operators correct the scalar potential.

• Operators made of scalars, fermions and gauge bosons appear in set 7 of Table 1.1. In short,
we refer to these as SVF operators. Their main observable effect is to correct the fermionic
gauge couplings.

• Operators made of scalars and fermions and therefore refered as SF operators. These appear
in set 8 of Table 1.1 and their main effect is to correct the fermion masses and Yukawa
interactions.

• Finally, in the last set of Table 1.1 we find what we will call Oblique operators. These do
not involve any fermion. After EWSB they correct the gauge boson masses. The operator
OWB arises only at the loop level [58] and has been introduced here only because it allows
to connect with the standard oblique corrections formalism [62], as it is directly related to

the S parameter. The operator O(3)
φ , on the other hand, is related to the T parameter, while

there are no contributions to the U parameter at dimension six.
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Operator Notation Operator Notation

lcLφ̃
∗φ̃†lL O5

L
L
L
L

1
2

(

lLγµlL
) (

lLγ
µlL
)

O(1)
ll

1
2

(

lLγµσalL
) (

lLγ
µσalL

)

O(3)
ll

1
2 (qLγµqL) (qLγ

µqL) O(1,1)
qq

1
2 (qLγµσaqL) (qLγ

µσaqL) O(1,3)
qq

(

lLγµlL
)

(qLγ
µqL) O(1)

lq

(

lLγµσalL
)

(qLγ
µσaqL) O(3)

lq
1
2 (qLγµλAqL) (qLγ

µλAqL) O(8,1)
qq

1
2 (qLγµσaλAqL) (qLγ

µσaλAqL) O(8,3)
qq

R
R
R
R

1
2 (eRγµeR) (eRγ

µeR) Oee
1
2 (uRγµuR) (uRγ

µuR) O(1)
uu

1
2

(

dRγµdR
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dRγ
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)
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(eRγµeR) (uRγ
µuR) Oeu (eRγµeR)

(

dRγ
µdR

)
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(uRγµuR)
(

dRγ
µdR

)

O(1)
ud

1
2 (uRγµλAuR) (uRγ

µλAuR) O(8)
uu

1
2

(

dRγµλAdR
) (

dRγ
µλAdR

)

O(8)
dd

(uRγµλAuR)
(

dRγ
µλAdR

)

O(8)
ud

L
R
R
L

(

lLeR
)

(eRlL) Ole (qLeR) (eRqL) Oqe
(

lLuR
)

(uRlL) Olu

(

lLdR
) (

dRlL
)

Old

(qLuR) (uRqL) O(1)
qu (qLdR)

(

dRqL
)

O(1)
qd

(

lLeR
) (

dRqL
)

Oqde

(qLλAuR) (uRλAqL) O(8)
qu (qLλAdR)

(

dRλAqL
)

O(8)
qd

ǫABC(lLiσ2q
c A
L )(dBRu

c C
R ) Olqdu ǫABC(qBL iσ2q

c C
L )(eRu

c A
R ) Oqqeu

ǫABC(uARu
c B
R )(dCRe

c
R) Ouude

L
R
L
R (qLuR) iσ2 (qLdR) O(1)

qq (qLλAuR) iσ2 (qLλAdR) O(8)
qq

(

lLeR
)

iσ2 (qLuR) Olq

(

lLuR
)

iσ2 (qLeR) Olq′

ǫABC(lLiσ2q
c A
L )(qBL iσ2q

c C
L ) Oqqql ǫABC(uc AR dBR)(u

c C
R eR) Oudue

(

φ†φ
)2 Oφ4

1
3

(

φ†φ
)3 Oφ6

S
V
F

(

φ†iDµφ
) (

lLγ
µlL
)

O(1)
φl

(

φ†σaiDµφ
) (

lLγ
µσalL

)

O(3)
φl

(

φ†iDµφ
)

(eRγ
µeR) O(1)

φe
(

φ†iDµφ
)

(qLγ
µqL) O(1)

φq

(

φ†σaiDµφ
)

(qLγ
µσaqL) O(3)

φq
(

φ†iDµφ
)

(uRγ
µuR) O(1)

φu

(

φ†iDµφ
) (

dRγ
µdR

)

O(1)
φd

(

φT iσ2iDµφ
)

(uRγ
µdR) Oφud

S
F

(

φ†φ
) (

lL φ eR
)

Oeφ
(

φ†φ
)

(

qL φ̃ uR

)

Ouφ

(

φ†φ
)

(qL φdR) Odφ

O
b
li
q
u
e

φ†φ (Dµφ)
†
Dµφ O(1)

φ

(

φ†Dµφ
)

((Dµφ)
†
φ) O(3)

φ

φ†σaφ W a
µνB

µν OWB

Table 1.1: Dimension five and six operators arising from the integration of heavy scalars, vector
bosons or fermions at tree level. We also include the dimension-four operator Oφ4 and the loop-
level generated dimension-six operator OWB for notational purposes. Transposition of the second
SU(2)L doublet is understood in the first four LRLR operators. σa and λA stand for the Pauli and
Gell-Mann matrices, respectively, and ǫABC is the totally antisymmetric tensor for color indices
(A,B, · · · = 1, 2, 3 in this case).
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Chapter 2

Phenomenological implications of
the dimension-six effective
Lagrangian

In absence of any direct evidence of new physics, indirect searches become mandatory to unveil
possible hints of physics beyond the SM and/or to constrain the parameter space of definite SM
extensions. Thus, even if the new particles are so heavy that they cannot be directly produced,
they can still be exchanged as virtual states, leading to corrections to physical observables, and
eventually to a sizable departure from the SM. Then, more precise experiments should confirm
such deviations or further constrain the parameters describing the new interactions. Their effects
are encoded in the coefficients of the higher-dimensional operators in the effective Lagrangian
approach, and the computation of the induced corrections to the electroweak precision observables
is the ultimate goal of this chapter.

In order to study the impact of the new operators on physical observables it is reasonable, given
the current experimental precision, to truncate the effective Lagrangian expansion keeping only
terms up to dimension six,

Leff = L4 +
1

Λ
L5 +

1

Λ2
L6,

as argued in the previous chapter. One important source of corrections comes from the dimension-
six interactions involving the Higgs field, which after EWSB give rise to extra contributions to
dimension-four operators

1

Λ2
L6 ⊃ 1

Λ2
Lφ6

EWSB

−→ v2

Λ2
L′
4,

and in particular to the neutral current (NC) and charged current (CC) couplings. Thus, prior
to the computation of the corrections for the observables of interest, we will derive the pertinent
effective Lagrangian after EWSB.

27
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2.1 The effective Lagrangian after electroweak symmetry

breaking

We review in this section the modifications of the SM interactions generated from higher-dimensional
operators after EWSB. They result from terms in L6

1 involving scalar fields and giving SM oper-
ators suppressed by a v2/Λ2 factor when the Higgs is replaced by its vev

φ→ 〈φ〉 = 1√
2

(

0
v

)

. (2.1)

A few comments are in order:

1. The vev in Eq. (2.1) is not necessarily related to the scalar potential parameters in the
same way as in the SM, because the potential is in general also modified. Hence we should
distinguish between the SM vev, which we call v0, and the actual vev v. Their expressions
only differ in terms of order 1/Λ2.

2. In principle when one replaces the Higgs by its vev one should use v. Note however that, as
stressed in the previous chapter, we only consider new physics effects suppressed by inverse
powers of Λ not larger than two. Therefore, when the replacement is done on the higher-
dimensional operators, v and v0 can be used indistinctly, since the difference will be of order
1/Λ4 and then negligible within our approximations. Obviously, this argument applies more
generally: when two quantities differ only in terms of order 1/Λ2 they can be used indistinctly
in any expression of order 1/Λ2. On the other hand, one should take all the corrections into
account when working with order one expressions. For instance, in the SM expression for
gauge boson masses we must use v and not v0.

3. In practice, comparing to data, we assign a value to the vev, ∼ 246 GeV. This figure does
not correspond neither to v nor v0. It is extracted from the Fermi constant GF measured
in muon decays, which in the SM equals 1/

√
2v20 . In order to find the connection between

v or v0 and the above numerical value one must include the new physics correction to that
process but, again, the difference will be of order 1/Λ2 so following the previous argument,
in the higher-dimensional operators these are subleading effects, and we can simply insert v
and replace it by the number 246 GeV.

Similar comments apply to all the relations and parameters derived within the SM. We discuss in
what follows the corrections after EWSB on the different theory sectors due to the operators in
Table 1.1.

2.1.1 Scalar potential

There are two operators in Table 1.1 which modify the structure of the scalar potential: Oφ6

which adds a new piece to the original potential (1.8) and Oφ4 which corrects the quartic coupling:

V (φ) = −µ2
φ |φ|2 +

(

λφ +
αφ4
Λ2

)

|φ|4 − 1

3
αφ6 |φ|6

1

Λ2
. (2.2)

Thus, these operators modify the expression for the Higgs vev, as emphasized above. Note first that
the parameter αφ4 can be absorbed into the SM parameter λφ by redefining λφ → λφ − αφ4/Λ

2.

1The unique operator in L5 does not modify the SM interactions but introduce additional ones besides Majorana
neutrino masses, lepton flavor violating Yukawa interactions.
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On the contrary, αφ6 does have an effect. The extremal points for the modified potential and the
redefined λφ are

|φ∓|2 =
λφΛ

2

αφ6

(

1∓
√

1−
αφ6µ2

φ

λ2φΛ
2

)

, (2.3)

where only the “−” solution deviates little from the SM relation for large Λ values. Actually,
inserting (2.3) in the second derivative of V (φ)

2λφ − 2αφ6
Λ2

|φ|2
∣

∣

∣

∣

|φ|2=|φ∓|2
= ±

√

1−
αφ6µ2

φ

λ2φΛ
2
,

so if
αφ6
Λ2 <

λ2
φ

µ2
φ

the “−” solution corresponds to a minimum whereas the “+” solution is a maximum

(and goes to infinite when Λ → ∞). Linearizing in 1/Λ2 the minimum solution we obtain for the
scalar vev

v ≡
√
2 〈|φ|〉 =

√

µ2
φ

λφ

(

1 +
1

8
αφ6

µ2
φ

λ2φ

1

Λ2

)

= v0

(

1 +
1

8

αφ6
λφ

v2

Λ2

)

, (2.4)

where we have used the SM expression v0 =
√

µ2
φ/λφ and replaced v0 by v in the second term,

which does not matter at the order we are working at.

2.1.2 Redefinition of gauge fields, coupling constants and vector boson
masses.

There are no tree-level generated dimension-six operators in our basis correcting the gauge field
kinetic term. Moreover, at the loop level there is only one operator that can have observable
effects 2. This is OWB, which can be identified with the S parameter, and introduces kinetic
mixing between the neutral gauge fields: 〈OWB〉 = −v2Ŵ 3

µνB̂
µν/2. We have placed a “hat” on the

fields to indicate that they are not canonically normalized:

LKin
Gauge = −1

4
Ŵ a
µνŴ

a µν − 1

4
B̂µνB̂

µν − 1

2
αWB

v2

Λ2
Ŵ 3
µνB̂

µν . (2.5)

In order to remove the kinetic mixing we can perform the field redefinition

W 3
µ = Ŵ 3

µ +
αWB
2

v2

Λ2
B̂µ,

Bµ = B̂µ +
αWB
2

v2

Λ2
Ŵ 3
µ ,

(2.6)

which diagonalizes the kinetic term at order v2/Λ2. This removes the kinetic mixing but modifies
the gauge couplings and the covariant derivative, which reads in the canonical basis

Dµ = ∂µ+igsG
A
µTA+ig

(

W 1
µT1 +W 2

µT2
)

+iW 3
µ

(

gT3 − g′
αWB
2

v2

Λ2
Y

)

+iBµ

(

g′Y − g
αWB
2

v2

Λ2
T3

)

.

(2.7)

2The others are of the form φ†φ FµνFµν and their effect after EWSB can be removed by rescaling the gauge
kinetic terms and coupling constants at the same time.
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Thus, the neutral gauge boson mass matrix receives extra contributions:

〈

(Dµφ)
†
Dµφ

〉

=
g2v2

8

(

W 1
µ − iW 2

µ

)(

W 1
µ + iW 2

µ

)

+
v2

8

[

−
(

g+g′
αWB
2

v2

Λ2

)

W 3
µ+

(

g′+g
αWB
2

v2

Λ2

)

Bµ

]2

.

(2.8)
Besides, gauge bosons masses also receive further corrections from the dimension-six operators

O(1)
φ and O(3)

φ

〈

O(1)
φ

〉

=
v2

2

[

g2v2

8

(

W 1
µ − iW 2

µ

) (

W 1
µ + iW 2

µ

)

+
v2

8

(

−gW 3
µ + g′Bµ

)2
]

,

〈

O(3)
φ

〉

=
v4

16

(

−gW 3
µ + g′Bµ

)2
,

(2.9)

where we have neglected v4/Λ4 contributions. Hence, the physical charged vector boson mass now
reads

M2
W =

(

M0
W

)2
(

1 +

(

1

2
α
(1)
φ +

1

4

αφ6
λφ

)

v2

Λ2

)

, (2.10)

where M0
W = gv0

2 is the SM mass and we use (2.4) to rewrite v as a function of v0. In the neutral
sector the combination that acquires a mass defines the physical Z boson

Zµ =
1

N

[(

1 +
g′

g

αWB
2

v2

Λ2

)

gW 3
µ −

(

1 +
g

g′
αWB
2

v2

Λ2

)

g′Bµ

]

, (2.11)

where the normalization constant

N =
√

g2 + g′2
(

1 +
gg′

g2 + g′2
αWB

v2

Λ2

)

. (2.12)

Then, the massive neutral gauge boson coincides with the SM one ZSM
µ up to a field renormalization,

Zµ =
Z

− 1
2

Z
√

g2 + g′2

(

gŴ 3
µ − g′B̂µ

)

= Z
− 1

2

Z ZSM
µ , with ZZ = 1 +

2gg′

g2 + g′2
αWB

v2

Λ2
. (2.13)

Whereas the renormalized mass

M2
Z =

(

M0
Z

)2
(

1 +

[

2gg′

g2 + g′2
αWB +

1

2
α
(1)
φ +

1

2
α
(3)
φ +

1

4

αφ6
λφ

]

v2

Λ2

)

, (2.14)

where we have used the SM relation M0
Z =

√
g2+g′2

2 v0 and (2.4). On the other hand, the photon is
defined as the orthonormal combination to (2.11), which is massless as required by U (1)em gauge
invariance. In this case, however, the photon cannot be expressed as a simple renormalization of
the SM field, ASM

µ . This is ultimately a consequence of the kinetic mixing:

Aµ =
Z

− 1
2

A
√

g2 + g′2

(

g′Ŵ 3
µ + gB̂µ

)

+
Z−1
ZA

√

g2 + g′2

(

gŴ 3
µ − g′B̂µ

)

= Z
− 1

2

A ASM
µ + Z−1

ZAZ
SM
µ , (2.15)

with the field renormalizations given by

ZA = 1− 2gg′

g2 + g′2
αWB

v2

Λ2
and Z−1

ZA = αWB
g2 − g′2

g2 + g′2
v2

Λ2
. (2.16)
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Finally, it is straightforward to obtain the covariant derivative in the basis of physical vector fields
using Eq. (2.13) and Eq. (2.15),

Dµ=∂µ+igsG
A
µTA+i

e0√
2s0

(

W+
µ T++W

−
µ T−

)

+i
e0
s0c0

Z
1
2

ZZµ

(

T3−s20Q−s0c0Z
1
2

AZ
−1
ZAQ

)

+ie0Z
1
2

AAµQ,

(2.17)
where we have introduced for latter convenience the SM value for the electric charge e0 and the
weak mixing angle s0 ≡ sin θSMW , c0 ≡ cos θSMW , instead of the gauge couplings g and g′. This is the
expression for the covariant derivative we will use in the following.

2.1.3 Fermion masses and rotation matrices

There are several operators in the effective Lagrangian that upon EWSB generate extra mass
terms for the SM fermions but, as we will argue below, these will be of no relevance for our
fits. Nevertheless, it is worth reviewing them for they may have interest for other studies. In
particular, contributions to neutrino masses are of great phenomenological interest. Within our
effective Lagrangian approach these can only arise at dimension five, being of Majorana type. On
the other hand, dimension-six operators correct the Dirac masses for all the other SM fermions.

Majorana masses

Up to dimension six, neutrino masses can only arise from the famous lepton number violating
dimension-five Weinberg operator, O5 = lcLφ̃

∗φ̃†lL [60]. After EWSB:

〈O5〉ij =
1

2

(

νi cL ei cL

)

(

v
0

)

(

v 0
)

(

νjL
ejL

)

=
1

2
v2νi cL νjL, (2.18)

so the dimension-five Lagrangian gives a Majorana mass term for SM neutrinos:

Lνm = −1

2

[

mν
ij ν

i c
L νjL +mν†

ij νiLν
j c
L

]

, mν = −α5

Λ
v2. (2.19)

Then, neutrino masses mν
i are obtained rotating to the mass eigenstate basis νiL → (UνL)ij ν

j
L,

mν
i = −(Uν TL )ik

(α5)kl
Λ

v2(UνL)li. (2.20)

This transformation introduces a mixing in the SM leptonic CC:

LCC = − e0√
2s0

UijW
−
µ e

i
Lγ

µνjL + h.c., (2.21)

with U = UνL, when charged leptons are in the mass eigenstate basis. The matrix U is the analogous
to the CKM matrix for quarks, and it is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix [63]. Contrary to the case of quarks it is conventional to assign U to the positive
CC. It is important to note that, although the mixing matrix U is crucial for describing neutrino
oscillations, it is irrelevant for all the EWPD analyses, and in general for describing any physical
process where neutrino masses can be neglected. This is so because only the product U †U = 13

enters in all such processes. Therefore, we will ignore the leptonic mixing in what follows.
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Dirac masses

Recall that after EWSB the Yukawa couplings in (1.7) give masses to fermions

LYuk −→ Lfm = −me SM
i eiLe

i
R −md SM

i diLd
i
R − V 0 †

ij mu SM
j uiLu

j
R + h.c., (2.22)

where mf SM
i are given by Eq. (1.13), and with our choice of fermion basis going to the mass

eigenstate basis only requires rotating the LH u quarks, uL → V †uL. However, dimension-six
operators give further contributions to fermion masses

〈Oeφ〉ij =
v3

2
√
2
eiLe

j
R, 〈Ouφ〉ij =

v3

2
√
2
uiLu

j
R and 〈Odφ〉ij =

v3

2
√
2
diLd

j
R, (2.23)

implying extra, in general non-diagonal, corrections to Eq. (2.22). There are also extra diagonal
contributions coming from the Higgs vev modification in Eq. (2.4). In summary

Lfm=−
[

me SM
i

(

1+
1

8

αφ6
λφ

v2

Λ2

)

δij−
(αeφ)ij

2
√
2

v3

Λ2

]

eiLe
j
R−
[

md SM
i

(

1+
1

8

αφ6
λφ

v2

Λ2

)

δij−
(αdφ)ij

2
√
2

v3

Λ2

]

diLd
j
R−

−
[

V 0 †
ij mu SM

j

(

1+
1

8

αφ6
λφ

v2

Λ2

)

−
(αuφ)ij

2
√
2

v3

Λ2

]

uiLu
j
R + h.c. .

Therefore, in general not only the LH u quarks but all massive fermions must be rotated to go to
the mass eigenstate basis. Thus,

mf
ij ≡ m̂f SM

ij

(

1 +
1

8

αφ6
λφ

v2

Λ2

)

−
v (αfφ)ij

2
√
2

v2

Λ2
=
(

UfL
)

ik
mf
k

(

UfR
)†

kj
, (2.24)

where mf
i ≥ 0 are the fermion masses and UfL,R the corresponding diagonalizing unitary transfor-

mations. Note that we have defined m̂u SM
ij ≡ V 0 †

ij mu SM
j , m̂e,d SM

ij ≡ me,d SM
i δij .

The matrices UfL,R can be expanded to order v2/Λ2,

UfL ≡
{ 13 + iAfL

v2

Λ2 f = e, d

V 0 †
(13 + iAuL

v2

Λ2

)

f = u
, UfR ≡ 13 + iAfR

v2

Λ2 , f = e, d, u, (2.25)

with AfL,R hermitian to ensure the unitarity of UfL,R. Fermion masses can be easily obtained from

Eq. (2.24). They are given by the square root of the mfmf † or mf †mf eigenvalues and only
depend on the SM masses, αφ6 and the diagonal αfφ entries:

mf
i = mf SM

i

(

1 +
1

8

αφ6
λφ

v2

Λ2

)

− v

4
√
2

(

α̂fφ + α̂†
fφ

)

ii

v2

Λ2
, (2.26)

with α̂uφ ≡ V αuφ, α̂dφ ≡ αdφ and α̂eφ ≡ αeφ. The form of the hermitian matrices AfL,R can be

then derived from their definition, UfL(R) must diagonalize mfmf † (mf †mf ). Thus they read up

to order v2/Λ2

i
(

AfL

)

ij
=

v

2
√
2

(α̂†
fφ)ijm

f
i + (α̂fφ)ijm

f
j

(

mf
i

)2

−
(

mf
j

)2 (1− δij) ,

i
(

AfR

)

ij
=

v

2
√
2

(α̂fφ)ijm
f
i + (α̂†

fφ)ijm
f
j

(

mf
i

)2

−
(

mf
j

)2 (1− δij) ,

(2.27)
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which are valid ∀ i, j 3.
In practice, the corrections just discussed will have no impact in the fits because the Yukawa

couplings are arbitrary. Then, we can always redefine them from the beginning to absorb the
corrections from the dimension-six operators Ofφ. This does not mean that the effects of these
operators are unobservable because they do generate other interactions, as we will see. Neverthe-
less, they are not constrained by the electroweak precision observables included in our fits, though
they do constribute to other physical processes.

2.1.4 Neutral and charged current couplings I: Direct corrections

The SM description of neutral and charged currents has been experimentally confirmed with
high accuracy, thus constraining new physics predicting relatively large departures from the SM
predictions. In this section we describe those operators that correct the SM neutral and charged
gauge couplings to fermions. We must distinguish between two different types of corrections. Those
that come from operators which, after the Higgs gets a vev, are trilinear receive the name of direct
corrections. They are easily obtained and are discussed in the following. There is, however, a second
source of corrections involving contributions from operators that indirectly influence the trilinear
couplings, because they correct physical processes determining the input parameters. These are
called indirect corrections and will be explained in next section.

Of all the dimension-six operators those of type O(1,3)
φψ give, after EWSB, the mentioned direct

corrections to NC and CC couplings:
〈

O(1)
φψ

〉

ij
= e0v

2

4s0c0
Zµ

(

ψiγµψj
)

, (2.29)

〈

O(3)
φF

〉

ij
= − e0v

2
√
2s0
W+
µ

(

F iγµσ+F
j
)

− e0v
2

4s0c0
Zµ

(

F iγµσ3F
j
)

, (2.30)

〈

Oφud

〉

ij
= e0v

2

2
√
2s0
W+
µ

(

uiRγ
µdjR

)

, (2.31)

with σ+ = (σ1 + i σ2)/2. We generically write LH and RH fermion multiplets as F = lL, qL and
f = eR, uR, dR, respectively, and use ψ to denote any SM fermion. Combining these vevs with
those of the hermitian conjugate we can easily derive the shifts in the fermion couplings to W±

and Z.

Neutral current couplings

The SM NC interactions are described by the following Lagrangian (see Eq. (1.16))

LSM
NC = − e0

s0c0
Zµ
∑

ψ

ψγµ
(

gψLPL + gψRPR

)

ψ, (2.32)

with gψL = TψL3 − s20Q
ψ and gψR = −s20Qψ. As mentioned in Chapter 1, the SM NC are flavor

blind, which is not necessarily true when we include the new corrections in Eqs. (2.29) and (2.30),
as these involve arbitrary matrices and therefore in general introduce FCNC. After rotating to
the mass eigenstate basis (this only requires to rotate the uL quarks at first order), the direct

contributions to NC couplings, δDgψL,R, are given by:

3For i = j the 1− δij in the numerator is cancelled by the denominator and Eq. (2.27) reduces to

i
(

AfL

)

ii
=

v

4
√
2

(

α̂†
fφ

− α̂fφ

)

ii

mf
i

, i
(

AfR

)

ii
=

v

4
√
2

(

α̂fφ − α̂†
fφ

)

ii

mf
i

. (2.28)
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δDgνL = − 1
4

(

α
(1)
φl − α

(3)
φl + h.c.

)

v2

Λ2 ,

δDgeL = − 1
4

(

α
(1)
φl + α

(3)
φl + h.c.

)

v2

Λ2 , δDgeR = − 1
4

(

α
(1)
φe + h.c.

)

v2

Λ2 ,

δDguL = − 1
4V
(

α
(1)
φq − α

(3)
φq + h.c.

)

V † v2
Λ2 , δDguR = − 1

4

(

α
(1)
φu + h.c.

)

v2

Λ2 ,

δDgdL = − 1
4

(

α
(1)
φq + α

(3)
φq + h.c.

)

v2

Λ2 , δDgdR = − 1
4

(

α
(1)
φd + h.c.

)

v2

Λ2 .

(2.33)

As can be seen from the expression of the total covariant derivative in Eq. (2.17), there are two
extra oblique corrections: one universal and coming from the renormalization of the Z boson, and
a nonuniversal one from the Z -A mixing and proportional to the electric charge. We consider these
two corrections separately from those coming from the operators in Eq. (2.29) and Eq. (2.30):

δUgNC ≡ Z
1
2

Z − 1 = s0c0αWB
v2

Λ2
, (2.34)

δQgNC ≡ −s0c0Z
1
2

AZ
−1
ZAQ = −1

4
sin 4θSMW αWB

v2

Λ2
. (2.35)

Thus, the total direct contribution to LNC is given by

δDLNC = δUgNCLSM
NC − e0

s0c0
Zµ

∑

ψ

ψiγµ
(

(δDgψL)ijPL + (δDgψR)ijPR + δQgNCδij

)

ψj . (2.36)

Charged current couplings

The SM CC interaction is described in the weak eigenstate basis by the Lagrangian

LCC = − e0√
2s0

W+
µ

∑

F

Fγµσ+F + h.c. , (2.37)

whose couplings receive extra contributions from (2.30) and its hermitian conjugate. In addition,
(2.31) introduces W± couplings to RH quarks. The CC Lagrangian then reads

LCC =− e0√
2s0

W+
µ

[

∑

F

(

δij +
(

α
(3)
φF

)

ij

v2

Λ2

)

F iγµσ+F
j −

(αφud)ij
2

v2

Λ2
uiRγ

µdjR

]

+ h.c. ,

(2.38)

which can be written in the physical fermion basis using (2.25). This leaves the RH quark CC
invariant at order v2/Λ2 because they only appear at this order and RH quarks were assumed to be
in the SM mass eigenstate basis. For the LH quark CC we need to take into account the rotations
for both uL and dL, leading to

e0√
2s0

(

V 0
ij + i

(

V AdL −AuLV
)

ij

v2

Λ2
+
(

V α
(3)
φq

)

ij

v2

Λ2

)

. (2.39)

Finally, for the leptonic CC we would also have to rotate the charged leptons:

e0√
2s0

(

δij + i (AeL)ij
v2

Λ2
+
(

α
(3)
φl

)

ij

v2

Λ2

)

, (2.40)
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but the effect of such a rotation can be cancelled by rotating the neutrinos in the same way,
νL → UeLνL, which is allowed, for neutrino masses are negligible.

Thus all the direct corrections to the CC Lagrangian are in principle nonuniversal and read

δDLCC = − e0√
2s0

W+
µ

[

(

δDU †
L

)

ij
νiLγ

µejL +
(

δDVL
)

ij
uiLγ

µdjL +
(

δDVR
)

ij
uiRγ

µdjR

]

+ h.c. ,

(2.41)
where we use the standard notation for lepton mixing matrix, UL, and for quarks, VL,R. Thus,
conventionally, charged lepton currents are taken to be positive and quark CC negative, so the
mixing definitions differ by a complex conjugation. The explicit form of the corrections to the SM
couplings reads

δDUL =
(

α
(3)
φl

)†
v2

Λ2 ,

δDVL =
(

V α
(3)
φq + i

(

V AdL −AuLV
)

)

v2

Λ2 , δDVR = − 1
2αφud

v2

Λ2 .

(2.42)

As stressed in Section 2.1.3 the corrections to fermion masses can be always redefined away. In
what follows we shall assume that this is the case so we can use

δDVL = V α
(3)
φq

v2

Λ2
. (2.43)

If one wants to recover the effect of the matrices AL at some point (for instance, if one works

within a model where the structure of Yukawa matrices are known), we only need to replace V α
(3)
φq

by V α
(3)
φq + i

(

V AdL −AuLV
)

.

2.1.5 Neutral and charged current couplings II: Indirect corrections

In order to make a quantitative use of the effective Lagrangian we first have to assign a definite
value to each free parameter. In our case these are the electric charge, e0, the weak mixing angle,
s0, the CKM matrix elements, V 0

ij , and the coefficients αi encoding the new physics contributions.
Our goal is determining the latter from the global fit to all experimental data. In practice, some
of the SM parameters can be fixed, as they are very precisely measured. One must be careful
though because the new physics will also in general contribute to the processes used to derive the
values of the SM input parameters. Then, the values will also be modified because the expressions
previously implemented to derive them no longer apply. In general a SM relation a = a0, with a
the experimental value and a0 the SM expression, will be modified to include corrections depending
on the operator coefficients which at the order we are working can be written

a = a0

(

1 + f (αi)
v2

Λ2

)

.

In this way, besides the direct corrections discussed above, the effect of dimension-six operators will
indirectly influence the SM couplings derivation. We will therefore refer to these as indirect cor-
rections. In the following we focus on the SM parameters and compute the new physics corrections
for the processes used to determine them. We will then solve for a0 and take the corresponding
expression back to the neutral and charged couplings.
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Electric charge e

The experimental value for the electric charge is extracted from the fine-structure constant, α.
Its most accurate determination comes from the measurement of the e± anomalous magnetic
moment [64]. In the SM we have

α =
e20
4π
. (2.44)

The only new effect from the operators considered in Chapter 1 is the replacement of e0 by e0Z
1
2

A .
Hence,

e0 = e Z
− 1

2

A = e

(

1 + s0c0αWB
v2

Λ2

)

, (2.45)

with e defined by Eq. (2.44), e =
√
4πα.

Weak mixing angle sin2 θW

As it is well known, within the SM there are several definitions of the weak mixing angle which
agree at lowest order but involve different radiative corrections. One possible definition, introduced
in the on-shell renormalization scheme, is in terms of theW and Z masses, sin2 θW = 1−M2

W/M
2
Z ,

to any order in perturbation theory. Other definition is in terms of the Fermi coupling, the Z mass
and the hyperfine structure constant, sin2 θW cos2 θW = πα/

√
2GFM

2
Z . Note that, as the presence

of new physics modifies the previous relations, these definitions are no longer equal at tree level.
We shall adopt the definition involving the more precisely measured inputs. This is the last one
because the Fermi coupling constant is determined with a much better precision than the W mass.
Therefore, let us focus on how the new physics alters the experimental determination of GF . This
is extracted from the muon lifetime, τµ, measured in muon decay experiments [65, 66]. In the SM
the muon decay amplitude is given at tree level by

MSM = −i g2

2 (M0
W )

2 (ν
µ
Lγ

λµL)(eLγλν
e
L), (2.46)

where the W has been integrated out, since mµ ≪ MW . The coefficient of such amplitude is
directly related to the Fermi constant:

4GF√
2

=
g2

2 (M0
W )

2 =
e20

2s20c
2
0 (M

0
Z)

2 =
2

v20
, (2.47)

where the second and third identities come from SM tree-level relations. With the amplitude (2.46)
one can compute the muon decay width, whose inverse gives the muon lifetime:

1

τµ
≡ Γ

(

µ− → νe−ν̄
)

=
G2
F m5

µ

192π3
. (2.48)

When dimension-six effects are taken into account the previous expression is modified but, similarly
as we did for the electric charge, we define the muon decay constant, Gµ, to be the quantity given by
Eq. (2.48), G2

µ ≡ 192π3/τµm
5
µ. This differs from GF by new dimension-six operator contributions.

Unlike in the SM (where only the decay into the νµνe pair is available), CC couplings do not
have to be flavor diagonal in the presence of new physics, and channels with other νν neutrino
flavors can be open. Since experiments are blind to the final neutrino flavor, except in neutrino
oscillations, for they just see missing energy, all channels should be added when computing the total
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width. However, as we only consider new physics effects resulting from the interference, we can still
restrict ourselves to the analysis of the SM channel. Then, the amplitude (2.46) must also include
the CC couplings and the W mass corrections in Eq. (2.42) and Eq. (2.10), respectively, as well as

the four-fermion contributions from O(1)
ll and O(3)

ll . There are six different index assignments giving

the operator structure in Eq. (2.46), (O(1)
ll )2112, (O(1)

ll )1221, (O(3)
ll )1122, (O(3)

ll )2211, (O(3)
ll )2112 and

(O(3)
ll )1221. Putting all the pieces together and expressing the result in terms of the Fermi constant,

GF , the total amplitude reads

M = −i4GF√
2

(

1 +

[

(

α
(3)
φl

)

22
+
(

α
(3)
φl

)†

11
−
α
(1)
φ

2
− 1

4

αφ6
λφ

− (αll)2211√
2GF v2

]

v2

Λ2

)

(νµLγ
λµL) (eLγλν

e
L) .

(2.49)

We have used the symmetry {ij} ↔ {kl} on the operator indices of (O(1,3)
ll )ijkl to define the

combination

(αll)2211 ≡
(

α
(3)
ll

)

2211
+

1

2

(

α
(1)
ll − α

(3)
ll

)

1221
.

In the term suppressed by v2/Λ2 we can also replace v by v0, and use the relation (2.47) between
GF and v0. Eq. (2.49) allows us to directly read the corrections to the muon decay width4, and
obtain the relation between Gµ and GF . At linear order in v

2/Λ2

GF = Gµ

(

1−
[

∆GF −
α
(1)
φ

2
− 1

4

αφ6
λφ

]

v2

Λ2

)

, (2.50)

where we have introduced

∆GF ≡ Re
[(

α
(3)
φl

)

22
+
(

α
(3)
φl

)

11

]

− (αll)2211 (2.51)

for convenience for it will be the combination appearing in subsequent expressions involving the
relation (2.50).

Let us finally express s0 and c0 in terms of the inputs and the operators coefficients. This can
be done simply using the second identity in Eq. (2.47) and rewriting GF , e0 andM

0
Z in terms of the

inputs Gµ, α and MZ (see Eq. (2.50), Eq. (2.45) and Eq. (2.14)). Thus, solving the corresponding
quadratic equation

s20 = s2

(

1 +
4sc3

c2 − s2
αWB

v2

Λ2
+

c2

c2 − s2

(

∆GF +
α
(3)
φ

2

)

v2

Λ2

)

, (2.52)

c20 = c2

(

1− 4s3c

c2 − s2
αWB

v2

Λ2
− s2

c2 − s2

(

∆GF +
α
(3)
φ

2

)

v2

Λ2

)

, (2.53)

where s2 and c2 = 1− s2 are defined by

s2c2 ≡ πα√
2GµM2

Z

. (2.54)

To conclude, just recall that the muon decay constant also allows to derive the input value for the
Higgs vev using the SM relation v20 = (

√
2GF )

−1. This, together with Eqs. (2.4) and (2.51), give
the relation between the actual vev v and the input Gµ:

v2 =
1√
2Gµ

(

1 +

[

∆GF −
α
(1)
φ

2

]

v2

Λ2

)

. (2.55)

4There are no corrections from the muon mass, for it is the physical mass which is an input.
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Cabibbo-Kobayashi-Maskawa matrix elements Vij

There is no general expression for the SM CKM matrix in terms of experimental inputs and
dimension-six operator coefficients, since each element is experimentally determined from different
processes. Here we derive the expressions for the magnitudes of Vud and Vus, which we will use
when discussing the measurements of the unitarity of the first row of the CKM matrix. We do
not work out the corresponding expression for Vub as its contribution to that sum is negligible
compared to the other two terms.

Vud

|Vud| is extracted from 0+ → 0+ superallowed nuclear β-decays by measuring the corresponding

decay rate Γ
1
2 ∝ Gµ |Vud| [67]. Computing the corrections to the SM decay rate one then can find

the relation between Vud and V 0
ud in the same way as we did for the Fermi constant. Note that a

transition between two JP = 0+ states is parity conserving, and therefore only the vector part of
the quark CC uγµd is involved. As in the case of muon decay the new contributions to the decay
width come from replacing the SM CC couplings and W mass in the d→ u+ e−+ ν̄ amplitude by
the corrected ones, as well as from adding the contributions from four-fermion operators. In this

case the only four-fermion operator that contributes to the process is O(3)
lq . As we also did before,

only the standard channel with an outgoing νe is considered. Besides, in this case there can be
also contributions from the CC couplings with RH quarks (see Eq. (2.42)). After computing the
decay width from the resulting amplitude and rewriting it in terms of the Fermi constant, we can
use Eq. (2.50) to obtain:

∣

∣V 0
ud

∣

∣ = |Vud|
(

1 + ∆Vud
v2

Λ2

)

, (2.56)

with

∆Vud ≡ −Re





(

V α
(3)
φq − 1

2αφud

)

11
−∑i Vui

(

α
(3)
lq

)

11i1

Vud
−
(

α
(3)
φl

)

22
+ (αll)2211



 . (2.57)

Vus

Until recently, semileptonic kaon decays, K → πℓν with ℓ = e or µ, have provided the best
determination of the Vus matrix element through the measurement of the transition s→ u+ℓ−+ν.
The derivation of the relation between Vus and V 0

us matches the previous one between Vud and
V 0
ud

5, but now the charged lepton in the final state can be either an electron or a muon. Since
both decays are used to obtain an averaged value for Vus [68], the relation is in this case

∣

∣V 0
us

∣

∣ = |Vus|
(

1 + ∆V Kℓ3us

v2

Λ2

)

, (2.58)

∆V Kℓ3us ≡− Re





(

V α
(3)
φq − 1

2αφud

)

12
−∑i Vui

[

ωe

(

α
(3)
lq

)

11i2
+ ωµ

(

α
(3)
lq

)

22i2

]

Vus



−

− Re
[

−ωµ
(

α
(3)
φl

)

11
− ωe

(

α
(3)
φl

)

22
+ (αll)2211

]

,

(2.59)

5Although this time it is a 0− → 0−, the vector part of the quark current is still the only one involved.



2.1 The effective Lagrangian after electroweak symmetry breaking 39

where the numerical coefficients ωe, ωµ are the weights in the average of K → πeν and K → πµν
data, respectively. We will use the KLe3, KLµ3, KSe3, K

±e3 and K±µ3 decay modes [68],
resulting in ωe ≈ 0.6 and ωµ ≈ 0.3.

Another determination of Vus with similar precision can be obtained by comparing the decay
rates K → µν(γ) and π → µν(γ). Including the different corrections to the ratio |Vus|2 / |Vud|2 ∝
Γ (K → µν(γ)) /Γ (π → µν(γ)), we find6

|Vus|
|Vud|

=

∣

∣V 0
us

∣

∣

|V 0
ud|



1 + Re





(

V α
(3)
φq

)

12
−∑i Vui

(

α
(3)
lq

)

22i2

Vus
−

(

V α
(3)
φq

)

11
−∑i Vui

(

α
(3)
lq

)

22i1

Vud





v2

Λ2



 .

(2.60)
Using the relation between Vud and V 0

ud derived above we can obtain a second one between Vus
and V 0

us:
∣

∣V 0
us

∣

∣ = |Vus|
(

1 + ∆V K/πus

v2

Λ2

)

, (2.61)

∆V K/πus ≡− Re





(

V α
(3)
φq

)

12
−∑i Vui

(

α
(3)
lq

)

22i2

Vus
−

1
2 (αφud)11+

∑

i Vui

[(

α
(3)
lq

)

11i1
−
(

α
(3)
lq

)

22i1

]

Vud



−

− Re
[

−
(

α
(3)
φl

)

22
+ (αll)2211

]

.

(2.62)

Thus, taking the weighted average between the two determinations,
∣

∣V Kl3us

∣

∣ = 0.2246± 0.0012 and
∣

∣

∣V
K/π
us

∣

∣

∣ = 0.2259± 0.0014 [68], we finally get

∣

∣V 0
us

∣

∣ = |Vus|
(

1 + ωKℓ3 ∆V Kℓ3us

v2

Λ2
+ ωK/π ∆V K/πus

v2

Λ2

)

, (2.63)

with ωKℓ3 ≈ 0.57, ωK/π ≈ 0.43.
Once we have reviewed how the different parameters entering the neutral and charged current

lagrangrians are derived from experiment, including new physics effects, we can come back to the
computation of the corrections to the Z and W couplings to fermions.

Neutral current couplings

As we have done previously, we can replace the parameters e0, s0 and c0 by their counterparts
e, s and c in the new physics corrections for no extra dimension-six contribution arises from such
a replacement. On the other hand, using (2.45), (2.52) and (2.53) to correct the SM coupling
e0
s0c0

(

T3 − s20Q
)

, we get extra contributions to δUgNC and δQgNC. These add to those in (2.34)
and (2.35) to give

δUgNC = −1

2

[

∆GF +
α
(3)
φ

2

]

v2

Λ2
(2.64)

and

δQgNC = −Q
(

sc

c2 − s2
αWB +

s2c2

c2 − s2

[

∆GF +
α
(3)
φ

2

])

v2

Λ2
. (2.65)

6This time there are no corrections from the RH quark CC for these do not interfere with the SM amplitude.
Besides, there are no corrections from the leptonic CC transition, as they cancel because both decays are into muon
flavor.
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Therefore, the final NC Lagrangian is given by

LNC=− e

sc

(

1 + δUgNC

)

Zµ
∑

ψ

ψiγµ
[(

gψLδij + (δDgψL)ij

)

PL+
(

gψRδij + (δDgψR)ij

)

PR+δ
QgNCδij

]

ψj ,

(2.66)

where from now on gψL,R denote the SM couplings evaluated for s2, gψL,R ≡ gψL,R
(

s2
)

= TψL3 −s2Qψ.

Charged current couplings

Now, using (2.45) and (2.52) in the global CC factor, we obtain the universal correction

δUgCC =

[

sc

s2 − c2
αWB − c2

2 (c2 − s2)

(

∆GF +
α
(3)
φ

2

)]

v2

Λ2
. (2.67)

Additional indirect corrections to LH quark couplings take the form V 0
ij = Vij

(

1 + δIVij
)

. The
complete CC Lagrangian reads

LCC = − e√
2s

(

1 + δUgCC

)

W+
µ

[(

δij +
(

δDU †
L

)

ij

)

νiLγ
µejL +

(

δDVR
)

ij
uiRγ

µdjR+

+
(

Vij +
(

δDVL
)

ij
+ Vijδ

IVij

)

uiLγ
µdjL

]

+ h.c. .

(2.68)

2.1.6 Yukawa interactions

Obviously, the operators Ofφ in Eq. (2.23) also correct Yukawa interactions coupling the physical
Higgs boson to fermions. Expanding the scalar field around its vev we obtain

(Ofφ)ij = 〈Ofφ〉ij +
3v2

2
√
2
Hf iLf

j
R + . . . , f = e, u, d. (2.69)

So when writing the interactions in the fermion mass eigenstate basis using the matrices UfL,R, they
in general are no longer diagonal. Similarly, the operator O5 generates lepton number violating
neutrino-Higgs interactions:

(O5)ij = 〈O5〉ij + vHνi cL νjL + . . . , (2.70)

though these are very suppressed by the tiny neutrino masses.

Note that in expanding the operators O(1)
φψ and O(3)

φF around the scalar vev, derivative Higgs

couplings are generated as well7

(

O(1)
φψ

)

ij
=
〈

O(1)
φψ

〉

ij
+
v2

2
i∂µH

(

ψiγµψj
)

,

(

O(3)
φF

)

ij
=
〈

O(3)
φF

〉

ij
+
v2

2
i∂µH

(

F iγµσ3F
j
)

.
(2.71)

7Note that these can be written as further Yukawa interactions integrating by parts and using perturbative field
redefinitions [69].
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Finally, there are further corrections from the operators O(1)
φ and O(3)

φ , that contribute to the
Higgs kinetic term,

LKin
H =

1

2

(

1 +
1

2

(

α
(1)
φ + α

(3)
φ

) v2

Λ2

)

∂µH∂
µH, (2.72)

entering in the Yukawa interactions after writing the Lagrangian in the canonical basis.

Therefore, the final form of the scalar coupling to fermions reads

LH=− 1√
2
H
(

1 + δUy
)





∑

f

(

yfiiδij + δyfij

)

f iLf
j
R + δyν

c

ij ν
i c
L νjL + h.c.



+ i∂µH
∑

f

hfij f
iγµf j,

(2.73)
with

δUy = −1

4

(

α
(1)
φ + α

(3)
φ

) v2

Λ2
(2.74)

and

δyν
c

ij = −
√
2 (α5)ij

v
Λ , hνLij = 1

2

(

α
(1)
φl − α

(3)
φl − h.c.

)

ij

v
Λ2 ,

δyeij = −
(

(αeφ)ij +
1
4 (αeφ + h.c.)ii δij

)

v2

Λ2 , heLij = 1
2

(

α
(1)
φl + α

(3)
φl − h.c.

)

ij

v
Λ2 ,

heRij = 1
2

(

α
(1)
φe − h.c.

)

ij

v
Λ2 ,

δyuij = −
(

(V αuφ)ij +
1
4 (V αuφ + h.c.)ii δij

)

v2

Λ2 , huLij = 1
2Vik

(

α
(1)
φq − α

(3)
φq − h.c.

)

kl
V †
lj
v
Λ2 ,

huRij = 1
2

(

α
(1)
φu − h.c.

)

ij

v
Λ2 ,

δydij = −
(

(αdφ)ij +
1
4 (αdφ + h.c.)ii δij

)

v2

Λ2 , hdLij = 1
2

(

α
(1)
φq + α

(3)
φq − h.c.

)

ij

v
Λ2 ,

hdRij = 1
2

(

α
(1)
φd − h.c.

)

ij

v
Λ2 .

(2.75)

As we will see, these Higgs interactions will have no direct impact in the precision observables
used in our fits, which will be then completely blind to the Ofφ operators. Nevertheless the
contributions of these can not be ignored, since in general they can yield contributions to FCNC
processes. Although such rare processes receive only quadratic contributions from the dimension-
six operators, the stringent bounds on FCNC can result in quite restrictive limits on the αfφ
coefficients, and then on the new physics flavor-violating parameters. The corresponding limits
provide important information, complementary to that derived from EWPD, where only flavor-
conserving neutral current processes are considered. Obviously, the same remark applies to the non-

diagonal entries of O(1)
φψ and O(3)

φF , which generate vector-exchange flavor-changing contributions,
as pointed out in Section 2.1.4.
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2.2 Corrections to electroweak precision observables

Let us now translate the corrections to the SM Lagrangian just derived and the genuine new four-
fermion interactions into extra contributions to precision observables 8 entering in our fits. We
consider several different types of observables:

• Measurements of Z properties at the pole. These include partial decay widths as well as
left-right and forward-backward asymmetries.

• The W mass and decay widths, as well as the leptonic branching ratios, which are useful to
test lepton universality, for instance.

• Low-energy effective ν-q and νµ-e couplings entering in the description of neutrino-nucleon
deep-inelastic scattering (DIS) and neutrino-electron scattering, respectively.

• Low-energy effective couplings describing parity violation in atoms and in Møller scattering:
the atomic and the electron weak charges.

• Unitarity constraints on the CKM matrix (first row).

• e+e− → ff cross sections and asymmetries off the Z pole measured at LEP 2.

As already emphasized new physics corrections will be evaluated at tree level, and only the inter-
ference with the SM amplitudes will be considered. For the SM predictions, on the other hand, we
include the state-of-the-art of radiative corrections (see Appendix A for details).

The computation of the observables is straightforward: we only have to take the SM tree-level
amplitudes, replace the SM couplings and masses by the corrected ones, and whenever they can
interfere add the new amplitudes involving the four-fermion operators. Once all corrections are
included, the SM-new physics interference can be obtained linearizing the resulting expression in
v2

Λ2 . In this way we get a tree-level prediction for any observable O

Otree = Otree
SM + δOtree

New

v2

Λ2
, δOtree

New ≡ ∂Otree

∂(v2/Λ2)
, (2.76)

that must be improved to include the higher-order corrections in perturbation theory for the SM
part. The final expression for the observable is then of the form

ONew−tree
SM−loop = Otree

SM +Oloop
SM + δOtree

New

v2

Λ2
. (2.77)

2.2.1 Z lineshape observables

The LEP and SLC measurements of e+e− → f̄f cross sections near the Z pole [70] provide the
most precise determination of the properties of the Z boson, and have been crucial in determining
the validity of the SM description of NC. Around the Z pole the process is dominated by the
Z-exchange diagram and the differential cross section for f 6= e is given by9

dσe+e−→Z→f̄ f

dΩ
=

9

4

sΓeΓf

(s−M2
Z)

2
+ s2Γ2

Z/M
2
Z

[(

1 + cos2 θ
)

(1− PeAe) + 2 cos θAf (−Pe +Ae)
]

,

(2.78)

8We could distinguish between observables and pseudo-observables. The former refer to cross sections and
asymmetries directly measured in experiments, while the latter are derived quantities and are usually definition
dependent. For simplicity we will use the term observable to refer to both of them.

9For f = e− there is also a t-channel diagram contributing to the cross section.
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where Pe is the polarization of the electron in the beam, and Γf and Af are the partial decay
width of the Z into f̄f and the left-right asymmetries, respectively, whose expressions will be
given below. Roughly speaking, once we know the beam polarization, these quantities as well as
the Z boson mass can be determined from experiment by scanning in the center of mass energy
and fitting the above expression to the total cross section as well as the angular distribution of the
outgoing particles.

Here we review the expression for the corrections to the different Z boson partial decay widths
and asymmetries, where the former provide information on the overall strength of the coupling
to fermions while the latter tell us about the chirality of such interactions. Therefore, among the
different types of new physics, these observables are especially sensitive to those correcting trilinear
couplings. On the other hand, they are rather insensitive to other types of extra interactions, in
particular to the effects of four-fermion operators. Within our approximation this is clear since at
the Z pole there is no interference between four-fermion and Z-exchange amplitudes, as the former
are purely imaginary and the latter real. Therefore, when computing the corrections to Z-pole
observables we simply have to replace the SM couplings by the corrected ones in the SM tree-level
expression

gL(R) −→ gL(R) + δgL(R),

keeping only the linear terms in δgL(R). Then, we have to express these shifts as a function of the
coefficients αi, as previously computed. In order to maintain the expressions as short as possible
we will omit here this last step, and write everything in terms of the δgL(R).

Z Decay widths

The tree-level Z-boson partial width into a given fermion-antifermion pair reads at the Z pole

Γf =
αMZ

6s2c2

(

|gfL|2 + |gfR|2
)

Nf , (2.79)

with Nf the f fermion effective number of colors:

Nl = 1, l = ν, e,

Nq = 3
(

1 + αs
π + 1.409

α2
s

π2 − 12.77
α3
s

π3 + . . .
)

, q = u, d,
(2.80)

where Nq includes the universal QCD corrections for massless quarks [38].
The above formula is the basis for the determination of several observables. These are:

• The total Z decay width: ΓZ =
∑

f 6=t Γf .

• The ratio of the total hadronic width, Γhad =
∑

q 6=t Γq, and the width into a definite charged

lepton flavor: Rl =
Γhad

Γl
.

• For heavy quark flavors (q = b, c) the quantity usually reported by the experimental groups

at LEP is the corresponding (inverted) ratio: Rq =
Γq

Γhad
, while for light flavors the given

ratio is Ru/Ru+d+s.

• The total Z-pole e+e− → hadrons cross section, which can be written in terms of the Z
decay widths as σhad = 12π ΓeΓhad

M2
Z
Γ2
Z

.

Let us compute the deviations from the SM predictions, starting with Γf . First note that the Z-
boson mass appearing in Eq. (2.79) is the physical mass as it appears in the phase space integral.
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Then, since MZ is one of the inputs, there are no corrections related to the Z-boson mass. Hence,
as indicated above, we just have to replace gfL,R → gfL(R) + δgfL(R) to obtain the corrected partial

width

Γf = ΓSM
f

(

1 + 2
gfLδg

f
L + gfRδg

f
R

|gfL|2 + |gfR|2

)

. (2.81)

The width into hadrons and the total Z decay width read

Γhad = ΓSM
had

(

1 + 2

∑

q 6=t [g
q
Lδg

q
L + gqRδg

q
R]

∑

q 6=t [|g
q
L|2 + |gqR|2]

)

, ΓZ = ΓSM
Z



1 + 2

∑

f 6=t

[

gfLδg
f
L + gfRδg

f
R

]

Nf
∑

f 6=t

[

|gfL|2 + |gfR|2
]

Nf



 .

(2.82)
The ratios Rl, Rq and Ru/Ru+d+s, are given by (see (2.81) and (2.82))

Rl = RSM
l

(

1− 2
glLδg

l
L + glRδg

l
R

|glL|2 + |glR|2
+ 2

∑

q 6=t [g
q
Lδg

q
L + gqRδg

q
R]

∑

q 6=t [|g
q
L|2 + |gqR|2]

)

, (2.83)

Rq = RSM
q



1 + 2
gqLδg

q
L + gqRδg

q
R

|gqL|2 + |gqR|2
− 2

∑

q̃ 6=t

[

gq̃Lδg
q̃
L + gq̃Rδg

q̃
R

]

∑

q̃ 6=t

[

|gq̃L|2 + |gq̃R|2
]



 , (2.84)

Rq
Ru+d+s

=
RSM
q

RSM
u+d+s



1 + 2
gqLδg

q
L + gqRδg

q
R

|gqL|2 + |gqR|2
− 2

∑

q̃=u,d,s

[

gq̃Lδg
q̃
L + gq̃Rδg

q̃
R

]

∑

q̃=u,d,s

[

|gq̃L|2 + |gq̃R|2
]



 . (2.85)

Finally, the total Z-pole hadronic cross section is

σhad = σSM
had



1 + 2
geLδg

e
L + geRδg

e
R

|geL|2 + |geR|2
+ 2

∑

q 6=t [g
q
Lδg

q
L + gqRδg

q
R]

∑

q 6=t [|g
q
L|2 + |gqR|2]

− 4

∑

f 6=t

[

gfLδg
f
L + gfRδg

f
R

]

Nf
∑

f 6=t

[

|gfL|2 + |gfR|2
]

Nf



 .

(2.86)

Asymmetries

The forward-backward asymmetry for a given fermion f is defined as the difference between the
cross sections for forward σF and backward σB scattering (cos θe−f > 0 and cos θe−f < 0, re-

spectively), normalized to the total cross section: AfFB = (σF − σB) / (σF + σB). Using (2.78) we
obtain the tree-level expression for the asymmetry at LEP (Pe = 0):

AfFB =
3

4
AeAf , (2.87)

where Af are the fermionic left-right asymmetries

Af =
|gfL|2 − |gfR|2
|gfL|2 + |gfR|2

. (2.88)

Again, replacing gfL(R) → gfL(R) + δgfL(R) we get the corrected expressions

Af = ASM
f

(

1 +
4gfLg

f
R

|gfL|4 − |gfR|4
[

gfRδg
f
L − gfLδg

f
R

]

)

, (2.89)
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AfFB = Af SM
FB

(

1 +
4geLg

e
R

|geL|4 − |geR|4
[geRδg

e
L − geLδg

e
R] +

4gfLg
f
R

|gfL|4 − |gfR|4
[

gfRδg
f
L − gfLδg

f
R

]

)

. (2.90)

Effective fermionic weak angle sin
2
θ
f
eff

In the SM one can define effective Z-pole couplings, GfL =
√
ρf

(

T fL3 −Qf sin2 θfeff

)

and GfR =

−√
ρfQ

f sin2 θfeff , where the effective quantities ρf and sin2 θfeff absorb the bulk of the electroweak
radiative corrections for each fermion species. Since new physics can also correct fermionic cou-
plings the definition of the effective weak angles can be also applied to tree level. Including the
corrections to the SM relation

sin2 θfeff =
1

4 |Qf |

(

1− GfL + GfR
GfL − GfR

)

, (2.91)

where now the couplings GfL(R) are g
f
L(R) + δgfL(R), we obtain

sin2 θfeff = sin2 θfeff

∣

∣

∣

SM

(

1 +
gfL

gfL − gfR

(

δgfR
gfR

− δgfL
gfL

))

. (2.92)

Of particular interest is the effective leptonic weak mixing angle, which can be derived from many
different measurements. At LEP one of the determinations is provided by the measurement of
the hadronic forward-backward charge asymmetry. This can be written in terms of the quark
branching ratios and forward-backward asymmetries

QFB =
∑

q=d,s,b

RqA
q
FB −

∑

q=u,c

RqA
q
FB . (2.93)

The corrections to the above formula are immediate to compute from those for the Rq’s and A
q
FB’s

(see Eqs. (2.84) and (2.90)). In our fits we will include directly this observable instead of the value
of the leptonic effective angle derived from it, since this makes clearer the kind of new physics that
each quantity is sensitive to.

2.2.2 W mass and width

Being one of the most sensitive observables to the Higgs mass, a precise measurement of the W
mass is of great importance. This was performed at LEP 2 and Tevatron [71], where also the
total W decay width and branching fractions were determined. To obtain the expression for the
corrections to the W mass, we use the SM relation M0

W = c0M
0
Z and equations (2.10), (2.14) and

(2.53) to express everything in terms of the SM inputs and the dimension-six operator coefficients,

M2
W =M2

Zc
2

(

1− c2

c2 − s2

(

α
(3)
φ

2
+

2s

c
αWB +

s2

c2
∆GF

)

v2

Λ2

)

≡M2
Zc

2 (1 + 2∆MW
) . (2.94)

For the W partial decay widths into a pair of fermions we proceed as in the Z case. At tree level
and within the SM

Γ
(

W− → ν̄iej
)

=
αMW

12s2
δij , Γ

(

W− → ūidj
)

=
αMW

12s2
|Vij |2Nf . (2.95)
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These decays only involve LH couplings within the SM, so we would have first to generalize these
expressions to include RH couplings in the quark case, |Vij |2 → |VLij |2 + |VRij |2. However, as LH
and RH interactions do not interfere the latter enter quadratically, and then at order v4/Λ4, so
we can neglect them. Lepton couplings stay purely LH at any rate because we have not included
RH neutrinos in the light sector of the theory. Hence, we simply replace δij → |ULij |2. Regarding
the W mass in the above equations, note that although the MW value corresponds to the physical
mass coming from the phase space integration, now and unlike in the Z case, it is not an input but
a model-dependent prediction. Then, as we have to use the same set of inputs for all observables,
we also need to rewrite MW as a function of them making use of Eq. (2.94). Rewritting the result
in terms of Gµ in Eq. (2.54) we finally obtain

Γ
(

W− → ν̄iej
)

=
GµM

3
Zc

3

6
√
2π

(1 + ∆MW
) |ULij |2 = ΓSM

νe (1 + ∆MW
+ 2δijRe [(δUL)ii]) ,

Γ
(

W− → ūidj
)

=
GµM

3
Zc

3

6
√
2π

(1 + ∆MW
) |VLij |2Nq = ΓSM

ud



1 + ∆MW
+ 2

Re
[

VLij (δV
∗
L )ij

]

|VLij |2



 .

(2.96)

From which one can easily derive the expression for the leptonic, hadronic and totalW widths and
branching ratios. These can be read from the equations given for the Z boson replacing gfL by the

corresponding CC couplings, setting gfR to zero and adding the correction from the W mass ∆MW
.

2.2.3 Low-energy observables

As the previous observables are in general insensitive to four-fermion interactions, data off the Z
peak become compulsory in order to constrain them. In particular, low-energy observables mea-
sured with a remarkable precision provide stringent constraints on these four-fermion interactions.
Some of those observables are:

• Effective couplings describing deep-inelastic neutrino-nucleon scattering.

• The corresponding NC effective couplings for muon neutrino-electron scattering.

• The weak charges of atoms, derived from experimental measurements of atomic parity vio-
lation.

• The weak charge of the electron, determined from the parity violating asymmetry in Møller
scattering.

In the SM these are all NC mediated processes. Since they are measured at energies E ≪ MW ,
they are well described by the four-fermion effective Lagrangian obtained by integrating out the
massive SM vector bosons, as well as whatever new physics we may consider. The pieces of the
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low-energy effective Lagrangian relevant to our analysis are:

−Lνq =
4Gµ√

2
νLγ

ανL
∑

q

[ǫL (q) qLγαqL + ǫR (q) qRγαqR] , (2.97)

−Lνµe =
2Gµ√

2

(

νµLγ
ανµL

)

(eγα (g
νe
V − gνeA γ5) e) , (2.98)

−Leq
�P

= −Gµ√
2

∑

q

[C1q (eγ
αγ5e) (qγαq) + C2q (eγ

αe) (qγαγ5q)] , (2.99)

−Lee�P = −Gµ√
2
Ce (eγαe) (eγαγ5e) , (2.100)

where in the last two equalities �P means the parity-violating part. Note that none of the above
processes can receive contributions from Higgs boson exchange, since there are no neutrino Yukawa
interactions and these result in parity-conserving contributions for other fermions. The SM ex-
pressions of the effective parameters just introduced are

ǫL (q) = 2gνLg
q
L, ǫR (q) = 2gνLg

q
R, (2.101)

gνeV = 2g
νµ
L (geL + geR) , gνeA = 2g

νµ
L (geL − geR) , (2.102)

C1q = 2 (geL − geR) (g
q
L + gqR) , C2q = 2 (geL + geR) (g

q
L − gqR) , (2.103)

Ce = 2 (geL − geR) (g
e
L + geR) . (2.104)

In the following we focus on the different processes reviewing the corrections to the Lagrangian pa-
rameters in (2.97) to (2.100), and paying special attention to which of new four-fermion interactions
are relevant.

Deep-inelastic neutrino-nucleon scattering

The NC deep-inelastic scattering of neutrinos on nucleons is described by the ratios

Rν =
σ (νN → νX)

σ (νN → µ−X)
≡ σNC

νN

σCC
νN

, Rν̄ =
σ (ν̄N → ν̄X)

σ (ν̄N → µ+X)
≡ σNC

ν̄N

σCC
ν̄N

, R− =
σNC
νN − σNC

ν̄N

σCC
νN − σCC

ν̄N

. (2.105)

where the first two are measured by the CDHS [72], CHARM [73] and CCFR [74] collaborations,
and the third one by the NuTeV collaboration [75]. Although these can be easily computed from
the effective couplings in Eq. (2.97), for a fit it is more convenient to use a different parametrization,
because the coefficients ǫL,R (q) are strongly correlated and non-Gaussian [38]. We will instead use
the parameters g2L,R and θL,R defined as follows

g2L,R ≡ ǫL,R (u)
2
+ ǫL,R (d)

2
,

θL,R ≡ arctan
ǫL,R (u)

ǫL,R (d)
.

(2.106)

The ratios in Eq. (2.105) only depend on g2L,R

Rν = g2L + rg2R, Rν̄ = g2L +
g2R
r
, R− = g2L − g2R, (2.107)



48 Chapter 2 Phenomenological implications of the dimension-six effective Lagrangian

where r is the ratio of anti-neutrino to neutrino CC cross sections, which can be directly measured.
In the presence of new physics Eq. (2.107) still holds if we adjust the definition of g2L,R to accom-
modate the corrections to the CC cross section in the former ratios. This can be done defining
them with a correcting factor FCC = σCC

σSM
CC

,

g2L,R ≡ ǫL,R (u)2 + ǫL,R (d)2

FCC
. (2.108)

As for all the previous observables, we now have to replace the SM couplings by the corrected
ones in the effective parameters ǫL,R. We must also include the new contributions to (2.97) from

the four-fermion operators O(1)
lq , O(3)

lq , Olu and Old. However, in order to determine which entries
affect this process, we need to know the nature of the incident neutrino. The former ratios have
been measured by several experiments, but in all cases the neutrino beam originates from pion and
kaon decays. Then, it is dominantly composed by muon neutrinos (Br (π+ → µ+νµ) ≈ 100% and
Br (K+ → µ+νµ anything) ≈ 67% [18]). We neglect the effects resulting from the small electron
neutrino contamination (Br (K+ → e+νe anything) ≈ 5% [18]). Therefore,

ǫL (u) =ǫSML (u)

(

1 +
δg
νµ
L

g
νµ
L

+
δguL
guL

)

−
√
2

4GµΛ2
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(

α
(1)
lq + α

(3)
lq

)

22ij
V †
j1,

ǫR (u) =ǫSMR (u)

(

1 +
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νµ
L

g
νµ
L

+
δguR
guR

)

+

√
2

8GµΛ2
(αlu)2112 ,

ǫL (d) =ǫSML (d)

(

1 +
δg
νµ
L

g
νµ
L

+
δgdL
gdL

)

−
√
2

4GµΛ2

(

α
(1)
lq − α

(3)
lq

)

2211
,

ǫR (d) =ǫSMR (d)

(

1 +
δg
νµ
L

g
νµ
L

+
δgdR
gdR

)

+

√
2

8GµΛ2
(αld)2112 ,

(2.109)

where the RH corrections from contact interactions are obtained rewritting the corresponding oper-
ators in the form they appear in the Lagrangian (2.97), using the Fierz identity (γµPL)12 (γµPR)34 =
2 (PR)14 (PL)32. This explains the extra −1/2 compared to the LH corrections. Instead of keeping
the factor 1/Gµ in front of the four-fermion coefficients (which comes from factorizing the global
Gµ to compare with Eq. (2.97)), we will rewrite it in terms of the Higgs vev, 1/Gµ =

√
2v2, so

we have corrections ordered in powers of v/Λ. We will do also the same for the other low-energy
observables when considering new four-fermion interactions.

Finally, for the computation of the correction factor FCC we neglect the contribution from sea
quarks. On the other hand, we only consider d↔ u transitions. Therefore, σSM

CC ≈ σSM
CC (d↔ u) ∝

G2
µ |Vud|2, and gets corrections from the extra CC couplings as well as from the four-fermion

interaction O(3)
lq . Contributions from the LRRL operator O†

qde and from the LRLR operators O†
lq

and O†
lq′ do not interfere with the SM amplitude and can be ignored at order v2/Λ2. The same

applies for RH quark CC, though these also enter through the definition of V 0
ud in terms of Vud, and

give a new contribution to the cross section at leading order. With all these changes the correction
factor FCC reads

FCC = 1 + 2 Re





1
2 (αφud)11 +

∑

i Vui

[(

α
(3)
lq

)

11i1
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(

α
(3)
lq

)

22i1

]

Vud
+
(

α
(3)
φl

)

22
−
(

α
(3)
φl

)

11





v2

Λ2
.

(2.110)
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Taking (2.109) and (2.110) back to (2.108) we finally obtain the correction to g2L,R,

g2L =
(

g2L
)SM


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
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(
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(
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2gν
µ

L

(

gu 2
L + gd 2

L

)

v2

Λ2
−

− 2 Re





1
2 (αφud)11+

∑

i Vui

[(

α
(3)
lq

)

11i1
−
(

α
(3)
lq

)

22i1

]

Vud
+
(

α
(3)
φl

)

22
−
(

α
(3)
φl

)

11





v2

Λ2



 ,

g2R =
(

g2R
)SM
(

1+2
δg
νµ
L

g
νµ
L

+2
guRδg

u
R + gdRδg

d
R

gu 2
R +gd 2

R

+
1

4gν
µ

L

guR (αlu)2112+g
d
R (αld)2112

gu 2
R +gd 2

R

v2

Λ2
−

− 2 Re





1
2 (αφud)11+

∑

i Vui

[(

α
(3)
lq

)

11i1
−
(

α
(3)
lq

)

22i1

]

Vud
+
(

α
(3)
φl

)

22
−
(

α
(3)
φl

)

11





v2

Λ2



.

(2.111)

For θL,R, from (2.106) and (2.109),

θL= θSML +
1

gu 2
L +gd 2

L



gdLδg
u
L−guLδgdL+

v2

4g
νµ
L Λ2



guL
∑

ij

V1i

(

α
(1)
lq − α

(3)
lq

)

22ij
V †
j1−gdL

(

α
(1)
lq + α

(3)
lq

)

2211







 ,

θR= θSMR +
1

gu 2
R +gd 2

R

[

gdRδg
u
R−guRδgdR+

v2

8g
νµ
L Λ2

(

gdR αlu − guR αld
)

2112

]

.

(2.112)

Neutrino-electron scattering

Let us now consider the process νµe− −→ νµe−. In the SM this receives contributions only from
NC and is described by the low-energy Lagrangian (2.98). The vector and axial ν-e effective
couplings introduced there are directly related to the measured cross sections, which for Eν ≫ me

can be written

σ
(

νµe− → νµe−
)

=
G2
µmeEν

2π

[

(gνeV + gνeA )
2
+

1

3
(gνeV − gνeA )

2

]

,

σ
(

νµe− → νµe−
)

=
G2
µmeEν

2π

[

(gνeV − gνeA )2 +
1

3
(gνeV + gνeA )2

]

.

(2.113)

These were measured by the CHARM II collaboration [76], which determined the values for the
effective couplings gνeV and gνeA . The new physics corrections to the effective parameters are com-
puted as in the previous case. Among our list of contact interactions the relevant ones for these

processes are only O(1)
ll , O(3)

ll and Ole. Including them, as well as the modifications of the SM
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couplings, we find

gνeV = (gνeV )
SM

(

1 +
δg
νµ
L

g
νµ
L

+
δgeL + δgeR
geL + geR

)

− v2

2Λ2

[

(

α
(1)
ll − α

(3)
ll

)

2211
+

(

2α
(3)
ll − 1

2
αle

)

2112

]

,

gνeA = (gνeA )
SM

(

1 +
δg
νµ
L

g
νµ
L

+
δgeL − δgeR
geL − geR

)

− v2

2Λ2

[

(

α
(1)
ll − α

(3)
ll

)

2211
+

(

2α
(3)
ll +

1

2
αle

)

2112

]

,

(2.114)

where we have used the permutation symmetry {ij} ↔ {kl} of α
(1)
ll and α

(3)
ll indices and the

adequate Fierz reordering to rewrite the operators as in Eq. (2.98).

Atomic parity violation

The results from atomic parity violation (APV) experiments are given in terms of the atomic weak
charges, which can be computed as a function of the parameters in the effective Lagrangian (2.99).
For an atomic nucleus with N neutrons and Z protons the weak charge, QW , is defined by

QW (Z,N) = −2 [C1u (2Z +N) + C1d (Z + 2N)] . (2.115)

We include the measurements for Cesium [77, 78] (the most precise one, with an error at the per
mille level) and Thallium [79] in our fit.

As for previous low-energy effective parameters, apart from the corrections from trilinear cou-
plings we have to consider those from four-fermion contact interactions. The Lagrangian (2.99)

receives contributions from the parity-violating part of the operators O(1)
lq , O(3)

lq , Oeu, Oed, Olu,
Old and Oqe. The corrections to C1q and C2q are then given by

C1u=C
SM
1u

(

1+
δgeL−δgeR
geL−geR

+
δguL+δg

u
R

guL+g
u
R

)

− v2

2Λ2





∑

ij

V1i

[

(

α
(1)
lq −α(3)

lq

)

11ij
+
(αqe)i11j

2

]

V †
j1−

(

αeu+
αlu
2

)

1111



 ,

C1d=C
SM
1d

(

1+
δgeL−δgeR
geL−geR

+
δgdL+δg

d
R

gdL+g
d
R

)

+
v2

2Λ2

(

−α(1)
lq − α

(3)
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αqe
2

+
αld
2

)

1111
,

C2u=C
SM
2u

(

1+
δgeL+δg

e
R

geL+g
e
R

+
δguL−δguR
guL−guR

)

− v2

2Λ2




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α
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lq −α(3)

lq

)

11ij
− (αqe)i11j
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(
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αlu
2
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1111


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SM
2d

(
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δgeL+δg

e
R

geL+g
e
R
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δgdL−δgdR
gdL−gdR

)

+
v2
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−α(1)
lq − α

(3)
lq + αed +

αqe
2

− αld
2
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1111
.

(2.116)

Using these expressions for C1q we can compute the corresponding modification for the atomic
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weak charges

QW (Z,N)=QSM
W (Z,N)

(

1 +
δgeL − δgeR
geL − geR

+
(2Z +N) (δguL + δguR) + (Z + 2N)

(

δgdL + δgdR
)

(2Z +N) (guL + guR) + (Z + 2N)
(

gdL + gdR
)

)

+

+(2Z +N)




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V1i
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lq −α(3)
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)

11ij
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(αqe)i11j
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j1 −

(

αeu+
αlu
2
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1111
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
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+

+(Z + 2N)
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(1)
lq +α

(3)
lq −αed+

αqe
2

−αld
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1111

v2

Λ2
.

(2.117)

Parity violation in Møller scattering

Parity violation can be also measured in Møller scattering e−e− → e−e− at low Q2 by scattering
longitudinally polarized electrons on an unpolarized target and determining the parity-violating or
left-right asymmetry [80]

APV =
σL − σR
σL + σR

, (2.118)

where σL(R) is the cross section for incident LH (RH) electrons. The above asymmetry can be
expressed in terms of the electron NC couplings

APV =
GµQ

2

√
2πα

1− y

1 + y4 + (1− y)4
QW (e) , y ≡ Q2

E2
CM

, (2.119)

with the weak charge QW (e) = −2Ce and Ce the effective coupling in Eq. (2.100). Only the

new LLLL and RRRR four-fermion operators O(1)
ll , O(3)

ll and Oee contribute to the electron weak
charge10,

QW (e) = QSM
W (e)

(

1 +
δgeL − δgeR
geL − geR

+
δgeL + δgeR
geL + geR

)

+
v2

Λ2

(

α
(1)
ll + α

(3)
ll − αee

)

1111
, (2.120)

where we have also included the corrections to the NC couplings.

2.2.4 Unitarity of the Cabibbo-Kobayashi-Maskawa matrix

The unitarity condition on the CKM matrix elements provides very stringent constraints on new
CC interactions. The most precise measurement comes from the first row |Vud|2+ |Vus|2+ |Vub|2 =
0.9999± 0.0006 [68]. New physics in general contributes to these mixing parameters correcting the
SM matrix elements V 0

ij , that satisfy the unitarity condition by construction. Using the expressions

collected in Section 2.1.5 together with
∑

i

∣

∣V 0
ui

∣

∣

2
= 1, one can derive the corrected expression at

order v2/Λ2:

∑

i

|Vui|2=1−2



|Vud|2∆Vud+|Vus|2
(

ωKℓ3 ∆V Kℓ3us + ωK/π ∆V K/πus

)

−|Vub|2 Re





(

V α
(3)
φq

)

13

Vub









v2

Λ2
,

(2.121)

10The corresponding piece in the LRRL operator Ole is parity conserving.
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where ∆Vud, ωKℓ3, ∆V
Kℓ3
us , ωK/π and ∆V

K/π
us are defined in Section 2.1.5. Note that this relation

is mainly dominated by Vud and Vus. Actually, |Vub|2 ≈ 10−5 is almost two orders of magnitude
below the experimental uncertainty so one can in principle neglect the contributions from this
matrix element. We have only included the direct corrections in this case.

2.2.5 Fermion pair production at LEP 2

During the second stage of LEP operation (LEP 2) the center of mass energy was increased above
the Z pole, providing measurements of e+e− −→ f̄f from 130 GeV to 209 GeV [81]. As in the case
of the low-energy observables discussed above, the data taken during this second run is sensitive to
new physics resulting in four-fermion interactions. Although the precision of these measurements
is in general poor, compared to those obtained at the Z pole or below, this is compensated by
the relatively large number of data points allowing to reconstruct the energy dependence of the
cross sections and forward-backward asymmetries for different final states. This makes LEP 2 data
decisive when trying to constrain four-fermion interactions, and quite complementary to low-energy
data. On the other hand, when new physics does not generate any of these contact interactions
but only corrects trilinear couplings, LEP 2 e+e− −→ f̄ f observables can be safely ignored in the
fits. In this case new interactions are more stringently constrained by the Z-pole measurements,
where rather precise data is also available.

Let us focus then on the process e+e− −→ f̄ f at energies above the Z mass. As for the low-
energy observables, besides the shift of the SM couplings we must also consider the contributions
from the contact interactions to this process. Although in principle we should also consider cor-
rections from Higgs exchange as well as to Yukawa interactions, these are negligibly small for they
are proportional to the electron mass. Then, we can also neglect contributions from the operators
Oqde, Olq and Olq′ , that can only interfere with those amplitudes. The four-fermion Lagrangian
contributing to this process is thus

Lef4F =ēLγ
µeL (1 + δef )

−1
[

Af
LLf̄LγµfL +Af

LRf̄RγµfR

] 1

Λ2
+

+ēRγ
µeR (1 + δef )

−1
[

Af
RRf̄RγµfR +Af

RLf̄LγµfL

] 1

Λ2
,

(2.122)

where the different coupling matrices are defined in terms of the four-fermion operator coefficients:

Aℓ
LL =

(

α
(1)
ll

+α
(3)
ll

)

11ii
+
(

α
(1)
ll

+α
(3)
ll

)

1ii1

1+δeℓ
,

Au
LL =

∑

k,l Vik

(

α
(1)
lq − α

(3)
lq

)

11kl
V †
li ,

Ad
LL =

(

α
(1)
lq + α

(3)
lq

)

11ii
,

Aℓ
LR = − 1

2 (αle)1ii1 ,
Au
LR = − 1

2 (αlu)1ii1 ,
Ad
LR = − 1

2 (αld)1ii1 ,

Aℓ
RR =

2(αee)11ii
1+δeℓ

,

Au
RR = (αeu)11ii ,

Ad
RR = (αed)11ii ,

and

Aℓ
RL = − 1

2 (αle)i11i ,

Au
RL = − 1

2

∑

kl Vik (αqe)k11l V
†
li ,

Ad
RL = − 1

2 (αqe)i11i ,

where i stands for any given flavor. The factors 1+δef have been introduced for convenience in order
to take into account the different contributions to the Lagrangian for e+e− → ℓ+ℓ−, depending

on whether ℓ is or not an electron. We must remember that the coefficients α
(1)
ll and α

(3)
ll are

symmetric under the interchange of the first and last two indices, so we have two contributions

to the LL couplings with the same coefficient if ℓ 6= e, 1
2 (α

(1)
ll + α

(3)
ll )11ii. Moreover, we also have

another two contributions proportional to 1
2 (α

(1)
ll + α

(3)
ll )1ii1 (the corresponding operators can be
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rewritten as above by Fierz reordering after EWSB). In contrast, for ℓ = e we only have one

contribution proportional to 1
2 (α

(1)
ll + α

(3)
ll )1111. For RR, contributions arise only from (Oee)ijkl .

This is not only symmetric under {ij} ↔ {kl} but also under j ↔ l. In summary, for ℓ 6= e there
are four contributions proportional to 1

2 (αee)11ii, while for ℓ = e there is only one proportional to
1
2 (αee)1111. Finally note that Ae

LR = Ae
RL, so the global factor (1−δef )−1 allows to use a common

Aℓ
LR,RL expression for all leptons.

The differential cross section for e+e− → f̄ f , including the contributions from the four-fermion
Lagrangian (2.122), can be written [82]

1

Nf

4s

α2

dσ
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)
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[
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∣

∣
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∣

∣
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∣

∣

∣
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∣

∣
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+
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∣

∣

2

+
∣
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∣Mef
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∣
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∣

2
]

u2

s2
.

(2.123)

with s = 4E2
beam, t = − 1

2s (1− cos θ) and s+ t+ u = 0. Whereas the helicity amplitudes read

Mee
αβ (t)=1+

geαg
e
β

sin2 θW cos2 θW

t

t−M2
Z

+
t

4πα

Af
αβ

Λ2
, (α 6= β) ,

Mef
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geαg
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sin2 θW cos2 θW

s

s−M2
Z + iMZΓZ

+
s

4πα

Af
αβ

Λ2
, (α 6= β) ,

Mef
αα (s)=−Qf+

geαg
f
α

sin2 θW cos2 θW

[

s

s−M2
Z + iMZΓZ

+
s

t−M2
Z

δef

]

+
s

t
δef+(1 + δef )

s

4πα

Af
αα

Λ2
,

with α, β = L,R. Now that the effects of four-fermion interactions have been included, we only
have to replace gL(R) → gL(R) + δgL(R) to take into account the new physics contributions to the
couplings. Note that these shifts must be also introduced in the Z decay width, although for LEP
2 energies this effect is negligible and it can be safely neglected. Finally, integrating Eq. (2.123) we
obtain the total cross sections as well as the corresponding forward-backward asymmetries. Given
the length of the resulting expressions we do not write them here.

2.3 Electroweak precision constraints on dimension-six op-
erators

Let us summarize the implications in the analysis of the EWPD of the dimension-six interactions
included in our fits. Here we classify the operators according to whether they can be actually
constrained by current data and to which observables are most relevant in deriving these con-
straints. First, in Table 4.3 we identify the operators contributing to the observables discussed in
this chapter. They are a total of 21 operators of the 52 in Table 1.1. Then, in order to illustrate the
relevance of each data set to constrain a given operator, we show in Table 2.2 the fits for each case
considering only one operator at a time 11. We provide the 95% C.L. limits for the corresponding
operator coefficient. In all fits we include bounds from direct Higgs searches to constrain the value

11The names of all data sets are self-explanatory, and we only remark that in the one named W data we include
apart from the W mass and width, and the leptonic branching ratios, the measurement of the unitarity of the first
row of the CKM matrix.
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of the Higgs mass, which is the only SM parameter we allow to vary. All the other SM parameters
are fixed at their best fit value. The inclusion of these direct searches data, however, screens the
possible correlations between the operator coefficients andMH . For this reason we have performed
another fit excluding these data for the sole purpose of identifying such correlations. These will be
commented at the end of this section in those cases where they are significant. Finally, for simplic-
ity, we assume a family universal structure for the four-fermion and SVF operators. This implies

that the operators (O(1,3)
φψ )ij and (Oφud)ij are diagonal and with all the non-zero entries fixed to

the same value, whereas LLLL and RRRR four-fermion operators Oijkl are proportional to δijδkl
and the LRRL Oijkl to δilδkj , with the same values for all non-zero entries. It must be emphasized
that for a definite type of new physics several operators may be generated upon integration of the
extra particles, and the resulting limits may significantly differ from those obtained here due to
cancellations. Let us discuss the implications of the different sets of operators introduced at the
end of Chapter 1:

Operators Z pole MW ν-N DIS NC APV PV in CKM LEP 2
e+e−→ f̄f νe→νe e−e−→e−e− e+e−→ f̄f

L
L
L
L

O(1)
ll ,O

(3)
ll X X X X X X X X

O(1)
lq X X X

O(3)
lq X X X X

R
R
R
R Oee X X

Oeu,Oed X X

L
R
R
L

Ole X X

Olu,Old X X X

Oqe X X

S
V
F

O(1)
φψ X X X X X X

O(3)
φl X X X X X X X X

O(3)
φq X X X X X

Oφud X X

O
b
li
q
u
e

O(3)
φ ,OWB X X X X X X X

Table 2.1: Dimension-six operators contributing (directly or indirectly) to the different observables
included in the fits.

• Four-fermion interactions: As argued in Section 2.2.1, the contributions of four-fermion
operators to the observables at the Z peak are negligible. Therefore, these can only be
constrained by low-energy data as well as by cross sections and asymmetries measured at

LEP 2. There are two exceptions: the operators O(1)
ll and O(3)

ll , which correct the theoretical
prediction for the muon decay constant and, since we consider this as an input, have a
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Operator Z pole W data Low Energy LEP 2 Global fit
coefficient 95% C.L. limits [TeV−2]

L
L
L
L

α
(1)
ll

Λ2 - - [−0.033, 0.245] [−0.089, 0.024] [−0.065, 0.040]
α

(3)
ll

Λ2 [−0.010, 0.012] [−0.007, 0.009] [−0.088,−0.007] [−0.046, 0.041] [−0.007, 0.006]
α

(1)
lq

Λ2 - - [−0.027, 0.020] [−0.007, 0.433] [−0.024, 0.022]
α

(3)
lq

Λ2 - [−0.007, 0.009] [−0.003, 0.090]
[

−6·10−4, 0.056
]

[−0.003, 0.012]

R
R
R
R

αee
Λ2 - - [−0.257, 0.031] [−0.057, 0.011] [−0.060, 0.006]
αeu
Λ2 - - [−0.040, 0.057] [−0.195, 0.001] [−0.057, 0.030]
αed
Λ2 - - [−0.041, 0.048] [−0.002, 0.260] [−0.025, 0.059]

L
R
R
L

αle
Λ2 - - [−1.146, 1.132] [−0.059, 0.101] [−0.059, 0.101]
αlu
Λ2 - - [−0.090, 0.100] [−0.005, 0.947] [−0.070, 0.116]
αld
Λ2 - - [−0.078, 0.098] [−1.263, 0.007] [−0.089, 0.085]
αqe
Λ2 - - [−0.052, 0.041] [−0.006, 0.561] [−0.044, 0.048]

S
V
F

α
(1)
φl

Λ2 [−0.004, 0.009] - [−0.023, 0.072] [−0.037, 0.170] [−0.003, 0.010]
α

(1)
φq

Λ2 [−0.021, 0.033] - [−0.025, 0.023] [−0.014, 1.149] [−0.013, 0.022]
α

(1)
φe

Λ2 [−0.011, 0.006] - [−0.147, 0.053] [−0.233, 0.103] [−0.012, 0.006]
α

(1)
φu

Λ2 [−0.054, 0.066] - [−0.035, 0.060] [−0.076, 2.796] [−0.026, 0.048]
α

(1)
φd

Λ2 [−0.130, 0.032] - [−0.060, 0.046] [−3.727, 0.101] [−0.049, 0.028]
α

(3)
φl

Λ2 [−0.007, 0.006] [−0.009, 0.006] [ 0.010, 0.068] [−0.151, 0.008] [−0.005, 0.004]
α

(3)
φq

Λ2 [−0.008, 0.011] [−0.009, 0.007] [−0.090,−0.003] [−0.002, 0.305] [−0.007, 0.006]
αφud
Λ2 - [−0.015, 0.018] [−0.006, 0.208] - [−0.012, 0.020]

O
b
li
q
u
e

α
(3)
φ

Λ2 [−0.031, 0.019] [−0.041, 0.003] [0.024, 0.174] [−0.344, 0.033] [−0.031, 0.008]
αWB
Λ2 [−0.006, 0.006] [−0.019, 0.001] [0.007, 0.068] [−0.155, 0.017] [−0.006, 0.004]

Table 2.2: 95% C.L. limits on (90% central confidence interval of) the operator coefficients in
Table 4.3, considering only one operator at a time and for each data set. Limits are in units of
TeV−2. The different columns show the results for different fits depending on the observables
included.
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propagating effect contributing in particular to NC and CC couplings. Hence, these two
operators can be also constrained by precise measurements at the Z pole 12. On the other
hand, none of the operators involving four quark fields can be constrained since data come
from processes with initial and/or final leptonic states. Note also that none of the LRLR
operators has any 1/Λ2 effect in the observables considered. Only the two operators involving
leptons, Olq and Olq′ , may give corrections, and only to neutrino-nucleon scattering or to
LEP 2 cross sections. The same happens for the LRRL operator Oqde. As explained before,
these operators either have no interference with the SM amplitude or, in the case of LEP
2 observables, do interfere with the Higgs exchange but this is proportional to the electron
Yukawa coupling and then negligible.

When comparing the results obtained from both low-energy and LEP 2 data in Table 2.2
we find they are highly complementary. We also observe that, although these two data

sets are quite effective in constraining α
(3)
ll , the main restriction comes indirectly from the

measurement of the unitarity of the first row of the CKM matrix. Indirect constraints from

Z-pole data are also significant. Finally, the upper bound for O(3)
lq is also indirectly fixed

from the precise determination of the CKM unitarity.

• Scalar-Vector-Fermion interactions: These dimension-six operators correcting trilinear

couplings are in general constrained by all data sets. In particular, the operator O(3)
φl con-

tributes to all observables through indirect corrections. Let us first note in view of the results
in Table 2.2 that although these trilinear corrections also enter in the LEP 2 observables,
these play no rôle at the end because they imply bounds in general much weaker than those
derived from other measurements, in particular at the Z pole. Therefore, as advanced in
Section 2.2.5, when performing a fit to new physics only correcting trilinear couplings, like
for instance extra vector-like heavy fermions, we can safely neglect LEP 2 constraints. Low-
energy data, however, still provide competitive limits for several operators, and should not
be ignored. Finally, the operator Oφud correcting RH quark CC lacks precise direct restric-
tions, and enters in our fits only through corrections for the extraction of the CKM matrix
elements. When considering this operator alone, the fit yields bounds similar to those for
the other SVF operators, due to the high precision of the CKM unitarity determination.

• Scalar-Fermion interactions: SF interactions correct fermion masses and Yukawa inter-
actions. As explained in the corresponding sections the effect of these operators on fermion
masses can be always removed by redefining the original Yukawa couplings. On the other
hand, the corrections to Yukawa interactions only enter some of the observables through the
interference with Higgs exchange amplitudes that are proportional to the electron Yukawa
couplings and thus negligible.

• Scalar operators: As discussed at the beginning of the Section 2.1.1, the contributions
from the operator Oφ4 are unobservable since this is nothing but a renormalization of the
SM scalar quartic coupling. The operator Oφ6 on the other hand is a genuine dimension-six
contribution but it does not appear in the corrections to any of the observables. This is so
because we can absorb it inside the Higgs vev or, more precisely, within the value of Gµ,
which is the input we use for the determination of v (see Eq. (2.55)).

• Oblique operators: Since they directly correct gauge boson masses (O(1)
φ , O(3)

φ and OWB)
and couplings (OWB), oblique operators should in principle affect to most observables. While

12Note that in the fits of Table 2.2 the corresponding entries of O(1)
ll are fixed to zero, and then only direct effects

from this operator are constrained.
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this is true for O(3)
φ and OWB, all observables are completely blind to O(1)

φ . The reason, as in
the case of Oφ6, is that we can also absorb its effects in one of the inputs, inMZ , because this
operator contributes exclusively and in the same way to the W and Z masses. The operator

O(3)
φ only correctsMZ and then is observable through indirect effects. While the lower bound

for this operator in Table 2.2 is essentially determined by Z data, the upper bound is mostly
dominated by MW which is below the SM prediction. On the other hand, OWB which also
enters indirectly in all observables, directly corrects all NC couplings and therefore the Z-pole
observables determine the corresponding bound, though also in collaboration with MW for
the upper limit.

Finally, let us discuss the implications of these operators for the determination of the Higgs
mass. There are only a few operator coefficients that exhibit a significant correlation with MH at

the minimum. These are α
(3)
ll , α

(3)
φl , α

(3)
φ and αWB , as can be seen in Table 2.3 where we gather

such correlations as well as the corresponding bounds from the global fit without Higgs direct
searches data. The effect on MH is also show in Fig. 2.1 left, where we plot the χ2 distribution as
a function of the Higgs mass for the different fits. To show the correlations between the last two

operators, in Fig. 2.1 right we draw the 95% C.L. regions from a fit to (only) the α
(3)
φ and αWB

coefficients for a Higgs mass equal to 116, 300 and 1000 GeV. This analysis can be put in a more
familiar form identifying these coefficients with the oblique parameters T and S [62]13:

T = − 1

2α
α
(3)
φ

v2

Λ2
, S =

4sc

α
αWB

v2

Λ2
, (2.124)

The leading Higgs corrections for a heavy Higgs (MH ≫MZ) are logarithmic and oblique, and to
a good approximation can be encoded in the following contributions to the oblique parameters [62]

∆T ≈ − 3

8πc2
log

MH

M ref
H

, ∆S ≈ 1

6π
log

MH

M ref
H

, ∆U ≈ 0 , (2.125)

with M ref
H a given reference value for the Higgs mass from which S and T are defined. Then,

the effect of a heavy Higgs can be compensated by a positive (negative) contribution to the T
(S) parameter. When interpreted in terms of operator coefficients, a heavy Higgs is then favored

by negative contributions to both α
(3)
φ and αWB, which explains the anti-correlations in Fig. 2.1

right. When only one of the operators is included, the effect of a heavy Higgs can be only partially
cancelled out. But, as we can also observe from both plots in Fig. 2.1, we can still compensate a
1 TeV Higgs without increasing significantly the value of the χ2 (less than 1 σ) including just the

operator O(3)
φ .

The strong correlation of the other two coefficients α
(3)
ll and α

(3)
φl in Table 2.3 with the Higgs

mass might seem puzzling at first sight for they are not of oblique type. After inspection one
realizes that both contribute to muon decay and then correct the relation between Gµ and GF .
This is the key to understand why these coefficients exhibit also a remarkable correlation [83, 84].
These new contributions can be understood as tree-level additions to the Sirlin’s parameter ∆r [85],

Gµ =
απ√

2M2
Zs

2c2(1−∆r)
, (2.126)

which within the SM parametrizes the radiative corrections to the Fermi constant extracted from
muon decay. Hence, a shift in ∆r can be compensated by a shift in the T parameter in Z-pole

13There are no dimension-six contributions to the U parameter.
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α
(3)
ll

Λ2

α
(3)
φl

Λ2

α
(3)
φ

Λ2
αWB
Λ2

ρlogMH ,
αi
Λ2

0.53 −0.62 −0.98 −0.96

9
5
%

C
.L

.

αi
Λ2 [TeV−2] ∈ [−0.010, 0.005] [−0.005, 0.007] [−0.117, 0.022] [−0.011, 0.018]

MH [GeV]< 149 158 > 1000 245

Table 2.3: Correlation (ρij) between the operator coefficients and logMH at the global minimum,
and without Higgs direct searches data. The corresponding 95% C.L. limits for the coefficients and
MH are also given.
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Figure 2.1: (Left) χ2 profile as a function ofMH from the global fit excluding Higgs direct searches

for the operator coefficients α
(3)
ll , α

(3)
φl , α

(3)
φ and αWB . (Right) 95% C.L. regions in the α

(3)
φ - αWB

plane for MH = 116, 300 and 1000 GeV.

observables. Indeed, taking ∆r = ∆GF
v2

Λ2 and using Eqs. (2.64) and (2.65) we see that ∆r and T
always appear in NC couplings in the combination ∆r−αT . Then, for Z-pole observables a negative
∆r plays the rôle of a positive T , and we can in principle cancel the corresponding contribution
from a heavy Higgs. This is not the case, however, for all observables and, in particular, for
the W mass which is crucial in determining the preferred MH value. In this case (2.94) implies

∆MW
∝ αT − s2

c2∆r, and there is no cancellation between the Higgs and the Gµ contribution for
MW once the relation between both of them from Z-pole observables has been implemented. As
a consequence, in the global fit the corresponding contribution to ∆r can be adjusted to cancel

only a small part of of the heavy Higgs effect, explaining why the MH correlations with α
(3)
ll and

α
(3)
φl are weaker. The signs of the correlations simply reflects how each quantity enters in ∆r (see

Eq. (2.51)). At any rate, the possibility of compensating a large MH is in this way rather mild,
for the possible cancellation in MW , which prefers a light Higgs, is in any case small. Besides, the

allowed values for α
(3)
ll and α

(3)
φl are also quite restricted by other observables they contribute to,

and not only through Gµ, and then their contributions become negligible in the cases we consider.

Indeed, O(3)
φl contributes to all NC processes involving LH trilinear lepton couplings and then is
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directly constrained by Z-pole data. The strongest constraint on α
(3)
ll follows indirectly from the

measurement of the unitarity of the first row of the CKM matrix, which is also sensitive to α
(3)
φl .

Nevertheless, it is important to have these correlations in mind when there are contributions from
new physics to several operators at the same time, because it may be possible that the former
constraints do not held, and the corresponding contributions to Gµ do help in accounting for a
relatively heavy Higgs. (Actually, we will comment on one of such case in the next chapter.)
Obviously, this scenario would be further favoured if the new physics also contributed to the W

mass positively. Finally, let us point out that a non-vanishing (α
(1)
ll )1221 and (α

(3)
ll )1221, which are

not considered in the fits in this section as explained above, can also play the same rôle for they
contribute to muon decay too.
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Chapter 3

New matter fields: Extra spin-1/2
particles

Extra fermionic particles are common in many scenarios of physics beyond the SM. These
are required for instance in Grand Unification Theories (GUT) [86, 87] when we complete the
multiplets where we embed the SM fermions, or in scenarios with extra chiral symmetries in order
to cancel gauge quantum anomalies. They also appear in Little Higgs models [88] where they play
a crucial role in canceling the quadratically divergent contributions to the Higgs mass from the
SM top quark. In theories with extra dimensions [89], on the other hand, these are not required in
principle but arise naturally if the SM fermions propagate along the bulk of the extra dimension.
In this case we actually have a infinite tower of replicas with increasing masses for each SM fermion
multiplet. In all the previous examples extra fermions are vector-like respect to the SM, i.e. both
chiralities transform in the same way under the SM gauge group. This guarantees that they do
not introduce gauge quantum anomalies. By vector-like, we refer also to Majorana fermions, for
which both chiralities are not independent but related by charge conjugation. Scenarios with
extra chiral fermions can also be considered if the corresponding gauge anomalies are canceled.
This is possible, for instance, if they complete an additional SM family. This fourth generation of
fermions has regained interest recently. There are, however, problems when one considers new chiral
fermions. Fermion masses in this case can only be generated upon EWSB so, since experiments
require that they be heavy, the corresponding Yukawa couplings are large and may destabilize the
Higgs potential. Furthermore, if large enough, the running Yukawa coupling may blow up leading to
Landau poles before the Planck scale. On the other hand, an additional generation is known to have
problems with electroweak precision tests, for it gives a too large contribution to the S parameter,
excluded at the 6 σ level [38]. This can be relaxed by considering non-degenerate new families or
allowing the T parameter to vary as well. However, a very recent analysis including the current
status of EWPD and these considerations reveals that, though electroweak precision constraints
have relaxed, the presence of an extra generation of chiral fermions is still disfavored [90].

In this chapter we analyze the low-energy effects of heavy vector-like fermions. Since they must
be relatively heavy the effective Lagrangian approach should be a good approximation. We consider
all possible new vector-like fermions that, after EWSB, mix with the SM ones, and hence contribute
to precision observables. Then, we compute the corresponding effective Lagrangian describing their
low-energy interactions. With the aid of the computations in the previous chapter, this can be
used to obtain the limits that EWPD imposes on the couplings and masses of these extra particles.
In this regard we focus on the analysis of extra vector-like leptons. The case of extra vector-like

61
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quarks has been actively considered in the literature [87, 91, 92, 93, 94, 95, 96], including recent
analysis of their implications on EWPD [94, 95, 96]. Most of the analysis, however, focus in the
effects of extra SM-like singlets or doublets and mainly in the case of couplings with the third
family. Exotic quark doublets has been also considered. On the other hand, there is no detailed
analysis of the effects that quark triplets would have on data. The corresponding general analysis
will be presented in a future publication [97].

Since these hypothetical new leptons modify leptonic observables, it looks plausible, a priori,
that they may improve the electroweak fit and/or change the prediction for the Higgs mass. We
observe that the quality of the global fit (including high- and low-Q2 data) hardly improves when
the new leptons are included. The case of neutrino singlets has the interesting feature of raising
the preferred Higgs mass above the direct LEP limit MH = 114.4 GeV. Due to the values of MW

measured at LEP 2 and Tevatron, however, the Higgs cannot be very heavy. For other kinds of
new leptons, the SM prediction for MH is mostly unchanged.

We shall derive limits on the mixing of the SM leptons with the different possible new vector-
like additions. (Previous fits for specific additions [98, 99, 100] are improved.) The upper bounds
range from 0.01 to 0.08 at 95 % C.L., depending on the quantum numbers of the new lepton and
the SM family it mixes with. If the new leptons are weakly coupled, the largest allowed mixing
requires that their masses are near the TeV scale. We will give results in the case of one extra
multiplet at a time because the global fit does not improve when several of them are considered.

It is important to note that new leptons with significant mixing are generically ruled out when
they mediate FCNC [101, 102, 103, 104], generate masses for the SM neutrinos [2], or contribute
to neutrinoless double β decay [105]. To avoid these constraints, we must assume that each new
lepton mixes mostly with just one family, and that their contributions to the light Majorana
masses and neutrinoless double β decay, when possible, are very suppressed [106]. This scenario
with new Majorana particles at the TeV scale that have sizable mixings with the SM leptons
can be made natural with the help of extra symmetries. In general, these include lepton number
conservation [107] and must be very slightly broken, if at all. At any rate, we find that new leptons
with the quantum numbers of the see-saw messengers of type I [108] and III [109] can have sizable
mixings. The neutrino singlets are also relevant to models of resonant leptogenesis [110]. All our
limits apply independently of the Majorana or Dirac character of the heavy leptons, but in the
Majorana case the restrictions mentioned above must be taken into account.

Finally, let us emphasize that our results are relevant to LHC, since the production and decay
of these new leptons can be constrained by the limits on their mixings derived here. This is decisive
for neutrino singlets, as they can be only produced through such a mixing [111]. All the other
extra leptons can, in addition, be pair produced. Even if their decays are proportional to their
mixing, this is still large enough for the new leptons to decay within the detector [112]. On the
other hand, new leptons with masses of the order of 1 TeV and relatively large mixing with the SM
leptons may be observable at future e+ e− colliders [113]. They can also give deviations in neutrino
couplings, which could be measured at future neutrino experiments (see for instance [114]).

In the next section we enumerate the different possibilities of vector-like fermions and write
down their couplings to the SM fields. In Section 3.2 we derive the effective Lagrangian describing
the effect of new fermions below threshold. We also describe the constraints from FCNC and
neutrino masses. The resulting EWPD constraints are given in Section 3.3. Limits on the mixings
are derived in general and assuming universality. Section 3.4 is devoted to a detailed discussion
of the interplay between heavy lepton singlets and the Higgs mass. Section 3.5 contains the
conclusions of this chapter, including the implications of our fits for the observation of heavy
leptons at large colliders.
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3.1 Extending the Standard Model with vector-like fermions

As emphasized, many models of new physics beyond the SM include extra fermions, and these
are usually vector-like to avoid the problems inherent to the addition of new chiral matter. It is,
therefore, interesting to study the impact of new vector-like fermions at the TeV scale on low-energy
observables, and the limits implied on their couplings and masses. To give sizable contributions to
EWPD, the new fermions must mix at tree level with the SM ones. This condition together with
renormalizability and the fact that the theory must be invariant under the SM gauge group restrict
the new particles quantum numbers. The different possible additions are gathered in Tables 3.1
and 3.2, which also settles our notation for the extra multiplets.

Leptons N E

(

N
E−

) (

E−

E−−

)





E+

N
E−









N
E−

E−−





Notation ∆1 ∆3 Σ0 Σ1

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (3, 1)0 (3, 1)−1 (3, 2)− 1
2

(3, 2)− 3
2

(3, 3)0 (3, 3)−1

Dirac Dirac
Spinor or Dirac Dirac Dirac or Dirac

Majorana Majorana

Table 3.1: Lepton multiplets mixing with the SM leptons through Yukawa couplings to the SM
Higgs.

Quarks U D

(

U
D

) (

X
U

) (

D
Y

)





X
U
D









U
D
Y





Notation Ξ1 Ξ7 Ξ5 Ω2 Ω1

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (3, 1) 2
3

(3, 1)− 1
3

(3, 2) 1
6

(3, 2) 7
6

(3, 2)− 5
6

(3, 3) 2
3

(3, 3)− 1
3

Table 3.2: Quark multiplets mixing with the SM leptons through Yukawa couplings to the SM
Higgs. In this case the spinor field describing the fermions can be only of Dirac type.

We consider a generic renormalizable extension of the SM including these vector-like fermions.
After diagonalizing the fermionic kinetic terms and the corresponding mass matrices before EWSB,
the Lagrangian of the theory can be split into three pieces:

L = Lℓ + Lh + Lℓh. (3.1)

Lℓ is the SM Lagrangian and contains only light fields (with no RH neutrinos). As stated in
Chapter 1, we choose to work in the basis in which the leptonic and d quark Yukawa terms are
diagonal. Then, the fermionic sector is given by

Lℓ ⊃ liL i��D liL + qiL i��D qiL + eiR i��D eiR + uiR i��DuiR + diR i��DdiR−
−
(

yeii l
i
Lφe

i
R + ydii q

i
Lφd

i
R + V †

ijy
u
jj q

i
Lφ̃u

j
R + h.c.

)

.
(3.2)
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[ψ1] [ψ2] 2Y 1Y+ 1
2

2Y 1Y− 1
2

3Y 2Y− 1
2

3Y 2Y+ 1
2

Φψ1ψ2 φ̃ φ φ̃† σa
2

φ† σa
2

Table 3.3: Form of the scalar doublet required to make the operators ΨLΦΨ
′
R, ΨRΦψL and ΨLΦψR

gauge invariant, in terms of the quantum numbers of the fermions appearing in the operator.

Lh contains the terms involving heavy vector-like fermions:

Lh =
∑

Ψ

ηΨ

(

ΨI i��DΨI −MIΨIΨ
I
)

−
∑

Ψ<Ψ′

(

(yΨΨ′)IJ Ψ
IΦΨΨ′Ψ

′J + h.c.
)

, (3.3)

where Ψ stands for the Dirac spinor of any of the multiplets in Tables 3.1 and 3.2, with ΨL,R its
two chiral components. In particular, we will use Ψ = L to refer to the extra leptons, and Ψ = Q
for the new quarks. In our basis, the mass matrices M are real and diagonal. We also allow for
the possibility that L is Majorana when L = N or L = Σ0, adjusting the normalization constants
ηL to reproduce the standard values 1 and 1

2 for Dirac and Majorana spinors, respectively. For
new quarks ηQ = 1 for they are Dirac fermions. The capital latin superindices I, J refer to the
different exotic species with the same quantum numbers. Finally, ΦΨΨ′ represents the form of the
SM scalar doublet needed for the Yukawa terms to be gauge invariant, which can be read from
Table 3.3.

The last piece, Lℓh, contains all the Yukawa couplings between light and heavy fermions:

Lℓh =− (yLe)Ij L
I
LΦLee

j
R − (yLl)Ij L

I
RΦLll

j
L−

− (yQu)Ij Q
I
LΦQuu

j
R − (yQd)Ij Q

I
LΦQdd

j
R − (yQq)Ij Q

I
RΦQqq

j
L + h.c..

(3.4)

After EWSB there are mass terms mixing SM and extra fermions. Within our fermion basis
convention, if each SM flavor mixes at most with one extra fermion, as we shall eventually assume,
the diagonalizing matrices for charged leptons and d quarks are 2× 2. These unitary matrices are
thus fixed by one mixing angle s = sin θ, up to phases. For u quarks this is still approximately
true for the top because it mainly couples to the bottom. Let us focus on the case of extra leptons,
whose implications on EWPD will be discussed later, in order to introduce some notation and
further conventions. We shall take the mixing s to be non-negative, except for Σ1, where we keep
a convenient relative minus sign between the mixing of νL and eL. At first order, these mixings are
given by the ratio of the Yukawa coupling, y, to a heavy massM (times v). The precise expressions
for the different possible extra leptons are collected in Table 3.4. After diagonalization, the charged
and neutral currents for light and heavy mass eigenstates are written as a function of the lepton
mixing s. The strength of the interactions involving only light leptons are modified with respect
to the SM ones, correcting electroweak precision observables. On the other hand, the very same
mixings appear in the charged and neutral currents with one light and one heavy lepton, which are
relevant for the production and decay of these heavy particles at large colliders. We present our
results in terms of the complete subset of independent charged current couplings with one light
and one heavy lepton gathered in Table 3.5. As shown in this table, they turn out to be directly
related to the lepton mixings. For this reason we shall generically use the term “mixing” for both
U and s.
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N E ∆1 ∆3 Σ0 Σ1

sνL

∣

∣

∣

yNlv√
2MN

∣

∣

∣
− − −

∣

∣

∣

yΣ0l
v

2
√

2MΣ0

∣

∣

∣
−
√
2seL

seL −
∣

∣

∣

yElv√
2ME

∣

∣

∣ negligible negligible
√
2sνL

∣

∣

∣

yΣ1l
v

2
√

2MΣ1

∣

∣

∣

seR − negligible
∣

∣

∣

y∆1e
v

√
2M∆1

∣

∣

∣

∣

∣

∣

y∆3e
v

√
2M∆3

∣

∣

∣ negligible negligible

Table 3.4: First order expressions in yv
M of the mixing between one SM lepton of a given flavor and

one extra lepton. Family indices are implicit and “negligible” stands for higher order contributions.

N E ∆1 ∆3 Σ0 Σ1

fαγ
µf ′
α e−Lγ

µNL E−
L γ

µνL e−Rγ
µNR E−−

R γµe−R e−Lγ
µNL E−

L γ
µνL

∣

∣

∣
Uff

′

α

∣

∣

∣
sνL seL seR seR sνL seL

Table 3.5: Resulting first order expressions of a complete subset of independent charged current
couplings − g√

2
Uff

′

α W−
µ fαγ

µf ′
α, α = L,R, as a function of the lepton mixing.

3.2 The effective Lagrangian for new fermions

As we are interested in the effects of heavy particles at energies much smaller than their masses, we
can integrate them out and use the resulting effective Lagrangian. This is completely equivalent, for
our purposes, to diagonalizing the mass matrices to first order and using the resulting charged and
neutral couplings for light fields. Nevertheless, following the general method in this thesis, we write
down the completely-gauge-invariant induced operators and their coefficients before electroweak
symmetry breakdown. In particular, this may be useful to compare with other new physics effects
on EWPD. Because the heavy fermions are vector-like, they decouple in the limit when their mass
goes to infinity. If they have masses of the order of TeV, we expect that the terms of dimension
d > 6 give small corrections compared to the current experimental precision, as argued in Chapter 1.
Therefore we do not take them into account in our fits. Our results will be consistent within this
approximation.

Let us derive the effective Lagrangian after integrating out the heavy vector-like fermions. As
interactions between two heavy species may contribute to the dimension-six effective Lagrangian,
performing the integration of heavy fermions in general requires the integration of two different
species at the same time. Note also that only one of them can be of Majorana type for the
hypercharge of Φ can only be ±1/2. Suppose then that we have two generic fermionic species Ψ
and Ψ′, with massesM andM ′, and with the possibility of Ψ being Majorana. This last possibility
is accounted by the parameter ηψ as in Eq. (3.3). The Euler-Lagrange equations for each chirality
read

i��DΨIL −MIΨ
I
R = (yΨΨ′)IJ ΦΨΨ′Ψ

′J
R + (yΨf )Ij ΦΨff

j + (y∗ΨF )Ij Φ
∗
ΨFF

c jδηΨ 1
2
,

i��DΨIR −MIΨ
I
L = (yΨΨ′)IJ ΦΨΨ′Ψ

′J
L + (yΨF )Ij ΦΨFF

j +
(

y∗Ψf
)

Ij
Φ∗

Ψff
c jδηΨ 1

2
,

(3.5)

and similarly for Ψ′ (replacing yΨΨ′ , ΦΨΨ′ by y†ΨΨ′ , Φ
†
ΨΨ′ , respectively, and taking ηΨ′ = 1). So,

they can be solved iteratively. For SM fermions we have used the notation introduced previously:
F = qL, lL, f = eR, uR, dR. The last terms in the equations above come from the hermitian
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conjugate in Eq. (3.4) for Majorana fermions, because in such case ΨL,(R) = ΨcR,(L). In order to
keep up to dimension-six operator effects in the effective Lagrangian, we expand the solutions up
to order 1/M2

ΨIR=−
(yΨf )Ij
MI

ΦΨff
j −

(yΨF )Ij
M2
I

i��D
(

ΦΨFF
j
)

+
(yΨΨ′)IJ (yΨ′f )Jj

MIM ′
J

ΦΨΨ′ΦΨ′ff
j−

−
(

(y∗ΨF )Ij
MI

Φ∗
ΨFF

c j +
(y∗Ψf )Ij

M2
I

i��D
(

Φ∗
Ψff

c j
)

− (yΨΨ′)IJ (y
∗
Ψ′F )Jj

MIM ′
J

ΦΨΨ′Φ∗
Ψ′FF

c j

)

δηΨ 1
2

ΨIL=−
(yΨF )Ij
MI

ΦΨFF
j −

(yΨf )Ij
M2
I

i��D
(

ΦΨff
j
)

+
(yΨΨ′)IJ (yΨ′F )Jj

MIM ′
J

ΦΨΨ′ΦΨ′FF
j−

−
(

(y∗Ψf )Ij

MI
Φ∗

Ψff
c j +

(y∗ΨF )Ij
M2
I

i��D
(

Φ∗
ΨFF

c j
)

−
(yΨΨ′)IJ (y

∗
Ψ′f )Jj

MIM ′
J

ΦΨΨ′Φ∗
Ψ′ff

c j

)

δηΨ 1
2
,

(3.6)

and take them (these and those for Ψ′) back to the Lagrangian Lh+Lℓh, where again terms of order
1/M3 or higher are discarded. Note that with the exception of Majorana fermions, none of the
multiplets in Tables 3.1 and 3.2 allows for Yukawa couplings with SM fields for both (positive and
negative) chiralities. Thus, unless there are Majorana terms in Eq. (3.3) which are only possible
for extra singlets and triplets of zero hypercharge, the order 1/M term will be absent for one of
the chiralities in the above expansion and no dimension-five effects do arise upon the integration.
In that specific case the lepton number violating Weinberg operator [60], the unique operator in
L5, is generated,

L5 = (α5)ij lc iL φ̃
∗φ̃†ljL + h.c.. (3.7)

After EWSB it gives masses to light neutrinos, mν = −v2α5/Λ, with (α5)ee also contributing to
neutrinoless double β decay. The corresponding values for the coefficient α5 are given in Table 3.6.
The fact that neutrino masses are tiny, and the strict bounds on neutrino double β decay, are usually
explained by the large scale Λ. However, we want to keep the scale Λ near the TeV range to have
non-negligible effects from L6. Then we need to assume that some mechanism in the high energy
model keeps the coefficient (α5)ij very small. As we will illustrate below, a natural way to achieve
this in any model is to implement lepton number conservation, up to possible breaking terms
with adimensional coefficients α5 smaller than 10−11 [2]. This scenario is stable under quantum
corrections and is realized in models in which the heavy fermions are of Dirac type [107]. Unnatural
cancellations are also possible [106].

At order 1/Λ2 there are essentially 1 two types of operators:

• Operators with two fermions, two scalars and a covariant derivative: (ψ Φ†
Ψψ)i��D (ΦΨψ ψ).

The only case where the two fermions can be different multiplets is for quark doublets with
the SM hypercharge.

• Operators with two fermions and three scalars: F Φ†
Ψ′FΦ

†
ΨΨ′ΦΨff .

While the former is always generated, the latter requires two different multiplets types and the
adequate Yukawa coupling mixing them. None of the above operators is in the basis introduced
in Chapter 1. In the first case, we can use the Leibniz rule to act with the covariant derivative
separately on the scalar and fermion fields. Then, after applying the SM equations of motion

1Up to the use of charge conjugation properties and integration by parts in the case of Majorana fermions.
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(EOM) (which are equivalent to perform an order 1/Λ2 field redefinition) on the operator with

��D ψ and performing the adequate Fierz reordering, we can rewrite the first operator in terms of

O(1)
φψ , O

(3)
φψ and Oψφ. For the second one we only need Fierz reordering to relate it with an operator

of type Oψφ. The dimension-six effective Lagrangian resulting from integrating out the heavy
leptons then contains

LL6 =
(

α
(1)
φl

)

ij

(

φ†iDµφ
)

(

liLγ
µljL

)

+
(

α
(3)
φl

)

ij

(

φ†iσaDµφ
)

(

liLσaγ
µljL

)

+

+
(

α
(1)
φe

)

ij

(

φ†iDµφ
)

(

eiRγ
µejR

)

+
(

αeφ
)

ij

(

φ†φ
)

liLφ e
j
R + h.c.,

(3.8)

while from extra vector-like quarks

LQ6 =
(

α
(1)
φq

)

ij

(

φ†iDµφ
)

(

qiLγ
µqjL

)

+
(

α
(3)
φq

)

ij

(

φ†iσaDµφ
)

(

qiLσaγ
µqjL

)

+

+
(

α
(1)
φu

)

ij

(

φ†iDµφ
)

(

uiRγ
µujR

)

+
(

α
(1)
φd

)

ij

(

φ†iDµφ
)

(

diRγ
µdjR

)

+

+ (αφud)ij
(

φT iσ2iDµφ
)

(

uiRγ
µdjR

)

+
(

αuφ
)

ij

(

φ†φ
)

qiLφ̃ u
j
R +

(

αdφ
)

ij

(

φ†φ
)

qiLφ e
j
R + h.c..

(3.9)

The values of the coefficients for extra leptons are given in Tables 3.6 and 3.8, while those for extra
quarks are given in Tables 3.7 and 3.9. The latter were first obtained in Ref. [115] 2.

After EWSB α
(1)
φψ and α

(3)
φψ modify the NC and CC fermion couplings, as explained in Chapter 2

(see Eqs. (2.33) and (2.42)). In particular, in the case of extra SM-like quark doublets they
introduce RH quark CC, not present in the SM. Though fermion masses are also modified, those
changes can be absorbed into the mass definition. On the other hand, neglecting tiny irrelevant
contributions from neutrino masses, we can re-diagonalize the charged lepton mass matrix by bi-
unitary transformations without introducing further corrections in neutral and charged currents

to order 1/Λ2. Note also (see Table 3.6) that the combination of Yukawa couplings entering α
(1,3)
φl,e

is different from that in α5, so it is possible to have sizable α
(1,3)
φl,e and vanishing α5 simultaneously,

even for N and Σ0 multiplets [2]. Indeed, in both cases the coefficient of the dimension-five operator
is proportional to yTM−1y, thus it only depends (quadratically) on y, while the coefficients of the
dimension-six operators involve y†M−2y, and then y and y†. Thus it is possible that there are
cancellations in the former which do not hold in the latter. This is what happens for quasi-Dirac
neutrinos. Consider, for instance, the addition of a heavy Dirac neutrino singlet N coupled to only
one family. The generic mass matrix is given by

νL
NL
N c
R

νL NL N c
R





0
0

yN v√
2

0
0
MN

yN v√
2

MN

0



 ,
(3.10)

where lepton number can be broken by a small entry µ instead of some of the zeroes in the above
matrix, giving a Majorana mass proportional to it for the light neutrino. This is true even if the
nonzero entry is in the (3, 3) position because one-loop radiative corrections also generate a non-
zero mass for νL proportional to µ. (A similar behaviour is found in Little Higgs models [116].)

2Unlike there, we do not include V in the definition of any of the Yukawa couplings mixing light and heavy
quarks.
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If the lepton number violating parameter µ is in the (2,2) position, the SM neutrino acquires a
Majorana mass mν

3

−yTNM−1
N yN

v2

2
≈ −y

2
N

2

[

(1− µ
4MN

)2

MN + µ
2

−
(1 + µ

4MN
)2

MN − µ
2

]

v2

2
≈ µy2N
M2
N

v2

2
, (3.11)

where we only keep the dominant terms in µ/MN . Hence, while mν is proportional to µ, the
coefficients of the dimension-six operators are not,

y†NM
−2
N yN ≈ |yN |2

2

[

(1− µ
4MN

)2

(MN + µ
2 )

2
+

(1 + µ
4MN

)2

(MN − µ
2 )

2

]

≈ |yN |2
M2
N

. (3.12)

Then, new fermions can exist near the TeV scale with observable effects beyond the SM, and the
SM neutrinos be still light enough.

L
α5

Λ

α
(1)
φl

Λ2

α
(3)
φl

Λ2

α
(1)
φe

Λ2

αeφ
Λ2

N 1
2y
T
NlM

−1
N yNl

1
4y

†
NlM

−2
N yNl −α

(1)
φl

Λ2 − −

E − − 1
4y

†
ElM

−2
E yEl

α
(1)
φl

Λ2 − −2
α

(1)
φl

Λ2 ye

∆1 − − − 1
2y

†
∆1e

M−2
∆1
y∆1e ye

α
(1)
φe

Λ2

∆3 − − − − 1
2y

†
∆3e

M−2
∆3
y∆3e −ye

α
(1)
φe

Λ2

Σ0
1
8y
T
Σ0l
M−1

Σ0
yΣ0l

3
16y

†
Σ0l
M−2

Σ0
yΣ0l

1
3

α
(1)
φl

Λ2 − 4
3

α
(1)
φl

Λ2 ye

Σ1 − − 3
16y

†
Σ1l
M−2

Σ1
yΣ1l − 1

3

α
(1)
φl

Λ2 − − 2
3

α
(1)
φl

Λ2 ye

Table 3.6: Coefficients of the operators arising from the integration of heavy leptons. The
dimension-five operator entry, α5

Λ , only appears when the singlet N and/or the triplet Σ0 are
Majorana fermions.

On the other hand, the off-diagonal elements of the matrices αψφ and α
(1,3)
φψ induce FCNC

through the corresponding contributions to Yukawa interactions and NC couplings, respectively.
For the case of extra leptons discussed below, the current experimental limits on rare processes
like µ→ eγ and µ→ eee imply that these off-diagonal coefficients are small [102, 103]. As can be
seen from Table 3.6, this requires that each new lepton multiplet mixes mostly with only one of
the known lepton flavors. This pattern of mixings is automatic with the extra assumption of an
(approximate) conservation of individual lepton number. In that case, we do not have any other

constraints than those from EWPD, where the operator
(

φ†φ
)

liLφe
j
R and the corresponding coeffi-

cients αeφ in Tables 3.6 and 3.8 do not contribute. Finally note that there are no contributions to

3The 2 × 2 bottom-right submatrix must be diagonalised before applying the seesaw formula in order to make
the cancellation apparent. The masses of the two Majorana eigenstates are taken to be positive, MN1

≈ MN +µ/2,
MN2

≈ MN − µ/2.
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Q
α

(1)
φq

Λ2

α
(3)
φq

Λ2

α
(1)
φu

Λ2

α
(1)
φd

Λ2

α
φud

Λ2

αuφ
Λ2

αdφ
Λ2

U 1
4y

†
UqM

−2
U yUq −α

(1)
φq

Λ2 − − − 2
α

(1)
φq

Λ2 V
†yu −

D − 1
4y

†
DqM

−2
D yDq

α
(1)
φq

Λ2 − − − − −2
α

(1)
φq

Λ2 yd

Ξ1 − − − 1
2y

†
Ξ1u

M−2
Ξ1
yΞ1u

1
2y

†
Ξ1d

M−2
Ξ1
yΞ1d −y†Ξ1u

M−2
Ξ1
yΞ1d −V †yu

α
(1)
φu

Λ2 yd
α

(1)
φd
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Ξ7 − − 1
2y

†
Ξ7u
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yΞ7u − − V †yu

α
(1)
φu

Λ2 −

Ξ5 − − − − 1
2y

†
Ξ5d

M−2
Ξ5
yΞ5d − − −yd

α
(1)
φd

Λ2

Ω2
3
16y

†
Ω2q

M−2
Ω2
yΩ2q

1
3

α
(1)
φq

Λ2 − − − 2
3

α
(1)
φq

Λ2 V
†yu

4
3

α
(1)
φq

Λ2 yd

Ω1 − 3
16y

†
Ω1q

M−2
Ω1
yΩ1q − 1

3

α
(1)
φq

Λ2 − − − − 4
3

α
(1)
φq

Λ2 V
†yu − 2

3

α
(1)
φq

Λ2 yd

Table 3.7: Coefficients of the operators arising from the integration of heavy quarks.
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L1, L2
αeφ

Λ2

E,∆1 y†ElM
−1
E yE∆1M

−1
∆1
y∆1e

E,∆3 y†ElM
−1
E yE∆3M

−1
∆3
y∆3e

∆1,Σ0
1
2
y†Σ0l

M−1
Σ0
yΣ0∆1M

−1
∆1
y∆1e

∆1,Σ1
1
4
y†Σ1l

M−1
Σ1
yΣ1∆1M

−1
∆1
y∆1e

∆3,Σ1 − 1
4
y†Σ1l

M−1
Σ1
yΣ1∆3M

−1
∆3
y∆3e

Table 3.8: Combined contribution to αeφ from the simultaneous integration of different mixed
lepton multiplets. Even if the corresponding operator does not affect our fits, we include the
values of the coefficient for completeness.

derivative couplings of the SM fermions to the Higgs (which would redefine the Yukawa couplings)

because the coefficients α
(1,3)
φψ are hermitian.

In what follows we focus on the phenomenological implications on EWPD of the effective
Lagrangian resulting from the addition of the new vector-like leptons in Table 3.1. We leave the
corresponding analysis for heavy vector-like quarks to a future publication [97].

3.3 The global fit for extra leptons

We have performed global fits to EWPD, confronting the SM extensions with extra leptons and con-
straining the possible lepton mixings. The observables entering in our fits are shown in Appendix
A, Tables A.1 and A.2, together with their current experimental values and the corresponding SM
predictions. We do not include the e+e− → ff data at higher energies from LEP 2 because they
do not change significantly the fits. The reason is that the Z-pole observables have better precision
and constrain strongly all the new parameters in the model, i.e. no independent parameters enter
in the LEP 2 observables. This can be understood because new leptons change only the trilinear
fermionic couplings, but do not generate four-fermion operators. This justifies ignoring LEP 2
data.

On the other hand, we have updated Ref. [1], with the current values of the top mass [117], the
strong coupling constant [118], the five-flavor hadronic contribution to the α running [119, 120],
the W mass [71], the low-energy effective coupling g2L [38] and the weak charge for Cesium [78].
We have also included additional light flavor data at the Z pole [70], the Tevatron determination
of the effective weak mixing angle [121], the unitarity constraints on the first row of the CKM
matrix [68] and further low energy observables such as the weak charges for Thalium [79], and for
the electron [80]. Finally, the sharp cut on MH = 114.4 GeV imposed in Ref. [1] to implement the
LEP 2 limit has been replaced by the direct inclusion of the results from Higgs direct searches at
LEP 2 and Tevatron. See Appendix A for more details. The most significant change, as we will
see, is that the unitarity of the CKM matrix further constrains the mixing of a heavy neutrino
singlet with the muon, significantly strengthening the corresponding bound.

As explained in Appendix A, we minimize the χ2 function constructed with the available data.
The new free parameters always enter as ratios of Yukawa couplings to heavy masses, giving the
mixing between light and heavy particles as explained above and gathered in Table 3.4. We present
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Q1, Q2
αuφ

Λ2

αdφ

Λ2

U,Ξ1 y†UqM
−1
U yUΞ1M

−1
Ξ1
yΞ1u −

U,Ξ7 y†UqM
−1
U yUΞ7M

−1
Ξ7
yΞ7u −

D,Ξ1 − y†DqM
−1
D yDΞ1M

−1
Ξ1
yΞ1d

D,Ξ5 − y†DqM
−1
D yDΞ5M

−1
Ξ5
yΞ5d

Ξ1,Ω2
1
4
y†Ω2q

M−1
Ω2
yΩ2Ξ1M

−1
Ξ1
yΞ1u

1
2
y†Ω2q

M−1
Ω2
yΩ2Ξ1M

−1
Ξ1
yΞ1d

Ξ1,Ω1
1
2
y†Ω1q

M−1
Ω1
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−1
Ξ1
yΞ1u

1
4
y†Ω1q

M−1
Ω1
yΩ1Ξ1M

−1
Ξ1
yΞ1d

Ξ7,Ω2 − 1
4
y†Ω2q

M−1
Ω2
yΩ2Ξ7M

−1
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Ξ5,Ω1 − − 1
4
y†Ω1q

M−1
Ω1
yΩ1Ξ5M

−1
Ξ5
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Table 3.9: Combined contribution to αuφ and αdφ from the simultaneous integration of different
mixed quark multiplets.

the results as a function of the corresponding CC coupling U in Table 3.5. The fits constrain only
their magnitud |U |. The new leptons can modify the observables in two ways. First, they can
give direct contributions to the processes determining a given observable. Alternatively, they
can contribute to processes constraining the input parameters. In this case, the relation between
the measured values and the SM parameters is modified, resulting in indirect corrections to all

observables. The free parameters used in our fits are ∆α
(5)
had

(

M2
Z

)

, αs
(

M2
Z

)

, MZ , mt, MH and the
mixing of the new leptons. Note that the first four parameters are to a great extent determined
by the corresponding experimental measurements4. The Higgs mass on the other hand is only
partially constrained by direct searches. In particular, MH ≥ 114.4 GeV, but it stays (directly)
unconstrained above 200 GeV. Therefore, only MH and the lepton mixing can vary significantly,
so we will give our results in terms of these two parameters.

The minimization of χ2 and the calculation of the confidence regions are performed by scanning
over the parameter space5, accepting or rejecting points according to their probability. The plots
are obtained from the actual set of points keeping only the those within the 95% probability region,
from which we extrapolate the corresponding contour.

3.3.1 Numerical results

In Table 3.10 we show the improvements −∆χ2
min with respect to the SM minimum, when we add

independently one new lepton kind at a time. We have also performed a general fit including all
possible heavy leptons, but there is no further significant improvement in χ2

min and we do not show
the result here. We distinguish different scenarios depending on how we choose the couplings of
the new leptons to the SM fields. We have considered the following cases:

• A single new lepton coupled only to one of the three SM families (“Only with e, µ or τ”).

4We can neglect the effect of the heavy leptons on these measurements.
5In practice, we restrict the parameters ∆α

(5)
had

(

M2
Z

)

, αs
(

M2
Z

)

, MZ and mt to 1σ intervals around their SM
value for the reasons just discussed.
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−∆χ2
min (χ2

min/d.o.f.)

Coupling nnew
par N E ∆1 ∆3 Σ0 Σ1

General 3 1.2 (1.11) 0.2 (1.13) 1.7 (1.09) 1.7 (1.09) 1.1 (1.11) 0 (1.14)

Universal 1 0.2 (0.94) 0 (0.94) 0 (0.94) 0.4 (0.93) 0.5 (0.93) 0 (0.94)

Only with e 1 0.4 (1.07) 0 (1.08) 0 (1.08) 0.9 (1.06) 0.8 (1.06) 0 (1.08)

Only with µ 1 0.1 (1.08) 0.2 (1.08) 1.7 (1.04) 0 (1.08) 0 (1.08) 0 (1.08)

Only with τ 1 1 (1.06) 0 (1.08) 0 (1.08) 0.5 (1.07) 0.4 (1.07) 0 (1.08)

Table 3.10: Decrease in χ2
min with respect to the SM minimum, χ2

SM = 44.32 (χ2
SM = 30.23 with

lepton universality), obtained by adding to the SM the different leptons. The number of degrees
of freedom is obtained as N − 5− nnew

par , where n
new
par is the number of independent lepton mixings

and N = 47 is the number of observables (N = 38 for the universal case). In parenthesis we write
the value of χ2

min/d.o.f., which for the SM is 1.06 (0.92 with lepton universality).

• Three leptons, each coupled to one (different) SM family with independent couplings (“Gen-
eral”).

• Three leptons, each coupled to one (different) SM family with the same coupling (“Univer-
sal”).

The universal case requires an extra assumption. When we do the fit with universal couplings, we
use this assumption of universality also for data. This means that the set of data is different and
hence the comparison with the other fits is not straightforward. The observables included in the
fit for this case, with their current experimental values and the SM predictions, are collected in
Table A.2 in Appendix A.

We see that there are mild improvements with respect to the SM χ2 for singlets Nτ , doublets
(∆1)µ and (∆3)e, and triplets (Σ0)e. In all the other cases the χ2 is lowered by less than half unit.
The only fit with χ2/d.o.f. smaller than in the SM is obtained for the SM-like doublet coupled to
the second family, (∆1)µ. Even if the improvements are marginal at best, it is interesting that in
some cases the minima occur for significant values of the mixings, as can be seen in Table 3.11.
Let us also mention the biggest changes in individual observables at the global minima. First, σhad
(with a 1.7 pull in the SM) is improved in several cases, up to a pull of 0.8 for the singlet Nτ .
The pull in the SLD asymmetry Ae is lowered from 2.0 to 1.8 for the singlets Ne, but at the price
of increasing the AbFB anomaly from 2.6 to 2.8. Conversely, (∆3)e reduces the bottom anomaly
to 2.3 but increases the discrepancy in Ae up to 2.3. This multiplet is another example where we
improve the prediction for σhad, leaving the pull at 0.9. Finally, (∆1)µ, reduces the pull in R0

µ

from 1.4 to 0.1. From the fits, we can also extract limits on the values of the mixings U and s in
Tables 3.4 and 3.5, respectively. We give the 95% C.L. upper bounds on the absolute value of U
in Table 3.11. We stress again that these limits incorporate the information from the direct Higgs
searches.

In Figs 3.1 to 3.6 we show the 95% C.L. regions in the |U | −MH parameter space. In these
plots we display the contour of the 95% probability region of the fit without any restriction on
MH , and the 95% confidence region when we include the direct MH limits (the solid region). The
effect of these limits has a dramatic impact reducing the allowed regions. This is not only because
of the LEP 2 lower bound but also because in almost all cases the contours are bounded below



3.3 The global fit for extra leptons 73

Coupling N E ∆1 ∆3 Σ0 Σ1

Only with e |U | < 0.051 0.020 0.020 0.028 0.020 0.016

|Umin| = 0.023 0 0 0.019 0.012 0

Only with µ |U | < 0.031 0.029 0.048 0.028 0.018 0.024

|Umin| = 0.012 0.014 0.033 0 0 0.005

Only with τ |U | < 0.087 0.033 0.035 0.045 0.030 0.029

|Umin| = 0.056 0 0 0.027 0.016 0

Universal |U | < 0.028 0.019 0.020 0.025 0.017 0.013

|Umin| = 0.013 0 0 0.014 0.010 0

Table 3.11: Upper limit at 95 % C.L. on the absolute value of the mixings in Table 3.5 and their
value at the minimum. The first three rows are obtained by coupling each new lepton with only one
SM family. The last one corresponds to the case of lepton universality. All numbers are computed
including the MH constraints from Higgs direct searches at LEP 2 and Tevatron.

MH = 200 GeV and then only the small window allowed by LEP 2 and Tevatron survives in the
region obtained from all data.

As it is apparent in the plots, in some cases there is a correlation between the mixing and MH .
In particular, we can see in Fig. 3.1 a strong positive correlation for the singlet N , as long as it
mixes with the first family of SM leptons. As a result, the preferred Higgs mass is larger than in
the SM6. This is in fact responsible for part of the (small) improvement in the χ2 in this case. We
analyze the interplay between the Higgs mass and the mixing of neutrino singlets in more detail
in next section. In Table 3.12 we give the 95% C.L. upper limits that we find in the different
scenarios. These limits take into account the bounds from direct searches. The limits with some
of the extra singlets are significantly weaker than in the SM, MH ≤ 228 GeV at 95% C.L. for Ne.

3.3.2 Large neutrino mixing and the Higgs mass

From Table 3.11, we see that the less constrained extra leptons are the neutrino singlets. These
fields can play the role of see-saw messengers, although as we have mentioned their contribution
to α5 must be suppressed or cancelled by another contribution. In this section we analize this case
in detail, emphasizing the role of the Higgs boson.

The mixing of new leptons with the light neutrinos modifies the invisible width of the Z, Γinv.
This shifts the prediction for σhad in the opposite direction, since

σhad = 12π
ΓeΓhad

M2
ZΓ

2
Z

, (3.13)

and ΓZ = Γl+Γhad+Γinv (with the leptonic width Γl = 3Γe in the universal case). For the singlets
N , the invisible width is smaller and the shift in σhad is positive, so the pull in this quantity is

6This effect has been discussed before by Loinaz et al. in [84]. In that reference, a much heavier Higgs is allowed
because the constraint from MW is not enforced (or it is compensated by unknown new physics). We discuss the
differences between our analysis and the one in [84] below.
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Couplings N E ∆1 ∆3 Σ0 Σ1

Only with e MH [GeV] < 228 150 151 148 151 149

Only with µ MH [GeV] < 155 154 151 150 149 149

Only with τ MH [GeV] < 149 150 150 149 150 150

Universal MH [GeV] < 187 152 152 149 150 149

Table 3.12: Upper limit at 95 % C.L. on the Higgs mass (in GeV). The first three rows are
obtained by coupling each new lepton with only one SM family. The last one correspond to the
case of lepton universality. All numbers are computed taking into account the MH constraints
from Higgs direct searches at LEP 2 and Tevatron.

reduced. These are the only effects on Z-pole observables when the new singlet mixes only with
the third family. On the other hand, the independence of these couplings for different families is
limited in the fit by the decays of the W±, which do not allow for big departures from universality
in the neutrino couplings. For this reason, the pull decreases only from 1.7 in the SM to 0.8.

A more interesting feature appears as the result of the coupling of N to the first two families.

These couplings generate the operators (O(3)
φl )11,22, which contribute to muon decay and affect the

extraction of the Fermi constant GF from the muon lifetime. As argued in Chapter 2, because
GF is an input parameter, this effect propagates to all observables, giving indirect corrections that
mimic the ones of the Peskin and Takeuchi oblique parameter T [62]. In particular, as follows from
the discussion presented there we can define

αTeff = −Re
[(

α
(3)
φl

)

11
+
(

α
(3)
φl

)

22

] v2

Λ2
, (3.14)

which applies to all NC observables. The parameter Teff is directly related to ∆r, as explained in
Chapter 2. As the dominant effects of the Higgs boson are oblique as well, some cancellations can
take place. Indeed, the corrections to the oblique parameter T including the leading contribution
of the Higgs mass7, Eq. (2.125), and the shift in GF , are given by

T = − 3

8πc2
log

MH

MZ
+ Teff . (3.15)

Hence, we see that the effect on T of a heavy Higgs mass can be compensated by a positive value of
Teff . In fact, as we observed in Fig. 2.1 a heavy Higgs can be made consistent with EWPD by new
oblique physics that gives a positive T parameter, even if the positive contributions of the Higgs
to S are not cancelled by an additional negative ∆S. For the neutrino singlets, the sign of Teff
is actually positive. This, combined with the improvement in the hadronic width, explains that
the fit allows relatively large values of MH , as can be seen in Table 3.12. In Fig. 3.1 we observe
clearly how a non-vanishing mixing of new singlets with electron neutrinos allows for larger values
of MH , thus eliminating the (mild) tension between the global electroweak fit and the direct LEP
lower bound on MH . In particular, if we remove Higgs direct searches from the fit, which forces
MH to ∼ 116 GeV, we find that for Ne the preferred value for the Higgs mass is 118 GeV, above

7We take MZ as the reference mass from which we define T .
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Figure 3.1: 95% confidence region in the
∣

∣UeNL
∣

∣−MH parameter space for the N singlet coupled to
the first, second and third family (blue, green and orange solid regions, respectively). The last plot
corresponds to the universal case (gray solid region). In all cases the corresponding 95% confidence
region excluding Higgs direct searches from the fit is delimited by the solid line.

the direct limit and compatible with the event excess observed by LEP 2 and Tevatron. From
Eq. (3.14) one would expect the same for mixing with muon neutrinos but these are stringently
constrained by the good agreement of data with unitarity of the first row of the CKM matrix.
This explains the different limits compared to the case of mixing with electron flavor, for which
the CKM constraints are much weaker. We must emphasize that Eqs. (3.14) and (3.15) do not
extend to all observables and, in particular, to MW . Indeed, unlike the shift in GF , a genuine T
parameter from new oblique physics would give additional direct contributions to MW (for fixed
MZ). These are not included in our Teff , and in general cannot be generated by any kind of new
leptons at tree level. A heavy Higgs gives the complete T -like contributions (in addition to S-like
and suppressed U -like contributions). Therefore, singlet mixing can only cancel a part of the T -like
Higgs effects. This prevents the Higgs from being too heavy, and the lepton mixings from being
too large.

Let us also note that the net contribution of the new singlets to neutrino–nucleon deep inelastic
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Figure 3.2: 95% confidence region in the
∣

∣UEνL
∣

∣−MH parameter space for the E singlet coupled to
the first, second and third family (blue, green and orange solid regions, respectively). The last plot
corresponds to the universal case (gray solid region). In all cases the corresponding 95% confidence
region excluding Higgs direct searches from the fit is delimited by the solid line.

scattering is suppressed, due to an approximate cancellation between their indirect and direct effecs.
Therefore, the dominant effect is the oblique Higgs boson contribution, which is negative whenMH

is increased with respect to the reference value8. This would explain the NuTeV discrepancy if the
Higgs were allowed to be very heavy. But as we have discussed above, MW prefers a light Higgs,
and in the best fit to all observables there is no improvement in g2L.

Our conclusions are not at odds with the one of Loinaz et al. in [84]9. They claim that mixing
of light and heavy neutrinos can account for the NuTeV discrepancy and, together with a heavy

8Alternatively, the Z-pole observables impose an approximate cancellation between the MH and Teff contribu-
tions. This leaves the negative direct contribution of the new singlets.

9As a technical point, let us mention that our formulas for g2L and g2R in neutrino deep inelastic scattering differ
from the ones in this reference, because we include the heavy-lepton contributions to the determination of Vud from β
decay, just as we did for GF and muon decay. These contributions reverse the sign of the singlet contributions to gL,
which then play against the improvement of the NuTeV anomaly. However, in both cases the singlet contributions
are subleading with respect to the Higgs ones and do not alter the qualitative conclusions.



3.3 The global fit for extra leptons 77

∆1-e

50 100 200
MH [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

|U
R

e 
N

|

∆1-µ

50 100 200
MH [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

|U
R

µ 
N

|
∆1-τ

50 100 200
MH [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

|U
R

τ 
N

|

∆1 Universal

50 100 200
MH [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08
|U

R
e 

N
|

Figure 3.3: 95% confidence region in the
∣

∣UeNR
∣

∣−MH parameter space for the ∆1 doublet coupled
to the first, second and third family (blue, green and orange solid regions, respectively). The
last plot corresponds to the universal case (gray solid region). In all cases the corresponding 95%
confidence region excluding Higgs direct searches from the fit is delimited by the solid line.

Higgs, give an excelent fit as long asMW is not included in the fit or additional new physics supplies
a big U parameter. We have preferred, instead, to include MW in our fits, as this observable is
well measured nowadays. Moreover, dimensional and symmetry arguments suggest that, in the
absence of fine tuning, U is smaller than T for any new physics coming in at a scale larger than
MW [62, 122]. This is indeed found in known calculable models. So, it seems difficult that any
new physics can yield the values U ≫ T required in the fit of [84]10. When MW is included in the
global fit and no ad hoc U parameter is introduced to eliminate its influence, the results are not
that spectacular. We find that the Higgs cannot be very heavy and that the NuTeV discrepancy is
not explained. Nevertheless, as we have discussed, there is an improvement in σhad (through the
invisible width) and a Higgs heavier than in the SM is allowed.

Finally, let us comment that in general the SM can “adapt” to relatively large values ofMH by

10We do not claim that this possibility is logically excluded. The authors of [84] propose the possibility that
threshold effects in a strongly coupled sector might give rise to the necessary enhancement of U .
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Figure 3.4: 95% confidence region in the
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∣
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∣

∣ − MH parameter space for the ∆3 doublet

coupled to the first, second and third family (blue, green and orange solid regions, respectively).
The last plot corresponds to the universal case (gray solid region). In all cases the corresponding
95% confidence region excluding Higgs direct searches from the fit is delimited by the solid line.

lowering and increasing a bit the values of ∆α
(5)
had and mt, respectively. This is not necessary with

extra neutrino singlets coupled to the first family. In this regard, let us note that gµ − 2 prefers

higher values of ∆α
(5)
had, so that including it in the fits would favour the extension with singlets

with respect to the SM [123].

3.4 Conclusions

In this chapter we have provided the dimension-six effective Lagrangian derived from the integration
of any vector-like fermion that can give an observable effect at tree-level. This has been used to
perform a global fit to existing EWPD for extensions of the SM with new vector-like leptons. The
smallness of the mixings we find justifies the validity of the approximation. Our main results are
displayed in Tables 3.11 and 3.12, and illustrated in the different plots. In the cases that had been
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Figure 3.5: 95% confidence region in the
∣

∣UeNL
∣

∣−MH parameter space for the Σ0 triplet coupled to
the first, second and third family (blue, green and orange solid regions, respectively). The last plot
corresponds to the universal case (gray solid region). In all cases the corresponding 95% confidence
region excluding Higgs direct searches from the fit is delimited by the solid line.

analyzed before [98, 99, 100], we find more stringent limits (at the few per cent level). This reflects
the better agreement of the SM predictions with the present data.

In Table 3.10, we give the improvements in the χ2 of the global fit when the SM is supplemented
by new leptons. The addition of more than one type of extra lepton multiplet at a time does not
improve the quality of the fit. The χ2/d.o.f. is (slightly) reduced with respect to the one in the
SM for (∆1)µ only. Even if we do not find any significant improvement of the SM global fit, it is
interesting to observe that TeV-scale vector-like leptons with sizable mixings are consistent with
EWPD. An interesting feature of the fits is that the presence of extra singlets mixing with the
electron neutrino favours higher value of the Higgs mass, which lies in the region allowed by direct
searches of the Higgs at LEP. This accounts for part of the mild improvement in the χ2 in this case,
and implies significantly weaker upper bounds on the Higgs mass. In such case, MH < 228GeV
(95% C.L.), with the best-fit value MH = 118GeV in the region favoured by Higgs direct searches.
Conversely, such extra lepton singlets would be favoured with respect to the SM if the Higgs were
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Figure 3.6: 95% confidence region in the
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∣UEνL
∣

∣−MH parameter space for the Σ1 triplet coupled to
the first, second and third family (blue, green and orange solid regions, respectively). The last plot
corresponds to the universal case (gray solid region). In all cases the corresponding 95% confidence
region excluding Higgs direct searches from the fit is delimited by the solid line.

eventually found to be heavy. We have also seen that an explanation of the NuTeV discrepancy
by the mixing of the SM neutrinos with extra neutrinos is precluded, in the absence of additional
new physics, by the constraints imposed by other electroweak observables.

In Table 3.11, we collect the 95% C.L. bounds and the corresponding best values for the mixings
between the different possible heavy vector-like leptons and the SM fermions. The mixing with
the SM leptons can be as large as |U τNL | ∼ 0.087 at 95 % C.L. for heavy neutrino singlets mixing
only with the third family. Other mixings are bounded to be less than ∼ 0.05 at 95 % C.L.. They
are independent of the Dirac or Majorana character of the new leptons.

These limits have consequences for heavy lepton production and decay at large colliders. At
LHC, they are in general more efficiently produced in pairs [112], except for heavy neutrino singlets,
which have to be single produced in association with SM leptons through their mixing, as they
have no other SM interactions. In this case the new limits |UeNL | < 0.051 and |UµNL | < 0.031 (at

95% C.L.) are better than those found previously, |UeNL | < 0.074 and |UµNL | < 0.098 (at 90% C.L.)
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[100]. Therefore, the small parameter space accessible to the LHC [111] is further reduced. For
instance, heavy Majorana neutrino singlets coupling only to muons may be difficult to observe at
LHC even for masses below 200 GeV. This limit can be much higher, however, in the presence
of other interactions, up to 2 TeV for new right-handed gauge bosons of a similar mass and with
a standard gauge coupling strength [124] (see for a review [4, 7, 125]). Dirac neutrino singlets
are expected to be beyond the LHC reach. All other lepton additions can be pair produced, and
then their discovery limit does not depend on the mixings, which only enter in the decay rates
and are still large enough to allow the heavy leptons decay inside the detector. Hence, their
rough discovery limit is near the TeV scale [112]. On the other hand, at e+ e− colliders the main
production mechanism is through mixing with the first family. For instance, a neutrino singlet
mixing with the electron neutrino with |UeNL | > 0.01 is allowed by our bounds and would be
observed at ILC for masses MN < 400GeV, and at CLIC for MN < 2TeV [113]. On the other
hand, these stringent limits also makes more difficult the observation of possible deviations from
unitarity in neutrino oscillations [126].

Vector-like leptons at the TeV scale appear naturally in many models, for example those with
extra dimensions or larger gauge symmetries at low energy. As already emphasized, the new
singlets and triplets of zero hypercharge can be Majorana and act as see-saw messengers of type I
and III, respectively. If these fields exist with large mixings and relatively light masses, their
contributions to neutrino masses and neutrinoless double β decay must be in general suppressed
by extra, almost exact symmetries, typically lepton number [2, 107]. Thus, in general new leptons
at the TeV scale and with relatively large mixings with the SM fermions must be (quasi)Dirac.
If they are Majorana, the model must include a very efficient cancellation mechanism with an
extended field content highly tuned [106].

The theory must also incorporate a rather precise alignment of the SM charged leptons and
the new mass eigenstate leptons: each heavy lepton must mix mostly with only one light charged
lepton to fulfill the limits on FCNC [101, 102, 103, 104]. The corresponding limits are a factor 3
to 60 times more stringent than the flavor conserving ones, derived here. This justifies neglecting
FCNC effects in our analysis, but also implies a strong constraint on definite models.

Finally, it is interesting to study how our conclusions would change in the presence of other
new particles, which are actually present in many of the models mentioned above. They may
contribute constructively in many cases. We have checked, for instance, that the new leptons can
further improve the global fit of the extra-quark solution to the AbFB anomaly proposed in [93]. The
effective formalism we used here is particularly convenient to perform fits involving many different
kinds of new particles [127].
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Chapter 4

New interactions: Extra spin-1
particles

New vector bosons are also a common occurrence in theories beyond the SM. They appear
whenever the gauge group of the SM is extended, as the gauge bosons of the extra (broken)
symmetries. Thus, they are inherent to GUT [86], including string constructions, or Little Higgs
models [88]. As in the case of fermions, they also occur in theories in extra dimensions [89],
when the gauge bosons propagate through the bulk [128]. Strongly-interacting theories, such
as technicolor [129], often give rise to spin-1 resonances. This can be related to the previous
possibilities via hidden gauge symmetry [130] or holography [131, 132].

It is possible to classify vector bosons according to their electric charge: neutral vector bosons,
called Z ′, charge ±1 vector bosons, called W ′ and vectors with other integer or fractional charges.
On the other hand, the complete theory including the new vectors must be invariant under the
full SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge group. This imposes additional restrictions on the allowed
couplings to the SM fields, and also implies that certain vectors must appear simultaneously and
have similar masses. In order to make use of this information in a model-independent approach, we
classify in this work the new vectors into irreducible representations of the full SM gauge group,
and we impose the corresponding gauge invariance on the Lagrangian. We further restrict the
possible couplings by the phenomenological requirement that the effects of the new vectors should
be visible at available energies.

As a straightforward example of the implications of the complete SM gauge invariance, as
opposed to simple conservation of electric charge, consider the case of a sequential Z ′ boson, with
couplings proportional to the ones of the SM Z boson. Such a neutral vector boson is often
included in electroweak fits and direct searches. In fact, this vector has different couplings to
the two components of the SU(2)L doublets, and it cannot be a singlet under the SM group.
Nevertheless, it can arise after EWSB as a mixture of a singlet vector and the third component of
a vector in the adjoint of SU(2)L. This is the case of models with a replica of the SM gauge group,
or in extra dimensions. Thus, gauge invariance implies that the sequential Z ′ boson necessarily
comes together with two charged vectors and another neutral vector, the γ′. All these new fields
have similar masses, with splittings of the order of the Higgs vev. Similarly, the results in this
chapter imply that a new charged vector boson with sizable couplings to both leptons and quarks
must be accompanied by at least one neutral vector, with mass of the same order.

The extra vector bosons that have been most extensively studied are neutral singlets, usually
associated to an extra abelian gauge symmetry (see, for instance, the review [133]). Here we

83
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give general model-independent1 limits on these Z ′s. We go far beyond this particular case, and
study all the representations that could in principle give observable effects. We study the case of
universal couplings to all families of quarks and leptons, and also cases with nonuniversal couplings.
Furthermore, we consider a few examples with more than one type of vectors, which is the actual
situation in most explicit models. We will show that the cooperation of several extra vectors allows,
in some cases, to extend the allowed regions in parameter space.

In order to analyze the implications of the new vectors at energies below their mass, we first
integrate them out and obtain the corresponding effective theory, including only operators of
dimension six. This is useful to isolate the important effects, and also to exhibit more clearly which
combinations of parameters are constrained by the data. The accuracy of this approximation is
high for masses around the TeV. The effective Lagrangian is also helpful to study the interplay of
the extra vector bosons with other new particles of different spin, but we will not perform that
sort of analysis here.

It is well known that Z ′ bosons contribute with a positive sign to the ρ parameter (or, equiva-
lently, to the Peskin-Takeuchi T parameter), and can be used to improve considerably the SM fit
when the Higgs boson is heavy. We will see that the same rôle can be played by a hypercharged
triplet. We analyze this effect quantitatively and show that, in extensions with these two kinds of
vector bosons, a Higgs heavier than ∼ 300 GeV is allowed by EWPD. On the other hand, it turns
out that charged singlets give a negative contribution to ρ. This opens the door to cancellations
of the different contributions to this parameter.

We classify in the next section the different types of extra vector bosons, and write their interac-
tions with SM fields. In Section 4.2, we integrate the new vectors out, and obtain the coefficients of
the dimension-six gauge-invariant operators in the effective Lagrangian. In Section 4.3 we perform
fits to EWPD and find the limits on each type of vector boson. In Section 4.4 we discuss the effect
on EWPD of including several types of extra vectors simultaneously. We give some phenomenolog-
ically interesting examples with nonuniversal couplings, including vector-boson explanations of the
observed forward-backward asymmetry of the b quark. Section 4.5 is devoted to an analysis of the
implications for the Higgs mass. Finally, we present our conclusions in Section 4.6. For the sake of
clarity, given the large number of tables gathering the results of the integration of the extra vec-
tors, we collect them at the end of the chapter in order to avoid disrupting the flow of the discussion.

4.1 General extra vector bosons

We want to study general vector bosons beyond the ones in the SM, with the only restrictions that
they be heavier than LEP 2 energies, have perturbative couplings, and be potentially observable
by their indirect effects on precision data or as resonances in colliders. The leading effects in
EWPD arise from tree-level exchanges of just one heavy vector boson contributing to processes
with four fermions in the external legs. This requires interactions that couple SM operators to the
extra vector fields and are linear in the latter. Clearly, the interactions should be renormalizable
to avoid further suppressions. From the point of view of the low-energy effective theory to be
discussed below, these couplings produce dimension-six operators, while interactions with more
than one new vector field in the same operator—and nonrenormalizable interactions—give rise to
operators of higher scaling dimension. Moreover, vectors with linear interactions can be singly
produced, and have the best chances of being observed at colliders.

The requirement of linear renormalizable couplings, together with Lorentz symmetry and invari-
ance under the full SM gauge group, constrain the possible quantum numbers of the new vectors.

1We also give limits on some popular models to illustrate how the analyses of particular models fit in our general
framework.



4.1 General extra vector bosons 85

Vector Bµ B1
µ Wµ W1

µ Gµ G1
µ Hµ Lµ

Irrep (1, 1)0 (1, 1)1 (1,Adj)0 (1,Adj)1 (Adj, 1)0 (Adj, 1)1 (Adj,Adj)0 (1, 2)− 3
2

Vector U2
µ U5

µ Q1
µ Q5

µ Xµ Y1
µ Y5

µ

Irrep (3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)− 5
6

(3,Adj) 2
3

(6̄, 2) 1
6

(6̄, 2)− 5
6

Table 4.1: Vector bosons contributing to the dimension-six effective Lagrangian.

In Table 4.1, we give the quantum numbers for the 15 irreducible representations of vector fields
that can have linear and renormalizable interactions. This table also introduces our notation for
each class of vector boson, which is partly inspired by the usual notation for SM fields. Note that
the representations with nonvanishing hypercharge are complex.

For our purposes, it is not important whether the new vector bosons are the gauge bosons of
a broken extended gauge group or not. Nevertheless, it is interesting to note that all the types of
vector bosons in Table 4.1 can in principle be obtained as the gauge bosons of an extended gauge
group broken down to the SM. We give explicit examples of the corresponding symmetry breaking
patterns in Table 4.2. Models with bigger gauge groups usually incorporate new fermions, which
in particular are necessary to cancel anomalies. Here, we will assume that these exotic fermions, if
they exist at all, do not contribute to EWPD. At any rate, in our general low-energy formulation,
we only impose the SM gauge invariance, and the absence of anomalies does not impose any
restriction on the couplings of the new vectors to the SM fermions. As indicated in Table 4.2,
some of these vector bosons—an infinite number of each type, actually—also appear in extra-
dimensional theories when the gauge bosons of the corresponding SM group factor propagate in
the bulk. In fact, the pattern of symmetry breaking in these cases is essentially a generalization of
the one shown in the table, as can be best understood by dimensional deconstruction [135]. Other
kinds of vectors can also appear in this context as well, when the higher-dimensional gauge group
is bigger. We should also point out that the representations U2,5, Q1,5 and X correspond to the
vector leptoquarks classified by Buchmüller, Rückl and Wyler in [136].

Once the field content of the theory has been established, we proceed to construct the most
general renormalizable theory invariant under SU(3)c⊗SU(2)L⊗U(1)Y . The Lagrangian has the
form

L = LSM + LV + LV−SM + nonlinear, (4.1)

where LSM is the SM Lagrangian, LV contains the quadratic terms for the heavy vector bosons
(with kinetic terms covariantized with respect to the SM group) and LV−SM contains the possible
interaction or kinetic terms formed as products of SM fields and a single vector field. Mass mixing
terms of SM and new vectors are forbidden by gauge invariance2. “Nonlinear” in Eq. (4.1) refers
to interaction terms that are nonlinear in the heavy vector fields. As we have argued above, those
terms can be safely neglected.

Before writing the different pieces in Eq. (4.1), let us introduce some notation. The gauge
bosons of the SM are generically called A, i.e A = B,W,G. The new vectors are represented by
the specific symbols in Table 4.1 or generically by V . The calligraphic letter A denotes any of
the three extra vectors in the same representation as the SM gauge bosons, namely B, W and G.
Covariant derivatives are always covariant with respect to the SM gauge group, and are defined

2There are, nevertheless, interactions with the Higgs doublet that give rise to mass mixing of the Z and W bosons
with the new vectors when the electroweak symmetry is broken. This effect is in fact crucial for Z-pole observables.
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Vector Model

Bµ U(1)′, Extra Dimensions

B1
µ SU(2)R ⊗ U(1)X → U(1)Y

Wµ SU(2)1 ⊗ SU(2)2 → SU(2)D ≡ SU(2)L, Extra Dimensions

W1
µ SU(4) → U(1)⊗ (SU(3) → SU(2))

Gµ SU(3)1 ⊗ SU(3)2 → SU(3)D ≡ SU(3)c, Extra Dimensions

G1
µ SO(12) → (SO(8) → SU(3))⊗ (SU(2)⊗ SU(2) → SU(2)D → U(1)Y )

Hµ SU(6) → SU(3)⊗ SU(2)

Lµ G2 → SU(2)⊗ (SU(2) → U(1)Y )

U2
µ, U5

µ SU(4) → SU(3)⊗ U(1)

Q1
µ, Q5

µ SU(5) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Xµ SU(6) → U(1)⊗ SU(3)⊗ (SU(3) → SU(2))

Y1
µ, Y5

µ F4 → SU(3)⊗ (SU(3) → SU(2)⊗ U(1))

Table 4.2: Examples of symmetry breaking patterns giving rise to each type of vectors bosons
in Table 4.1 [134]. Generating the right Weinberg angle and accommodating the matter fields
requires, in some cases, an extension of the gauge groups in this table and a more involved pattern
of symmetry breaking.

as in Eq. (1.1). We use matrix notation to write the singlet product of two objects in a given
representation and its complex conjugate: in the product A†B, A† and B are row and column
vectors, respectively, made out of the components of A† and B in some orthonormal basis of
the vector space for their representation. Finally, [.]R denotes a projection into the irreducible
representation R. When we give the currents coupled to each of the vector bosons we shall be
more explicit and use color and isospin indices.

The SM part of the Lagrangian can be read from Eq. (1.7). We have assumed a minimal Higgs
sector, as we are not considering extra scalars here3.

The quadratic terms for the new vector bosons are given by4

LV = −
∑

V

ηV

(

1

2
DµV

†
ν D

µV ν − 1

2
DµV

†
νD

νV µ +
1

2
M2
V V

†
µV

µ

)

, (4.2)

The sum is over all new vectors V , which can be classified into the different irreducible represen-
tations of Table 4.1. We set ηV = 1 (2) when V is in a real (complex) representation, in order
to use the usual normalization. Even though the kinetic terms of the extra vectors incorporate
SM covariant derivatives to keep manifest gauge invariance, the corresponding interactions among
SM gauge bosons and two new vectors could be moved to the “nonlinear” terms of Eq. (4.1). On

3Only the vev of the scalar is relevant for the new couplings that enter precision tests. Therefore, all our equations
but Eq. (1.7) are valid for a completely general symmetry breaking sector. However, we have used the assumption
of a single elementary scalar doublet in the SM loop corrections that enter our fits.

4Note that the most general kinetic term isDµV
†
νD

µV ν+βDµV
†
νD

νV µ, with β an arbitrary parameter. However,
in this chapter we restrict ourselves to spin-1 degrees of freedom. Then we must take β = −1, for otherwise ∂µV µ

would propagate as an independent scalar field.
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the other hand, we have written explicit mass terms for the new vectors. The masses can arise,
in particular, from vacuum expectation values of extra scalar fields, but this is not necessary. In
writing Eq. (4.2), we have chosen a basis with diagonal, canonically normalized kinetic terms and
diagonal masses. Mass terms often appear in nondiagonal form in explicit models. In these cases,
it is necessary to diagonalize them before using our formulas. Finally, the couplings of the new
vectors to the SM are given by

LV−SM = −
∑

V

ηV
2

(

V µ†JVµ + h.c.
)

. (4.3)

The vector currents JVµ have the form

JVµ =
∑

k

gkV j
V k
µ , (4.4)

where gkV is a coupling constant and jV kµ is a vector operator of scaling dimension 3 in the same
representation as V . Actually, the different currents that can be built with the SM fields determine
the possible representations of the extra vectors. We can distinguish three kinds of SM currents:

• With two fermions . Schematically, jV ψ1ψ2
µ = [ψ1 ⊗ γµψ2]RV , with ψ1, ψ2 (different in prin-

ciple) fermion multiplets, RV the representation of V and ⊗ a product of representations.

• With two scalars and a covariant derivative: jV φµ = [Φ† ⊗Dµφ]RV , where Φ denotes either

φ or φ̃.

• With a gauge boson and two covariant derivatives : jAµ = DνAνµ.

The couplings to currents of the third type induce a kinetic mixing of the SM gauge bosons A with
the heavy vectors A [137]. It turns out that the corresponding terms in LV−SM are redundant. In
the case of only one extra vector multiplet, they can be eliminated by the field redefinition

Aµ → Aµ + gAAAµ,

Aµ →
(

1 + gA 2
A
)− 1

2 Aµ.
(4.5)

This redefines the mass MA and currents JA in the following way:

MA →
(

1 + gA 2
A
)− 1

2 MA,

JA
µ →

(

1 + gA 2
A
)− 1

2
(

JA
µ + gAAJ

A
µ

)

.
(4.6)

In addition, new “nonlinear” terms are generated. In the following we shall work in the basis
without kinetic A-A mixing (hence, with redefined couplings). This is a consistent choice that
simplifies a lot many of the expressions below. At any rate, when kinetic mixing with just one
extra vector is found in any particular model, it is possible to use our formulas as they stand, and
simply perform the substitution in Eq. (4.6) (or Eq. (4.16) in Section 4.7) at the end.

The explicit expression of all the possible currents are given in the tables at the end of the
chapter.



88 Chapter 4 New interactions: Extra spin-1 particles

4.2 Effective description of new vector bosons

The theory in Eq. (4.1) belongs to a decoupling scenario, in which the conditions for the Appelquist-
Carazone theorem are satisfied [48], so we can use the effective Lagrangian expansion in Eq. (1.23).
In this section, we integrate out the new heavy vectors in Table 4.1 and obtain an effective La-
grangian at leading order, which can be used at energies smaller than the masses of the extra
vectors. Starting with the theory Eq. (4.1), we will write the result in the operator basis intro-
duced in Chapter 1, and obtain the contribution to the coefficients of each operator from the new
vector bosons. These coefficients will depend on the masses MV and the couplings gkV .

At the classical level, the integration can be carried out by computing the tree-level Feyn-
man diagrams in Fig. 4.1 and matching to the corresponding amplitudes in the effective theory.
Equivalently, we can solve the classical equations of motion for the heavy vectors and substitute

f

f

V µ

f ′

f ′

(a)

W a
µ , Bµ

Φ†

φ

V µ

Φ†

φ

W a
µ , Bµ

(b)

f

f

V µ

Φ†

φ

W a
µ , Bµ

(c)

Figure 4.1: Feynman diagrams relevant for the dimension-six effective Lagrangian.

the solutions into the Lagrangian. Proceeding in this algebraic manner, we readily find from
LV + LV−SM the on-shell vector fields

Vµ =
1

p2 −M2
V

[

pµpν
M2
V

− ηµν

]

(

JV ν +O(V ν)
)

. (4.7)

The O(Vµ) terms arise from the “nonlinear” terms in LV−SM. The next step is to expand this
equation in powers of p2/M2

V and solve for Vµ. At the leading order we simply have

Vµ =
1

M2
V

JVµ +O

(

1

M4
V

)

, (4.8)

where the order 1/M4
V terms follow from both the O(Vµ) terms in (4.7) and the higher-order terms

in the inverse propagator expansion. Then, we substitute Eq. (4.8) into the Lagrangian L and find

Leff = LSM − ηV
2M2

V

(JVµ )†JV µ +O

(

1

M4
V

)

(4.9)
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The terms of order 1/M4
V contribute to operators of dimension eight and higher, and will be

neglected in the following. In particular, we see that, as promised, the “nonlinear” terms in LV−SM

do not contribute to the effective Lagrangian up to dimension six, and can be ignored. The result
Eq. (4.9) includes a few operators that are not in the basis introduced in Table 1.1. In order to
compare with previous work, it is convenient to express the result in our basis, performing some
Fierz reorderings and field redefinitions (equivalent to the use of the SM EOM on the dimension-six
operators). The final result can then be written as

LV6 = − ηV
2M2

V

(JVµ )†JV µ =
∑

i

αi
M2
V

Oi, (4.10)

where Oi are the operators collected in Table 1.1, and αi their dimensionless numerical coefficients.
It is clear from the general expression Eq. (4.9), and also from the Feynman diagrams in Fig. 4.1,
that the terms in the effective Lagrangian can be of three basic forms:

1. Four fermions :
g
ψ1ψ2
V

g
ψ3ψ4
V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV .

2. Oblique:
gφ
V
gφ
V

M2
V

[Φ† ⊗Dµφ]RV [D
µφ† ⊗ Φ]RV .

3. Scalars, vectors and fermions :
gφ
V
g
ψ1ψ2
V

M2
V

[Φ† ⊗Dµφ]RV [ψ1 ⊗ γµψ2]RV .

In addition there are operators that arise from the field redefinitions, which just redefine the fermion
masses and Yukawa interactions, and the Higgs potential. The four-fermion terms are relevant for
LEP 2 and low-energy observables. Upon EWSB, the oblique terms modify the gauge boson
propagators5 and those of the third type change the fermion-gauge trilinear couplings. Hence, the
last two kinds of operators contribute mainly to observables at the Z pole (and the W mass, for
the oblique operators). On the other hand, note that the coefficients of all the operators are given
by the sum of the contributions of the different vector bosons, and the contribution of each vector
is the product of two of its couplings divided by its mass squared.

As already mentioned, the explicit result of the integration of the new vector bosons is given
in Tables 4.7 to 4.21 at the end of the chapter. There we collect the contributions of each kind of
extra vector boson to the coefficients αi of the dimension-six operators Oi.

4.3 Limits on new vector bosons

We can now use the effective Lagrangian to perform fits to EWPD, and extract limits on the
new vector bosons in Table 4.1. To start with, we assume that only one new vector gives sizable
contributions. We will see in Section 4.4 that such “one-at-a-time” analysis is often justified (but
not always).

The observables that enter the fits and the details of our fitting procedure are described in
Appendix A 6. In particular, LEP 2 cross sections and asymmetries are important to lift some
flat directions that would remain in the fits to the other observables. In Table 4.3, we summarize

5The only observable oblique operator in our approximation is O(3)
φ

. Removing the kinetic mixing between SM

and new vectors, as discussed in the previous section, prevents the operator OWB , related to the Peskin-Takeuchi S
parameter [62], from being generated at tree level. The same formulas would follow had we left the kinetic mixing
terms and performed a perturbative field redefinition in the effective Lagrangian to eliminate OWB .

6In general, in the fits in this chapter we keep MH , mt and αs(M2
Z ) as floating parameters, while for simplicity

MZ and ∆α
(5)
had(M

2
Z ) are kept fixed at their SM best-fit values.
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Vector Z pole MW CKM ν-N DIS NC APV PV in LEP 2
e+e− → f̄ f νe→ νe e−e− → e−e− e+e− → f̄ f

Bµ X X X X X X X X

Wµ X X X X X X X X

Gµ
Hµ

B1
µ X X X X X X X X

W1
µ X X X X X X X

G1
µ

Lµ X X

U2
µ X X X X

U5
µ X X

Q1
µ X X X

Q5
µ X X X

Xµ X X X X

Y1
µ

Y5
µ

Table 4.3: Experimental data constraining (directly or indirectly) the couplings of the vector
bosons.

which sets of data can constrain each kind of vector boson. We see that five types of vectors, G,
H, G1, Y1 and Y5, are invisible to all the precision observables, as they couple to quarks only.
These vectors could in principle be produced at hadron colliders, and the non-observation of the
corresponding resonances at Tevatron places limits on their masses. In the following we focus on
EWPD, so we restrict our attention to the cases that can modify these data.

All parameters are assumed to be real, as is the case in known models. On the other hand, for
general coupling matrices, FCNC are induced (except for W1, which does not couple to fermions).
These give, generally, bounds much stronger than the ones derived from EWPD. Avoiding these
bounds requires fine tuning, or some mechanism that imposes a certain structure on the coupling
matrices.

The hypothesis of diagonal and universal couplings is sufficient to avoid all FCNC for the vector
fields that connect each fermion multiplet with its adjoint, i.e. B and W . For the other types of
vectors with couplings to fermions, universality does not guarantee the absence of FCNC. Another
possibility is that the new vectors couple to just one family of fermions, in the fermion basis with
maximally diagonal Yukawas (before electroweak breaking). In this case, there are still FCNC
if the vector leptoquarks couple to LH quarks (in the up sector, for our choice of qL basis), but
they are suppressed by CKM off-diagonal entries. In particular, the FCNC are under control if
the vectors couple to the third family of quarks only, as in the examples of Section 4.4.1. This
particular structure of couplings is fine-tuned, since it breaks the U(3)5 flavor symmetry of the
SM, which allowed us to choose freely the fermion basis. Nevertheless, it can be explained by some
mechanism in the complete theory. For instance, warped extra dimensions with bulk fermions
incorporate a GIM-like mechanism in a natural manner [138].

In the fits of this section, we assume diagonal, universal couplings for B, W and B1. For
the representations in which this flavor structure would generate dangerous FCNC, we assume
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couplings to just one family, as explained above, and explore all possibilities. The basic results are
given in Table 4.4. The fits depend on the quadratic products of the different ratios GkV ≡ gkV /MV .
Therefore, relative signs among the different couplings are relevant, but the results are invariant
under a global change of sign. The limits7 on the parameters in Table 4.4, unlike the best values,
do not depend on the signs of these ratios, as the other parameters are integrated. In the rest of
this section, we discuss these results and give additional details. Nonuniversal couplings for B, B1

and W are studied in Section 4.4.1.

4.3.1 Neutral singlet B
Extra neutral vector bosons, known as Z ′ bosons, have been extensively studied in the past
(see [133] for a review). In our gauge-invariant formalism, the only way neutral vectors can arise
alone, without charged partners, is from the SM vector singlets B. EWSB can then mix these
fields with the SM Z boson, with a mixing angle proportional to the coupling of the B to the
Higgs doublet. We reserve the name Z ′ to denote the corresponding heavy mass eigenstates. The
physical Z ′ mass and the Z-Z ′ mixing, sin θZZ′ , are related to the mass parameter MB and the
Higgs coupling gφB by

M2
Z′ ≈M2

B

[

1 + (gφB)
2 v

2

M2
B

]

and sin θZZ′ ≈ gφB
√

g2 + g′2

2

v2

M2
B
, (4.11)

where we are assuming MB ≫ gv, gφBv. These singlets appear in many extensions of the SM. They
are usually associated with an extra abelian factor in the gauge group, which is broken down at a
scale higher than electroweak (but hopefully small enough to allow for their eventual observation).
This is the case of GUT/string and Little Higgs models, when the rank of the gauge group is higher
than 4, and of theories with gauge fields in extra dimensions.

In our model-independent analysis, with the assumption of universality, the B scenario has six
new free parameters: the couplings to each matter multiplet divided by the mass of the B. The
result of the fit, displayed in Table 4.4, can be understood as follows. First, the W mass and
the Z-pole data constrain the Higgs coupling to be small. The direct Tevatron Higgs limits also
contribute in the same direction, as discussed in Section 4.5.

Second, the low-energy data and the measurements of cross sections and asymmetries at LEP 2
impose significant constraints on the leptonic couplings, mostly independent of the Higgs coupling.
This effect is apparent in Figs. 4.2 and 4.3, where for simplity we consider hadrophobic vectors.
We display several confidence regions for fits with and without LEP 2 data, in planes parametrized
by different couplings. In the left-hand plot of Fig. 4.2, we see that the regions with relatively large
couplings along the diagonals, with equal absolute value of LH and RH couplings, are allowed by
EWPD without LEP 2 data. In particular, this nonchiral combination avoids the constraints from
parity violation in Møller scattering. However, the right-hand plot in this figure shows that these
regions get excluded when the LEP 2 data are taken into account. In Fig. 4.3, we see how the
LEP 2 data help in constraining the lepton couplings, but not the couplings to the Higgs. As a
matter of fact, a small nonvanishing Higgs coupling is favored by LEP 2 data, as a modification of
trilinear couplings of the Z boson can soften a bit the effect of four-fermion operators. Anyway,
this effect is erased by Z-pole data.

Finally, for very small Higgs and lepton couplings, the fit is approximately flat along the
directions of the quark couplings, due to the fact that no electroweak observable depends on their
square. This implies the absence of limits on quark couplings in Table 4.4.

7Our 95% confidence limits are defined by requiring a change of 3.84 in χ2 with respect to the minimal value.
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Vector −∆χ2
min Parameter Best Fit Bounds C.L.

Vµ (χ2
min/d.o.f) GkV ≡ gkV /MV [TeV−1] [TeV−1]

Bµ 7.35 GφB −0.045 [−0.098, 0.098] 95%

(0.77) GlB 0.021 [−0.210, 0.210] 95%
GqB −0.89 - -
GeB 0.048 [−0.300, 0.300] 95%
GuB −2.6 - -
GdB −6.0 - -

Wµ 1.51 GφW 0.002 [−0.12, 0.12] 1 σ
(0.79) GlW 0.004 [−0.26, 0.26] 95%

GqW −9.6 - -

B1
µ 0.16 GφB1 6 ·10−4 [−0.11, 0.11] 95%

(0.79) GduB1 6.6 - -

W1
µ 0.65 |GφW1 | 0.18 < 0.50 95%

(0.78)

Lµ 0
(0.79)

|GelL | 0 <





0.29 0.33 0.39
0.34 - -
0.39 - -



 95%

U2
µ 0

(0.79)
|GedU2 | 0 <





0.21 0.49 0.49
- - -
- - -



 95%

|GlqU2 | 0 <





0.12 0.29 0.29
0.56 0.65 -
- - -



 95%

U5
µ ≤ 2.77

(0.77)
|GeuU5 | 0.43

[1, 2]
<





0.25 0.62 -
- - -
- - -



 95%

Q1
µ ≤ 0.45

(0.79)
|GulQ1 | 0.27

[1, 2]
<





0.22 0.54 -
0.57 - -
- - -



 95%

Q5
µ ≤ 3.36

(0.78)
|GdlQ5 | 0.87

[1, 1]
<





1.06 0.58 -
1.07 - -
1.07 - -



 95%

|GeqQ5 | 0.64
[1, 1]

<





0.78 1.0 1.2
- - -
- - -



 95%

Xµ ≤ 2.86
(0.77)

|GlqX | 0.65
[1, 2]

<





0.27 0.93 0.57
1.04 1.40 -
- - -



 95%

Table 4.4: Results of the fit to EWPD for the extra vector bosons. We give ∆χ2
min = χ2

min − χ2
SM

values, together with the best fit values and bounds on the interactions of the new vectors. The
results for the last six representations are obtained from a fit to each of the entries of the coupling
matrices at a time. [i, j] refers to the entries in the family matrices that give the best fit. See text
for more details.
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Figure 4.2: From darker to lighter, confidence regions with ∆χ2 ≤ 2 (blue), 4 (orange) and 6 (95%
C.L.) (green), respectively, for the B couplings to leptons assuming no couplings to quarks. The
region in the left plot results from the fit to EWPD without LEP 2 data. This is further constrained
into the smaller region in the right plot by adding the LEP 2 cross sections and asymmetries to
the fit.

It is also worth noting that, at the minimum, the RH quark couplings are pretty large 8. The
reason is that these couplings raise the prediction for the hadronic cross section measured at LEP
2, which in many energy bins is around 1 σ above the SM prediction. This results in a global
1.7 σ discrepancy when correlations are taken into account. The LH counterparts, on the other
hand, are more tightly constrained by the Z-pole observables, and stay smaller. This preference
for large RH couplings is stronger in the case of d quarks, due to the SM discrepancy in the bottom
forward-backward asymmetry. Indeed, at the minimum we find AbFB = 0.1016, and the pull in
this observable is reduced to 1.5 σ. We should stress, nevertheless, that such large couplings could
drive the theory into a nonperturbative regime. We shall come back to this point in Section 4.4.

There is a lot of work on the electroweak limits for particular Z ′ models [139], so it may be
useful to discuss at this point the relation between model-dependent and model-independent fits.
Each particular model imposes correlations among the couplings, and corresponds to some lower-
dimensional manifold in the complete model-independent fit. Therefore, the latter contains all the
necessary information. However, for obvious reasons, here we are just showing partial information,
in terms of one or two coupling-to-mass ratios at a time. In general, these will not be the free
parameters in a particular model, so the translation of our results is not direct. Nevertheless, the
one-dimensional limits and two-dimensional plots we have shown above provide basic guidelines to
understand the constraints on explicit models. For instance, the allowed regions in the ”minimal”
class of Z ′ models considered in Ref. [140, 141], when given in terms of coupling-to-mass ratios,
agree with those of Fig. 4.3 above.

To be more explicit, we show in Table 4.5, as an example, the limits on Z ′ masses and mixings
that we find for some popular models usually considered in the literature [133, 142] 9. As it is

8When we find large couplings we also include quadratic corrections in the new physics for LEP 2 observables.
9Leptophobic neutral gauge bosons derived, for example, from E6 [143] are not constrained by EWPD, except
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Figure 4.3: From darker to lighter, confidence regions with ∆χ2 ≤ 2(blue), 4 (orange) and 6 (95%
C.L.) (green), respectively, for the B couplings to the Higgs and LH leptons assuming no couplings
to quarks. The regions in the plot on the left are obtained from a fit to EWPD without LEP 2
data. They are reduced to smaller regions when the LEP 2 cross sections and asymmetries are
added to the fit, as shown in the plot on the right.

customary, we leave the mixing as a free parameter, even though it would be fixed in a definite
model [145]. We give limits from three data sets: i) EWPD excluding LEP 2 cross sections and
asymmetries; ii) LEP 2 cross sections and asymmetries10; iii) all data. Our results for the first
data set agree with the ones in the recent update [144], except for some differences in the limits
for the mixing, which arise from our inclusion of Tevatron Higgs searches in the fit.

For most models, EWPD without LEP 2 are sufficient to constrain significantly both the mixing
and the mass of the new vectors. The two exceptions are the ψ and R models, for which LEP 2
data are decisive to raise the limit on the mass. The correlations between the mixing and mass in
these two models are illustrated in Fig. 4.4. For the ψ model, this behaviour can be inferred from
Fig. 4.2, observing that the leptonic couplings are axial and lie along one diagonal of the plots in
that figure.

4.3.2 Left-handed triplet: W
This SU(2)L triplet decomposes after electroweak breaking into a neutral vector boson and a
charge ±1 complex vector boson. This representation appears, for instance, in theories with extra
dimensions and in some Little Higgs models. The most general case has three new parameters:
the couplings to the Higgs and to the lepton and quark doublets. As in the previous case, the
parameter space has a flat direction along the quark coupling direction when the interactions with
the Higgs and leptons vanish. On the other hand, the coupling of this vector to the Higgs does not
appear quadratically, since the W field preserves custodial symmetry, which forbids the operator

for their possible mixing with the Z boson. If their coupling to the Higgs is nonvanishing, the Z-pole data can
provide lower limits on MZ′

6L
around 1 TeV [144].

10Unlike [81], where the Z-Z′ mixing is fixed to zero, we let sin θZZ′ vary in the fit to LEP 2 data.
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95% C.L. Electroweak Limits on

sin θZZ′

[

×10−4
]

MZ′ [TeV]

Model EWPD LEP 2 All Data EWPD LEP 2 All Data
(no LEP 2) (no LEP 2)

Z ′
χ [−10, 7] [− 80, 118] [−11, 7] 1.123 0.772 1.022

Z ′
ψ [−19, 7] [−196, 262] [−19, 7] 0.151 0.455 0.476

Z ′
η [−22, 25] [−150, 164] [−23, 27] 0.422 0.460 0.488

Z ′
I [− 5, 9] [−144, 96] [− 5, 10] 1.207 0.652 1.105

Z ′
N [−14, 6] [−165, 223] [−14, 6] 0.635 0.421 0.699

Z ′
S [− 9, 5] [− 85, 129] [−10, 5] 1.249 0.728 1.130

Z ′
R [−17, 7] [−166, 177] [−15, 5] 0.439 0.724 1.130

Z ′
LR [−13, 5] [−147, 189] [−12, 4] 0.999 0.667 1.162

Table 4.5: Comparison of 95% C.L. limits on sin θZZ′ and MZ′ obtained for several popular Z ′

models from a fit to standard EWPD without LEP 2, to LEP 2 cross sections and asymmetries, and
to all data. The gauge coupling constants are taken equal to the GUT-inspired value,

√

5/3 g′ ≈
0.46.

O(3)
φ . Therefore, there is an extra flat direction in the Higgs coupling for vanishing couplings to the

fermions. This is illustrated in Figure 4.5, where we plot several confidence regions in the plane
spanned by the lepton and Higgs couplings.

Note also that the χ2 at the minimum, which is placed over both flat directions, is less than
2 units smaller than for the SM. Thus, any value of the Higgs and quark couplings is allowed
by EWPD at that confidence level. For GφW , the 1 σ interval is finite, as reported in Table 4.4,
whereas there are no limits on GqW . As in the case of the singlet B, there is a preference for large
values of the quark coupling.

4.3.3 Charged singlet: B1

This complex isosinglet vector has electric charge ±1. After EWSB, it mixes with the SM charged
bosons, with the mixing proportional to the Higgs coupling. With our assumption that the new
vector is heavier than the W boson, this mixing decreases MW , and gives a negative contribution
to the ρ parameter. In the effective formalism, this effect is clear from the positive sign of the

contribution of this vector to the operator O(3)
φ . Therefore, the presence of this vector with a

nonvanishing scalar coupling favors a value for the Higgs mass yet lower than in the SM, in contrast
with the case of singlets of zero hypercharge, B. The LEP 2 lower bound on the Higgs mass then
forces the Higgs coupling to be very small. The other parameter in this scenario is the coupling of
the B1 to the RH quarks. This coupling induces RH CC, via the operator Oφud. Unfortunately,
there are no direct experimental constraints on these quark currents (our fits do not incorporate
the possible hints from kaon physics described in Ref. [146]). At any rate, taking into account the
preference for small Higgs coupling, the electroweak data are blind to these RH quark couplings.
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Figure 4.4: 95% C.L. contour in theMZ′ - sin θZZ′ plane for the Z ′
R model (left) and Z ′

ψ (right). The
different contours correspond to the fit to EWPD without LEP 2 cross sections and asymmetries
(solid line), to LEP 2 cross sections and asymmetries (dashed line), and to all data (solid region).

4.3.4 Fermiophobic triplet: W1

The triplet with hypercharge 1 contains two real neutral vectors, which mix with the Z boson
upon EWSB, a complex vector of charge ±1, which mixes with the W , and a complex vector of
charge ±2, which gives no observable effect. The characteristic feature of this representation is
that it cannot couple to any SM fermions. Hence, its only visible effects are oblique. Moreover,
the net contribution to the ρ parameter is positive, which makes EWPD consistent with a heavy
Higgs. Therefore, the fit prefers a nonzero value of the coupling, in order to compensate the effect
on EWPD of the direct LEP lower bound on the Higgs mass. The interplay with the Higgs mass
is further discussed in Section 4.5.

4.3.5 Leptophilic vector: L
This representation contains complex vectors of charges ±1 and ±2. Since it does not couple to
the Higgs, the charge ±1 components do not mix with the W boson at tree level. The vector
field is coupled to a ∆L = 2 current mixing the LH and RH lepton multiplets. Despite this, no
trace of lepton number violation remains in the effective Lagrangian, thanks to the absence of any
other couplings. This fact allows to recover this symmetry by assigning lepton number L = 2 to
the field L. There can be, however, lepton flavor violation, even for diagonal couplings, as these
create (destroy) two same-flavor anti-leptons (leptons), allowing for processes like e−e− → µ−µ−.
The only operator in the effective Lagrangian for this vector is the four-lepton interaction Ole.
This can contribute to νµe scattering as well as to e+e− → ℓ+ℓ− data at LEP 2. There are no
restrictions from parity violating observables measured in Møller scattering, since Ole does not
contribute to V-A couplings. In the case of couplings to only one flavor per SM multiplet, the
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Figure 4.5: From darker to lighter, confidence regions with ∆χ2 ≤ 2 (blue), 4 (orange) and 6 (95%
C.L.) (green), respectively, for the W couplings to LH leptons and to the Higgs boson. Notice the
flat direction along the Higgs coupling axis when the lepton charge vanishes.
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weakest constraint shown in Table 4.4 occurs for couplings between electrons and taus. Similar
bounds apply to couplings to electrons and muons.

4.3.6 Singlet vector leptoquarks: U2 and U5

The two colored SU(2)L singlets U2 and U5 decompose into complex vectors of fractional charges
±2/3 and ±5/3, respectively. The associated currents carry nonvanishing L, B and B−L numbers.
But again, these global symmetries are preserved in the effective Lagrangian. For U2, this is
so because the two terms in the current have the same B and L charges. The integration of

U2 generates the operators Oed, O(1,3)
lq and Oqde, while for U5, only Oeu is generated. With

the exception of Oqde, which does not interfere with any of the SM amplitudes, these operators

contribute to APV and to the inclusive hadronic cross section at LEP 2. O(1,3)
lq can also contribute

to neutrino-nucleon scattering if U2 couples to muons and first family quarks. Finally, O(3)
lq can

modify the unitarity relation of the CKM matrix. In particular, this is the only constraint when
U2 couples to the second family. The precise determination of the weak charge for Cesium and
its good agreement with the SM prediction is the strongest constraint when these operators are
coupled to the first family (together with the CKM unitarity for GlqU2). It is worth noting that
the negative contribution to Oeu is favored by LEP 2 data, as it increases the total hadronic cross
section above the Z pole. For this reason, the fit with U5 gives some improvement in χ2, with just
one extra free parameter.

4.3.7 Doublet vector leptoquarks: Q1 and Q5

The SU(2)L doublet Q1 contains two complex vectors, of charges ±1/3 and ±2/3, whereas the
doublet Q5 is made of complex vectors of charges ±1/3 and ±4/3. Again, the corresponding
currents carry nontrivial B, L and B − L numbers. Of these, B − L is actually conserved, since
all the terms in the current have the same charge, ∆(B − L) = −2/3. On the other hand, there
are dangerous contributions to baryon and lepton number violating operators. In order to avoid
proton decay while allowing for contributions to EWPD, we consider here the case without the B
violating couplings gdqQ1 and guqQ5 . Then, the vector Q1 generates only the operator Olu, while Q5

induces three operators: Old, Oqe and Oqde.

For Q1, the dominant constraint comes again from APV. Weaker bounds are obtained when
we couple the new vector to electrons and c quarks, or to muons and u quarks, so that they affect
LEP 2 data and the low-energy effective coupling g2R in deep-inelastic neutrino-nucleon scattering,
respectively. In the later case there is a small improvement in χ2.

In the case of the vector Q5, the bounds from APV are mild for couplings gdlQ5 and geqQ5 to the
first family. This is so because the independent contributions to the atomic weak charges from Old

and Oqe can be adjusted to approximately cancel. The strongest bound on GdlQ5 comes again from

g2R, when Q5 couples to muons and down quarks. When it couples to electrons and s or b quarks,
only the LEP 2 constraints apply. These are weaker, as a sizable value for these couplings is again
favored. For GeqQ5 , LEP 2 data give stronger constraints, which can be relaxed by the interplay
with the other coupling, when the latter is not tied by other data.

The best minimum occurs for couplings to the first family. Besides the better agreement with
LEP 2 hadronic data, there is an improvement in the combinations of the parity-violating eq
effective parameters C1u and C1d that appear in Table A.1 in Appendix A. As a result, the χ2 of
the global fit is decreased by 3.4, with two extra parameters.
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4.3.8 Triplet vector leptoquark: X
Finally, this SU(2)L triplet decomposes into complex vectors of charges ±1/3, ±2/3 and ±5/3. It
connects LH quarks with LH leptons. Even though the current carries lepton and baryon numbers,
the B and L symmetries are preserved in the effective Lagrangian. X only generates the operators

O(1)
lq and O(3)

lq , whose effects are described in the U2 subsection. The coefficients are different,
however, and so are the constraints.

The strongest bound in Table 4.4 is also provided by APV, in the case with couplings to
electrons and first family quarks. The weakest nontrivial bound corresponds to the assumption
that this vector only couples to the second family and, as in the case of U2, it comes from the CKM
constraints. On the other hand, a X coupling muons to the LH u and d quarks allows to reduce
to 1 σ the SM 2 σ discrepancy in the g2L coupling extracted from deep-inelastic neutrino-nucleon
scattering. A further reduction is prevented again by the precise measurement of unitarity in the
first row of the CKM matrix. The global decrease in the χ2 is, however, marginal: ∆χ2

min ≈ −1.4.
In fact, a better improvement is found by choosing couplings between electrons and the second
quark family, even if this does not modify g2L. It may seem surprising that, for this vector, the
limits on couplings of electrons to the third family of quarks are significantly stronger than the
corresponding ones for the second family. The explanation is that, for this representation, the
contributions to the hadronic cross section at LEP 2 from the up (down) quarks are favored
(disfavored), and in the case of the third family only the b quark contributes.

4.4 Several extra vectors

In this section we discuss scenarios with several new vector bosons, both in the same and in different
SM representations.

It seems quite natural that an extra vector boson around the TeV scale will come accompanied
by other new particles, in particular additional new vectors. This occurs in many explicit models
beyond the SM. At the dimension-six order, the coefficients of the operators are just given by
the sum of the contributions of each new vector, as we have shown explicitly before. Moreover,
because the leading new effects come from the interference of SM amplitudes and diagrams with
insertions of dimension-six operators, the interference between the contributions of different vectors
to observables is negligible. On the other hand, opposite signs may occur in the sums. Hence, some
(partial) cancellations are possible, both between contributions of different new vectors to a given
operator, and between the contributions of different gauge-invariant operators to an observable.

One consequence of having more than one vector simultaneously is that some restrictions on
the operator coefficients, which hold necessarily for just one vector, are removed. For example, for
just one extra singlet B with arbitrary couplings, the following relations are always satisfied:

(

α
(1)
φψ

)2

=
1

2
α
(3)
φ αψψ, (4.12)

(αψψ′)
2
= αψψαψ′ψ′ , (4.13)

where ψ and ψ′ stand for any SM fermion multiplet. These relations do not hold any longer if
there are two singlets B. For instance, two vectors with the same couplings to the lepton doublet
and opposite Higgs couplings,

glV1
= glV2

,

gφV1
= −gφV2

, (4.14)
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Figure 4.6: From darker to lighter, confidence regions with ∆χ2 ≤ 2 (blue), 4 (orange) and 6 (95%

C.L.) (green), respectively, in the GlW1
- GφW1

plane of an extension with two mirror left-handed
triplets, W1 and W2.

will have a vanishing coefficient α
(1)
φl , but nonvanishing α

(3)
φ and α

(1)
ll . This would be impossible

with only one extra vector, and it is an example of a cancellation of the effects of several vectors.
The point is that models with more than one extra vector may have observable effects that cannot
be reproduced by any model with just one.

An interesting possibility is that cancellations of this sort give rise to weaker bounds from
EWPD on each vector. For the leptonic couplings, it turns out that there is little room for this
effect, at least in the universal case. The reason is that the coefficients of the four-lepton operators

(O(1)
ll )iiii and (Oee)iiii induced by any extra vector are negative definite, since they are given by

minus sums of squares. Hence, no cancellations are possible here. For i=1 (first family), these
coefficients are constrained to be very small by the differential cross sections in Bhabha scattering
measured at LEP 211. Furthermore, the operators modifying the trilinear couplings, which could
counteract the action of the four-fermion operators, are independently constrained to be small by
the Z-pole data.

Therefore, in universal scenarios with combinations of several vector bosons, the limits on
the ratios of leptonic couplings to masses of each new vector are at least as stringent as the
corresponding “one-at-a-time” limits in Table 4.4 [147]. In other words, new vector bosons must
be, to a certain degree, leptophobic (or more precisely, electrophobic [141])12.

Despite these limitations, the cooperation of several extra vectors can open new regions in the

11Cancellations between the contributions of a B and a L are possible in the four-lepton operator with mixed
chiralities, Ole, but the angular distributions allow to isolate the effects of each individual operator on the cross
sections.

12Remember that we are always working with the assumption that no other kind of new physics modifies EWPD.
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parameter space of couplings and masses. A simple example is the case of two left-handed triplets
W , with universal couplings as in Eq. (4.14). We show in Fig. 4.6 several confidence regions in the

GlW1
- GφW1

plane. We see that the combination of these two “mirror” vectors make the EWPD

blind to the coupling gφW . This figure is to be compared with the corresponding plot for just one
W in Fig. 4.5. A similar outcome is found in a model with “mirror” neutral singlets B, when we
also add a B1 vector boson to cancel the effect of the B bosons on the ρ parameter. In the next
subsection, we give some examples of cancellations between the contributions of different types of
vector bosons.

4.4.1 Nonuniversal couplings and the bottom forward-backward asym-
metry

In some classes of models, the extra vector bosons couple in a nonuniversal way to the different
families. Large couplings to the third family are expected, for instance, in models of dynamical
EWSB. In extra-dimensional theories, nonuniversal couplings appear when the fermions are sepa-
rated in the extra dimension, with heavier fermions having naturally bigger couplings to the new
vectors. For the most common types of vector bosons, B, W and B1, we have assumed so far family
universal couplings. In this section, we explore the impact of dropping this assumption, both for
a unique singlet vector and for a few interesting combinations. As we will see, the extra freedom
allows to better reproduce the experimental data and even improve the SM fits. For simplicity, we
assume in the following that all the new couplings are small, except the ones to the third family of
quarks and to the Higgs doublet. This has the advantage of making FCNC innocuous, due to CKM
suppression. Tuning the couplings of an extra singlet B to the RH bottom, it is possible to correct
the deviation in the bottom forward-backward asymmetry at the Z pole (no other vector boson can
play this role). We have actually seen some improvement in the prediction for this observable with
universal singlets, but the nonuniversal scenario works better and allows to completely remove the
discrepancy without modifying the observables that agree with the SM. This produces a significant
decrease in the χ2 of the global fits, as shown in the first column of Table 4.6 13.

This “solution” to the AbFB anomaly puzzle suffers, however, from an important deficiency.
In order to shift the asymmetry without modifying the Z → bb partial decay width, we need a
large correction to the ZbRbR vertex and a small nonvanishing correction to the ZbLbL vertex.

These corrections are produced by the 3-3 entries of the operators O(1)
φd and O(1)

φq , with coefficients

proportional to the couplings of the extra vector to the Higgs, gφB, and to the RH bottom and the
LH top-bottom doublet, respectively. As we can see in Table 4.6, the ratio GbB = gbB/MB is rather
big at the minimum. Unless MB . 1 TeV, this can spoil perturbation theory in the complete
theory, rendering the whole calculation meaningless14. In the second column of Table 4.6, we have
forced GbB to be smaller than 1, and we see that the anomaly is then recovered.

The reason for the large coupling of the singlet to bR, apart from the requisite of a big effect,
is that it needs to compensate the smallness of the coupling to the Higgs. This is enforced by the
data just as in the universal case. So, it is clear that we can alleviate this problem if we allow the
Higgs coupling to become larger. This can be achieved in two ways. First, as we discuss in the
next section in more detail, the coupling to the Higgs prefers to be larger when the Higgs mass
increases. Therefore, if the Higgs were found to be heavy, smaller bR couplings would be required.

13Even if we are focussing on the couplings to b quarks, we do not include LEP 2 b data in the fits we present
here because, as explained in Appendix A, the reported values are derived with a strong SM dependence [81]. At
any rate, we have checked that these data have little impact in the results of the fits.

14Remember also that we cannot trust our approximations for very light vectors, which in addition are subject to
Tevatron bounds.
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We show this in the third and fourth columns of Table 4.6. We see that the coupling-to-mass ratio
GbB is still greater than 1 for MH ≤ 500 GeV.

B B + B1

Free GbB ≡ 1 MH=200GeV MH=500GeV Free GbB ≡ 1

−∆χ2
min 8.2 2.7 14.1 47.7 8.2 8.2

Pull[AbFB ] −0.5 −2.5 −0.4 −0.4 −0.5 −0.5

GbB [TeV−1] 6.4 1 3.8 2.4 3.2 1

GφB [TeV−1] 0.082 0.078 0.13 0.19 0.16 0.53

GφB1 [TeV
−1] - - - - 0.20 0.73

Table 4.6: Effect of the SM singlets on the forward-backward asymmetry for the b quark from the
nonuniveral fit. The improvement in the χ2 for the cases of MH = 200, 500 GeV is given with
respect to the SM with the same values of the Higgs mass. The last two columns correspond to
different points along a flat direction.

A more efficient way of reproducing the experimental asymmetry without too large couplings is
to combine different new vectors. The only operator where the Higgs coupling enters quadratically

is O(3)
φ . While the coefficient of this operator is always positive when induced by a singlet neutral

vector B, the hypercharged vector B1 gives a negative contribution to it. Hence, if the theory
contains a B and a B1, both contributions may cancel out15. Furthermore, the extra vector B1

gives no other observable effect in the fits if coupled only to the third family. In the last two
columns of Table 4.6, we display the result of a global fit to a scenario with a neutral singlet B and
a charged singlet B1, both coupled to the Higgs and to the third family of quarks only. We see that
in this case the coupling to bR can be made smaller than 1 at no cost in χ2. In fact, there is an
almost flat direction for fixed values of the product GbBG

φ
B (and the correct GφB1 to counteract the

effect of GφB). The impact of including the second vector boson is also manifest in Fig. 4.7, where
we plot the allowed values for the Higgs and bR couplings to the B singlet, with and without an
additional B1 boson. We observe that introducing the charged singlet opens a new favored region
in which GbB is smaller and GφB is larger. This very same mechanism is at work in the explicit
extra-dimensional model in [148].

In definite models, having small couplings of the new vectors to bL can be troublesome from a
model building perspective, especially if the couplings to bR are large. This issue can be addressed
by adding another type of extra vector that balances the effect of the singlet. One possibility is

a triplet W . This vector boson generates the operator O(3)
φq . Because the correction to the ZbLbL

vertex is proportional to α
(1)
φq +α

(3)
φq and these coefficients do not have a definite sign, a cancellation

is again possible. This mechanism is shown in Fig. 4.8. It can be made natural if the B and W
couplings are related by some symmetry [149], as in the custodial protection proposed in [150].
Note that this protection requires new fermions, which might modify the electroweak fits [151].

We also point out that the correction to the ZtLtL vertex is proportional to α
(1)
φq − α

(3)
φq , so it can

never be cancelled at the same time [149]. This has consequences for top physics at LHC [152].

15They cancel out automatically if the extension of the SM preserves custodial symmetry.
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Figure 4.7: Allowed regions of the B couplings to the RH bottom and to the Higgs at 1 σ (solid
regions) and at 95% C.L. (regions between lines) from the nonuniversal B fit (blue, dotted) and
the B + B1 fit (orange, solid).
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Figure 4.8: Confidence regions at 1 σ (blue, dark) and 95% C.L. (orange, light) on the plane
determined by the corrections to the Zb̄LbL coming from a singlet B and a triplet W .
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4.5 New vector bosons and the Higgs mass

In this section we focus on the implications of new vector bosons on the Higgs mass. As in all
the other fits in this thesis, we have considered the mass of the Higgs boson as a free parameter,
and we have imposed the direct constraints from Higgs searches at LEP 2 and Tevatron, which in
particular discard a light Higgs in a quite robust manner, with MH > 114.4 GeV at 95% C.L. [39].
On the other hand, the global electroweak fit of the SM shows a preference for a light Higgs,
MH = 101+32

−26 GeV. This would be strengthened if the ∼ 3 σ deviation in AbFB were due to a
systematic error. In that case it should be removed from the fit, and the minimum would have
a Higgs mass lower than the LEP lower bound, MH = 73+28

−22 GeV. In this sense, there is a mild
tension between indirect and direct limits [43].

As we have seen before, B vector bosons generate the oblique operator O(3)
φ with a negative

coefficient, and since

∆ρ = −
α
(3)
φ

2

v2

Λ2
, (4.15)

they give a positive contribution to the ρ parameter. This has the right sign to neutralize the
effect of increasing MH on ρ. In fact, Z ′ bosons have been used in the past to render a heavy
Higgs consistent with EWPD [153], and to release the tension with the LEP lower bound [154].

The other extra vectors that contribute to O(3)
φ are B1 and W1. The first one gives a contribution

of opposite sign, so it favours smaller values of MH . The contribution of the hypercharged triplet
W1 has the same sign as for B, and can be used to raise the allowed values MH . It also has the
virtue of not generating any other observable operator, which could worsen the quality of the fit.
However, the appearance of this representation seems to require a rather contrived model building.

In Fig. 4.9 left, we plot the minimum of χ2 as a function of the Higgs mass in three cases: SM,
one extra B and one extra W1. In all cases, we have used the information from direct searches.
The couplings are family universal. The effect of the B and the W1 vector bosons is apparent:
they flatten the distribution when we go beyond the region disfavoured by the Tevatron searches.
This allows to reach large values of MH with a low cost in χ2, as compared to the SM case. We
also observe that, in the case of B, the larger number of free parameters is used to lower the χ2

with respect to the W1 case. This effect persists in the flat region, thanks to an improvement in
the prediction for LEP 2 hadronic cross sections and for AbFB at the Z pole, which we have already
discussed in Section 4.3.

The coefficient α
(3)
φ is proportional to the square of the coupling of the vector bosons to the

scalar doublet. Therefore, this coupling must increase when the Higgs mass gets larger. This
correlation is shown, for the W1 boson, in Fig. 4.9 right, where we display several confidence
regions in the MH - GφW1 plane.

4.6 Conclusions

In this chapter, we have studied general extra particles of spin 1, concentrating on their effects in
EWPD. Our results are relevant for model-independent searches and also for explicit models. We
have classified all the possibilities that may produce observable effects, and have written the most
general couplings consistent with the SM gauge symmetry that are linear in the new fields. We
have then derived, to dimension six, the effective Lagrangian that describes the effect of the new
vector bosons at energies smaller than their masses. The result is displayed in Tables 4.7 to 4.21
(see the addendum in next section). Our analysis includes the cases of Z ′ and W ′ particles, vector
leptoquarks and a few vector particles that, to the best of our knowledge, had not been considered
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Figure 4.9: Left: Minimum of the χ2 as a function of the Higgs mass for the SM fit, the W1 fit
and the B fit. Higgs direct searches data are available up to MH = 200 GeV. Above that value
the effect of neutral-boson mixing flattens the curve. Right: From darker to lighter, confidence
regions with ∆χ2 ≤ 2 (blue), 4 (orange) and 6 (95% C.L.) (green), in the plane parametrized by
the Higgs mass and the W1 coupling to the Higgs.

previously in the literature. Some of the vector bosons we have studied couple to quarks only, so
they are not constrained by EWPD. However, they may in principle be single-produced and seen
as resonances at Tevatron and LHC [155, 156].

We have performed model-independent electroweak fits of the different types of new vectors,
keeping the new couplings and masses as free parameters. We have studied scenarios with both
family universal and nonuniversal couplings. The main results are collected in Table 4.4. In the
fits, low-energy and LEP 2 data are crucial to constrain the different four-fermion interactions
that appear upon the integration of the new particles. This translates into limits on the couplings
to fermions that, unlike the ones from the Z-pole observables, cannot be avoided by making the
couplings to the Higgs very small.

In a rough way, we observe that for all vector multiplets the purely leptonic couplings of the
extra vectors are constrained to be pretty small, while the limits on quark and leptoquark couplings
are weaker. Moreover, in some cases the data show a preference for pretty large quark couplings,
driven by the SM discrepancies with the bottom forward-backward asymmetry at the Z-pole and
with the hadronic cross sections at LEP 2. Finally, small Higgs couplings are also preferred, at
least in the fits with just one type of extra vector.

We have also examined the implications of including several of these extra vector bosons at
once, and looked for possible cancellations that may relax the electroweak limits. In particular, we
have shown that a vector-boson solution to the bottom forward-backward anomaly is possible in
a nonuniversal scenario with extra neutral and charged singlets. In this case, the charged vectors
are needed to keep the couplings to the RH bottom in the perturbative regime.

An important variable in all the electroweak fits is the mass of the Higgs boson, which enters
logarithmically through radiative corrections. We have kept it as a free parameter, and imposed
the constraints from direct Higgs searches at LEP and Tevatron. As in the SM, the fits with new
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vector bosons favor a light Higgs, close to the lower bound of 114 GeV. Nevertheless, there are
two types of vector bosons (the neutral singlet and the fermiophobic triplet) that can make the
electroweak data consistent with a heavy Higgs, as shown in Fig. 4.9.

The limits we have obtained are somewhat complementary to the ones from Tevatron. Both
restrict the discovery potential of LHC. To simplify the following discussion, all limits on the masses
of the heavy vector bosons are given with the assumption that the nonvanishing couplings to SM
fields have the same strength as the massive gauge bosons in the SM (∼ 0.2 for leptonic NC).
At hadron colliders, the new vector bosons can be seen as resonances, if kinematically allowed,
when the cross section is high enough to distinguish a bump above the SM backgrounds. The
most efficient process is Drell-Yan, which requires trilinear couplings of an extra neutral vector
(Z ′) with quarks and with leptons. These two kinds of couplings exist only for the singlet B and
for the neutral component of the triplet W . The lower limits from Tevatron on the mass of neutral
vector bosons, coupled to leptons and quarks, are around 1 TeV [157], and the LHC discovery reach
is near 5 TeV, assuming 14 TeV operation and an integrated luminosity of 100 fb−1 [158]. For√
s = 7 TeV and an integrated luminosity of 100 pb−1 it should be possible to put bounds above

1 TeV. The limits from precision tests are in general around this value (see Table 4.4 and 4.5). On
the other hand, charged vectors (W ′) are best seen as resonances produced by quark interactions
and decaying into a charged lepton and a neutrino. This is only possible for the representation
W and, if there were sufficiently light RH neutrinos, B1 [159]. Tevatron puts limits around 1
TeV [160], while LHC could discover a W ′ with mass up to 4 TeV for

√
s =14 TeV and a few fb−1

of integrated luminosity [161]. The EWPD (for W , with leptonic coupling g ≈ 0.66) give a bound
around 2.5 TeV.

It is also possible that the new vectors be leptophobic. This is automatic for many of the
representations considered here. In this case, the most relevant decay mode is V → jj. The
Tevatron limits [162] and the LHC reach [163] are somewhat smaller than when the vectors couple
to leptons. Since the quark couplings and the masses of the extra vectors are unconstrained by
EWPD, the available parameter space for LHC discovery is pretty large in this case.

Some of the representations we have studied couple leptons to quarks. If there is enough
available phase space, these vector leptoquarks can be double produced at hadron colliders via
renormalizable coupling to gluons in the covariant kinetic term, Eq. (4.2). This interaction does
not contribute to the dimension-six effective Lagrangian, so it is not seen, in our approximation,
by EWPD. Single production through trilinear couplings, which are constrained by EWPD, is also
possible [164]. The lower limits on leptoquark masses from Tevatron are around 250 GeV [165].
On the other hand, leptoquarks coupled to the first family could be single produced at HERA via
trilinear couplings, and their nonobservation puts a lower bound of 290 GeV on their mass [166].
The limits on trilinear couplings that we have derived here, making use of low-energy and LEP 2
data, depend a lot on the particular representation of the vector leptoquark, and on the flavor
structure of the couplings. They range from ∼ 70 GeV to 830 GeV at 95% C.L. assuming a generic
coupling gψ1ψ2

V = 0.1 (see Table 4.4).

The vectors bosons L only have leptonic couplings and cannot be seen at hadron colliders. At
the ILC or muon colliders, they would only appear in the t channel, since they carry two lepton-
number units. On the other hand, the vectorsW1 only interact with fermions through their mixing
with the SM gauge bosons. Even if this mixing can be relatively large for a heavy Higgs, this vector
boson is basically invisible to hadron colliders. We should finally mention that, in principle, other
exotic vector bosons in representations not considered here could exist. They cannot be single
produced at colliders, nor contribute significantly to EWPD. However, if they were light enough,
they could be pair produced. These exotic vector bosons, if coupled to gluons, would be seen as
jets generated by their radiation.
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4.7 Addendum: Operator coefficients in the effective La-

grangian

Here, we collect the results from the integration of each of the extra vector fields in Table 4.1. We
give in Tables 4.7 to 4.21 the corresponding contributions to the dimension-six operator coefficients
in the effective Lagrangian. The explicit expressions for the currents coupled to the different new
vectors are also written. Unless otherwise stated in the tables, F = lL, qL, f = eR, uR, dR and
ψ = F, f run over all the possibilities. As stressed in Section 4.1, in order to apply our results the
heavy vectors must be in the basis with diagonal mass and kinetic terms. Then, the contributions
from several extra vectors are summed independently in the coefficients.

For only one of the SM replicas B, W and G, we can easily recover the effect of kinetic mixing
with the SM fields. Since the rescaling of the heavy vector field A in Eq. (4.6) affects in the same
way the current JA and the heavy mass MA, we only need to perform the following replacements
in the formulas in Tables 4.7, 4.8 and 4.9:

(gψ,φB )ij → (gψ,φB )ij + g′gBB Yψ,φδij ,

(gF,φW )ij → (gF,φW )ij + ggWW δij , (4.16)

(gψG )ij → (gψG )ij + gsg
G
G δij .
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Bµ ∼ (1, 1)0
JB
µ = (glB)ijl

i
Lγµl

j
L + (gqB)ijq

i
Lγµq

i
L + (geB)ije

i
Rγµe

j
R + (guB)iju

i
Rγµu

j
R + (gdB)ijd

i
Rγµd

j
R+(gφB φ†iDµφ+h.c.)

Four-Fermion Operators

• LLLL • RRRR
(

α
(1(,1))

FF ′

)

ijkl

Λ2 = −
(gFB )ij

(

gF
′

B

)

kl

M2
B

(

α
(1)

ff′

)

ijkl

Λ2 = −

(

g
f
B

)

ij

(

g
f′

B

)

kl

+
(

g
f
B

)

il

(

g
f′

B

)

kj

δff′ ,ee

(1+δff′,ee)M2
B

• LRRL

(αFf)ijkl
Λ2 =

2(gFB )il
(

g
f
B

)

kj

M2
B

(

α
(1)
qf

)

ijkl

Λ2 =
2(gqB)il

(

g
f
B

)

kj

3M2
B

(

α
(8)
qf

)

ijkl

Λ2 =
(gqB)il

(

g
f
B

)

kj

M2
B

SVF and SF Operators Oblique Operators
(

α
(1)
φψ

)

ij

Λ2 = −
(

g
ψ
B

)

ij
g
φ
B

M2
B

α
(1)
φ

Λ2 = −
Re

[

(

g
φ
B

)2
]

M2
B

(αuφ)ij
Λ2 =

(

g
φ
B

)2

2M2
B
V †
ijy

u
jj

α
(3)
φ

Λ2 = −
2Re

[

g
φ
B

]2

M2
B

(αfφ)ij
Λ2 =

(

α
†
uφ

)

ij

Λ2

y
f
ii
δij

Vijy
u
jj

αφ6

Λ2 =
6λφRe

[

(

g
φ
B

)2
]

M2
B(f = e, d) αφ4

Λ2 = − µ2
φ

6λφ

αφ6

Λ2

Table 4.7: Operators arising from the integration of a B vector field.

Wµ ∼ (1,Adj)0
JW
a µ = (glW)ij liLγµ

σa
2
ljL + (gqW)ijqiLγµ

σa
2
qjL + (gφW φ† σa

2
iDµφ+ h.c.)

Four-Fermion Operators

• LLLL
(

α
((1),3)

FF ′

)

ijkl

Λ2 = −
(gFW)

ij

(

gF
′

W

)

kl

4M2
W

SVF and SF Operators Oblique Operators
(

α
(3)
φF

)

ij

Λ2 = −
(gFW)

ij
g
φ
W

4M2
W

α
(1)
φ

Λ2 = −
Re

[

(

g
φ
W

)2
]

+2
∣

∣

∣g
φ
W

∣

∣

∣

2

4M2
W

(αuφ)ij
Λ2 =

(

g
φ
W

)2

8M2
W
V †
ijy

u
jj

α
(3)
φ

Λ2 =
Im

[

g
φ
W

]2

2M2
W

(αfφ)ij
Λ2 =

(

α
†
uφ

)

ij

Λ2

y
f
ii
δij

Vijy
u
jj

αφ6

Λ2 = 6λφ
Re

[

(

g
φ
W

)2
]

4M2
W

(f = e, d) αφ4

Λ2 = − µ2
φ

6λφ

αφ6

Λ2

Table 4.8: Operators arising from the integration of a W vector field.
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Gµ ∼ (Adj, 1)0
JG
A µ = (gqG)ijq

i
Lγµ

λA
2
qjL + (guG)iju

i
Rγµ

λA
2
ujR + (gdG)ijd

i
Rγµ

λA
2
djR

Four-Fermion Operators

• LLLL • RRRR
(

α
(8,1)
qq

)

ijkl

Λ2 = −
(gqG)ij(g

q
G)kl

4M2
G

(

α
(8)

ff′

)

ijkl

Λ2 = −
(

g
f
G

)

ij

(

g
f′

G

)

kl

4M2
G

(

ff ′ = uu, dd, ud
)

• LRRL
(

α
(1)
qf

)

ijkl

Λ2 =
8(gqG)il

(

g
f
G

)

kj

9M2
G

(f = u, d)
(

α
(8)
qf

)

ijkl

Λ2 = −
(gqG)il

(

g
f
G

)

kj

3M2
G

Table 4.9: Operators arising from the integration of a G vector field.

Hµ ∼ (Adj,Adj)0
JH
a,A µ = (gqG)ijq

i
Lγµ

σa
2
λA
2
qjL

Four-Fermion Operators

• LLLL
(

α
(8,3)
qq

)

ijkl

Λ2 = −
(gqH)

ij
(gqH)

kl

16M2
H

Table 4.10: Operators arising from the integration of a H vector field.

B1
µ ∼ (1, 1)1

JB1

µ =
(

gduB1

)

ij
diRγµu

j
R + gφB1iDµφ

T iσ2φ

Four-Fermion Operators

• RRRR
(

α
(1)
ud

)

ijkl

Λ2 = −
(gdu

B1)
†

ij
(gdu

B1)kl
3M2

B1

(

α
(8)
ud

)

ijkl

Λ2 = −
(gdu

B1)
†

ij
(gdu

B1)kl
2M2

B1

SVF Operators Oblique Operators

αφud

Λ2 =
g
φ

B1(g
du
B1)

†

ij

M2
B1

α
(1)
φ

Λ2 = −
3
∣

∣

∣
g
φ

B1

∣

∣

∣

2

2M2
B1

α
(3)
φ

Λ2 =

∣

∣

∣
g
φ

B1

∣

∣

∣

2

M2
B1

Table 4.11: Operators arising from the integration of a B1 vector field.
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W1
µ ∼ (1,Adj)1

JW1

µ = gφW1iDµφ
T iσ2

σa
2
φ

Oblique Operators

α
(1)
φ

Λ2 = −
∣

∣

∣g
φ

W1

∣

∣

∣

2

4M2
W1

α
(3)
φ

Λ2 = −
∣

∣

∣g
φ

W1

∣

∣

∣

2

4M2
W1

Table 4.12: Operators arising from the integration of a W1 vector field.

G1
µ ∼ (Adj, 1)1

JG1

µ =
(

gduG1

)

ij
diR

λA
2
γµu

j
R

Four-Fermion Operators

• RRRR
(

α
(1)
ud

)

ijkl

Λ2 = −
4
(

gdu
G1

)†

il

(

gdu
G1

)

kj

9M2
G1

(

α
(8)
ud

)

ijkl

Λ2 =

(

gdu
G1

)†

il

(

gdu
G1

)

kj

6M2
G1

Table 4.13: Operators arising from the integration of a G1 vector field.

Lµ ∼ (1, 2)
−

3
2

JL
µ =

(

gelL
)

ij
ec iR γµl

j
L

Four-Fermion Operators

• LRRL

(αle)ijkl
Λ2 = −

2(gelL )†
ik
(gelL )

jl

M2
L

Table 4.14: Operators arising from the integration of a L vector field.
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U2
µ ∼ (3, 1)2

3

JU2

µ =
(

gedU2

)

ij
eiRγµd

j
R + (glqU2)ijl

i
Lγµq

j
L

Four-Fermion Operators

• LLLL
(

α
(1)
lq

)

ijkl

Λ2 = −
(

g
lq

U2

)†

kj

(

g
lq

U2

)

il

2M2
U2

(

α
(3)
lq

)

ijkl

Λ2 =

(

α
(1)
lq

)

ijkl

Λ2

• RRRR • LRRL

(αed)ijkl
Λ2 = −

(ged
U2)

†

kj
(ged

U2 )il
M2

U2

(αqde)ijkl
Λ2 =

2(ged
U2)

†

kj

(

g
lq

U2

)

il

M2
U2

Table 4.15: Operators arising from the integration of a U2 vector field.

U5
µ ∼ (3, 1)5

3

JU5

µ = (geuU5)ij e
i
Rγµu

j
R

Four-Fermion Operators

• RRRR

(αeu)ijkl
Λ2 = −

(geu
U5 )

†

kj
(geu

U5 )il
M2

U5

Table 4.16: Operators arising from the integration of a U5 vector field.

Q1
µ ∼ (3, 2)1

6

JQ1

µ =
(

gulQ1

)

ij
uc iR γµl

j
L +

(

gdqQ1

)

ij
ǫABCdi BR γµiσ2q

c j C
L

Four-Fermion Operators

• LRRL

(αlu)ijkl
Λ2 = −

2
(

gul
Q1

)†

ik

(

gul
Q1

)

jl

M2
Q1

(

α
(1)
qd

)

ijkl

Λ2 =
4
(

g
dq

Q1

)†

lj

(

g
dq

Q1

)

ki

3M2
Q1

(

α
(8)
qd

)

ijkl

Λ2 = −
(

g
dq

Q1

)†

lj

(

g
dq

Q1

)

ki

M2
Q1

• LRRL: B−L

(αlqdu)ijkl
Λ2 =

2
(

gul
Q1

)†

il

(

g
dq

Q1

)

kj

M2
Q1

Table 4.17: Operators arising from the integration of a Q1 vector field.
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Q5
µ ∼ (3, 2)

−
5
6

JQ5

µ =
(

gdlQ5

)

ij
dc iR γµl

j
L +

(

geqQ5

)

ij
ec iR γµq

j
L +

(

guqQ5

)

ij
ǫABCui BR γµiσ2q

c j C
L

Four-Fermion Operators

• LRRL

(αld)ijkl
Λ2 = −

2
(

gdl
Q5

)†

ik

(

gdl
Q5

)

jl

M2
Q5

(αqe)
ijkl

Λ2 = −
2
(

g
eq

Q5

)†

ik

(

g
eq

Q5

)

jl

M2
Q5

(αqde)ijkl
Λ2 = −

2
(

gdl
Q5

)†

ik

(

g
eq

Q5

)

jl

M2
Q5

(

α
(1)
qu

)

ijkl

Λ2 =
4
(

g
uq

Q5

)†

lj

(

g
uq

Q5

)

ki

3M2
Q5

(

α
(8)
qu

)

ijkl

Λ2 = −
(

g
uq

Q5

)†

lj

(

g
uq

Q5

)

ki

M2
Q5

• LRRL: B−L

(αlqdu)ijkl
Λ2 =

2
(

gdl
Q5

)†

ik

(

g
uq

Q5

)

lj

M2
Q5

(αqqeu)
ijkl

Λ2 = −
2
(

g
eq

Q5

)†

ik

(

g
uq

Q5

)

lj

M2
Q5

Table 4.18: Operators arising from the integration of a Q5 vector field.

Xµ ∼ (3,Adj) 2
3

JX
µ =

(

glqX

)

ij
liLγµ

σa
2
qjL

Four-Fermion Operators

• LLLL
(

α
(1)
lq

)

ijkl

Λ2 = −
3
(

g
lq
X

)†

kj

(

g
lq
X

)

il

8M2
X

(

α
(3)
lq

)

ijkl

Λ2 =

(

g
lq
X

)†

kj

(

g
lq
X

)

il

8M2
X

Table 4.19: Operators arising from the integration of a X vector field.

Y1
µ ∼

(

6, 2
)

1
6

JY1

µ =
(

gdqY1

)

ij
d
i(A|
R γµiσ2q

c j|B)
L

Four-Fermion Operators

• LRRL
(

α
(1)
qd

)

ijkl

Λ2 = −
4
(

g
dq

Y1

)†

lj

(

g
dq

Y1

)

ki

3M2
Y1

(

α
(8)
qd

)

ijkl

Λ2 = −
(

g
dq

Y1

)†

lj

(

g
dq

Y1

)

ki

2M2
Y1

Table 4.20: Operators arising from the integration of a Y1 vector field. (A| · · · |B) = 1
2 (AB +BA)

stands for the symmetric combination of color indices.



4.7 Addendum: Operator coefficients in the effective Lagrangian 113

Y5
µ ∼

(

6, 2
)

−
5
6

JY5

µ =
(

guqY5

)

ij
u
i(A|
R γµiσ2q

c j|B)
L

Four-Fermion Operators

• LRRL
(

α
(1)
qu

)

ijkl

Λ2 = −
4
(

g
uq

Y5

)†

lj

(

g
uq

Y5

)

ki

3M2
Y5

(

α
(8)
qu

)

ijkl

Λ2 = −
(

g
uq

Y5

)†

lj

(

g
uq

Y5

)

ki

2M2
Y5

Table 4.21: Operators arising from the integration of a Y5 vector field.
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Chapter 5

Beyond the Standard Model
dimension-six effective Lagrangian

Despite its generality, the basis of dimension five and six operators introduced in Chapter 1
and used throughout the subsequent chapters is not sufficient if there are new light particles that
can be produced on their mass shell. It is easy to adapt the effective method to that situation.
As only the light degrees of freedom of the theory as well as its symmetries are required in order
to build the most general effective Lagrangian, we simply need to add more fields and maybe to
impose additional symmetry requirements. The only limitations we have in doing so is that the
SM particles and symmetries must be incorporated to the final effective Lagrangian. On the other
hand, additional light particles are ruled out by current observations, unless they have escaped
direct detection, either because their interactions are too small, or because we lack precision in
measuring those processes where they may be involved.

In the previous chapters we have examined the available EWPD, looking for some space to
accommodate the existence of new heavy particles. We have been checking the consistency of such
extensions with observations, which ultimately reveals that to understand the data the best choice
is probably the SM. But we did not consider the only observational evidence we have of physics
beyond the SM: neutrino oscillations. The observed neutrino properties are in agreement with the
minimal extension of the SM resulting from the sole addition of neutrino masses [18, 167, 168].
Neutrinos are massless within the SM because there are not neutrino singlet counterparts, Higgs
fields transform as an electroweak doublet, and the theory is renormalizable. However, neutrino
masses are generated relaxing any of these conditions. Within the effective Lagrangian approach
we have been using up to now, which assumes the minimal SM fermion content, neutrino masses
can be explained since we allow for higher-dimensional operators. This is the case of the lepton
number violating dimension-five Weinberg operator O5 [60]. As we saw in Chapter 2, after EWSB
O5 generates Majorana mass terms for the SM neutrinos

(α5)ij
Λ

(O5)ij =
(α5)ij
Λ

li cL φ̃∗φ̃†ljL

EWSB

−→
(α5)ij
Λ

v2

2
νi cL νjL , mν

i = −(Uν TL )ik
(α5)kl
Λ

v2(UνL)li , (5.1)

with UνL the corresponding unitary transformation diagonalizing the mass matrix. Assuming liL in
the charged lepton mass eigenstate basis, this gives the charged current mixing upon diagonalization

LCC = − g√
2
UijW

−
µ e

i
Lγ

µνjL + h.c., U = UνL . (5.2)
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The tiny neutrino masses require very small values for the coefficients (α5)ij /Λ multiplying (O5)ij ,

which are so minuscule because (α5)ij are extremely small (∼ 10−12 for Λ ∼ v) or Λ is very large

(∼ 1014 GeV for (α5)ij ∼ 1).

On the other hand, Dirac masses cannot be described within this minimal realization as there
are no singlet RH neutrinos in the light spectrum. Indeed, the addition of three RH neutrinos νiR
allows for arbitrary Dirac neutrino masses after EWSB,

−yνij liLφ̃νjR + h.c.
EWSB

−→ − yνij
v√
2
νiLν

j
R + h.c. , mν

i = (Uν †
L )iky

ν
kl

v√
2
(UνR)li , (5.3)

similarly as for up quarks but with much smaller Yukawa couplings yνij . This lepton number
conserving term and the corresponding neutrino mass matrix then can also provide the observed
neutrino masses and charged current mixing.

Neutrino oscillations, which are the only manifestation of neutrino masses and mixing up to
now, are well described by two mass splitings ∆m2

ij ≡ mν 2
i −mν 2

j and the PMNS mixing matrix
[63] U in Eq. (5.2). Therefore, these experiments cannot distinguish between Dirac and Majorana
masses because in both cases the charged gauge interactions are given by UνL, and neutral gauge
interactions also only involve LH neutrinos and are universal at lowest order [169] (see also [170]).
Note also that neutrino masses, bounded to be less than 0.1 eV [171] and then very small compared
to other mass parameters in the theory, and in particular to the electroweak scale v ≈ 246 GeV, are
unobservable in laboratory experiments where the relevant energies are much larger, and generically
in experiments sensitive to electroweak interactions ranging from muon decay to particle collisions
at LHC. Thus, the question is whether light neutrinos have further observable interactions beyond
their masses. This can be answered considering the corresponding effective Lagrangian and fitting
it to present data. In this regard, though the standard effective Lagrangian suffices to describe non-
standard LH neutrino interactions, answering the previous question in the most general scenario
requires to extend the formalism to the case where we consider also light RH neutrinos within the
fermionic spectrum. On the other hand, as the neutrino mass scale is so small, it is appropriate
to assume that new physics parameterized by dimension-six operators involving only SM fields or
light RH neutrinos is lepton number conserving. Limits on those operators for LH neutrinos can
be found in [102, 172, 173, 174], being typically at the per cent level in definite models and near the
expected sensitivity in neutrino oscillation experiments. Model-independent bounds can be one
order of magnitude larger. In the present chapter, however, we would like to turn our attention
to the interactions of the RH counterparts, since if some of them are large enough to give any
observable effect they could guide us in the determination of the existence of these extra neutral
fermions. Therefore, we devote the first section of this chapter to introduce the corresponding
effective Lagrangian extension. We then comment on the new interactions effects at the Lagrangian
level after EWSB, and whether they have any observable impact on the EWPD used in our fits.
In the second section we emphasize that a muon based neutrino factory could show the existence
of light RH neutrinos, if a deficit in the number of detected events is observed at a near detector.
We find that this could be as large as ∼ 10% if the size of the new interactions saturate the
present limits from EWPD. This is not excluded by the oscillation experiments performed up to
now. We also present a simple model realizing such a scenario, obtained by adding RH neutrinos
to the minimal SM, together with an extra scalar doublet and a triplet of hypercharge 1. In this
case, however, the possible deficit is reduced by a factor of ∼ 3, and the Yukawa couplings must
be adequately chosen. This is also generically required if lepton flavor violation must be below
present bounds.
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5.1 The dimension-six effective Lagrangian with light right-

handed neutrinos

Describing light RH neutrino interactions within the effective Lagrangian only requires to complete
the basis of tree-level generated operators introduced in Table 1.1 with those in Table 5.1. For the
complete set including also operators that may arise at the loop order see Ref. [175], although in
that reference the RH neutrinos are assumed to have masses of few hundreds of GeV (Note that
the operators O′

NN in Eq. (6) and OQNdQ in Eq. (7) in that reference are redundant and therefore
do not appear in Table 5.1.). The extended basis of tree-level operators has one more operator of
dimension five, sixteen four-fermion interactions, and two SVF and one SF operators. We have
also included the few new dimension-six interactions violating B and L, but preserving B−L, that
can be built if we include the RH neutrinos. As we argued in Chapter 1, these last interactions
involve three quarks and one lepton, and the quark combination must carry zero hypercharge in
order to preserve U (1)Y gauge invariance. This leaves only two possible combinations of quarks:
dRqLqL and uRdRdR, and the latter can be combined in two different ways with the νR. Finally,
in this case it is also possible to construct a dimension-six operator violating B − L. This is the
operator we call Oνcν , and is built from four neutrino singlets, so it violates L in four units.

Operator Notation Operator Notation
(

φ†φ
)

(νRν
c
R) O5ν

R
R
R
R

1
2 (νRγµνR) (νRγ

µνR) Oνν (eRγµeR) (νRγ
µνR) Oeν

(uRγµuR) (νRγ
µνR) Ouν

(

dRγµdR
)

(νRγ
µνR) Odν

(uRγµdR) (eRγ
µνR) Oudν

L
R
R
L

(

lLνR
)

(νRlL) Olν (qLνR) (νRqL) Oqν
(

lLνR
)

(uRqL) Olνu (qLuR) (νRlL) Oquνl

ǫABC

(

qAL iσ2q
c B
L

)

(

νRd
c C
R

)

Oqqνd

L
R
L
R

(

lLeR
)

iσ2
(

lLνR
)

Oll

(

lLνR
)

iσ2 (qLdR) Oql
(

lLdR
)

iσ2 (qLνR) Oql′

ǫABC

(

uc AR dBR

)(

dc CR νR

)

Ouddν ǫABC

(

uc AR νR

)(

dc BR dCR

)

Ouνdd
(

νcRνR
) (

νcRνR
)

Oνcν

S
V
F

(

φ†iDµφ
)

(νRγ
µνR) O(1)

φν

(

φT iσ2iDµφ
)

(νRγ
µeR) Oφνe

S
F

(

φ†φ
) (

lLiσ2φ
∗νR

)

Oνφ

Table 5.1: Dimension five and six operators completing Table 1.1, in the case that RH neutrinos
are light. Transposition of the second SU(2)L doublet is understood in the LRLR four-fermion
operators.

Following the discussion in Chapter 2, after EWSB some of the new operators will correct
neutrino masses and interactions. Thus, whereas the Weinberg operator O5 gives Majorana masses
to the SM neutrinos, the corresponding corrections to the SM neutrino Dirac masses are introduced
by Oνφ. The extra neutral singlets can also receive extra Majorana masses from O5ν . Both
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operators, Oνφ and O5ν , also generate additional Yukawa interactions with the Higgs boson:

∆LH = − 1√
2
H
(

1 + δUy
)

[

(

yνiiδij + δyνij
)

νiLν
j
R + δyν

c

ij ν
i
Rν

jc
R + h.c.

]

,

δyνij = −
(

(Uανφ)ij +
1

4
(Uανφ + h.c.)ii δij

)

v2

Λ2
,

δyν
c

ij = −
√
2 (α5ν)ij

v

Λ
,

(5.4)

where δUy is given by Eq. (2.74) and we have assumed, as we did for the other fermions, that the
RH singlets are chosen in the basis of mass eigenstates in absence of higher-dimensional operators.
As we saw, Yukawa interactions for the SM fermions had no effect in the electroweak precision
observables included in our fits but may be constrained by FCNC processes. In this case, however,
the strongest bound comes from the tiny neutrino masses, which make the above interactions unob-
servable. Other dimension-six operators are not bounded by neutrino masses and could eventually

yield sizable effects. This might be the case of O(1)
φν which induces neutrino RH neutral currents as

well as derivative couplings with the Higgs boson, or Oφνe which introduces RH leptonic charged
current interactions:

∆LNC = − e

sc

(

δDgνR
)

ij
Zµ νiRγ

µνjR, δDgνR = −1

4

(

α
(1)
φν + h.c.

) v2

Λ2
,

∆LCC = − e√
2s
W+
µ

(

δU †
R

)

ij
νiRγ

µejR + h.c., δUR = −1

2
α†
φνe

v2

Λ2
,

∆LH = ihνRij ∂µH νiRγ
µνjR, hνR =

1

2

(

α
(1)
φν − h.c.

) v

Λ2
,

(5.5)

where we have directly written the global factors in the gauge couplings using the input values for
the SM parameters, for the above interactions are generated starting at order 1/Λ2.

5.1.1 Contributions to precision observables

The first thing to note when analyzing the implications of the RH neutrino interactions is that, as
none of them are present at order 1, for whatever observable one may consider the corresponding
corrections always enter at order 1/Λ4. Then, as we expect that only 1/Λ2 effects are relevant
for the precision of current data, this means that only relatively weak bounds can be derived for
these interactions. From a computational point of view we must also note that, for consistency
and in order to compare with any other sources of new physics, one should work out the effective
Lagrangian up to dimension eight for all interactions except for those involving RH neutrinos when
the effects of the latter are considered. This is so because contributions from dimension-eight
operators interfering with the SM amplitudes are comparable to the quadratic new dimension-six
operators contributions. In the same way, it is also required to extend the formulae in Chapter 2
to include quadratic effects from all the other dimension-six interactions. Including dimension-
eight effects is however beyond the scope of this thesis and, when necessary for the observables
and interactions of our interest, we will simply work out the quadratic effects of the dimension-six
operators.

There are very few places where the new neutrino interactions introduced in Table 5.1 may
have a direct observable effect. Processes such as neutrino scattering with electrons or nuclei at
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low energies should be in principle sensitive to them but only if the incoming neutrino has the
adequate helicity. However, as mentioned in Chapter 2, in these processes the incident (muon)
neutrinos are produced at accelerator facilities where they originate from pion and kaon decays, and
these are known to be LH [176, 177]. In particular, the helicity of the neutrino coming from pion
decay, which is the dominant source in the beams1, has been measured with very high precision:
∣

∣hνµ
∣

∣ > 0.9959 at 90% C.L. [176]. Other precision observables where the RH neutrinos may appear
as final states can be directly sensitive to new interactions. This is the case of the Z invisible width
and the W leptonic width, which can be affected by the neutral and charged current couplings
in Eq. (5.5), and also of muon decay where the polarization of the final neutrinos is unknown.
This last example will play a crucial rôle in the discussion in the next section, where we deal
with the implications that new physics correcting muon decay and its inverse process may have in
order to test the existence of RH neutrinos at a neutrino factory. Let us review the form of these
corrections. The inverse muon decay (IMD) reaction νe → νµ was not considered in Chapter 2,
for in the discussion presented there it essentially receives the same corrections as the muon decay
process. However, if RH neutrino interactions are present in nature this is not necessarily true.
This is so because whereas in IMD experiments [178] we are blind to such interactions since the
initial neutrino is produced at the laboratory and is LH as argued above, in muon decays, as we
also have stressed, we do not know what is the helicity of the final neutrinos. Therefore, these two
processes could distinguish the presence of RH neutrino interactions if they contributed to muon
decay. In particular, if we assume that new physics is lepton flavor conserving, as we will do in
next section, we only need to consider the standard decay channel2. The relation between the
muon decay constant and the SM GF is modified

G2
µ

G2
F

=

∣

∣

∣

∣

1 +
(

α
(3)
φl

)

22

v2

Λ2
+
(

α
(3)
φl

)†

11

v2

Λ2
− (αll)2211

v2

Λ2

∣

∣

∣

∣

2

+
1

16
|(αlν)1122|

2 v
4

Λ4
, (5.6)

where for simplicity we have only included the extra corrections from the operator Olν since, as
will be discussed below, other interactions entering in muon decay are strongly bounded to small

values. We have also omitted in Eq. (5.6) the corrections from the operators O(1)
φ and Oφ6 because

they have no impact in our fits, as explained in Chapter 2.
On the other hand, the IMD cross section, normalized to the SM value, is only affected by new

physics involving LH neutrinos. With the same considerations as above:

SIMD ≡ σ (νe→ νµ)

σSM (νe→ νµ)
=
G2
F

G2
µ

∣

∣

∣

∣

1 +
(

α
(3)
φl

)

22

v2

Λ2
+
(

α
(3)
φl

)†

11

v2

Λ2
− (αll)2211

v2

Λ2

∣

∣

∣

∣

2

. (5.7)

As we did for the other observables, we normalize all the new effects so the muon decay rate is
exactly reproduced by (5.6):

SIMD = 1− 1

16
|(αlν)1122|

2 v
4

Λ4
, (5.8)

which is the expression that will enter in the fits. In the same way, the coefficient (αlν)1122 will
now enter in all the other electroweak precision observables in the form of indirect corrections,
which can be constrained in the global fit to data.

1The kaon to pion ratios measured for instance by the CHARM collaboration are: K+/π+ = 0.1282 ± 0.0028
and K−/π− = 0.0630 ± 0.0033 [73].

2It is straightforward to generalize the formula to include lepton flavor violating contributions by summing over
all the possible channels with the different neutrino flavors. At order 1/Λ4 there are contributions from genuine
four-fermion interactions and from amplitudes exchanging W and Z vector bosons where only one of the vertices
violate flavor.
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5.2 Looking for right-handed neutrino signals at neutrino

factories

As emphasized in the introduction of this chapter, neutrino oscillations provide the only obser-
vational evidence of new physics beyond the minimal SM. These observations, however, cannot
distinguish between Dirac or Majorana neutrinos, nor they require new interactions 3. The obvi-
ous question is then, where do we have to look in order to determine the neutrino character and/or
to observe possible new interactions involving light neutrinos? This will become especially relevant
when we face the need to interpret new data with higher statistics and precision, as foreseen at a
neutrino factory [180]. In the following we show that present experimental constraints leave room
for observing new interactions involving light RH neutrinos, corresponding to a ∼ 10% deficit in
the expected number of events in appropriate processes. Such a scenario can be easily realized with
a mild extension of the SM, through the addition of additional scalar weak isodoublet (to be de-
noted by η), and a scalar iso-triplet of hypercharge 1, (denoted by ∆), besides three RH neutrinos,
νiR. But it requires an adequate choice of Yukawa couplings to suppress lepton flavor violation;
moreover, for this particular model, the deficit allowed by current EWPD is reduced by a factor
of ∼ 3 compared to the general case above, where arbitrary new interactions are parameterized by
gauge-invariant dimension-six operators with unrelated coefficients.

Within the SM muons only decay into LH neutrinos. Even if the spectrum is enlarged to
include their RH counterparts, these are not produced in such decays because they have no gauge
interactions, and neutrino masses are negligible. On the other hand, if other interactions are
present in nature, a muon based neutrino factory could inject an admixture of neutrinos with both
chiralities. We will show below that the limits on new interactions involving RH neutrinos are to a
large extent those derived from (inverse) muon decay, and therefore relatively weak. This is then
a promising reaction to look for new physics effects in the neutrino system.

Let us first, however, describe our setup. We assume that the three light neutrinos are of Dirac
type, i.e. that there are three light neutrino singlets beyond the minimal SM, and that lepton
number is conserved. In practice this is not a restriction on the light neutrino character, but
on the type of new interactions. As it was also noted at the beginning of the chapter, neutrino
masses are negligible in all experiments performed up to now, except in neutrino oscillations (and
eventually in neutrino-less double β decay, 0νββ). Thus, we can assume that all interactions
conserve lepton number because neutrino masses are much smaller than the energy relevant in the
processes considered and/or the experimental precision is much lower than the size of the effects
proportional to them, as it is the case for all foreseen experiments not involving neutrino oscillations
and excluding 0νββ. Though we could consider lepton number violating new interactions, their
effects can be ignored in our analysis 4, as can be the lepton number violating effects from neutrino
masses.

Hence, the new interactions effects we are interested in will be relatively large and lepton number
conserving, whereas neutrino masses will be safely taken to vanish. The effective Lagrangian

3In what follows we will ignore the LSND data [179].
4In an effective theory only involving the light SM fields and invariant under the SM gauge group the only

dimension-five operator violating L, the Weinberg operator O5, is negligible because of the smallness of neutrino
masses. There is no dimension-six operator violating B-L [61]. Thus, any lepton number violating dimension-six
operator violates B at the same time, and then involve quarks and will play no rôle in our analysis. If the effective
theory also includes RH neutrinos, as in our case, there are two additional dimension five lepton number violating
operators [175]. One of them arises at the loop level, generates a magnetic coupling for the RH neutrinos and is
very strongly constrained when the νR are light [181]. The other, the operator O5ν , generates a correction to the νR
Majorana mass term and is therefore also negligible. There is only one dimension-six operator violating B-L (and
L), the operator Oνcν , but involves four RH neutrinos, and then is uninteresting for us. The other dimension-six
operators violating L also violate B, and can be also ignored.
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describing such a scenario will not distinguish between (i.e. approximates equally well) the case
of exact lepton number conservation with very small Dirac masses for the three light neutrinos,
and the case of negligible Majorana masses for the six light neutral fermions, the only vestige
of the very slightly broken lepton number in this case. This was explicitly proved in [182] for
(inverse) muon decay assuming no additional constraints on new interactions. Note that by similar
arguments we can also neglect lepton flavor violation induced by light neutrino mixing (to a very
good approximation).

The most general four-fermion effective Hamiltonian describing muon decay reads

Hµ→ννe =
4GF√

2

∑

a, b = L,R

γ = S, V, T

gγab(e Γγ νea)(ν
µ
b Γγ µ) + h.c. , (5.9)

where a, b label the chirality of the neutrinos, while γ refers to the Lorentz character of the
interaction (scalar, vector and tensor). The present limits on the size of the various coefficients
will be discussed in the following section. Here we merely remark that the two couplings gVLL, g

S
RR

are also associated with the largest departure from the SM predictions for the number of events to
be detected by a neutrino factory.

There are many other available EWPD that can be used to indirectly constrain the Hamiltonian
(5.9), and in particular those two couplings. To derive such restrictions one can take two routes.
The first one consists in re-writing (5.9) as a linear combination of higher-dimensional operators
invariant under SU (3)c ⊗ SU (2)L ⊗ U (1)Y , and adding these operators to the SM Lagrangian
[173]; the coefficients of the resulting effective theory can then be bound using experimental data
at all available energies. In this approach the physics responsible for generating these operators is
left unspecified, except for the requirement that its characteristic scale lie beyond the electroweak
scale. The advantage of this approach is its generality, since it is not tied to any specific assumption
about the physics beyond the SM, its disadvantage is the proliferation of coefficients, and the fact
that more than one gauge-invariant operator contributes to each term in (5.9).

The second route is to extend the SM by adding a specific set of new fields (such as the η and
∆ mentioned previously) and interactions. This has the advantage of providing a specific scenario
for the physics beyond the SM, but the results obtained are often specific to the assumptions made
in constructing the model. At scales below those of the heavy particles this model will reduce to
an effective theory of the type mentioned above, except that the effective-operator coefficients are
all expressed in terms of a smaller number of parameters and can be constrained more tightly.

In the following we will examine both of these possibilities. In the next section we consider
the effective Lagrangian approach, which we denote by E1, where we choose a set of four-fermion
effective operators that generate (5.9) at low energies and have little impact on other electroweak
observables. In Section 5.2.2 we will also consider a specific extension of the SM, which we denote by
E2, based on an extended scalar sector. Finally, in the last two sections we discuss the implications
of these SM extensions for neutrino oscillations and other experiments, respectively.
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5.2.1 Electroweak precision data constraints on right-handed neutrino
interactions

One effective-Lagrangian extension of the SM, which we denote by E1, consists in adding to the
SM the following set of effective operators

∆LE1=− 4GF√
2

[

gSLL(l
µ
LµR)(eRl

e
L)+g

S
RR(l

e
Lν

e
R)(ν

µ
Rl
µ
L)+g

S
LR(eRl

e
L)iσ2(ν

µ
Rl
µ
L)−gSRL(leLνeR)iσ2(lµLµR)+

+
δgVLL
2

(leLγ
αlµL)(l

µ
Lγαl

e
L)+g

V
RR(eRγ

ανeR)(ν
µ
RγαµR)−

gVLR
v2

(leLσaγ
αleL)(φ

T iσ2σaφ)(ν
µ
RγαµR)+

+
gVRL
v2

(eRγ
ανeR)(φ

†σaiσ2φ
∗)(lµLσaγαl

µ
L)+g

T
LR(eRσ

αβleL)iσ2(ν
µ
Rσαβl

µ
L)−

−gTRL(leLσαβνeR)iσ2(lµLσαβµR)
]

+ h.c. ,

(5.10)

where the adequate SU(2)L transposed are understood in order to render the operators with an
iσ2 gauge invariant. The dimension-six operators in the above Lagrangian can be readily related to
those in the basis presented in Chapter 1 and extended in the first section of this one. We choose
to write them in this way in order to directly compare this extension with the standard muon
decay effective Hamiltonian in Eq. (5.9). For the same reason we label the operator coefficients as
gγab, instead of using the notation employed till now in this thesis. E1 is manifestly invariant under
SU (3)c⊗SU (2)L⊗U (1)Y , and lepton flavor (and lepton number) conserving. Note that gVLR and

gVRL are associated with operators of dimension eight: νµRγ
αµR and eRγ

ανeR have hypercharges
Y = −1 and 1, respectively, and we cannot construct a gauge invariant vector with opposite
hypercharge using only lL and lL; at low energies (5.10) reduces to (5.9) with the definition
gVLL ≡ 1 + δgVLL.

In (5.10) we have chosen to write all dimensional coefficients in terms of v. This implies that
the natural size for the coefficients is

gγab ∼
{

(v/Λ)4 for gVLR,RL ,

(v/Λ)2 otherwise ,
(5.11)

where Λ denotes the heavy scale of the physics responsible for generating the corresponding oper-
ator.

A characteristic feature of this particular extension is that, except for the effect on the muon
decay constant and IMD, EWPD are blind to the operators in Eq. (5.10). For instance, although
gSLR and gTLR contribute to e+e− → νµνµ and affect the Z invisible width, as was emphasized
in Chapter 2 the effects from four-fermion interactions are negligible compared to the Z pole
contribution. E1 does not contribute to lepton flavor violating processes either, because it does
not include lepton flavor violating operators. Similarly, universality is preserved since the gauge
couplings to leptons remain the same as in the SM.

It must be emphasized, however, that in specific models (such as E2, described in Section 5.2.2
below) the various coefficients in Eq. (5.9) are written in terms of the fundamental parameters
of the theory, these parameters appear in all other interactions, and in general will contribute to
other observables, which in turn can be used to stringently constrain gγab. In fact, it is non-trivial
to find models where these limits are not so strict that they exclude further observable effects from
(5.9).

As we argue below the largest departure from the SM predictions is parameterised by gVLL and

gSRR. Constraints on these two operators (leLν
e
R)(ν

µ
Rl
µ
L) and (leLγ

αlµL)(l
µ
Lγαl

e
L) in Eq. (5.10) can be
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Figure 5.1: 90% C.L. bounds for E1 case (b) in Eq. (5.12); and the same for the SM extension E2
in next section. The narrow bands between the origin and the crosses define the 90% confidence
region for the global fit to the two parameters for E1 (left cross) and E2 (right cross) respectively.

obtained using current data. At 90% C.L. we find

case
∣

∣gVLL ≡ 1 + δgVLL
∣

∣ |gSRR|
(a) > 0.960 < 0.550
(b) > 0.957 < 0.579
(c) > 0.9998 < 0.054

(5.12)

where the limits in case (a) are obtained directly from (5.9) using muon decay and νe→ νµ data
[18, 183]; in case (b) from a global fit using the precision data in Appendix A to the operator
coefficients with the SM parameters fixed at their best-fit values 5; in case (c) as in case (b) but
taking one effective-operator coefficient to be non-zero at a time. This last possibility, though often
adopted for simplicity is seldom realistic: as noted previously one must expect the heavy physics
to generate several operators with related coefficients, so that fits allowing for several non-zero
interactions become compulsory. Even more, if the new physics is to have sizable indirect effects,
then it must also conspire to preserve the excellent fit of the SM to the EWPD at the 1h level [18].
In Fig. 5.1 we plot the bounds for case (b). The results in (5.12) indicate that the two parameters
in the fit are highly correlated. This is expected since the fit is dominated by the constraint on
the strength of the muon decay constant Gµ, which is proportional to the SM Fermi constant GF
in Eq. (5.9):

Gµ= GF
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∣
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+ (5.13)

+ 4
(

∣

∣gTRL
∣

∣

2
+
∣

∣gTLR
∣

∣

2
)]

1
2 ≡ GFA ,

with the proportionality constant A restricted by the global fit to the interval

0.9997 < A < 1.0004 at 90% C.L. . (5.14)

5These limits stay mainly unchanged if the SM parameters are also left free in the global fit.
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This bound alone constrains the coefficients to a narrow band in the δgVLL −
∣

∣gSRR
∣

∣ plane

|gSRR|2 ≃ −8 δgVLL , (5.15)

as depicted in Fig. 5.1.
Using the bounds above we can derive limits on the scale of new physics responsible for the two

operators being considered. Using (5.11) and assuming the underlying physics is weakly coupled
(gγab ∼ g2v2/Λ2 for the dimension-six coefficients) we find the weak constraints Λ > 200 GeV for
gSRR and Λ > 800 GeV for δgVLL.

As already stressed, we are interested in those interactions in the muon decay effective Hamil-
tonian that could allow for the largest deviation from the SM prediction of the number of events
that may be eventually detected at a neutrino factory. In general, while it is clear that a neg-
ative δgVLL is strongly favored for this to be possible (see Eqs. (5.13, 5.14)), one may wonder
whether any of the other interactions involving a RH neutrino may play the role of gSRR. This
could be the case for gVRR or the LR and RL operators in Eq. (5.10). However, unlike for gSRR,
which cannot be separated from δgVLL in muon decay experiments since we do not measure the
polarization of the final neutrinos, all the other interactions are constrained by the absence of any
significant deviation from the V−A prediction in the spectrum of the outgoing electrons. In par-
ticular,

∣

∣gVRR
∣

∣ < 0.034. On the other hand, the bounds for some of the LR and RL interactions are
relatively weak, but they also generate radiative corrections to the neutrino masses and, assuming
naturality, are constrained by the associated upper limits [184]:

∣

∣gSLR
∣

∣ ,
∣

∣gVRL
∣

∣ ,
∣

∣gTLR
∣

∣ < 10−2 and
∣

∣gSRL
∣

∣ ,
∣

∣gVLR
∣

∣ ,
∣

∣gTRL
∣

∣ < 10−4. Therefore, when we consider the data from IMD, where the incident
neutrinos come from pion decays and then are LH, and derive a relatively weak bound on δgVLL,
this can be only compensated by gSRR in order to satisfy (5.14), but in contrast with the remaining
operators in Eq. (5.10) has no further constraints.

5.2.2 A simple Standard Model extension

Let us discuss a simple model realizing the former scenario. It extends the SM including besides
three RH neutrinos νiR with zero lepton number, a second scalar doublet η with lepton number
equal to −1, and a scalar triplet ∆ with hypercharge 1 and lepton number equal to −2,

η =
( η+

η0

)

, ∆ =
( ∆+

√
2∆++

√
2∆0 −∆+

)

, (5.16)

as in [185] and [2, 3, 102, 186], respectively. They both can acquire a vacuum expectation value
through very small lepton number violating couplings to the SM Higgs (which carries zero lepton
number), and provide masses and mixings to the light neutrinos, which must be then fit the
observed spectrum in oscillation experiments 6. But, these couplings, as the neutrino masses, can
be safely neglected in our analysis: we can assume that light neutrinos are massless, and that
lepton number and lepton flavor are both conserved. Thus, besides the kinetic term for the RH
neutrinos, the SM fermionic Lagrangian acquires only two more terms

−fijνiRl
jT
L iσ2η − λij l

iT
L Ciσ2∆l

j
L + h.c. , (5.17)

with only fee,µµ and λeµ = λµe potentially large enough to produce measurable effects in current
and near-future experiments. The integration of the extra scalars results, in particular, in the
following contributions to the muon decay effective Hamiltonian:

4GF√
2

[

gSRR (leLν
e
R)(ν

µ
Rl
µ
L) +

δgVLL
2

(leLγ
αlµL)(l

µ
Lγαl

e
L)

]

+ h.c. , (5.18)

6There can be also tiny RH neutrino mass terms.
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Process E1 E2

ν-N 8.5% (5.0%) 2.5% (2.5%)
IMD 15.4% (9.3%) 4.8% (4.8%)

Table 5.2: Maximum deficit in the number of observed events in a near detector sensitive to
neutrino-nucleon collisions (ν-N) and IMD for the two SM extensions discussed in the text. In
parentheses we show the deficits expected in the case that the precision on the measurement of
IMD is improved by a factor of 2.

with coefficients

gSRR = − 1

2
√
2GF

f †
eefµµ
M2
η

and δgVLL = − 1√
2GF

λ†µeλµe

M2
∆

, (5.19)

respectively, whereMη,∆ stand for the scalar masses. The full set of dimension-six operators arising
from the integration of the scalar triplet ∆ is given in [2, 3, 102].

In this case, named E2 in the former section, the EWPD analysis implies more stringent bounds
on δgVLL and gSRR than for E1:

∣

∣1 + δgVLL
∣

∣ > 0.988, and |gSRR| < 0.313 . (5.20)

The corresponding band is plotted in Fig. 5.1. The bounds obtained are tighter because, as
emphasized previously, the integration of definite new physics also gives, in general, operators
contributing to other processes, further restricting the model. In the present case the integration
of the ∆ generates also the operator (leLγ

αleL)(l
µ
Lγαl

µ
L), which has the same coefficient δgVLL as

(leLγ
αlµL)(l

µ
Lγαl

e
L), and contributes to νµe→ νµe, further restricting the allowed deviation from the

SM predictions 7.
Lepton flavor violation is below experimental bounds because similarly to the E1 case the only

non-negligible couplings in Eq. (5.17) are fee,µµ and λeµ = λµe, and because the scalar doublets
and triplet mix very little, as required by approximate lepton number conservation. The absence
of new τ couplings and that the SM gauge couplings stay unchanged guarantee the agreement with
universality constraints on the lepton sector.

5.2.3 Neutrino factory predictions

The relevant phenomenological question is where could the RH neutrinos be eventually observed
if the δgVLL and gSRR four-fermion interactions are non-zero. Obviously, they can be probed in a
more precise IMD experiment: a more precise measurement of this process could give evidence for
those new interactions (or reduce the allowed deviation from the SM in Eqs. (5.12,5.20) and Fig.
5.1). But a muon-based neutrino factory will also be sensitive to them. Indeed, if a substantial
amount of the neutrinos produced in muon decay are RH, a near-detector sensitive to neutrino-
hadron collisions will observe a deficit in the same proportion, and this deficit would be twice as
large if the detector could also measure the IMD process. In Table 5.2 we give the maximum
deficits expected in the case that the new interactions saturate the 90% C.L. bounds obtained in
the previous sections. Whereas in Fig. 5.2 we show the predicted deficit as a function of δgVLL for
the SM completions considered.

7In our approximation (implying negligible lepton number violation in the scalar sector) there are no tree-level
contributions to the oblique parameters.
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Figure 5.2: Percentage of detected events in a near detector at a neutrino factory compared to
the predicted number by the SM, as a function of the new interactions strength δgVLL. The solid
(dotted-dashed) curve corresponds to neutrino-nucleon (IMD) collisions. The vertical lines stand
for the E1 and E2 limits on δgVLL in the text.

If the precision in the measurement of the IMD is improved by a factor of 2 without modifying
the central value, the limits on the new interactions would be strengthened and the allowed deficit
of observed events at a neutrino factory reduced; the corresponding percentages in such a case are
given in parentheses in Table 5.2. For the E1 extension the deficit would be reduced to ∼ 5%,
being the 90% C.L. bounds in this case

∣

∣1 + δgVLL
∣

∣ > 0.975 and |gSRR| < 0.442. In the E2 case
the improvement in the precision of IMD would have no appreciable effect because this constraint
would be weaker than the one derived from eν elastic scattering.

For a neutrino factory to be sensitive to a deficit < 3% (the smallest value listed in Table 5.2),
the neutrino flux must be known with enough precision. Besides, large fluxes are also required to
have a large number of events at a near detector in order to keep the statistical error small. For a
detailed study about future neutrino factories see [180]. Assuming 1021 muon decays in one year
of operation, the number of expected ν-N events at a near detector (such as the one described in
Table 1 of [180]) is of the order of 109; while the number of IMD events range from 104 to 106,
depending on the energy and polarization of the decaying muon. Then, deficits even smaller than
few per mille due to the injection of RH neutrinos could be eventually testable for such a large
statistics. However, per mille deficits may be too small because the highest achievable precision in
the determination of the flux is expected to be at most of ∼ 1h. But being conservative, it could
be up to a factor ten times larger, and then of the same order as the largest possible deficit for the
E2 extension.

At this point one may wonder about the consistency of these large deficits with the interpreta-
tion of present neutrino oscillation experiments summarized in Table 5.3. As we will argue, these
seem to be largely insensitive to new four-fermion interactions involving an electron, a muon and
the corresponding neutrinos. Reactor experiments are initiated by electron antineutrinos from β
decay, they are then LH and fully described by the SM. Similarly, solar neutrinos have electronic
flavor, are also LH and produced by SM reactions. Atmospheric neutrinos are decay products of pi-
ons and muons from cosmic rays, and may include RH neutrinos. However, since the flux of cosmic
rays is isotropic, and atmospheric neutrino oscillation experiments only compare fluxes of muon



5.2 Looking for right-handed neutrino signals at neutrino factories 127

ν source Experiment Detection

Reactor Palo Verde [187], CHOOZ [188] νe 6→ νµ

(β decay) KamLAND [189] νe → νx

Solar SNO [190], Borexino [191] νe → νµ

Atmospheric Super Kamiokande [192] νµ → ντ

(π & µ decays)

Accelerator K2K [193],MINOS [194], CHORUS [195], NOMAD [196] νµ → ντ

(π & K decays) MiniBooNE [197] νµ 6→ νe

Accelerator LSND [179] νµ → νe

(µ decays) KARMEN [198] νµ 6→ νe

Table 5.3: Neutrino source for the different oscillation experiments and search process.

neutrinos coming from different directions, they are not sensitive to a possible deficit in the total
number of initial LH neutrinos from muon decays. On the other hand, in accelerator experiments
looking for νµ → ντ or νµ → νe, neutrino beams are mainly formed by muon neutrinos originating
from pion decays (with a fairly small contamination) [193], and then LH and with the SM oscilla-
tion pattern. Finally, in accelerator experiments looking for νµ → νe, the muon antineutrinos are
produced in µ+ decays, and therefore they are sensitive to the new interactions we are interested in.
However, what they measure is the number of positrons produced by inverse β decay, looking for
an excess of electron anti-neutrinos instead of looking for a deficit in the observed number of muon
anti-neutrinos. (The excess reported by the LSND experiment [179] has no explanation in this
setup.) Hence, there appears not to be any contradiction between the significant deficit predicted
by the new interactions considered here and the interpretation of current oscillation experiments.

5.2.4 Further phenomenological implications

In specific models that contain new fields and interactions there are in general further observable
effects, as for instance the production of the new particles at large colliders. This is the case of the
simple model E2 discussed in Section 5.2.2. If this type of new interactions saturates the EWPD
limits,

∣

∣

∣

∣

λµe
M∆ [TeV]

∣

∣

∣

∣

≃ 0.4 , (5.21)

implying a relatively large λµe and a light ∆. The LHC will be able to uncover such a scalar triplet
for ∆ masses up to 900 GeV and an integrated luminosity of 30 fb−1 [199] 8.

For this model the relation in Eq. (5.15) translates into a correlation between the scalar masses
Mη,∆ and/or the Yukawa couplings fee,µµ, λµe, namely

∣

∣

∣

f †
eefµµ
M2
η

∣

∣

∣

2

≃ 32
√
2GF

λ†µeλµe

M2
∆

. (5.22)

This implies that for these new interactions to have sizable effects at a neutrino factory we must
have relatively large fee,µµ and light η. The main signals in this case are missing energy plus one

8This estimate is larger than those quoted in [199] for in this model the scalar triplet only couples to e and µ
but not to taus, which are more difficult to identify and have larger backgrounds. In contrast with type II see-
saw models, this triplet is not the only source of neutrino masses, and light neutrino masses and mixings can be
reproduced even when the ∆-τ conplings vanish.
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or two leptons ℓ = e, µ because a charged (neutral) η has only sizable decays into ℓν (νν) 9. Thus,
W,WZ and WW production can provide too large irreducible backgrounds for observing these
scalars. Other SM processes like tt̄ production can also give large backgrounds. The search for this
scalar doublet is similar to left slepton searches assuming that they only decay into a LH charged
lepton and the lightest supersymmetric particle [201]. (Although in general sleptons can also have
cascade decays and be decay products of other supersymmetric particles [202].) In this case the
LHC discovery limit is ∼ 300 GeV for an integrated luminosity of 30 fb−1 [203], but this is assuming
that the slepton doublets coupling to the first two families are degenerate. However, in our model
there is only one scalar doublet, scaling the corresponding limit to 250 GeV after correcting by the
factor of 2. It may also happen that though the ∆ and η may be too heavy to be directly observed
at the LHC (e.g. M∆ & 1 TeV and Mη & 250 GeV), their effects can still be observable at a
neutrino factory provided f and λ fulfill Eqs. (5.21) and (5.22): fee,µµ ≃ 2λµe & 0.8. Obviously,
large enough lepton colliders are better suited for searching these scalars, since they couple mainly
to leptons, and these colliders allow for a better kinematical reconstruction. On the other hand, the
relation in Eq. (5.22), as the cancellation of other possible lepton flavor violating couplings, does
not appear to be natural in this simple model, but they could be in more complicated frameworks.

Finally, we note that one might consider other SM additions/extensions generating δgVLL, as
for instance, heavy neutrino singlets or triplets mixing with the electron or muon. In theses cases,
however, the relatively small mixings allowed by EWPD (see Table 3.11 in Chapter 3) are too
small to produce a sizable deficit.

9See [200] for alternative scalar doublet models.



Conclusions

The SM has proved to be an excellent phenomenological description of nature at energies of the or-
der of a few hundred GeV. Nevertheless, there are several reasons to believe that it is an incomplete
theory, which needs to be extended if we aim to understand phenomena at even higher energies.
The nature of such an extension is unknown, and we hope the LHC will help in providing some
hints about which road to follow. In the meantime indirect searches, looking for new effects in
available EWPD, may give hints of physics beyond the SM. We have no clue of what the right SM
extension may be, but we know it must be characterized by a rather heavy mass scale. This makes
the use of an effective Lagrangian approach very convenient for the analysis of the implications of
new physics. This is what we have done in this work. Its main results and conclusions are the
following:

• Based on a dimension-six effective Lagrangian approach, we have performed a model-indepen-
dent description of new physics. We have computed the leading corrections from the new
operators to all electroweak precision observables, providing explicit formulae for the new
contributions. Though less precisely measured, we also consider LEP 2 cross sections and
asymmetries. These are relevant in constraining four-fermion interactions.

We have discussed the main experimental constraints on each of the dimension-six operators
that can arise at tree level, as well as their interplay with the determination of the Higgs
mass.

• Using the effective Lagrangian approach we have described the effects of extra matter fields [1]
and new vector bosons [5] for arbitrary SM extensions. We have classified all such particles
that may mix with the SM fields and give an observable effect in current precision observables.
For each case, we have computed the corresponding operator coefficients in the dimension-six
effective Lagrangian, integrating the heavy particles out of the theory.

• Our phenomenological analysis of new fermions has been focussed on the effects of heavy
vector-like leptons [1, 2, 3, 4]. The results show that, even in the best case, the improvement
in the χ2 with respect to the SM fit is mild. In those cases the quality of the fit is similar to
the one of the SM fit.

We have derived upper bounds on the mixing of extra leptons with the SM fermions. They
are relevant for the production and decay of heavy resonances at large colliders. At 95%
C.L. the bounds range from 0.01 to 0.08. Our results improve existing limits, and provide a
significant reduction of the parameter space regions allowed by EWPD. In particular, the new
limits further reduce the possibility of producing heavy Majorana neutrino singlets at the
LHC in minimal models. In addition, we provide limits for cases not considered previously
in the literature.
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It is also noteworthy that mixing with extra neutrino singlets can help in accommodating
a relatively heavy Higgs. In particular, mixing with electron neutrinos allows to raise the
preferred value for MH above the LEP 2 direct limit, and place it right in the region were
some excess events were found in direct Higgs search experiments at LEP 2 and Tevatron.
The upper indirect limit is also relaxedMH < 228 GeV at 95% C.L.. The EWPD constraints
on extra vector-like quarks have received more attention in these years, especially for extra
doublets and singlets and in the cases where they are coupled to the third family.

• SM extensions with extra vector bosons are also considered [5]. This includes the cases of Z ′

and W ′ vector bosons, as well as more exotic possibilities such as vector leptoquarks and a
few vector particles not considered previously. EWPD are blind to those new vector bosons
that couple to quarks only, but they may be relevant for LHC.

From the global fit, only the ratios between couplings and masses of the new vectors can be
constrained. We find that LEP 2 data are relevant for two reasons. On the one hand, they
strengthen the constraints on leptonic couplings. On the other, they favor interactions that
raise the prediction for the hadronic cross section above the Z pole. The discrepancy with
the bottom Z-pole forward-backward asymmetry, AbFB, can be also relaxed in the case of
extra neutral singlets although this requires pretty large couplings. These can be avoided
combining several vector bosons.

Assuming that the fermionic couplings of the new vectors have the same strength as the
massive gauge bosons in the SM, we can estimate for new vector boson masses M > 1 TeV
at 95% C.L. for extra neutral singlets andM > 2.5 TeV for new charged vectors coming from
hypercharge 0 triplets. This is well within the LHC reach. Limits on vector leptoquarks are
also derived and range from 70 GeV to 830 GeV at 95% C.L., assuming couplings ∼ 0.1.
However, some protection to avoid FCNC is required in order to saturate the bounds.

Finally, we point out that besides the known case with an extra neutral vector boson, there
is an “exotic” representation also allowing for a heavy Higgs mass, with the same effect as a
fermiophobic Z ′.

• The effective Lagrangian approach can be easily adapted to more general scenarios with extra
light particles and/or additional symmetry requirements. In this thesis we have considered
the case of light RH neutrinos. To illustrate its interest we have analyzed the possibility that
they have observable effects at a muon based neutrino factory. We observe that sizable RH
neutrino interactions correcting muon decay can agree with EWPD if a cancellation with
non-standard LH neutrino interactions takes place. In such a case we expect a deficit . 10%
in the number of events observed at a near detector [6, 7]. This is compatible with the existing
results from neutrino oscillation experiments. We provide an explicit model realizing such a
scenario, but in this case the deficit is reduced to . 3%.



Conclusiones

El Modelo Estándar (ME) ha demostrado ser una excelente descripción fenomenológica de la
naturaleza hasta enerǵıas del orden de unos pocos cientos de GeV. No obstante, hay varias razones
para creer que es una teoŕıa incompleta y que necesita ser extendida para entender los fenómenos
a enerǵıas más altas. La naturaleza de dicha extensión es desconocida aunque esperamos que los
resultados de los experimentos en el LHC nos ayudarán a discernir que camino seguir. Mientras
tanto las búsquedas indirectas, investigando nuevos efectos en los datos electrodébiles de precisión
disponibles, pueden darnos indicios de nueva f́ısica más allá del ME. Puesto que desconocemos cuál
podŕıa ser la extensión del ME correcta, pero sabemos que debe estar caracterizada por una escala
de masas bastante pesada, el uso del formalismo de Lagrangianos efectivos resulta conveniente
para el análisis de las implicaciones de la nueva f́ısica. Este es el camino que hemos seguido en
esta tesis. Los principales resultados y conclusiones de la misma son los siguientes:

• Usando una aproximación de Lagrangiano efectivo hasta dimensión seis hemos realizado una
descripción de nueva f́ısica independiente de modelo. Hemos calculado las correcciones domi-
nantes de los nuevos operadores a los observables electrodébiles de precisión, proporcionando
fórmulas expĺıcitas para las nuevas contribuciones. Aunque con una precisión menor, también
consideramos secciones eficaces y asimetŕıas medidas en LEP 2. Estas son relevantes para
restringir efectos de nueva f́ısica en forma de interacciones de cuatro fermiones.

Hemos discutido las principales restricciones experimentales sobre cada uno de los operadores
de dimensión seis que pueden surgir a nivel árbol, aśı como su influencia en la determinación
de la masa del Higgs.

• Hemos utilizado técnicas de Lagrangianos efectivos para describir los efectos de campos de
materia adicionales [1] y nuevos bosones vectoriales [5] en una extensión arbitraria del ME.
Hemos clasificado todas aquellas part́ıculas que puedan mezclarse con los campos del ME
y dar un efecto observable en los observables de precisión actuales. Para cada caso se han
calculado los correspondientes coeficientes de los operadores en el Lagrangiano efectivo de
dimensión seis, integrando las part́ıculas pesadas de la teoŕıa.

• Nuestro análisis fenomenológico de nuevos fermiones del Caṕıtulo 3 se centra en los efectos
de nuevos leptones pesados no quirales [1, 2, 3, 4]. Los resultados obtenidos muestran que,
incluso en el mejor de los casos, la mejora en el valor de la χ2 respecto al ajuste del ME es
leve. En esos casos la calidad del ajuste es también similar a la del ME.

Los ĺımites obtenidos sobre la mezcla de los leptones extra con los fermiones ligeros vaŕıan
entre 0.01 y 0.08, con un nivel de confianza del 95%. Nuestros resultados mejoran los ĺımites
existentes en la literatura, encontrándose una reducción significativa de las regiones del es-
pacio de parámetros permitidas por los datos electrodébiles de precisión. En particular, los
nuevos ĺımites reducen la posibilidad de producir en el LHC neutrinos singlete de Majorana
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pesados en modelos minimales. Además, proporcionamos ĺımites sobre casos no considerados
previamente en la literatura.

Es también digno de mención que la mezcla con neutrinos singlete podŕıa ayudar a acomodar
un Higgs relativamente pesado. En particular, la mezcla con neutrinos electrónicos permite
aumentar el valor preferido de la masa del Higgs por encima del ĺımite de exclusión directo
de LEP 2, colocándola justo en la región donde los experimentos de búsquedas directas del
Higgs en LEP 2 y Tevatron han observado un cierto exceso de eventos. El ĺımite indirecto
también se relaja en este caso, MH < 228 GeV con un nivel de confianza del 95%.

• El análisis de bosones vectoriales adicionales [5] incluye los casos de bosones Z ′ yW ′, aśı como
otras casos más “exóticos” tales como leptoquarks vectoriales y unas cuantas representaciones
no consideradas hasta ahora. Los datos electrodébiles de precisión, sin embargo, no son
sensibles a algunos de estos casos, debido a que los nuevos vectores se acoplan sólo a quarks.

Del ajuste a los datos sólo los cocientes entre los acoplamientos y las masas de los nuevos
vectores pueden ser determinados. Encontramos que los datos de LEP 2 son relevantes por
dos razones. En primer lugar fortalecen las restricciones sobre acoplamientos leptónicos. Por
otro lado, favorecen interacciones que pudieran aumentar la predicción de la sección eficaz
e+e− → hadrones por encima del polo de la Z. La discrepancia con la asimetŕıa angular
del quark b medida en el polo de la Z también puede disminuirse en el caso de singletes
neutros adicionales, aunque esto requiere de acoplamientos relativamente grandes. Estos
pueden evitarse si combinamos varios tipos de vectores.

Suponiendo que los acoplamientos fermiónicos de los nuevos vectores tienen la misma fuerza
que los de los bosones gauge del ME podemos estimar ĺımites sobre las masas de los nuevos
vectores. Encontramos M >1 TeV con un nivel de confianza del 95% para nuevos singletes
neutros y M >2.5 TeV para nuevos bosones cargados que vengan de tripletes de hipercarga
nula. Los ĺımites sobre las masas de los leptoquarks vectoriales vaŕıan entre 70 GeV y 830
GeV, suponiendo acoplamientos ∼ 0.1. Sin embargo, para poder saturar estos, es necesario
algún mecanismo que proteja de la presencia de corrientes neutras que mezclen sabor.

El efecto sobre la masa del Higgs también es estudiado e indicamos cómo, a parte del caso
bien conocido de un singlete neutro adicional, una de las representaciones “exóticas” también
hace compatible los datos con un Higgs pesado, pues tiene el mismo efecto que una Z ′ sin
acoplamientos fermiónicos.

• El formalismo de Lagrangianos efectivos puede adaptarse fácilmente a escenarios con nuevas
part́ıculas ligeras o requisitos adicionales sobre las simetŕıas de la teoŕıa. En esta tesis
hemos considerado el caso de neutrinos ligeros singlete con quiralidad positiva. Para ilustrar
el interés de dicha extensión hemos explorado la posibilidad de encontrar evidencia de la
existencia de estas part́ıculas en factoŕıas de neutrinos donde estos se producen a través
de la desintegración del muón. Esto es aśı si los nuevos neutrinos vienen acompañados de
interacciones que corrijan dicho proceso, las cuales están permitidas por los datos si tiene
lugar una cancelación con nuevas interacciones de los neutrinos del ME. En tal caso, seŕıa de
esperar un déficit . 10% en el número de eventos observados en un detector cercano [6, 7].
Esto es compatible con las observaciones existentes de los experimentos de oscilaciones de
neutrinos. Finalmente, proporcionamos un modelo expĺıcito de dicho escenario, aunque en
este caso el déficit se reduce a . 3%.



Appendix A

Experimental data and fit
methodology

The method used in our analyses is the standard global least squares fit. In order to determine
the values of the free parameters θ in a given model, we test its predictions against the available
experimental data. For that purpose we construct the χ2 function,

χ2 (θ) = [Oexp −Oth (θ)]
T
U−1
exp [Oexp −Oth (θ)] , (A.1)

where (Uexp)ij = σiρijσj is the covariance matrix, with σ the experimental errors and ρ the
correlation matrix. In Uexp we include both statistical and systematic errors. We also include the
most significant theoretical uncertainties. Oexp are the experimental values for the observables
included in the fit. We introduce them below. Oth (θ) on the other hand are the theoretical
predictions depending on the free parameters θ. For the computation of the SM predictions we
have used the FORTRAN package ZFITTER 6.43 [204], which includes the effects of higher-order
radiative corrections. Some of the low-energy observables introduced below, however, are not
available in that code. In those cases we use our own routines based on the SM computations
in [205, 206, 207, 208, 209]. For e+e− → e+e− at LEP 2 energies, the SM predictions have been
computed using BHWIDE [210]. To the SM contribution we add the corresponding new physics
effects from the dimension-six effective Lagrangian, using the results of Chapter 2. As stressed
there, we restrict to tree-level corrections and, unless otherwise is stated, we keep only the leading
order in 1/Λ2. This is consistent with the effective Lagrangian expansion we are using.

The quantity in Eq. (A.1) is directly related to the probability of the predictions to be consistent

with the experimental measurements: P ∼ e−
1
2χ

2

. Therefore, minimizing (maximizing) the χ2 (P)
we obtain the set of parameters best suited to describe data. For the determination of the minima
we use the package MINUIT [211]. This is also used in the computation of contours of constant
probability delimiting the confidence regions shown in our studies. For a detailed description of
the method and the statistical meaning of these analyses see Ref. [212].

In what follows we introduce the experimental values for the observables introduced in our fits.
After the brief review we comment on the results of the SM fit.

A.1 Experimental data

The experimental data included in our analyses are gathered in Tables A.1 to A.6. There we only
provide the central values and experimental errors. The experimental correlation matrices can be
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obtained from the references given for each data set. We also include the SM predictions for the
different observables for comparison, as well as the pulls to quantify the level of agreement between
theory and data. These are obtained from the fits presented below. We include:

• Precision measurements at the Z lineshape. As discussed in Chapter 2, these include Z de-
cay partial widths and branching ratios, cross sections and left-right and forward-backward
asymmetries. We also include the determination of the hadronic charge asymmetry (instead

of the value of sin2 θlepteff derived from it). These measurements were performed during the
first run of LEP and also at SLC [70]. Let us note first that several of these measurements are
reported twice by the experimental groups, depending on whether they were derived impos-
ing lepton universality or not in the fits to the measured cross sections and asymmetries. For
this reason we include Table A.2, which is analogous to Table A.1 but with the experimental
measurements reported with the assumption of lepton universality. (The corresponding SM
predictions from the fit including these data are also given.) These are used in our analysis
of extra heavy leptons in Chapter 3. Z-pole data comprises some of the most precise mea-
surements available, with relative errors that range from the very few percent to even below
the per mille level in some cases. In particular, the precision of the Z mass around 2 ·10−2 h

allows to fix the corresponding input of the fits to the experimental value, as we have done
in some cases. In general, there is a very good agreement between these data and the SM
predictions. The exception is the measurement of the forward-backward asymmetry for the
bottom quark, which is more than 2.5 σ below the theoretical prediction.

• LEP 2 and Tevatron precision data. These include the top mass [117] as well as the W mass,
decay widths [71] and branching ratios [18]. There is also a determination of the effective
leptonic weak angle from Tevatron [121], with precision comparable to the one derived from
the LEP hadronic charge asymmetry. Although an order of magnitude less precise than the
Z counterpart, the W mass is measured also with great precision, below the per mille level.
The experimental value turns out to be above the SM prediction by more than 1 σ. Though
it is a small deviation, it suffices to strengthen the fit preference for a light Higgs, given the
remarkable sensitivity ofMW to MH . The top mass measurement is also very accurate, with
a relative error slightly below the one percent, imposing a strong direct constraint on the
corresponding SM input parameter. The total W decay width as well as the branching ratios
into leptons are less precise, with relative errors at the few percent. As in the case of some
of the Z-pole measurements, the leptonic branching ratios are also reported twice, with and
without assuming lepton universality. The latter are given in Table A.2.

• The latest determinations of the Z-pole strong coupling constant, αs
(

M2
Z

)

, [118] and five-

flavor hadronic contribution to the running of α, ∆α
(5)
had(M

2
Z). The world average for the

former includes the result from the EWPD data fit. For consistency, this should be excluded
from the average if it is going to be used in our fits. This yields no significant variation

neither in the central value nor in the error. For the value of ∆α
(5)
had(M

2
Z) we have combined

the recent result in [120] with the previous determination from [119]. It is noteworthy the
precision achieved for the determination of αs

(

M2
Z

)

, at the few per mille level. The precision

of ∆α
(5)
had(M

2
Z) has been also improved [120]. The error is at the same level as the one for

the strong couplings constant. These two determinations directly constrain the values of the
corresponding SM input free parameters.

• Low-energy data. In order to constrain most types of new physics we also need to include
measurements sensitive to new interactions not contributing at the Z pole. Thus, we also con-
sider observables determined at lowQ2, and then sensitive to four-fermion interactions. These
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include the low-energy effective couplings discussed in Chapter 2, from neutrino-nucleon and
neutrino-electron scattering experiments, as well as parity violation measurements in atoms
and in Møller scattering. Deep inelastic neutrino-nucleon scattering data from NuTeV [75]
are also taken into account. These were originally in disagreement with the SM by almost
3 σ, with the discrepancy coming entirely from the low-energy effective coupling g2L. Part of
such discrepancy, though, has been accounted for by incorporating the effects of the quark-
antiquark asymmetry in strange sea quarks [38]. Currently the departure is ∼ 2 σ. The values
for the neutrino-nucleon scattering presented in Table A.1 have been obtained from [38] and,
together with the NuTeV results, include older measurements from CDHS [72], CHARM [73]
and CCFR [74]. Neutrino-electron scattering data are dominated by CHARM II [76] results
and they are in perfect agreement with the SM [38]. Results from atomic parity violation
experiments are given in the form of atomic weak charges for Cesium and Thallium. The
value of the Cesium weak charge, the more precise among the APV measurements, which
was slightly above 1 σ with respect to the SM prediction, is now in almost perfect agreement,
after including the latest improvements in the atomic structure calculations [78]. The value
for Thallium is from [79]. We also include the determination of the C1u and C1d combina-
tions1 included in the analysis of [144]. The electron’s weak charge has been extracted from
the parity violating asymmetry in Møller scattering APV = (−1.31± 0.17) · 10−7 [80], using
APV = A QW (e) with A = (3.25± 0.05) · 10−6 as determined from Monte Carlo simulation
also in [80]. Finally, we include the inverse muon decay experimental results from [178],
which are only relevant for the analysis in the last chapter.

• CKM unitarity constraints. We include the experimental determination of the combination
|Vud|2+ |Vus|2+ |Vub|2, which serves to test the unitarity of the first row of the CKM matrix.
This has been measured to high precision, with a relative error of 0.6h [68], and agrees with
the SM at less than 0.2 σ. Thus, it imposes strong restrictions on new physics contributing
to CC processes involved in the determination of these CKM matrix elements.

• e+e− → f̄ f data above the Z pole. Apart from the observables described above, we also
gather in Table A.3 the values for several cross sections and forward-backward asymmetries
measured at LEP 2 [81]. We include measurements of cross sections and asymmetries for
e+e− → µ+µ− and e+e− → τ+τ−, as well as the inclusive hadronic cross section e+e− →
hadrons, with energies varying from 130 to 209 GeV. We also include in the fits the OPAL
results for the differential cross-section e+e− → e+e− [213]. These are given in Table A.4.
The precision of these LEP 2 measurements is low, in general, compared to the previous
observables. They range from around ten percent in the worst cases for leptonic cross sections
and asymmetries to very few percent for the, more precise, hadronic data. On general grounds
these data are in agreement with the SM. The exception is the total hadronic cross section,
which in many energy bins is around 1 σ above the SM prediction. However, when taking
into account the correlations this translates only into a global 1.7 σ discrepancy. Although
often excluded from the fits [38, 71, 214], the large number of measurements makes LEP 2
data relevant when testing some specific types of new physics since, as for the low-energy
observables, they are sensitive to four-fermion interactions.

We do not include in our fits the heavy flavor data in [81]. As explained there, Rb and Rc
data are strongly correlated, and each one is obtained assuming the other is given by the SM
prediction. Thus, these data should not in general be used for new physics analyses, except in
cases where this only affects the corresponding quark generation. We have checked, anyway,

1cos γ C1d − sinγ C1u and sin γ C1d + cos γ C1u, with γ ≈ arctan 0.445.
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that the inclusion of these data has no impact in our conclusions. This is explained by the
poor precision of these measurements, in particular for the forward-backward asymmetries.

• Higgs direct searches limits. Finally, we also consider in our analyses the results of the Higgs
boson direct searches at LEP 2 [39] and Tevatron [40]. These are expressed in terms of the
log-likelihood ratio

LLR ≡ −2 ln
p (data|H1)

p (data|H0)
, (A.2)

where p are the probabilities of the data according to the hypothesis of SM background,
H0, and SM background plus Higgs signal, H1. This can be used to compute several types
of different p-values, which lead to the determination of the regions in the MH parameter
space where the Higgs is excluded at a given confidence level. This log-likelihood directly
contributes to the total χ2 function, ∆χ2 = LLR [215], thus contraining directly the values
of MH in the fit. The values for the observed log-likelihood (LLRobs) to be added to the χ2

have been extracted from Figure 1 in Ref. [39] and read from Table XIX in Ref. [40]. They
are shown in Tables A.5 and A.6. The individual and total contributions to the χ2 are given
in Fig. 1.2 (left) in Chapter 1.

We do not include explicitly in the fits to new physics the anomalous magnetic moment of the
muon or other one-loop order observables because we are only considering beyond the SM effects
at tree-level.

A.2 The Standard Model fit

Unless otherwise stated, the SM parameters that we allow to float in the fits are the Higgs mass
MH , the top mass mt, the Z mass MZ , the strong coupling constant at the Z pole αs

(

M2
Z

)

, and
the five-flavor hadronic contribution to the running of the electromagnetic coupling constant at the

Z pole ∆α
(5)
had

(

M2
Z

)

. The other fermion masses and the mixings are fixed for simplicity. These, as
well as the value of the QED coupling constant at q2 = 0,

α−1 = 137.035999679(94), (A.3)

and the muon decay constant Gµ,

Gµ = 1.16637(1) · 10−5 GeV−2, (A.4)

have been taken from the Particle Data Group [18].
We have performed several SM fits changing the experimental data included. The results in

the form of the best fit values and errors of the parameters, the minimum value of the χ2, χ2
min, as

well as its ratio with the number of degrees of freedom2, χ2
min/d.o.f., are given in Table A.7. The

different fits correspond to the use of data with and without lepton universality (“Standard” and
“LU” fits, respectively) and including or not the limits from Higgs direct searches. The results
from both the standard and the LU fits are very similar, though the latter gives a marginally
better χ2

min/d.o.f.. Apart from confirming the good agreement between data and the SM, the most
significant information we can obtain is the indirect determination of the Higgs mass. From the
standard fit (without Higgs direct searches) we get MH = 101+32

−26 GeV. This is slightly below the

2The number of degrees of freedom is given by the number of observables included in the fit minus the number
of free parameters.
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direct LEP 2 limit MH ≥ 114.4 GeV at 95% C.L., but it is consistent with it at less than 1 σ as we
comment below. At 90% C.L. the confidence interval for MH (95% C.L. upper and lower limits) is

62 GeV ≤MH ≤ 159 GeV. (A.5)

It is also noteworthy that there are significant correlations at the minimum between MH and mt

(≈ 37%), ∆α
(5)
had

(

M2
Z

)

(≈ −27%) and, to a lesser extent, with MZ (≈ 13%).
As stressed in Chapter 1, the indirect determination of the Higgs mass results from the rather

different preferences ofMW and the Z-pole leptonic asymmetries on the one hand, and the hadronic
asymmetries on the other. While the former prefer a light Higgs, the latter favors a heavy one. In
order to illustrate this, we have performed a fit to each of the previous observables independently,
allowing only MH to vary (with all the other parameters fixed to the best fit values in Table A.7).
On the other hand, we also consider the cases where each of them is excluded from the global fit,
in order to quantify their impact in the final determination of MH . In this way we obtain:

• Fit to only (excluding) MW : MH = 59+35
−26 GeV (MH = 133+52

−39 GeV).

• Fit to only (excluding) Ae,µ,τ (SLD): MH = 37+31
−19 GeV (MH = 127+42

−33 GeV).

• Fit to only (excluding) AbFB: MH = 488+388
−210 GeV (MH = 73+28

−22 GeV).

Removing both the W mass and the leptonic asymmetries the preferred Higgs mass raises up to
MH = 219+91

−29 GeV. In this last case and in the one removing AbFB we get a noticeable (but small)
improvement in the quality of the fit: χ2

min/d.o.f. = 0.93 and 0.91, respectively.
Including Higgs direct searches shifts the best fit value obtained for MH to 115.5 GeV. There

are also small shifts in the values for the top mass, ∆α
(5)
had

(

M2
Z

)

and MZ which follow from the
correlations above. Because of the Tevatron exclusion limits, the upper bound in (A.5) is reduced
to

MH ≤ 138 GeV, at 95% C.L. . (A.6)

We must also mention that the value of the χ2 at the minimum in the case we include direct
searches data must been renormalized to account for the negative contributions coming from the
LLRobs, for the χ

2 must be positive-definite. This is also required in order to compare the results
from the fits with and without direct searches. In such a case we observe how the impact of forcing
MH above the direct LEP 2 bound is around 0.2 σ, so there is no conflict with this direct limit.

Finally, in order to compare the results of Chapter 4, where the e+e− → f̄f LEP 2 data are
taken into account, with the SM ones, we have also performed a SM fit including LEP 2 data. The
results for the best fit values are unchanged with respect to the other cases. At the minimum we
find

χ2
min = 162.30,

χ2
min

d.o.f.
= 0.78, (A.7)

where the improvement in the quality of the fit is simply because we are including many more
data points in good agreement with the SM predictions. Since, as we have checked, the effect
of the variation of the SM parameters in the predictions for the LEP 2 data is small, they have
been fixed for these observables in our fits to new physics. We have included, however, the leading
oblique correction from the variation of the Higgs mass, as this is the parameter with the largest
uncertainty.
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Observable Experimental Value Standard Model Pull Standard Model Pull
+Higgs Searches

mt [GeV] [117] 173.1± 1.3 173.2 −0.1 173.4 −0.3

∆α
(5)
had

(

M2
Z

)

[119, 120] 0.02760 ± 0.00014 0.02762 −0.2 0.02760 0

αs
(

M2
Z

)

[118] 0.1184 ± 0.0007 0.1184 0 0.1184 0

MW [GeV] [71] 80.399 ± 0.023 80.372 +1.2 80.367 +1.4
ΓW [GeV] 2.098± 0.048 2.091 +0.1 2.091 +0.1
Br (W → eν) [18] 0.1075 ± 0.0013 0.1083 −0.6 0.1083 −0.6
Br (W → µν) 0.1057 ± 0.0015 −1.7 −1.7
Br (W → τν) 0.1125 ± 0.0020 +2.1 +2.1

MZ [GeV] [70] 91.1876 ± 0.0021 91.1875 +0.1 91.1876 0
ΓZ [GeV] 2.4952 ± 0.0023 2.4957 −0.2 2.4955 −0.1
σhad [nb] 41.541 ± 0.037 41.479 +1.7 41.479 +1.7
Re 20.804 ± 0.050 20.741 +1.3 20.740 +1.3
Rµ 20.785 ± 0.033 20.741 +1.4 20.740 +1.4
Rτ 20.764 ± 0.045 20.788 −0.5 20.787 −0.5
AeFB 0.0145 ± 0.0025 0.0164 −0.8 0.0163 −0.7
AµFB 0.0169 ± 0.0013 +0.4 +0.5
AτFB 0.0188 ± 0.0017 +1.4 +1.5

Ae (SLD) [70] 0.1516 ± 0.0021 0.1477 +1.8 0.1474 +2.0
Aµ (SLD) 0.142± 0.015 −0.4 −0.4
Aτ (SLD) 0.136± 0.015 −0.8 −0.8

Ae (Pτ ) [70] 0.1498 ± 0.0049 +0.4 +0.5
Aτ (Pτ ) 0.1439 ± 0.0043 −0.9 −0.8

Rb [70] 0.21629 ± 0.00066 0.21580 +0.7 0.21580 +0.7
Rc 0.1721 ± 0.0030 0.1722 −0.1 0.1722 −0.1
AbFB 0.0992 ± 0.0016 0.1036 −2.7 0.1033 −2.6
AcFB 0.0707 ± 0.0035 0.0740 −1.0 0.738 −0.9
Ab 0.923± 0.020 0.935 −0.6 0.935 −0.6
Ac 0.670± 0.027 0.668 +0.1 0.668 +0.1

AsFB [70] 0.098± 0.011 0.1037 −0.5 0.1034 −0.5
As 0.895± 0.091 0.936 −0.5 0.936 −0.5
Ru/Ru+d+s 0.258± 0.045 0.282 −0.5 0.282 −0.5

Qhad
FB [70] 0.0403 ± 0.0026 0.0424 −0.8 0.0423 −0.8

sin2 θlepteff [121] 0.2315 ± 0.0018 0.2314 0 0.2315 0

g2L [38] 0.3012 ± 0.0013 0.3039 −2.0 0.3039 −2.0
g2R 0.0310 ± 0.0010 0.03012 +0.9 0.03013 +0.9
θL 2.500± 0.033 2.46 +1.1 2.46 +1.1
θR 4.58± 0.41 5.18 −1.5 5.18 −1.5

gνeV [38] −0.040± 0.015 −0.0399 0 −0.0398 0
gνeA −0.507± 0.014 −0.507 0 0.507 0

QW
(

133
55 Cs

)

[78] −73.16± 0.35 −73.13 −0.1 −73.14 −0.1
QW

(

205
81 Tl

)

[79] −116.4 ± 3.6 −116.7 +0.1 −116.7 +0.1
cos γC1d−sinγC1u [144] 0.342± 0.063 0.388 −0.7 0.388 −0.7
sinγC1d+cos γC1u −0.0285± 0.0043 −0.0335 +1.2 −0.0335 +1.2
QW (e) (Møller) [80] −0.0403± 0.0053 −0.0473 +1.3 −0.0471 +1.3

∑

i |Vui|
2 [68] 0.9999 ± 0.0006 1 −0.2 1 −0.2

σνe→νµ/σνe→νµ
SM [178] 0.981± 0.057 1 −0.3 1 −0.3

Table A.1: Measurements of the observables included in our fits, compared with the best-fit values
in the SM. We give the predictions from the fits including and excluding the results from Higgs
direct searches.
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Observable Experimental Value Standard Model Pull Standard Model Pull
+Higgs Searches

mt [GeV] [117] 173.1± 1.3 173.2 −0.1 173.4 −0.3

∆α
(5)
had

(

M2
Z

)

[119, 120] 0.02760 ± 0.00014 0.02762 −0.2 0.02760 0

αs
(

M2
Z

)

[118] 0.1184 ± 0.0007 0.1184 0 0.1184 0

MW [GeV] [71] 80.399± 0.023 80.372 +1.2 80.367 +1.4
ΓW [GeV] 2.098 ± 0.048 2.091 +0.1 2.091 +0.1
Br (W → lν) [18] 0.1080 ± 0.0009 0.1083 −0.3 0.1083 −0.3

MZ [GeV] [70] 91.1875 ± 0.0021 91.1875 0 91.1876 −0.1
ΓZ [GeV] 2.4952 ± 0.0023 2.4957 −0.2 2.4955 −0.4
σhad [nb] 41.540± 0.037 41.479 +1.7 41.479 +1.7
Rl 20.767± 0.025 20.741 +1.0 20.740 +1.1
AlFB 0.0171 ± 0.0010 0.01636 +0.7 0.01628 +0.8

Al (SLD) [70] 0.1513 ± 0.0021 0.1477 +1.7 0.1473 +1.9

Al (Pτ ) [70] 0.1465 ± 0.0033 0.1477 −0.4 0.1473 −0.3

Rb [70] 0.21629 ± 0.00066 0.2158 +0.7 0.2158 +0.7
Rc 0.1721 ± 0.0030 0.1722 −0.1 0.1722 −0.1
AbFB 0.0992 ± 0.0016 0.1035 −2.7 0.1033 −2.6
AcFB 0.0707 ± 0.0035 0.0740 −1.0 0.0738 −0.9
Ab 0.923 ± 0.020 0.9346 −0.6 0.9346 −0.6
Ac 0.670 ± 0.027 0.668 +0.1 0.668 +0.1

AsFB [70] 0.098 ± 0.011 0.1037 −0.5 0.1034 −0.5
As 0.895 ± 0.091 0.9357 −0.5 0.9357 −0.5
Ru/Ru+d+s 0.258 ± 0.045 0.2815 −0.5 0.2815 −0.5

Qhad
FB [70] 0.0403 ± 0.0026 0.0424 −0.8 0.0423 −0.8

sin2 θlepteff [121] 0.2315 ± 0.0018 0.2314 0 0.2315 0

g2L [38] 0.3005 ± 0.0012 0.30391 −2.1 0.30385 −2.0
g2R 0.0311 ± 0.0010 0.03012 +0.9 0.03013 +0.9
θL 2.500 ± 0.033 2.46 +1.1 2.46 +1.1
θR 4.59± 0.41 5.18 −1.5 5.17 −1.5

gνeV [38] −0.040± 0.015 −0.0399 0 −0.0398 0
gνeA −0.507± 0.014 −0.507 0 −0.507 0

QW
(

133
55 Cs

)

[78] −73.16± 0.35 −73.13 −0.1 −73.14 −0.1
QW

(

205
81 Tl

)

[79] −116.4± 3.6 −116.7 +0.1 −116.7 +0.1
cos γC1d−sinγC1u [144] 0.342 ± 0.063 0.389 −0.7 0.388 −0.7
sin γC1d+cos γC1u −0.0285± 0.0043 −0.0335 +1.2 −0.0335 +1.2
QW (e) (Møller) [80] −0.0403± 0.0053 −0.0473 +1.3 −0.0471 +1.3

∑

i |Vui|
2 [68] 0.9999 ± 0.0006 1 −0.2 1 −0.2

σνe→νµ/σνe→νµ
SM [178] 0.981 ± 0.057 1 −0.3 1 −0.3

Table A.2: Measurements of the observables included in our fits assuming lepton universality,
compared with the best-fit values in the SM. We give the predictions from the fits including and
excluding the results from Higgs direct searches.
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√

s σ
(

µ+µ−

)

A
µ

+
µ

−

FB σ
(

τ+τ−

)

Aτ
+

τ
−

FB σ (had)
[GeV] [pb]

(

×10−3
)

[pb]
(

×10−3
)

[pb]

130 8.62 ± 0.68 694 ± 60 9.02± 0.93 663 ± 76 82.1 ± 2.2
[8.44(0.3)] [0.705(−0.2)] [8.44(0.6)] [0.704(−0.5)] [82.8(−0.3)]

136 8.27 ± 0.67 708 ± 60 7.078 ± 0.820 753 ± 88 66.7 ± 2.0
[7.28(1.5)] [0.684(0.4)] [7.279(−0.3)] [0.683(0.8)] [66.6(0.1)]

161 4.61 ± 0.36 538 ± 67 5.67± 0.54 646 ± 77 37.0 ± 1.1
[4.61(0)] [0.609(−1.1)] [4.61(2)] [0.609(0.5)] [35.2(1.6)]

172 3.57 ± 0.32 675 ± 77 4.01± 0.45 342 ± 94 29.23 ± 0.99
[3.95(−1.2)] [0.591(1.1)] [3.95(0.1)] [0.591(−2.7)] [28.74(0.5)]

183 3.49 ± 0.15 559 ± 35 3.37± 0.17 608 ± 45 24.59 ± 0.42
[3.45(0.3)] [0.576(−0.5)] [3.45(−0.5)] [0.576(0.7)] [24.20(0.9)]

189 3.123 ± 0.076 569 ± 21 3.20± 0.10 596 ± 26 22.47 ± 0.24
[3.207(−1.1)] [0.569(0)] [3.20(0)] [0.569(1)] [22.156(1.3)]

192 2.92 ± 0.18 553 ± 51 2.81± 0.23 615 ± 69 22.05 ± 0.53
[3.10(−1)] [0.566(−0.3)] [3.10(−1.3)] [0.566(0.7)] [21.24(1.5)]

196 2.94 ± 0.11 581 ± 31 2.94± 0.14 505 ± 44 20.53 ± 0.34
[2.96(−0.2)] [0.562(0.61)] [2.96(−0.1)] [0.562(−1.3)] [20.13(1.2)]

200 3.02 ± 0.11 524 ± 31 2.90± 0.14 539 ± 42 19.25 ± 0.32
[2.83(1.7)] [0.558(−1.1)] [2.83(0.5)] [0.558(−0.5)] [19.09(0.5)]

202 2.58 ± 0.14 547 ± 47 2.79± 0.20 589 ± 59 19.07 ± 0.44
[2.77(−1.4)] [0.556(−0.2)] [2.77(0.1)] [0.556(0.6)] [18.57(1.1)]

205 2.45 ± 0.10 565 ± 35 2.78± 0.14 571 ± 42 18.17 ± 0.31
[2.67(−2.2)] [0.553(0.3)] [2.67(0.8)] [0.553(0.4)] [17.81(1.2)]

207 2.595 ± 0.088 542 ± 27 2.53± 0.11 564 ± 37 17.49 ± 0.26
[2.623(−0.3)] [0.552(−0.4)] [2.62(−0.8)] [0.551(0.4)] [17.42(0.3)]

Table A.3: LEP 2 results for e+e− → f f̄ (first line), together with the SM predictions in the
brackets and the pulls in parentheses (second line).
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cos θ dσ
(

e+e− → e+e−
)

/d cos θ [pb]
189 GeV 192 GeV 196 GeV 200 GeV 202 GeV 205 GeV 207 GeV

[−0.90,−0.72] 1.3± 0.2 1.4± 0.7 1.3± 0.4 1.5± 0.3 2.2± 0.7 0.8± 0.3 1.4± 0.2
[1.65(−1.8)] [1.60(−0.3)] [1.52(−0.6)] [1.45(0.2)] [1.44(1.1)] [1.38(−1.9)] [1.37(0.2)]

[−0.72,−0.54] 2.1± 0.3 2.5± 0.9 1.5± 0.3 1.8± 0.4 1.3± 0.6 1.7± 0.4 1.7± 0.3
[1.82(0.9)] [1.76(0.8)] [1.70(−0.7)] [1.63(0.4)] [1.58(−0.5)] [1.52(0.44)] [1.50(0.7)]

[−0.54,−0.36] 2.4± 0.3 1.5± 0.8 2.2± 0.4 2.0± 0.4 2.8± 0.8 2.3± 0.4 1.7± 0.3
[2.15(0.8)] [2.06(−0.7)] [1.96(0.6)] [1.88(0.3)] [1.83(1.2)] [1.78(1.3)] [1.76(−0.2)]

[−0.36,−0.18] 2.5± 0.3 2.4± 0.9 2.9± 0.5 2.5± 0.4 3.8± 0.8 2.3± 0.4 2.8± 0.3
[2.75(−0.8)] [2.63(−0.3)] [2.52(0.8)] [2.42(0.2)] [2.37(1.8)] [2.31(0)] [2.28(1.7)]

[−0.18, 0.00] 3.8± 0.4 2.9± 1.0 3.5± 0.5 3.9± 0.5 2.2± 0.8 3.8± 0.5 2.8± 0.4
[3.98(−0.5)] [3.85(−1)] [3.65(−0.3)] [3.49(0.8)] [3.42(−1.5)] [3.29(1)] [3.23(−1.1)]

[ 0.00, 0.09] 4.5± 0.5 6.5± 2.0 5.1± 0.9 5.1± 0.9 5.0± 1.6 5.7± 0.9 3.9± 0.6
[5.32(−1.7)] [5.14(0.7)] [4.95(0.2)] [4.70(0.4)] [4.68(0.2)] [4.48(1.4)] [4.40(−0.8)]

[ 0.09, 0.18] 6.3± 0.6 6.6± 2.1 5.6± 0.9 6.2± 1.0 8.2± 1.6 6.9± 1.0 6.4± 0.7
[6.94(−1.1)] [6.74(−0.1)] [6.45(−0.9)] [6.14(0.1)] [6.03(1.4)] [5.84(1.1)] [5.73(1)]

[ 0.18, 0.27] 9.2± 0.8 9.2± 1.9 8.4± 1.1 9.7± 1.2 8.9± 1.6 7.2± 1.0 7.4± 0.8
[9.46(−0.3)] [9.13(0)] [8.69(−0.3)] [8.36(1.1)] [8.18(0.5)] [7.86(−0.7)] [7.71(−0.4)]

[ 0.27, 0.36] 12.3± 0.9 13.7± 2.3 12.7± 1.4 10.0± 1.2 10.8 ± 1.8 11.2± 1.3 11.9± 1.0
[13.2(−1)] [12.7(0.4)] [12.3(0.3)] [11.6(−1.5)] [11.5(−0.4)] [11.1(0.1)] [11.0(0.9)]

[ 0.36, 0.45] 19.7± 1.1 21.2± 2.9 14.9± 1.5 15.6± 1.5 14.6 ± 2.1 14.2± 1.4 17.1± 1.2
[19.5(0.2)] [18.8(0.8)] [18.0(−2)] [17.2(−1.1)] [16.9(−1.1)] [16.4(−1.6)] [16.1(0.8)]

[ 0.45, 0.54] 31.9± 1.4 31.0± 3.5 26.7± 2.0 28.8± 2.1 24.5 ± 2.7 27.2± 2.0 25.1± 1.5
[30.1(1.2)] [29.2(0.5)] [28.0(−0.6)] [26.9(0.9)] [26.3(−0.7)] [25.6(0.8)] [25.2(−0.1)]

[ 0.54, 0.63] 51.6± 1.8 45.2± 4.3 50.1± 2.8 48.4± 2.7 45.4 ± 3.8 43.8± 2.5 41.9± 1.9
[50.6(0.5)] [49.2(−0.9)] [47.2(1)] [45.3(1.1)] [44.4(0.3)] [42.9(0.4)] [42.2(−0.2)]

[ 0.63, 0.72] 94.9± 2.4 91.6± 5.9 90.5± 3.6 87.1± 3.5 84.4 ± 5.0 79.0± 3.3 77.3± 2.5
[95.6(−0.3)] [92.8(−0.2)] [89.0(0.4)] [85.5(0.44)] [83.7(0.1)] [81.1(−0.6)] [79.8(−1)]

[ 0.72, 0.81] 215± 4 206± 9 199 ± 6 194± 5 184± 8 173 ± 5 174 ± 4
[213(0.5)] [206(−0.1)] [199(0.1)] [191(0.7)] [187(−0.4)] [181(−1.5)] [178(−0.9)]

[ 0.81, 0.90] 684± 7 663± 16 640± 10 606 ± 10 606 ± 14 578 ± 9 565 ± 7
[686(−0.2)] [665(−0.1)] [639(0.1)] [614(−0.7)] [601(0.3)] [583(−0.5)] [573(−1)]

Table A.4: LEP 2 results for the differential cross section of e+e− → e+e− from the OPAL
collaboration [213](first line), together with the SM predictions in the brackets and the pulls in
parentheses (second line).
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MH [GeV] 100 101 102 103 104 105 106 107 108 109 110

LLRobs 113.5 105.3 97.1 88.9 80.8 72.6 64.4 56.3 48.1 41.8 34.9

MH [GeV] 111 112 113 114 115 116 117 118 119 120

LLRobs 24.9 18.7 11.3 4.54 -0.71 -1.42 -1.73 -0.95 -0.31 -0.11

Table A.5: Values of LLRobs obtained from Higgs direct searches at LEP 2. Extracted from Fig.
1 in Ref. [39].

MH [GeV] 100 105 110 115 120 125 130 135 140 145 150

LLRobs -0.99 -1.41 -0.55 -2.58 -0.99 -1.62 -1.61 -2.22 -1.94 -0.07 -0.15

MH [GeV] 155 160 165 170 175 180 185 190 195 200

LLRobs -0.29 3.23 5.04 2.24 3.64 2.79 0.90 1.28 -0.98 -0.48

Table A.6: Values of LLRobs obtained from Higgs direct searches at Tevatron [40].

Fit MH [GeV] mt [GeV] MZ [GeV] αs
(

M2
Z

)

∆α5
had

(

M2
Z

)

χ2 χ2/d.o.f

Standard 101+32
−26 173.2 ± 1.3 91.1875(21) 0.1184(7) 0.02762(14) 44.1 1.08

+ Higgs DS 115.5 173.4 ± 1.2 91.1876(21) 0.1184(7) 0.02760(13) 44.32 1.06

LU 102+34
−26 173.2 ± 1.3 91.1875(21) 0.1184(7) 0.02762(14) 30.04 0.94

+ Higgs DS 115.5 173.4 ± 1.2 91.1876(21) 0.1184(7) 0.02760(13) 30.23 0.92

Table A.7: Best fit values for the SM parameters for the different global fits discussed.
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