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Abstract

The analysis of the perceptual properties of texture plays a funda-
mental role in tasks like semantic description of images, content-based
image retrieval using linguistic queries, or expert systems design based
on low level visual features. The presence of these properties in images
is very difficult to characterize due to their imprecision, and, moreover,
because their perception may change depending on the user or the image
context. In this paper, texture properties are modelled by means of an
adaptive fuzzy approach that takes into account the subjectivity of the
human perception. For this purpose, a methodology in two phases has
been proposed. First, non-adaptive fuzzy models, that represent the av-
erage human perception about the presence of the texture properties, are
obtained. For this modelling, we propose to learn a relationship between
representative measures of the properties and the assessments given by
human subjects. In a second phase, the obtained fuzzy sets are adapted
in order to model the particular perception of the properties that an user
may have, as well as the changes in perception influenced by the image
context. For this purpose, the membership functions are automatically

1

https://doi.org/10.1016/j.fss.2015.09.008
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


transformed on the basic of the information given by the user or extracted
from the image context, respectively.

Keywords: fuzzy sets; image processing; texture modelling; human percep-
tion; adaptive models

1 Introduction

Color, texture, and shape are typically the three most used features for object
recognition and image interpretation. Color and shape represent clear concepts
for humans, and their importance is widely known in computer vision. Texture,
however, is more imprecise and abstract but an equally important feature. In
spite of its importance, there is not an accurate definition for the concept of
texture, but some widespread intuitive ideas. Texture is described by some au-
thors as local changes in the intensity patterns or gray tones, which is used in
opposition to the homogeneity idea [1]. Other authors consider texture as a set
of basic items called texels (or texture primitives), arranged in a certain way.
However, for humans, the most common way to describe texture is by using
vague textural properties, like coarseness, directionality, contrast, line-likeness
or regularity [2, 3], that are a more natural way to represent our perception about
texture primitives. Coarseness is related to the spatial size of texels, direction-
ality reflects whether they have a dominant orientation, contrast is related to
their distinguishability, line-likeness reflects whether they have straight shapes,
and regularity refers to the variation of their placement. From all of them, and
according to the psychological experiments performed by Tamura et al. in [3],
coarseness, contrast and directionality are considered the three most important
texture properties, playing a fundamental role in human visual interpretation
[4, 5, 6]. In this paper, we will focus our study on these properties.

Computational models with the ability of providing a perceptual texture
characterization on the basis of these properties can be very useful in tasks
where some interaction with subjects is needed. For example, they can be ap-
plied in fields such as semantic description of images [7, 8, 9], obtaining texture
descriptions that are directly interpretable by humans, or in content-based im-
age retrieval systems [10, 11, 4], where linguistic queries related to the degree
to which texture properties are present can be employed1. In addition, this per-
ceptual characterization of texture can be also applied in expert systems, where
the information provided by the expert is related to the presence of the texture
properties. For example, suppose a medical expert that, according to his/her
experience, concludes that the regions with high fineness presence and high con-
trast degree in microscopic images are indicative of a certain disease. Models
that are able to provide a textural description in a similar way as humans would
can be employed to automatically identify these areas in the images.

1Notice that the aim in this case is not to retrieve images with a similar texture as a whole
(like in classical texture analysis approaches in the literature), but to retrieve images with a
similar degree of presence in certain, required texture properties.
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(a) (b) (c)

Figure 1: Examples showing the imprecision associated to the properties.

However, there are two main problems related to the modelling of the percep-
tual properties of texture. The first one is the imprecision associated to them.
This imprecision must be understood in the sense that, except in extreme cases,
we cannot set a precise threshold between textures that strictly accomplish a
property and textures that do not, but the fulfillment of the property is grad-
ual in nature. For example, we can reasonably say that the texture shown in
Figure 1(a) is coarse and contrasted, and that the texture shown in Figure 1(c)
is not, as they represent potential extreme cases for both properties. However,
the fulfillment of these properties is not so clear for the texture shown in Figure
1(b).

This way, it is natural for humans to give assessments about the degree
to which these perceptual properties are present. For example, if a subject is
asked about the degree of the coarseness presence in the images of Figure 1,
this subject would probably say that the texture shown in Figure 1(a) is very
coarse, the texture shown in Figure 1(b) has an intermediate coarseness degree,
or the texture shown in Figure 1(c) is very fine. Likewise, if the subject is asked
about the degree of the contrast presence, these textures may be perceived with
a high degree, low degree and very low degree of this property, respectively.

The second main drawback related to the modelling of texture properties is
the subjectivity associated to their perception. On the one hand, the perception
of a texture property may change depending on the user. For example, although
we have considered that the texture shown in Figure 1(a) is very coarse, another
user may consider that this texture is not so coarse. On the other hand, the
image context may affect in the global perception of the texture properties. An
example of this fact can be shown in Figure 2. The images in figures 2(a) and
2(b) are very similar, but in the last one a new texture has been added. The
presence of this texture, that is much coarser than the others, can inhibit the
rest of textures, and they may be perceived as finer than in Figure 2(a)2. Thus,
in addition to the imprecision associated to the textural properties, it should
be taken into account that the greater or lesser fulfillment of these properties
in texture may be different for different users, and it may also depend on the

2This effect is more noticeable if the images are observed separately.
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(a) (b)

Figure 2: Example showing the influence of the image context in the perception
of the fineness property.

image context.
In this paper, an adaptive fuzzy approach is proposed in order to address the

problems commented above, that, to the best of our knowledge, have not been
solved in the literature. Our aim is to obtain models that are able to represent
the degree to which the textural properties are present in a similar way as
humans would, taking into account the imprecision associated to them, as well
as the subjectivity of the human perception. The proposed methodology has two
phases. In the first one, non-adaptive fuzzy models are obtained, that can be
used if additional information (the particular perception of the user or the image
context) is not available. In our approach, we propose to model the properties of
coarseness, contrast and directionality (although other properties can be dealt
with using our methodology) by means of fuzzy sets defined on the domain of
representative measures of these properties. In order to obtain the membership
function associated to each fuzzy set, a functional relationship between the
computational values given by the measures and the human perception of the
property is learned. To get information about the human perception, a set of
images covering different degrees to which the properties are present are used
to collect, by means of polls, human assessments from a set of subjects. This
way, the obtained non-adaptive fuzzy sets will represent the average perception
about the presence of the texture properties. In addition, goodness measures
are proposed in order to identify the most appropriate models to represent the
properties of coarseness, contrast and directionality.

In the second phase of our approach, a methodology for adapting these
generic models to the particular perception of a new user or the image context
is proposed. For this purpose, the membership functions associated to these
fuzzy sets are automatically adapted by means of a functional transformation
on the basis of the new perception. In the case of the adaptation to an user’s
profile, a set of texture images representing the particular perception of this user
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are employed in the transformation process. This way, the degree of presence
given by the adapted model will match what the user would expect. In the
case of the adaptation to the image context, the textures present in the image
are analized in order to obtain information about the current inhibition. This
information is used in the adaptation process, obtaining models that represent
the degree to which the property is present influenced by the context.

The rest of the paper is organized as follows. Section 2 describes the related
work in the literature. In section 3 a general overview of our methodology is
presented, introducing some basic concepts and the notation used in the paper.
The computational measures used as reference set are summarized in section 4.
The method used to obtain the fuzzy sets that define the non-adaptive models
is described in section 5, while section 6 introduces the procedure employed to
adapt the membership functions to new perceptions of the texture properties.
In section 7 a comparative study of these models with the state of the art and
some results obtained by applying them are shown, while section 8 summarizes
the main conclusions and future works.

2 Related work

The majority of the image analysis techniques in computer vision try to model
texture by means of feature vectors (that usually have very large dimensions)
which have no direct relationship with the different perceptual properties. These
approaches, that are based on multiresolution analysis and scale-space theory,
such as Gabor functions [12, 13, 14] or Wavelets [15, 16, 17], do not provide
a textural representation interpretable by humans. On the contrary, they are
intended for comparing different textures on the basis of the similarity between
their feature vectors, which is a very important but completely different problem.

Although, we can find in the literature some techniques that propose a
texture characterization based on its perceptual properties, most of these ap-
proaches are crisp proposals [18, 19, 3, 20] which do not take into account the
imprecision related to texture. To address this problem, some techniques arise
from the fuzzy set field, and more specifically from the content-based image
retrieval area [10, 4, 21, 22, 23]. In these proposals, a mapping from low-level
statistical features (the crisp measures mentioned above) to high level textu-
ral concepts is performed by defining membership functions for each textural
feature.

However, all these fuzzy approaches have four main drawbacks, that, to the
best of our knowledge, have not been addressed in the literature. First of all,
in these proposals membership functions with a fixed form (usually triangles or
trapezoids) are used, which prevents an accurate modelling of the textural con-
cepts. Moreover, linear functions are used for transitions, although it is known
[24] that computational measures do not have a linear variation with the degree
to which the property is present. The second drawback is that the parameters
that define these membership functions are adjusted manually or by using a
fuzzy clustering, but without considering the relationship between the measure
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values and the human perception of the property. This implies that the obtained
membership degrees do not necessarily match what a human would expect. The
third drawback is that they do not propose a global modelling of the textural
concept, but a fuzzy partition providing a set of linguistic terms associated to
this concept. This type of solution is unsuitable for some classical tasks, like
pattern recognition, because a single degree to which the textural property is
present cannot be obtained, but one membership degree for each linguistic term
in the partition. And finally, the fourth drawback of these fuzzy approaches is
that they do not take into account the subjectivity associated to the perception
of the texture properties (the changes in the perception depending on the user
and the image context), as it has been commented in the previous section.

The adaptive fuzzy approach proposed in this paper allows to solve all these
problems. First, parametric polynomial functions are used for fuzzy sets, which
allows to introduce more degrees of freedom than membership functions with a
fixed form; second, the parameters of the membership functions are obtained by
considering the human perception of the corresponding property, which allow to
obtain membership degrees that match what a human would expect; third, each
texture property is modelled by means of a unique fuzzy set, i.e. we propose to
model each textural concept as a whole instead of using a fuzzy partition; and
fourth, the proposed methodology allows to adapt the obtained fuzzy models to
the particular perception of an user and to the changes in perception influenced
by the image context.

In some of our previous works [25, 24, 26], preliminary studies about the
modelling of the fineness property have been presented in order to address the
first three problems commented above. In this paper we have extended these
studies in two ways. First, an adaptive methodology has been proposed in
order to solve the fourth problem, i.e. to take into account the subjectivity
of the perception in the modelling of texture properties; and second, we have
incorporated the fuzzy modelling of the other two properties that, as discussed
in the previous section, have more influence in the human perception of visual
texture: contrast and directionality. The modelling of each of these properties
poses different problems and requires to perform a set of non-trivial tasks to
solve them, as we will show throughout this paper.

3 Preliminaries and notations

As mentioned in the above sections, the objective of this paper is to assess the
presence of texture properties in the image by means of fuzzy sets. From now
on, let P = {fineness3, contrast, directionality} be the set ofthe perceptual prop-
erties of texture that will be modelled in this paper and let Fp = {F p

1 , . . . , F
p
Kp
}

be a set of representative computational measures of the property p ∈ P. In
our approach, we propose to model the presence of a texture property p ∈ P as

3Let us remark that “coarseness” and “fineness” are opposite but related textural concepts.
The advantage of modelling the concept of fineness is that the maximum presence of this
property in the image is delimited by the size of the pixels.
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a fuzzy set T̂ p
k defined on the domain of a measure F p

k , where the membership
function4 of this fuzzy set will be defined as

T̂ p
k : R→ [0, 1] (1)

For this modelling, two questions need to be addressed: (i) what reference
set should be used for the fuzzy set, and (ii) how to obtain the related member-
ship function. Regarding the reference set, as mentioned above, we will define
the fuzzy set on the domain of a given computational measure F p

k ∈ Fp. The
measures analyzed in this paper, corresponding to fineness, contrast and direc-
tionality properties, are summarized in section 4. All of them are automatically
computed from the texture images.

Regarding the membership function, we propose to obtain it by using a
perceptually-based approach that relates the computational measures with the
human perception of the property. This approach is divided into two phases,
that are illustrated in the flowchart shown in Figure 3. In the first one, an
initial fuzzy set T p

k (that has been called non-adaptive model) is obtained in
order to model the average perception about the property p ∈ P. This fuzzy
set is obtained by learning a relationship between each measure (the reference
set) and the human perception of the property extracted from a poll. The
membership function associated to this fuzzy set is defined as

T p
k : R→ [0, 1] (2)

The methodology used to obtain T p
k will be described in detail in section

5. If we do not want to take into account a different perception of the texture
property, the non-adaptive model T p

k can be used directly, i.e. T̂ p
k = T p

k . How-
ever, if we want to consider the particular perception of a new user or the image
context, the second phase of this approach needs to be applied.

In the second phase of our approach, the fuzzy set T̂ p
k is obtained by adapt-

ing the generic model T p
k in order to take into account the subjectivity in the

perception of the property p ∈ P. This way, the adapted model T̂ p
k is adjusted

to the particular perception of a new user by means of the information obtained
from a set of texture images provided by the user. Moreover, the change in the
perception due to the image context is taken into account by analyzing the tex-
tures present in the image. The adaptation process will be described in detail
in section 6.

4 Computational measures: the reference set

There are many measures in the literature that, given an image, capture the
presence of a textural property in the sense that the greater the value given
by the measure, the greater (lower) the presence of the property. In this sec-
tion, the measures used in our study, corresponding to fineness, contrast and
directionality properties, are summarized.

4To simplify the notation, as it is usual in the scope of fuzzy sets, we will use the same
notation T̂ p

k for the fuzzy set and for the membership function that defines it.
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Figure 3: Flowchart illustrating the proposed methodology.

4.1 Fineness measures

Among all the perceptual texture properties, the coarseness-fineness is the most
popular one, being considered as the most fundamental feature in texture anal-
ysis by some authors [4]. In fact, the presence of fineness is usually associated
to the presence of texture (from this point of view, texture is defined as local
variations against the idea of homogeneity). In this sense, a fine texture con-
tains small texture primitives with large gray tone differences between neighbor
pixels (e.g. the first image of Figure 4(a)), whereas a coarse texture corresponds
to larger primitives formed by several pixels (e.g. the last image of Figure 4(a)).

In this paper, we have initially considered the 17 fineness measures analyzed
in our previous work [24]. These measures can be classified into 3 groups ac-
cording to the strategy used to quantify the coarseness of the texture image.
The first group includes those measures that try to estimate directly the size of
the texels by analyzing the pixels of the image. In this group we can find the
measure defined by Abbadeni et al. in [20], the measure proposed by Tamura et
al. in [3], the Edge Density (ED measure), that is calculated as the percentage
of pixels which are an edge in the image, and the Fractal Dimension (FD mea-
sure) defined by Mandelbrot in [27], that is estimated by following the blanket
method introduced by Peleg in [28].

The second group includes the measures obtained by applying statistics over
matrices that collect information about the relationships between the gray level
of each pixel and their neighbours. The measures of Haralick [18], that are
based on the GLCM matrix, are placed in this group. In particular, 6 coarseness
measures are obtained by applying the statistics contrast, correlation, entropy,
local homogeneity, variance and uniformity over this matrix. This group also
includes the measure defined by Amadasun in [19], the Short Run Emphasis
(SRE measure) given by Galloway in [29], the Small Number Emphasis (SNE
measure) defined by Sun et al. in [30], the Distribution of Gray Level Difference
(DGD measure) proposed by Kim et al. in [31], and the measure defined by
Weszka et al. in [32].
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(a)

(b)
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Figure 4: Examples of texture images used in the poll corresponding to the
properties of fineness (a), contrast (b) and directionality (c).

The third group is composed of two measures that are based on the Fourier
power spectrum of the image. The first one is the measure used by Newsam
in [33], computed as the average of power spectrum over ring-shaped regions
centered at the origin, and the second one is the first moment of the power
spectrum (FMPS measure), obtained by computing the mean value of Fourier
power spectrum of the image [34].

However, according to the study performed in [24], some of the above mea-
sures have an unsuitable behavior. The measures of Newsam, FMPS, Entropy
and uniformity are size dependent, i.e. the values given by these measures are
affected by the window size. In addition, the Variance measure does not provide
a representative information about the perception of fineness. Thus, these five
measures are rejected and they will not be taken into account in the following,
focusing our study on the other 12 measures, that are listed in the first column
of Table 1(a). Besides independence with respect to the image size and the
ability to provide information about the fineness perception, other interesting
properties for texture analysis are also fulfilled by the proposed measures. As
it is shown in [24], they are robust against changes in the image characteris-
tics, like brightness and contrast, and they are not significantly affected by the
presence of noise in the image.
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4.2 Contrast measures

The contrast property reflects the clarity with which texture primitives are
distinguishable. In this sense, a well contrasted texture contains primitives that
are clearly visible and separable (e.g. the first image of Figure 4(b)), whereas
a low contrasted texture has a poor distinguishability between texels (e.g. the
last image of Figure 4(b)). Notice that this property refers to grayscale images,
and it should not be confused with the contrast related to color images.

In this paper, we propose to use 4 of the most used contrast measures in
the literature. Two of them try to estimate directly the contrast between texels
by analyzing the pixels of the image. The first one is the measure defined
by Tamura et al. in [3], which takes into account both the dynamic range of
gray levels in the image and the kurtosis of their distribution. The second one
is the contrast measure defined by Abbadeni in [20], which is based on the
autocovariance function.

The other two measures are obtained by applying statistics over matrices
that collect information about the relationships between the gray level of each
pixel and their neighbours. The first one is the contrast statistic proposed by
Haralick et al. in [18], which is obtained from GLCM matrices. The second
one is the contrast measure proposed by Amadasun and King in [19], which
takes into account both global statistics (as the dynamic range of gray levels in
the image) and local statistics calculated from the Neighbourhood Gray-Tone
Difference Matrix.

4.3 Directionality measures

The directionality property is related to the presence of a dominant orientation
in texture primitives, and it depends on two factors: (i) the shape of texture
primitives individually, and (ii) their placement rule in the image. In this sense,
a directional texture contains primitives that have a dominant dimension, i.e.
texels with an elongated shape, and, in addition, this primitives are arranged
in the same orientation (e.g. the first image of Figure 4(c)). The direction-
ality presence decreases as the orientation of all texels does not match, even
if they have an elongated shape (e.g. the second image of Figure 4(c)), or as
the shape of texels is less elongated, even if they are arranged in the same ori-
entation (e.g. the third image of Figure 4(c)). The no directionality presence
(omnidirectional texture) is associated to texture primitives that does not have
a dominant dimension in their shape (e.g. the fourth image of Figure 4(c)) or
their arrangement does not have a dominant orientation (e.g. the last image of
Figure 4(c)).

In this paper, we will use 3 of the most known directionality measures in
the literature. The first one is the directionality measure defined by Tamura
et al. in [3], which is based on the computation of an histogram of local edge
probabilities against their directional angle. The second one is the directionality
measure proposed by Abbadeni in [20], which is also based on the analysis of
directional angles, but considering the local edges obtained from the autocovari-
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ance function, instead of the local edges of the original image. The last measure
is the directionality statistic computed from the Fourier power spectrum of the
image [32, 33], which analyzes the energy distribution in wedge-shaped regions
of the frequency domain.

5 Non-adaptive modelling

In this section, the methodology used to obtain the non-adaptive models T p
k

will be described. As mentioned above, we propose to obtain the memberships
function of these fuzzy sets by learning a relationship between the computational
measures and the human perception of the corresponding property.

For this purpose, two questions need to be addressed: firstly, how to obtain
the data about the “human perception” of the property and, secondly, how to
fit these data with the measures in order to obtain the membership function.
To get information about the human perception of a texture property p ∈ P,
a set of images covering different degrees to which this property is present has
been gathered. These images are used to collect, by means of a poll, human
assessments about the perceived presence of the property. From now on, let Ip =
{Ip1 , . . . , I

p
Np
} be the set of Np images representing examples of the property

p ∈ P, and let Γp = {vp1 , . . . , v
p
Np
} be the set of human assessments associated

to Ip. The description of the texture image set and the way to obtain Γp are
detailed in section 5.1.

To obtain the membership function T p
k for a given measure F p

k ∈ Fp of the
texture property p ∈ P, a robust fitting method will be applied in order to
obtain suitable functions relating the values of the measure calculated for each
image with the presence degree of the property p perceived by humans. This
fitting method is described in section 5.2.

5.1 Assessment collection

In this section, the way to obtain the set of values Γp = {vp1 , . . . , v
p
Np
}, that

represent the presence degree of the property p ∈ P perceived by humans in the
images Ipi ∈ Ip, will be described. For this purpose, first the image set Ip will
be selected (section 5.1.1). After that, a poll for getting assessments about the
perception of the property will be designed (section 5.1.2). Finally, for a given
image, the assessments of the different subjects will be aggregated (5.1.3).

5.1.1 The texture image set

For each property p ∈ P, a set Ip = {Ip1 , . . . , I
p
Np
} of Np = 80 images represent-

ing examples of this property has been selected. Figure 4 shows some images
extracted from the set Ip corresponding to the properties of fineness (Figure
4(a)), contrast (Figure 4(b)) and directionality (Figure 4(c)). Each set has been
selected satisfying the following conditions:

• It covers the different degrees to which the property is present.
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• The number of images for each degree of presence is representative enough.

• Each image shows, as far as possible, just one degree of presence of the
property.

Due to the third condition, each image can be viewed as “homogeneous” with
respect to the presence degree of the corresponding property, i.e., if we select
two random windows (with a dimension which does not “break” the original
texture primitives and structure), the perceived presence of the property will
be similar for each window (and also with respect to the original image). In
other words, we can see each image Ipi ∈ Ip as a set of lower dimension images
(sub-images) with the same degree of presence as the original one. This will
be very useful for the fitting process, because we can have a larger number of
fitting points without extending the number of images used in the poll.

5.1.2 The poll

Given the image set Ip, the next step is to obtain assessments about the per-
ception of the corresponding property p ∈ P from a set of subjects. From now
on, we will denote by Θp

i = [opi,1, . . . , o
p
i,L] the vector of assessments obtained

from L subjects for the image Ipi . We considered two alternatives to get Θp
i :

• To ask subjects about a degree of presence between 0 and 1 for each image
in the set.

• To ask subjects to assign images to classes, so that each class has asso-
ciated a degree of presence. In our proposal, an example image which
represents the degree of presence is associated to each class.

The first choice allows subjects to have more freedom to assess the degree
to which the property is present. However, according to our own experience, it
is very difficult for a subject to provide a value between 0 and 1 that represents
degree to which a certain texture concept is present (except in the case of both
extremes: fulfillment of the concept -degree of 1- and unfulfillment of the concept
-degree of 0). Thus, this alternative was discarded.

The above problem is solved by the second choice. The subject does not
assess a value but classifies each image into a class, giving his opinion about the
degree to which the texture property is present. From now on, let Rp be the
number of classes that have been considered in the poll for the property p ∈ P.
One of the classes represents the presence degree of 1 of this property. In our
proposal, traditional examples used in the literature to define very fine, high
contrasted and very directional textures has been considered for this class [35].
An example that represents this presence degree for each property is shown in
the first image of figures 4(a), 4(b) and 4(c), respectively. Another of the classes
considered in the poll represents the presence degree of 0 of the property. In
this case, again, traditional examples used in the literature to define very coarse,
very low contrasted and very non-directional textures has been considered for
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this class. The last image of figures 4(a) and 4(b) shows an example of this
presence degree for fineness and contrast properties, respectively. In the case of
directionality, the presence degree of 0 is associated to texture primitives that do
not have a dominant dimension or their arrangement does not have a dominant
orientation, as it is shown in the last two images of Figure 4(c).

The rest of classes represent presence degrees of the property between 0
and 1. In the case of fineness, nine classes have been employed, considering
gradual variations in the size of texture primitives. Figure 4(a) shows the sam-
ple images associated to five of these classes, ordered in a decreasing presence
degree of the fineness concept. In the case of contrast, five classes have been
considered, taking into account gray level differences in texel edges in order to
scale their contrast between the classes corresponding to degrees 1 and 0. The
five representative images used in the poll are shown in Figure 4(b). In the
case of directionality, five classes have been also employed, considering gradual
variations in texel orientation or/and shape, as it is shown in the second and
third images of Figure 4(c). Note that, since it is more difficult for humans to
discriminate between different presence degrees of contrast and directionality
than between the fineness degree, the number of classes considered for these
two properties is smaller.

In our approach, 20 subjects have participated in the poll. As result, a vector
of 20 assessments Θp

i = [opi,1, . . . , o
p
i,20] is obtained for each image Ipi ∈ Ip. The

degree opi,j associated to the assessment given by the subject Sj to the image Ipi
is computed as opi,j = (Rp − k)/(Rp − 1), where k ∈ {1, . . . , Rp} is the index of
the class to which the image is assigned by the subject.

5.1.3 Assessment aggregation

Our aim at this point is to obtain, for each image in the set Ip, one assessment
vpi that summarizes the assessments Θp

i given by the different subjects about
the presence degree of the property p ∈ P. To aggregate opinions we have used
an OWA operator guided by a quantifier [36]. Concretely, the quantifier “the
most” has been employed, which allows to represent the opinion of the majority
of the subjects. This quantifier is defined as

Q(r) =


0 if r < a,
r−a
b−a if a ≤ r ≤ b,
1 if r > b

(3)

∀r ∈ [0, 1], with a = 0.3 and b = 0.8. Once the quantifier Q has been chosen,
the weighting vector of the OWA operator can be obtained following Yager [36]
as wj = Q(j/L)−Q((j−1)/L), j = 1, 2, ..., L. According to this, for each image
Ipi ∈ Ip, the vector Θp

i obtained from L subjects will be aggregated into one
assessment vpi as follows:

vpi = w1ô
p
i,1 + w2ô

p
i,2 + ...+ wLô

p
i,L (4)
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where [ôpi,1, . . . , ô
p
i,L] is a vector obtained by ranking in nonincreasing order the

values of the vector Θp
i .

5.2 Fitting the membership Function

At this point, the aim is to obtain, for a given measure F p
k ∈ Fp of a property

p ∈ P, the corresponding membership function T p
k . In this paper, we propose

to find a function that associates the measure values of the property with the
corresponding human assessments about it. As it was pointed out in section
5.1.1, thanks to the “homogeneity” in the presence degree of the property, each
image Ipi ∈ Ip can be seen as a set of sub-images with the same presence
degree vpi of the original one. From now on, we will note as IpW = {Ipi,w, i =
1, . . . , Np;w = 1, . . . ,W} the set of sub-images extracted from Ip, where Ipi,w
is the w-th sub-image of Ipi and W is the number of sub-images considered for

each image; on the other hand we will denote by mi,w
p,k the result of applying the

measure F p
k to the sub-image Ipi,w. According to this notation, let Ip,fitW ⊆ IpW

and Ip,testW = IpW\I
p,fit
W be two complementary subsets of IpW , that will be used

for fitting the membership function and testing the obtained model, respectively.
Thus, in order to estimate the membership function that associates the mea-

sure values (mi,w
p,k) and the human assessments (vpi ), we propose to fit a suitable

function to the subset of points:

Ψp,fit
k = {(mi,w

p,k , v
p
i );∀Ipi,w ∈ I

p,fit
W } (5)

In this paper, for each image Ipi ∈ Ip, W = 200 sub-images of size 32 × 32
have been considered5, so IpW is formed by 16000 sub-images. We propose to
randomly select 75% of them for the fitting, so 12000 points are contained within
Ψp,fit

k .
The measure values can be affected by some factors, like brightness, contrast

or noise, which typically causes outliers in the fitting points. For this reason,
in our approach the membership function is calculated by means of a robust
fitting of the multiset Ψp,fit

k . In this modelling, the robust fitting based on M-
estimators (a generalization of the least squares fitting) is used [37]. In addition,
to define T p

k , the following considerations are taken into account:

• T p
k should be a monotonic function.

• The values T p
k (x) = 0 and T p

k (x) = 1 should be reached.

Regarding the above properties, we propose to define T p
k as a function of

5As mentioned in section 4, the measures used in this study are not size dependent. There-
fore, the models obtained by means of the fitting process do not depend on the window
size. Sub-images smaller than 32 × 32 are not considered because they would break texture
primitives.
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Table 1: Fitting errors and test errors related to each measure for the properties
of fineness (a), contrast (b) and directionality (c).

Fineness Fitting Test
measure error error
Amadasun 0.1333 0.1695
Correlation 0.1401 0.1747
Abbadeni 0.1639 0.1947
FD 0.1776 0.2084
Tamura 0.1913 0.2070
ED 0.2009 0.2168
DGD 0.2031 0.2339
LH 0.2150 0.2336
Weszka 0.2157 0.2411
Contrast 0.2161 0.2475
SNE 0.2267 0.2418
SRE 0.2296 0.2455

(a)

Contrast Fitting Test

measure error error

Tamura 0.0340 0.0649

Amadasun 0.0780 0.1108

Abbadeni 0.1003 0.1393

Haralick 0.1157 0.1416

(b)

Directionality Fitting Test

measure error error

Tamura 0.0687 0.1064

Abbadeni 0.0788 0.1324

Fourier 0.1073 0.1406

(c)

the form6

T p
k (x; an . . . a0, α, β) =

 1 x < α,
poly(x; an . . . a0) α ≤ x ≤ β,
0 x > β

(6)

with poly(x; an . . . a0) being a polynomial function

poly(x; an . . . a0) = anx
n + . . .+ a1x

1 + a0 (7)

In our proposal, the parameters an . . . a0, α and β of the function T p
k are

calculated by carrying out a robust fitting on Ψp,fit
k , with the constraint to

obtain a strictly monotonic function between α and β. For the polynomial
function, the cases of n = 1, 2, 3, 4 (i.e. linear, quadratic, cubic and quartic
functions) have been considered.

The second column of tables 1(a), 1(b), and 1(c) show the least fitting error
related to the measures used in this paper for the properties of fineness, contrast
and directionality, respectively. Note that this value can be viewed as the good-
ness of each measure to represent the perception of the corresponding property.
These tables have been ranked in increasing order of the fitting errors. In all
the cases, the least error has been obtained for a polynomial function of order
n = 3 (the use of higher order functions does not provide better fits).

In addition, the test error for each measure has been calculated by using the
subset of points Ψp,test

k and it is shown in the third column of these tables. In

6Note that this function is defined for measures that decrease according to the presence of
the property. For those that increase, the function needs to be changed appropriately, i.e. it
takes the value 0 for x < β, it takes the value 1 for x > α, and the polynomial function is
computed for β ≤ x ≤ α.
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Fineness Contrast Directionality

(Amadasun) (Tamura) (Tamura)

a3 -6.61279 1.6877 -511.97

a2 9.49014 -3.9536 1657.3

a1 -6.48352 3.8763 -1792.3

a0 1.87067 -0.5728 648.14

α 0.17269 0.1775 0.8594

β 0.58578 0.9620 0.9865

Figure 5: Proposed membership function T p
k corresponding to fineness, contrast

and directionality properties.

our approach, this error is calculated as the mean absolute difference between
the values vpi and the degrees obtained by applying the function T p

k to the values

mi,w
p,k , for all the points (mi,w

p,k , v
p
i ) ∈ Ψp,test

k , i.e.

Ep,test
k =

∑
(mi,w

p,k ,v
p
i )∈Ψp,test

k

∣∣∣T p
k (mi,w

p,k)− vpi
∣∣∣

card(Ψp,test
k )

(8)

with card(Ψp,test
k ) being the cardinality of Ψp,test

k .
In our experiments, the membership functions with the lowest error are

obtained by using the measure of Amadasun in the case of fineness and the
measures of Tamura in the case of contrast and directionality. Figure 5 shows
the parameters and the graphical representation of these membership functions.
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6 Adaptation to user’s profiles and image con-
text

As it was pointed out, the non-adaptive fuzzy sets T p
k obtained in section 5 are

able to represent the presence degree of fineness, contrast and directionality in
textures according to the average perception of these properties. These fuzzy
sets can be considered as the default models for the fineness, contrast and di-
rectionality properties, because they can be used if additional information is
not available (user’s profile, context, etc.). However, a particular user may have
a different perception of these properties, and, moreover, the image context
may influence in the global perception, so an approach that allows to adapt the
default models to a particular case is needed.

In this section, we propose a method to automatically adapt the membership
function T p

k to the different perception of the texture properties that a particular
user can have (section 6.1) or the changes in perception influenced by the image
context (section 6.2).

6.1 Adaptation to user’s profile

In order to adapt the membership function to a particular user’s perception
about the property p ∈ P, a set of texture images and its corresponding per-
ception degree of this property should be provided by the user. Let R =
{R1, . . . , RZ} be the set of Z ≥ 1 texture images given by the user to rep-
resent his particular perception about the property, let V = {v1, . . . , vZ} be the
perception degrees associated to R, and let Mk = {m1

k, . . . ,m
Z
k } be the values

for the measure F p
k ∈ Fp applied to each image Ri ∈ R. According to this

notation, let Ωk = {(mi
k, v

i),mi
k ∈ M; vi ∈ V;mi

k < mi+1
k }i=1,...,Z be the set of

pairs that associate each measure value with its corresponding perception degree
(called as adaptation points in the following) ordered by the measure value.

We propose to obtain T̂ p
k by means of a transformation that adapts the

membership function T p
k to the new criteria Ωk. This transformation is per-

formed by translating and expanding (or compressing) T p
k in the domain of

the measure in order to force T̂ p
k to go through the adaptation points. Notice

that the proposed adaptation method keeps the tendency of the non-adaptive
membership function, i.e. the function increases and decreases according to the
average human perception. Thus, we propose to define T̂ p

k as a function of the
form7

7Notice that the transformation for x ≤ m1
k and x ≤ m2

k is the same. In fact, as m1
k > m2

k,

the first condition can be reduced to x ≤ m2
k. The same happens with x > mZ−1

k and x > mZ
k ,

that can be reduced to x > mZ−1
k .
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T̂ p
k (x; Ωk) =



T p
k (A

m̄1
km̄

2
k

m1
km

2
k
(x)) x ≤ m1

k or x ≤ m2
k,

...

T p
k (A

m̄i
km̄

i+1
k

mi
km

i+1
k

(x)) mi
k < x ≤ mi+1

k ,

...

T p
k (A

m̄Z−1
k m̄Z

k

mZ−1
k mZ

k

(x)) x > mZ−1
k or x > mZ

k

(9)

with T p
k being the function defined in Eq. (6), with m̄i

k = (T p
k )−1(vi) ∀i, and

where Aab
a′b′(x) is defined as a translation and expansion function of the form

Aab
a′b′(x) =

x− a′

b′ − a′
(b− a) + a (10)

It should be noticed that, since T p
k is a bijective function on [α, β] (it is

surjective and strictly monotone on [α, β]), the inverse function (T p
k )−1 always

exists. In our implementation, the Newton-Raphson method has been applied
in order to obtain the values m̄i

k.
By considering the definition of T p

k given by Eq. (6), the adapted member-

ship function T̂ p
k defined in Eq. (9) can be represented as:

T̂ p
k (x; Ωk) =



1 x < α̂,

poly(A
m̄1

km̄
2
k

m1
km

2
k
(x)) α̂ ≤ x ≤ m2

k,

...

poly(A
m̄i

km̄
i+1
k

mi
km

i+1
k

(x)) mi
k < x ≤ mi+1

k ,

...

poly(A
m̄Z−1

k m̄Z
k

mZ−1
k mZ

k

(x)) mZ−1
k < x ≤ β̂,

0 x > β̂

(11)

where α̂ and β̂ are calculated (if they are not defined in Ωk) as8

α̂ = A
m1

km
2
k

m̄1
km̄

2
k
(α) (12)

β̂ = A
mZ−1

k mZ
k

m̄Z−1
k m̄Z

k

(β) (13)

with α, β and poly being the values and the polynomial function defined in Eq.
(6). Note that poly is the same polynomial function in all the parts of Eq. (11).

It should be noticed that Eq. (9) and Eq. (11) are valid only for Z > 1. In
the particular case of Z = 1 only a translation is performed

8For measures that decrease according to the perception of the property. For those that
increases, α̂ is calculated by applying α to Eq. (13) and β̂ is calculated by applying β to Eq.
(12).
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Figure 6: Example of adaptation to a new user’s perception. The adapted model
T̂ p
k (solid line) is obtained by adapting the non-adaptive model T p

k (dashed line)
according to Ωk = {(mi

k, v
i)}i=1,...,Z with Z = 3.

T̂ p
k (x; Ωk) = T p

k (x+ m̄1
k −m1

k) (14)

It should be noticed that the model obtained with the proposed adaptive
method is not the same as if the we calculate the non-adaptive model using
the opinion of the new user in conjunction with the assessments given by the
original users. The non-adaptive model reflects the opinion of the majority
of the subjects, so it would only reflect the perception of the new user if this
perception matched with the opinion of the majority.

An example of the adaptation method presented in this section is shown in
Figure 6. The proposed transformation is applied to the non-adaptive model T p

k

for the fineness property (dashed line) in order to obtain the adapted model T̂ p
k

(solid line), according to Ωk. The non-adaptive model for the fineness measure
of Amadasun, that is defined by the parameter values shown in Figure 5, has
been used in this example:

T p
k (x) =

 1 x < 0.17269,
poly(x) 0.17269 ≤ x ≤ 0.58578,
0 x > 0.58578

with poly(x) = −6.6128x3 + 9.4901x2 − 6.4835x+ 1.8707.
We suppose that a new user gives three texture images to represent his

particular fineness perception. Let’s assume that the values of the fineness
measure F p

k for the three images are m1
k = 0.1, m2

k = 0.55 and m3
k = 0.8. Let

v1 = 0.9, v2 = 0.5 and v3 = 0 be the perception degree of fineness given by the
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user to these images. The first point (0.1, 0.9) imposes that the value v1 = 0.9,
that is achieved by T p

k in m̄1
k = 0.201, should be achieved by T̂ p

k in m1
k = 0.1.

In the same way, the values v2 = 0.5 and v3 = 0, that are achieved by the non-
adaptive model in m̄2

k = 0.342 and m̄3
k = 0.586 respectively, should be achieved

by the adapted model in m2
k = 0.55 and m3

k = 0.8. Thus, the adapted model

T̂ p
k is obtained using Eq. (11) as:

T̂ p
k (x; Ωk) =


1 x < 0.027,
poly(A0.201 0.342

0.1 0.55 (x)) 0.027 ≤ x ≤ 0.55,

poly(A0.342 0.586
0.55 0.8 (x)) 0.55 < x ≤ 0.8

0 x > 0.8

=


1 x < 0.027,
poly( 0.141x

0.45 + 0.170) 0.027 ≤ x ≤ 0.55,

poly( 0.244x
0.25 − 0.195) 0.55 ≥ x > 0.8

0 x > 0.8

In this case, the value β̂ has been defined by the user in Ωk (β̂ = 0.8), and
the value α̂ is calculated as

α̂ = A0.201 0.342
0.1 0.55 (0.1727) = 0.027

6.2 Adaptation to image context

Natural images will usually show several textures with different perception de-
grees of the properties. It is natural to assume that the textures with the
minimum and the maximum presence of a property in the image may influence
the perception of this property for the rest of textures, i.e. the perception can
depend on the context. For example, in the case of the fineness property, the
coarsest and the finest texture in the image may inhibit the rest of textures,
influencing their perception of fineness.

In this section, a proposal for adapting the membership function T p
k to the

image context is presented. In our approach, the minimum and the maximum
perception degrees of the property p ∈ P, i.e. the values where the function
T̂ p
k achieves the membership degrees 0 and 1, noted as β̂ and α̂, will depend on

the inhibition present in the image. In turn, this inhibition will depend on the
difference between the textures with the minimum and the maximum presence
of the property in the image, in the sense that the greater this difference, the
stronger the inhibition. From now on, we will denote by Mmin

k and Mmax
k the

value of the measure F p
k for the textures with the minimum and the maximum

presence of the property in the image, and we will denote by λpk the inhibition
degree present in the image for the property p ∈ P according to the measure
F p
k . At this point, our first aim is to obtain the values Mmin

k and Mmax
k of

the corresponding image. Secondly, these values will be used to estimate the
inhibition degree λpk. Finally, this inhibition degree will be used to calculate the

values β̂ and α̂ that will impose the adaptation to the image context.
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In order to obtain the textures with the minimum and the maximum presence
of the property in the image, for each pixel in the original image, the value
of the measure F p

k is calculated using a centered window of size 32 × 32. Let
M = {mi

k, m
i
k ≤ m

i+1
k }i=1,...,N be the ordered set of these values. The textures

with the minimum and the maximum presence of the property will correspond
with the first and the last element in this set9, respectively, i.e. Mmin

k = m1
k and

Mmax
k = mN

k . However, in order to avoid the influence of outliers (the presence
of very low and very large measure values), the elements z > 1 and z′ < N have
been chosen, i.e. Mmin

k = mz
k and Mmax

k = mz′

k . In particular, we propose to
use the 20th percentile and the 80th percentile inM, i.e. z = round(0.2N+0.5)
and z′ = round(0.8N + 0.5), with round(x) being the function that returns the
nearest integer to x.

Once the values Mmin
k and Mmax

k are calculated, the next step is to estimate
the inhibition degree λpk present in the image. In this paper, we consider that λpk
will reach the highest degree (λpk = 1) if the difference

∣∣Mmax
k −Mmin

k

∣∣ is large
enough. Thus, we propose to define the inhibition degree as a value between 0
and 1 of the form

λpk =

{
|Mmax

k −Mmin
k |

Uk

∣∣Mmax
k −Mmin

k

∣∣ < Uk,

1
∣∣Mmax

k −Mmin
k

∣∣ ≥ Uk

(15)

with Uk being the threshold value for considering that the difference between the
textures with the maximum and the minimum presence of the property in the
image is large enough. In our approach, we consider that the difference between
textures with membership degrees 0 and 1 according to the non-adaptive model
is large enough. Thus, we propose to define this threshold as

Uk = |α− β| (16)

with α and β being the values defined in Eq. (6).

At this point, the aim is to obtain α̂ and β̂ on the basis of the inhibition
degree. In our approach, if the inhibition is strong (λpk = 1), α̂ and β̂ will be
imposed by the textures with the maximum and the minimum presence of the
property in the image, i.e. α̂ = Mmax

k and β̂ = Mmin
k . If no inhibition is present

in the image (λk = 0), α̂ and β̂ will coincide with the corresponding values of

the non-adaptive model, i.e. α̂ = α and β̂ = β. Thus, in general, we propose to
calculate α̂ and β̂ as

α̂ = α+ λk · (Mmax
k − α) (17)

β̂ = β + λk · (Mmin
k − β) (18)

This way, the membership function T̂ p
k adapted to the image context can be

obtained by applying the same transformation shown in section 6.1 on the basis
of the set Ωk = {(α̂, 1), (β̂, 0)}.

9For measures that increase according to the perception of the property.
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7 Results

In this section, the goodness of the fuzzy models proposed for fineness, contrast
and directionality properties will be analyzed. First, in section 7.1, we will com-
pare them with the state of the art in the modelling of visual texture properties.
Then, the proposed fuzzy sets will be applied to several examples with images
in order to analyze its performance. In section 7.2, the non-adaptive models will
be directly applied, while in sections 7.3 and 7.4 they will be previously adapted
to new user’s perceptions and the image context, respectively. In particular, the
fuzzy sets with least fitting error and least test error (shown in Figure 5) will
be used.

7.1 Comparison with the state of the art

At this point, the aim is to compare the non-adaptive fuzzy sets obtained in
section 5 with the state of the art in the modelling of visual texture properties.
As has been commented throughout this paper, the proposed fuzzy models allow
us to represent the degree to which a texture property is present, and we have
verified by means of goodness measures (fitting errors and test errors) that the
obtained degrees match with the human perception of the property. However,
from our knowledge, there is no other fuzzy approach in the literature with the
ability of providing this type of information. Nevertheless, as has been shown in
section 1, most of the existing measures allow to represent a textural property
in the sense that the greater the value given by the measure, the greater (lower)
the presence of this property. With this in mind, and in order to compare
the different approaches, we will study whether the increase in the value of a
measure is always produced by the increase (or decrease) in the presence of the
corresponding property.

In particular, two comparative studies will be performed using the subset
of images Ip,testW . In the first one, we will study the correlation between the

order given by the measure values computed from the images in Ip,testW and the
order of these images according to the poll10. To do this, we propose to use
the Kendall rank correlation coefficient [38] and the Spearman rank correlation
coefficient [39], that are widely used in this type of problems. The Kendall
coefficient is defined as:

τ =
nc − nd

n(n− 1)/2
(19)

with n being the number of ranked elements, and where nc and nd are the
number of concordant and discordant pairs comparing both rankings, as it is
shown in [38]. The Spearman coefficient is defined as:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(20)

10Note that in this case we are not interested in the specific assessment associated to each
image, but in the ranking of these values.
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Table 2: Comparative study of rank correlation by means of Spearman and
Kendall coefficients.

Fineness Spearman Kendall

model coefficient coefficient

Chamorro 0.7303 0.5705

Amadasun 0.7299 0.5660

Correlation 0.7289 0.5610

Abbadeni 0.6981 0.5293

ED 0.6407 0.4744

FD 0.6163 0.4545

Tamura 0.6118 0.4567

FuzzyP 0.5983 0.4781

DGD 0.5629 0.4197

LH 0.5624 0.4132

Weszka 0.5436 0.4039

SRE 0.5413 0.3984

Contrast 0.4923 0.3674

SNE 0.4857 0.3555

(a)

Contrast Spearman Kendall
model coefficient coefficient
Chamorro 0.9548 0.8633
Tamura 0.9504 0.8415
FuzzyP 0.9317 0.8592
Amadasun 0.8777 0.7358
Abbadeni 0.8365 0.6888
Haralick 0.8262 0.6744

(b)

Directionality Spearman Kendall

model coefficient coefficient

Chamorro 0.8986 0.7747

Tamura 0.8961 0.7582

FuzzyP 0.8696 0.7716

Abbadeni 0.8387 0.6913

Fourier 0.8063 0.6531

(c)

with xi and yi being the rank of each pair of elements in its corresponding
ranking, and with x̄ and ȳ being the mean of the values in each ranking. In both
cases, a higher coefficient indicates a better correlation between the ranking of
the measure values and the ranking of the human assessments about the presence
of the property.

In the second comparative study, the significance of each model will be ana-
lyzed. In this case, we study whether the values given by the model for textures
with different presence of the property are significantly different compared to
the values obtained from textures with a similar presence. For this purpose,
the F-statistic [40] will be computed from the Rp classes in which the images in
Ip,testW have been grouped in the poll. This statistic compares the between-group
variation of the values with their within-group variation as follows:

F =

∑k
i=1 ni(x̄i − x̄)2/(k − 1)∑k

i=1

∑n
j=1(xij − x̄i)2/(N − k)

(21)

where k is the total number of groups, ni is the number of elements in the
i-th group, N is the total numer of elements, xij represents the j-th element in
group i, x̄i is the mean in group i, and x̄ is the mean of all the elements. A
higher F-statistic means that the model has more significance, i.e. it allows to
distinguish more clearly different degrees to which the property is present.

In these two studies, we will compare the non-adaptive fuzzy models pro-
posed in this paper (the models with the highest goodness according to fitting
and test errors) with the state of the art in the modelling of texture properties,
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Table 3: Comparative study of significance by means of the F-statistic.

Fineness Significance

model (F-statistic)

Chamorro 168.7424

Correlation 155.9657

Tamura 125.0183

Amadasun 118.1959

FuzzyP 115.7747

FD 114.4741

ED 110.3823

DGD 70.7770

LH 69.6480

Weszka 65.5035

SNE 66.7699

SRE 53.0102

Abbadeni 42.4382

Contrast 34.0349

(a)

Contrast Significance
model (F-statistic)
Chamorro 2406.6
FuzzyP 1556.2
Tamura 1268.8
Amadasun 427.36
Haralick 248.86
Abbadeni 211.06

(b)

Directionality Significance
model (F-statistic)
Chamorro 592.51
Tamura 589.60
FuzzyP 477.98
Abbadeni 325.89
Fourier 247.68

(c)

consisting of all the crisp measures shown in section 4, as well as the fuzzy ap-
proaches commented in section 2. Note that these fuzzy approaches are based
on partitions, so they do not provide a presence degree of the texture property,
but a set of linguistic labels (and their corresponding membership degrees) to
describe this property. Thus, this information cannot be used directly in the
proposed comparative studies. However, from a semantical point of view, this
information also provides a presence estimation of the texture properties, al-
though it is represented in a different mathematical format. In this sense, it
can be ranked on the basis of the linguistic labels, that are semantically ordered
according to the presence of the property. This way, given an image from the
set Ip,testW , we associate it to the linguistic label with the highest membership
degree, obtaining a ranking that can be used in the comparative studies. As
has been commented in section 2, the majority of the fuzzy approaches in the
literature [10, 22, 4, 41, 23] propose, for each texture property, a fuzzy partition
with five linguistic terms defined on the domain of the corresponding Tamura
measure. According to these approaches, we have generated each fuzzy partition
through an unsupervised fuzzy clustering algorithm on the basis of the measure
values obtained from the subset of images Ip,fitW . As all these approaches pro-
pose a similar solution, we have included the item “FuzzyP” in the comparative
studies, that represents all them.

Tables 2 and 3 show the results obtained in these two studies for the prop-
erties of coarseness, contrast and directionality. The first table is ranked in
decreasing order of the Spearman rank correlation coefficient, while the second
one is ranked in decreasing order of the F-statistic. As can be seen, the best
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(c)

Figure 7: Experiment using the non-adaptive fuzzy model for the fineness prop-
erty. (a) Collection of texture images. (b) Human assessments about the pres-
ence degree of fineness. (c) Membership degrees obtained by applying the pro-
posed fineness model.

approach in all the comparative studies is the non-adaptive fuzzy model pro-
posed in this paper. It may be noticeable that the values of both correlation
coefficients for the fineness property (Table 2(a)) are relatively low. This is due
only to the fact that nine different classes of fineness have been considered in
the poll and there is much overlap between them, which is also reflected in the
corresponding study of significance (Table 3(a)).

Therefore, although the full potential of our approach is not being used in
these comparative studies, the obtained results show that our approach already
improves the state of the art. In order to appreciate the ability of our fuzzy
models to represent the presence degree of a texture property, which is not
reflected in these comparative studies, the results obtained by applying these
models to experiments with different images will be shown in next sections.

7.2 Non-adaptive modelling

In this section, several experiments using the proposed non-adaptive fuzzy set
has been directly applied, without taking into account the particular perception
of a new user or the image context. For the first one, we have considered Figure
7(a), corresponding to a collection of texture images, each one with a different
increasing perception degree of fineness. These images are part of the set used
in the poll, so human assessments about fineness presence are available in order
to compare with the obtained results.

Figure 7(b) shows an ideal mapping from the original texture images to
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(c)

Figure 8: Experiment using the non-adaptive fuzzy model for the contrast prop-
erty. (a) Collection of texture images. (b) Human assessments about the pres-
ence degree of contrast. (c) Membership degrees obtained by applying the pro-
posed contrast model.

their fineness values, where all pixels corresponding to the same texture image
have been mapped using the human assessment associated to this image. These
assessments (between 0 and 1) have been mapped into a gray level from 0 to 255,
so that a white pixel in the mapping indicates maximum perception of fineness,
while a black one indicates no perception of fineness (maximum perception of
coarseness).

Figure 7(c) shows a mapping from the original texture images to their fine-
ness values obtained by applying the proposed fineness model. For each pixel in
the original images, a centered window of size 32×32 has been analyzed and its
fineness membership degree has been calculated using the corresponding model.
This degree has been mapped into a gray level from 0 to 255. It can be noticed
that our model captures the evolution of the perception degrees of fineness, and
the obtained mappings, that represents the estimated presence degree of this
property, can be directly interpreted by humans.

Two similar experiments, shown in figures 8 and 9, have been performed for
the properties of contrast and directionality, respectively. In the case of contrast,
we have considered the collection of texture images shown in Figure 8(a), each
one with a different decreasing perception degree of contrast. As in the previous
experiment, these images are part of the set used in the corresponding poll, so
human assessments about contrast presence are available in order to compare
with the obtained results.

Figure 8(b) shows an ideal mapping from the original texture images to their
contrast values, where all pixels corresponding to the same texture image have
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Figure 9: Experiment using the non-adaptive fuzzy model for the directionality
property. (a) Collection of texture images. (b) Human assessments about the
presence degree of directionality. (c) Membership degrees obtained by applying
the directionality model.

been mapped using the human assessment associated to this image. In this case,
a white pixel in the mapping indicates maximum perception of contrast, while
a black one indicates no perception of this property.

Figure 8(c) shows a mapping from the original texture images to their con-
trast values obtained by applying the proposed contrast model, which is cal-
culated in a similar way to the fineness one. It can be noticed that the result
obtained with our model matches what a human would expect, capturing the
evolution of the perception degrees of contrast.

In the case of directionality, we have considered the collection of texture im-
ages shown in Figure 9(a), each one with a different decreasing perception degree
of directionality. As in the previous experiments, these images are part of the
set used in the corresponding poll, so human assessments about directionality
presence are available in order to compare with the results.

Figure 9(b) shows an ideal mapping from the original texture images to their
directionality values, where all pixels corresponding to the same texture image
have been mapped using the human assessment associated to this image. In this
case, a white pixel in the mapping indicates maximum perception of direction-
ality, while a black one indicates no perception of this property (omnidirectional
texture).

Figure 9(c) shows a mapping from the original images to their direction-
ality values obtained by applying the proposed directionality model, which is
calculated in a similar way to the previous ones. By comparing with the ideal
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mapping of Figure 9(b), it can be noticed that the proposed model captures the
evolution of the perception degrees of directionality, keeping a close resemblance
to what a human would expect.

In the next three experiments, the proposed non-adaptive fuzzy set has been
employed for pattern recognition. Figures 10(a), 10(c) and 10(e) show the im-
ages that have been used for the experiments corresponding to the properties
of fineness, contrast and directionality, respectively. The first one is a micro-
scopic image of a premature infant’s lung tissue affected by the hyaline mem-
brane disease. We want to separate the collapsed alveoli presents in the image,
that corresponds to the uniform light region, from the rest of lung tissue. The
brightness values in regions of the original image are not distinct, so texture
information is needed for extracting the uniform areas. Figure 10(b) shows a
mapping from the original image to its fineness membership degrees using the
proposed model. It can be noticed that uniform regions correspond to areas
with low degrees of fineness (i.e., high coarseness), so if only the pixels with
fineness degree lower than 0.1 are selected (which is equivalent to a coarseness
degree upper than 0.9, i.e. an α-cut of the coarseness fuzzy set with α = 0.9),
the collapsed alveoli emerge with ease.

Figure 10(c) shows an image of two tires with different wear levels. The tire
on the right has deep grooves, while the one on the left has an irregular wear
in the center and on one side. The contrast of a visual texture is related to the
depth perception and the relief of the corresponding physical texture: textures
with high relief in nature may appear with high contrast in the image (due to
the illumination effect). Thus, similar physical textures with different relief,
can be distinguished in an image by analyzing the contrast of the corresponding
visual textures. Figure 10(d) shows a mapping from the original image to its
contrast values using the proposed model. It can be noticed that the worn parts
correspond to areas with low contrast degrees, so they can be identified if only
the pixels with contrast degree lower than 0.1 are selected.

Figure 10(e) shows an image of a piece of wood with a knot in it. Imper-
fections like knots could affect the technical properties of wood, as well as its
visual aspect, so it is necessary to identify their presence. The wooden panels
employed in construction and furniture manufacturing usually have a texture
with high directionality, due to the wood grain, but the directionality associated
to the knot area is very low. Figure 10(f) shows a mapping from the original im-
age to its directionality values using the proposed model. If only the pixels with
directionality degree lower than 0.1 are selected, the knot can be automatically
identified.

7.3 Adaptation to users’ perception

In this section, several experiments using the proposed fuzzy sets adapted to
the particular perception of different users are shown. For the first one, we
have considered Figure 11(a), corresponding to a natural image where several
textures with different perception degrees of fineness are shown. Figure 11(d)
shows a mapping from the original image to fineness values using the proposed
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(e) (f)

Figure 10: Experiments using the non-adaptive fuzzy models for pattern recog-
nition. (a)(c)(e) Original images. (b)(d)(f) Membership degrees from (a)(b)(c)
obtained by applying the fineness, contrast and directionality models, respec-
tively
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Figure 11: Adaptation of the fuzzy fineness model. (a) Original image. (d) Map-
ping from the original image to fineness values using the non-adaptive model.
(b)(c) Samples representing the particular fineness perception of two different
users. (e)(f) Mapping using the fuzzy model adapted according to each user’s
perception. (g) Membership function for the original and the adapted models.
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non-adaptive model. It can be noticed that three different degrees of fineness
are shown: a coarse texture (pixels in black) corresponding to the big stones,
a fine texture (pixels in white) corresponding to the grass, and a intermediate
coarseness texture (pixels with an intermediate grey level) corresponding to
gravel.

Let’s adapt the non-adaptive model to the fineness perception of two hy-
pothetical users. Figure 11(b) shows two texture images given by the user 1
to represent his particular fineness perception, and the perception degrees of
fineness given by this user. It can be seen that the image R1, that has an in-
termediate fineness perception according to the non-adaptive model (a fineness
membership degree around 0.5 ), is now perceived as a coarse texture by this
user (v1 = 0). The perception degree of fineness given by the user to the image
R2 (v2 = 0.6) is also smaller than the fineness membership degree obtained with
the non-adaptive model. The adapted membership function T̂ p

k obtained on the
basis of this information, together with the non-adaptive model T p

k , is shown in
Figure 11(g)11. Comparing both functions, it should be noticed that, according
to the particular perception of the user 1, all the textures will be considered
coarser than those obtained when T p

k is applied. Figure 11(e) shows a mapping

from the natural image in Figure 11(a) using T̂ p
k . It can be seen that in this case

the gravel is also considered as a coarse texture, and the grass is not considered
as fine as in Figure 11(d).

Figure 11(c) shows the samples given by a second user in order to represent
his particular fineness perception. According to this user, a coarse texture
corresponds to very big texture primitives, whereas a fine texture corresponds
to very small texture primitives. This implies that the adapted membership
function T̂ p

k is obtained by expanding T p
k in the domain of the measure, as it

is shown in Figure 11(g). The mapping from the original image to its fineness
values using T̂ p

k is shown in Figure 11(f).
In the next two experiments, shown in figures 12 and 13, the proposed fuzzy

sets for the contrast and directionality properties are adapted to the particular
perception of different users. For the first one, we have considered the natural
image shown in Figure 12(a), where several textures with different perception
degrees of contrast are present. Figure 12(c) shows a mapping from the original
image to contrast values using the proposed non-adaptive model. It can be no-
ticed that, as it was expected, three different degrees of contrast are shown: a
high contrasted texture (pixels in white) corresponding to the zebra, a low con-
trasted texture (pixels in black) corresponding to the sky, and a half-contrasted
texture (pixels with an intermediate gray level) corresponding to the grass.

Let’s adapt the non-adaptive model to the contrast perception of a hypothet-
ical user. In this case, we suppose that the user gives only one sample image,
shown in Figure 12(b), to represent his particular perception. Specifically, it
contains the texture of the grass, that, as seen above, has an intermediate con-
trast perception according to the non-adaptive model. However, it is perceived

11For clarity in notation, p is not replaced by the name of the property in T p
k and T̂ p

k (in
this case p = fineness)
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Figure 12: Adaptation of the fuzzy contrast model. (a) Original image. (b)
Mapping from the original image to contrast values using the non-adaptive
model. (c) Sample representing the particular contrast perception of an user.
(d) Mapping using the fuzzy model adapted according to the user’s perception.

as a very contrasted texture by this user (v1 = 1). Figure 12(b) shows a map-
ping from the natural image using this adapted model. It can be noticed that
the region of the image corresponding to the grass is considered as a very con-
trasted texture, as well as the zebra, matching the particular perception of this
user.

For the next experiment, the natural image shown in Figure 13(a) has been
considered, where several textures with different perception degrees of direc-
tionality are present. Figure 13(c) shows a mapping from the original image
to directionality values using the proposed non-adaptive model. It can be no-
ticed that this mapping represents the directionality of the different textures
according to the average human perception: the pile of toothpicks has a high
directional texture (pixels in white), the pile of lentils is considered as a low
directional texture (pixels in black), while the curved pasta has an intermediate
directionality.

As in the previous experiment, we suppose a hypothetical user that gives
one sample image to represent his particular perception, shown in Figure 13(b).
This image, that has an intermediate directionality perception according to the
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Figure 13: Adaptation of the fuzzy directionality model. (a) Original image.
(b) Mapping from the original image to directionality values using the non-
adaptive model. (c) Sample representing the particular directionality perception
of an user. (d) Mapping using the fuzzy model adapted according to the user’s
perception.

non-adaptive model (similar to the curved pasta shown in the original image), is
perceived as a very directional texture by this user (v1 = 1). Figure 13(d) shows
a mapping from the natural image using this adapted model. It can be seen
that in this case the region of the pasta is also considered as a very directional
texture, matching the particular perception of this user.

7.4 Adaptation to image context

Figure 14 presents an example where the fuzzy fineness model is adapted to the
image context. Figure 14(a) shows an image that is composed by two textures
with different fineness degrees. The mapping from this image to fineness values
using the non-adaptive model is shown in Figure 14(b). It can be noticed that
the texture within the lower left area is considered as very coarse according to the
non-adaptive model, and the texture of the rest of the image is considered as fine.
Figure 14(c) shows the mapping to the fineness values using the fuzzy model
adapted to the image context. As commented in section 6.2, this adaptation is
imposed by the inhibition present in the image, that depends on the coarsest
and the finest texture in the image. It can be seen that this mapping is very
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Figure 14: Adaptation of the fuzzy fineness model to the image context. (a)(d)
Original images. (b)(e) Mapping from the original image to fineness values
using the proposed non-adaptive model. (c)(f) Mapping using the fuzzy model
adapted to the image context.

similar to Figure 14(b). The only difference is that the fine texture is considered
finer than in Figure 14(b), due to the presence of the other texture, that is very
coarse.

Figure 14(d) shows an image in which a new texture has been added to the
image shown in Figure 14(a). The texture within the lower left area is the same
as in Figure 14(a), but it may be perceived as finer by humans, because of the
presence of the new texture, that is much coarser. This effect is more noticeable
if the images are observed separately. Figure 14(e) shows the mapping to the
fineness values using the non-adaptive model, that doesn’t take into account the
changes in the fineness perception due to the image context. Thus, the lower
left area, as well as the new texture, are considered as very coarse, as in Figure
14(b). Figure 14(f) shows the mapping to the fineness values using the fuzzy
model adapted to the image context. It can be noticed that in this case only
the new texture is considered as very coarse. The texture within the lower left
area has an intermediate fineness degree, which matches the human fineness
perception influenced by the image context.

A similar experiment is shown in Figure 15, where the fuzzy contrast model
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Figure 15: Adaptation of the fuzzy contrast model to the image context. (a)(d)
Original images. (b)(e) Mapping from the original image to contrast values
using the proposed non-adaptive model. (c)(f) Mapping using the fuzzy model
adapted to the image context.

is adapted to the image context. Consider the natural image shown in Figure
15(a). The region corresponding to the tree leaves may be perceived as a very
contrasted texture by humans (as it is shown in the mappings of figures 14(b)
and 14(c)). Now consider the image shown in Figure 14(d). In this case the
presence of a new texture, that is much more contrasted than the others, may
inhibit the contrast perception. Figure 15(e) shows the mapping to the contrast
values using the non-adaptive model. We can see that the region of tree leaves,
as well as the new texture, is considered as very contrasted, as in Figure 15(b).
Figure 15(f) shows the mapping to the contrast values using the fuzzy model
adapted to the image context. It can be noticed that in this case only the new
texture is considered as very contrasted. The texture corresponding to the tree
leaves has an intermediate contrast degree, which matches the human contrast
perception influenced by the image context.
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8 Conclusions and future works

In this paper, an adaptive fuzzy approach has been proposed to model per-
ceptual properties of texture, taking into account the imprecision associated to
them, as well as the subjectivity of the human perception. In particular, we
have focused our study on the properties of coarseness, contrast and direction-
ality. For this modelling, a methodology in two phases has been applied. In the
first one, initial fuzzy sets (non-adaptive models) have been defined to model
the average perception about texture properties. In our approach, some of the
most representative measures in the literature have been employed as reference
set, obtaining a group of fuzzy sets for each property. In order to analyze the
ability of these fuzzy models to represent the corresponding property, good-
ness measures have been proposed taking into account the human assessments
extracted from the poll. Thus, according to the ranking of measures shown in
Table 1, we have concluded that the fuzzy models obtained by using the measure
of Amadasun in the case of fineness, and the measures of Tamura for contrast
and directionality are the most suitable one. The proposed non-adaptive mod-
els have been employed in several experiments, obtaining results that match the
average human perception about each property, as has been shown in section
7.2. Moreover, the use of a unique fuzzy set for texture modelling has allowed its
application to pattern recognition problems (e.g. the examples shown in Figure
10).

In the second phase of our approach, we have proposed a methodology to
adapt the non-adaptive fuzzy sets in order to take into account the user’s par-
ticular perception about the texture presence and the changes in perception
influenced by the image context. Several experiments have been performed in
order to analyze the ability of the adapted models obtained with the proposed
methodology to represent different perceptions of the properties. In the exper-
iments shown in section 7.3, fuzzy models adapted to particular users’ profiles
have been obtained, and we have seen that the perception degrees provided by
these models match what the particular user would expect. Similar satisfactory
results have been obtained in the experiments shown in section 7.4, where the
fuzzy models have been adapted to the image context.

Regarding to the future work, as it was pointed out, in the fuzzy sets pro-
posed in this paper only one crisp measure is used as reference set, which implies
that only the ability of this measure to capture the corresponding property is
considered in the modelling. However, it is natural to assume that the combi-
nation of different computational measures may improve the characterization of
texture properties. In this sense, we are working on a methodology to define
the non-adaptive fuzzy sets on the domain of a combination of several measures,
and to adapt the corresponding n-dimensional models to user’s profiles and the
image context. In addition, we will extend the proposed methodology to other
perceptual texture properties, like regularity or line–likeness.
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