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Abstract

The analysis of the perceptual properties of texture plays a fundamen-
tal role in tasks like semantic description of images, content-based image
retrieval using linguistic queries, or expert systems design based on low
level visual features. In this paper, we propose a methodology to model
texture properties by means of fuzzy sets defined on bidimensional spaces.
In particular, we have focused our study on the fineness property, that is
considered as the most important feature for human visual interpretation.
In our approach, pairwise combinations of fineness measures are used as
reference set, which allows to improve the ability to capture the presence
of this property. To obtain the membership functions, we propose to learn
the relationship between the computational values given by the measures
and the human perception of fineness. The performance of each fuzzy
set is analyzed and tested with the human assessments, allowing us to
evaluate the goodness of each model and to identify the most suitable
combination of measures for representing the fineness presence.

Keywords: fuzzy sets; feature extraction; image analysis; texture mod-
elling; human perception
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1 Introduction

Texture is, together with color and shape, one of the most used features for
image analysis and, in addition, one of the most difficult to characterize due to
its imprecision. In fact, there is not an accurate definition for the concept of
texture, but some widespread intuitive ideas. In this way, texture is described
by some authors as local changes in the intensity patterns or gray tones which is
used in opposition to the homogeneity idea [1]. Other authors consider texture
as a set of basic items called texels (or texture primitives), arranged in a certain
way [2]. However, for humans, the most common way to describe texture is by
using vague textural properties, like coarseness, directionality or regularity [3, 4],
that give them an informal way to represent their perception about these texels.
Thus, coarseness is related to the spatial size of texture primitives, directionality
reflects whether they have a dominant orientation, and regularity refers to the
variation of their placement.

In this sense, the wide variety of techniques proposed in the literature to
describe texture can be classified into two main approaches. In the first one,
textures are modelled by means of feature vectors (that usually have very large
dimensions) which have no direct relationship with the different perceptual prop-
erties. This approach does not provide a textural representation interpretable by
humans but it allows to compare different textures on the basis of the similarity
between its feature vectors. Most of these techniques are based on multireso-
lution analysis and scale-space theory, such as Gabor functions [5, 6, 7, 8] or
Wavelets [9, 10, 11], that are considered as the golden standard in the literature.
These approaches are applied in some classical tasks like texture segmentation
[12, 13, 14] and classification [15, 16, 17], or in content-based image retrieval
using query by image example [6, 18, 19]. Moreover, they can be used in texture
synthesis techniques [20, 21, 22].

The second approach that can be found in the literature to describe texture
includes the techniques that propose a texture characterization based on its
perceptual properties, i.e. the descriptors obtained with these models have a
direct relationship with the textural properties. Such techniques are very useful
in tasks where some interaction with users is needed, as they try to describe
texture in a similar way as humans would. Thus, in addition to the classical
tasks commented above, this type of techniques can also be applied in fields
such as semantic description of images [23, 24, 25] or in content-based image
retrieval using linguistic queries [26, 27, 28].

Focusing our attention on this second group of techniques, we can find in
the literature many measures that, given an image, capture the presence of a
textural property in the sense that the greater the value given by the measure,
the greater (lower) the presence of this property [4, 29, 30, 31, 32]. However,
the direct use of these computational measures in the analysis of the perceptual
properties raises several problems. The first one is related with the election of
the most suitable measure. There is a large number of computational measures
associated with each property, but no comparative studies can be found in the
literature that analyze the ability of each measure to capture the corresponding
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Figure 1: Examples showing the imprecision associated to the texture proper-
ties.

property. Regardless what measures are used, another problem is related to the
own imprecision associated to the perceptual properties. This imprecision must
be understood in the sense that, except in extreme cases, we cannot set a pre-
cise threshold between textures that accomplish strictly a property and textures
that do not, but it is possible to indicate the more or less accomplishment of the
property in the texture. For example, we can safely say that the texture shown
in Figure 1(a) is coarse and contrasted, and that the texture shown in Figure
1(d) is not, as they represent extreme cases for both properties. However, the
accomplishment of these properties is not so clear for the textures shown in fig-
ures 1(b) and 1(c). Although this imprecision suggests the use of representation
models that incorporate the uncertainty associated to the properties, all the
measures commented above are crisp proposals, which do not model any kind
of imprecision.

For facing the imprecision problem, some proposals arise from the fuzzy
set field [33, 34], and more specifically from the content-based image retrieval
area, where semantic data and imprecision related to texture are managed by
means of fuzzy sets [26, 28, 35, 36, 37]. In these proposals, a mapping from
low-level statistical features (the crisp measures described above) to high level
textural concepts is performed by defining membership functions for each tex-
tural feature. In most of these proposals, the measures used as reference set
are associated with the coarseness property, that is the most popular one, being
considered as the most fundamental feature in texture analysis by some authors
[28]. In fact, the presence of fineness, that is the opposite concept to coarse-
ness, is usually associated to the presence of texture (from this point of view,
texture is defined as local variations against the idea of homogeneity). With
regard to the membership functions, most of these fuzzy approaches propose
to model the fineness property by means of fuzzy partitions providing a set of
linguistic terms. In general, the fineness measure proposed by Tamura et al. in
[4] is usually employed as reference set, and a fuzzy partition with five linguistic
terms is obtained in the majority of the fuzzy approaches. This fuzzy partition
is generated through an unsupervised fuzzy clustering algorithm on the basis of
the measure values obtained from an image database.
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However, all these fuzzy approaches have three main drawbacks, that from
our knowledge have not been faced in the literature. First of all, the use of mem-
bership functions with a fixed form (usually triangles or trapezoids), prevents
an accurate modelling of the textural concepts, allowing us to set only support
and kernel limits. Moreover, linear functions are used for transitions, although
it is known [38] that computational measures do not have a linear variation with
the presence degree of the property. Second, the parameters that define these
functions are adjusted manually or by using a fuzzy clustering, but without con-
sidering the relationship between the measure values and the human perception
of the property. This implies that the obtained membership degrees do not nec-
essarily match what a human would expect. And finally, these fuzzy approaches
do not propose a global modelling of the textural concept, but a fuzzy parti-
tion providing a set of linguistic terms associated to this concept. This type of
solution is unsuitable for some classical tasks, like pattern recognition, because
a single presence degree of the textural property cannot be obtained, but one
membership degree for each linguistic term in the partition.

In order to solve these problems, preliminary studies about the modelling of
the fineness property have been presented in our previous work [39]. In that ap-
proach, the concept of texture has been modelled by means of a unique fuzzy set
defined on the domain of computational texture measures. By considering the
direct association between texture presence and fineness presence commented
above, representative fineness measures have been used as reference set, i.e. we
propose to model the concept of texture by representing its fineness presence.
The use a unique fuzzy set instead of using a fuzzy partition allows to model
the texture concept as a whole, which provides intuitive and very useful results,
as it will be shown in section 6. In order to define the fuzzy set, parametric
polynomial functions are proposed. Unlike triangular and trapezoidal ones, this
type of functions allows to introduce more degrees of freedom to represent the
variations in the presence degree, obtaining accurate models for the fineness
property. Moreover, we propose to obtain the parameters of the membership
function by considering the human perception of this property. To do this, a
functional relationship between the computational values given by the measures
and the human perception of fineness will be learned. To get information about
the human perception, a set of images covering different presence degrees of
fineness will be used to collect, by means of polls, human assessments from a
set of subjects. This way, the presence degree given by the obtained fuzzy set
will match what a human would expect.

However, in these preliminary studies only one crisp measure is used as ref-
erence set, which implies that only the ability of this measure to capture the
corresponding property is considered in the modelling, although it is widely
known that the combination of different measures improves the texture charac-
terization [40]. In this paper we propose a perception-based fuzzy approach for
texture modelling that extends these preliminary studies by considering the use
of subsets of measures as reference set instead of using them individually. This
new proposal allows to combine the ability of the different measures to capture
the fineness presence, obtaining models that represent with more fidelity this
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property, as it will be shown in section 5. In addition, the proposed approach
allows us to address the first problem described above regarding the use of the
computational measures, i.e. the election of the most suitable ones. In this
paper, a group of fineness measures will be used, obtaining fuzzy sets defined
on the domain of each measure separately as well as fuzzy sets defined on the
domain of a combination of measures. In order to analyze the ability of each
fuzzy set to represent the fineness property, goodness measures will be proposed
taking into account the human assessments extracted from the poll. First, a
ranking of individual measures will be obtained, allowing us to analyze each
measure separately and to identify the most appropriate one. Second, a ranking
of subsets of measures will be achieved, that will be used to identify the most
suitable combination of measures. Moreover, comparing both rankings, we can
verify that the combination of measures improves the fineness characterization.

The rest of the paper is organized as follows. In section 2 a general overview
of our methodology is presented, introducing some basic concepts and the no-
tation used in the paper. After that, the different elements of the model are
described in detail in the following sections; specifically, the computational mea-
sures used as reference set are summarized in section 3, the way to obtain human
assessments about the perception of fineness is faced in section 4, while section
5 describes the method employed to obtain the membership functions of the
proposed fuzzy sets. In section 6 a comparative study of these models with the
state of the art and some results obtained by applying them are shown. Finally,
section 7 summarizes the main conclusions and future works.

2 Preliminaries and Notations

As mentioned in the above section, among all the perceptual texture properties,
the coarseness-fineness is considered as the most fundamental one, being usually
associated to the presence of texture. In this sense, a fine texture contains small
texture primitives with large gray tone differences between neighbor pixels (e.g.
the first image of Figure 2(a)), whereas a coarse texture corresponds to larger
primitives formed by several pixels (e.g. the last image of Figure 2(a)). We can
find in the literature many measures that, given an image, capture the fineness
presence in the sense that the greater the value given by the measure, the larger
(smaller) the texture primitives. In this paper we propose to model the concept
of “texture” as a fuzzy set TF defined on the domain of a given subset F of
fineness measures (our reference set). Note that, in general, a fineness measure
takes values in R, so the domain of our fuzzy set is RK′

, with K ′ being the
cardinality of F . The membership function of this fuzzy set will be defined as1

TF : RK′ → [0, 1] (1)

For this modelling, two questions need to be faced: (i) what reference set
should be used for the fuzzy set, and (ii) how to obtain the related membership

1To simplify the notation, as it is usual in the scope of fuzzy sets, we will use the same
notation TF for the fuzzy set and for the membership function that defines it.
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function. Concerning to the reference set, as mentioned above, we will define
the fuzzy set on the domain of a given subset of fineness measures. Let F =
{F1, . . . , FK} be the set of K fineness measures used in this paper. From now on,
we will denote by F ⊆ F the subset of K ′ ≤ K measures selected from F to define
the reference set. The measures analyzed in this paper, that include classical
statistical measures, frequency domain approaches, fractal dimension analysis,
etc., are summarized in section 3. All of them are automatically computed from
the texture images.

With regard to the membership function, we propose to obtain it by using a
perceptually-based approach that relates the fineness measures with the human
perception of the property. For this purpose, two questions need to be faced:
firstly, how to obtain the data about the “human perception” of fineness and,
secondly, how to fit these data with the measures in order to obtain the member-
ship function. To get information about the human perception of fineness, a set
of images covering different presence degrees of this property has been gathered.
This images are used to collect, by means of a poll, human assessments about
the perceived fineness presence. From now on, let I = {I1, . . . , IN} be the set
of N images representing fineness examples, and let Γ = {v1, . . . , vN} be the
set of fineness values associated to I, with vi being the value representing the
degree of fineness perceived by humans in the image Ii ∈ I. The description of
the texture image set and the way to obtain Γ are detailed in section 4.

To obtain the membership function TF for a given subset of measures F ⊆
F, a robust fitting method is employed in order to represent the relationship
between the values obtained by applying the measures in F to each image, and
the degree of fineness perceived by humans in these images. This fitting method
is described in section 5.

3 Fineness Measures: the Reference Set

In this paper, we have initially considered the 17 fineness measures analyzed in
our previous work [38]. These measures can be classified into 3 groups according
to the strategy used to quantify the coarseness of the texture image. The first
group includes those measures that try to estimate directly the size of the texels
by analyzing the pixels of the image. In this group we can find the measure
defined by Abbadeni et al. in [31], the measure proposed by Tamura et al. in
[4], the Edge Density (ED measure), that is calculated as the percentage of
pixels which are an edge in the image, and the Fractal Dimension (FD measure)
defined by Mandelbrot in [41], that is estimated by following the blanket method
introduced by Peleg in [42].

The second group includes the measures obtained by applying statistics over
matrices that collect information about the relationships between the gray level
of each pixel and their neighbours. The measures of Haralick [29], that are
based on the GLCM matrix, are placed in this group. In particular, 6 coarseness
measures are obtained by applying the statistics contrast, correlation, entropy,
local homogeneity, variance and uniformity over this matrix. This group also
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Figure 2: Some examples of images with different degrees of fineness.

includes the measure defined by Amadasun in [30], the Short Run Emphasis
(SRE measure) given by Galloway in [43], the Small Number Emphasis (SNE
measure) defined by Sun et al. in [44], the Distribution of Gray Level Difference
(DGD measure) proposed by Kim et al. in [45], and the measure defined by
Weszka et al. in [46].

The third group is composed of two measures that are based on the Fourier
power spectrum of the image. The first one is the measure used by Newsam
in [47], computed as the average of power spectrum over ring-shaped regions
centered at the origin, and the second one is the first moment of the power
spectrum (FMPS measure), obtained by computing the mean value of Fourier
power spectrum of the image [48].

However, according to the study performed in [38], some of the above mea-
sures have an unsuitable behavior. The measures of Newsam, FMPS, Entropy
and uniformity are size dependent, i.e. the values given by these measures are
affected by the window size. In addition, the Variance measure does not provide
a representative information about the perception of fineness. Thus, these five
measures are rejected and they will not be taken into account in the following,
focusing our study on the other 12 measures, that are listed in the first column
of Table 1. Besides the independence with the image size and the ability to
provide information about the fineness perception, other interesting properties
for texture analysis are also fulfilled by the proposed measures. As it is shown in
[38], they are robust against changes in the image characteristic, like brightness
and contrast, and they have a suitable behavior regarding the presence of noise
in the image.
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4 Assessment Collection

In this section, the way to obtain the set of values Γ = {v1, . . . , vN}, that
represents the presence degree of fineness perceived by humans in the images
Ii ∈ I, will be described. For this purpose, firstly the image set I will be
selected (section 4.1). After that, a poll for getting assessments about the
perception of fineness will be designed (section 4.2). Finally, for a given image,
the assessments of the different subjects will be aggregated (section 4.3).

4.1 The texture image set

A set I = {I1, . . . , IN} of N = 80 images representing examples of the fineness
property has been selected. Figure 2 shows some images extracted from the set
I. Such set has been selected satisfying the following conditions:

• It covers the different presence degrees of fineness.

• The number of images for each presence degree is representative enough.

• Each image shows, as far as possible, just one presence degree of fineness.

Due to the third condition, each image can be viewed as “homogeneous”
respect to the presence degree of fineness, i.e., if we select two random windows
(with a dimension which does not “break” the original texture primitives and
structure), the perceived fineness presence will be similar for each window (and
also with respect to the original image). In other words, we can see each image
Ii ∈ I as a set of lower dimension images (sub-images) with the same presence
degree of the original one. This will be very useful for the fitting process, because
we can have a larger number of fitting points without extending the number of
images used in the poll.

4.2 The poll

Given the image set I, the next step is to obtain assessments about the per-
ception of fineness from a set of subjects. From now on, we will denote by
Θi = [oi1, . . . , o

i
L] the vector of assessments obtained from L subjects for the

image Ii. We considered two alternatives to get Θi:

• To ask subjects about a presence degree between 0 and 1 for each image
in the set.

• To ask subjects to assign images to classes, so that each class has as-
sociated a presence degree. In our proposal, an example image which
represents the presence degree is associated to each class.

The first choice allows subjects to have more freedom to assess the presence
degree of fineness. However, according to our own experience, it is very difficult
for a subject to provide a value between 0 and 1 that represents the presence
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degree of a certain texture concept (except in the case of both extremes: fulfill-
ment of the concept -degree of 1- and unfulfillment of the concept -degree of 0).
Thus, this alternative was discarded.

The above problem is solved by the second choice. The subject does not
assess a value but classifies each image into a class, giving his opinion about the
presence degree of fineness. One of the classes represents the presence degree of
1 of the fineness concept, i.e. a very fine texture. In our proposal, traditional
examples used in the literature to define very fine textures has been considered
for this class [49]. An example of this texture fineness is presented in the image
shown in Figure 2(a). Another of the classes considered in the poll represents
the presence degree of 0 of the fineness concept. In this case, again, traditional
examples used in the literature to define very coarse textures has been considered
for this class. Figure 2(i) shows an example of this presence degree of fineness. It
should be noticed that textures coarser than this one will be also classified in this
class, like the image shown in Figure 2(j). The rest of classes represent presence
degrees of the fineness concept between 0 and 1, i.e. texture primitives scaled in
size between the previous ones. In particular, nine classes have been considered
in the pool. The first nine images shown in Figure 2 are the representative
images for these classes. It should be noticed that these images are in decreasing
order according to the presence degree of the fineness concept.

In our approach, 20 subjects have participated in the poll. As result, a
vector of 20 assessments Θi = [oi1, . . . , o

i
20] is obtained for each image Ii ∈ I.

The degree oij associated to the assessment given by the subject Sj to the image

Ii is computed as oij = (9− k) ∗ 0.125, where k ∈ {1, . . . , 9} is the index of the
class to which the image is assigned by the subject.

4.3 Assessment aggregation

Our aim at this point is to obtain, for each image in the set I, one assessment
vi that summarizes the assessments Θi given by the different subjects about
the presence degree of fineness. To aggregate opinions we have used an OWA
operator guided by a quantifier [50]. Concretely, the quantifier “the most” has
been employed, which allows us to represent the opinion of the majority of the
subjects. This quantifier is defined as

Q(r) =


0 if r < a,
r−a
b−a if a ≤ r ≤ b,
1 if r > b

(2)

with r ∈ [0, 1], a = 0.3 and b = 0.8. Once the quantifier Q has been chosen, the
weighting vector of the OWA operator can be obtained following Yager [50] as
wj = Q(j/L) − Q((j − 1)/L), j = 1, 2, ..., L. According to this, for each image
Ii ∈ I, the vector Θi obtained from L subjects will be aggregated into one
assessment vi as follows:

vi = w1ô
i
1 + w2ô

i
2 + ...+ wLô

i
L (3)
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where [ôi1, . . . , ô
i
L] is a vector obtained by ranking in nonincreasing order the

values of the vector Θi.

5 Fitting the Membership Function

For a given subset of measures F ⊆ F, we aim to obtain the corresponding
membership function TF . In this paper, we propose to find a function that
associates the values of the fineness measures with the human assessments about
this property. As it was pointed out in section 4.1, thanks to the “homogeneity”
in the presence degree of fineness, each image Ii ∈ I can be seen as a set of
sub-images with the same fineness degree vi of the original one. From now
on, we will denote by IW = {Ii,w, i = 1, . . . , N ;w = 1, . . . ,W} the set of sub-
images extracted from I, where Ii,w is the w-th sub-image of Ii and W is the
number of sub-images considered for each image. According to this notation, let
IfitW ⊂ IW and ItestW = IW\IfitW be two complementary subsets of IW , that will
be used for fitting the membership function and testing the obtained model,
respectively. On the other hand, given a sub-image Ii,w, we will denote by

Mi,w
F = [mi,w

1 , . . . ,mi,w
K′ ] the corresponding vector of measures, with mi,w

k being
the result of applying the measure Fk ∈ F to Ii,w.

Thus, in order to estimate the membership function that associates the mea-
sure vectors (Mi,w

F ) and the human assessments of fineness (vi), we propose to
fit a suitable function of the form given in Eq. (1) to the subset of points:

Ψfit
F = {(Mi,w

F , vi);∀Ii,w ∈ IfitW } (4)

In this paper, for each image Ii ∈ I, W = 200 sub-images of size 32 × 32
have been considered2, so IW is formed by 16000 sub-images. We propose to
randomly select 75% of them for the fitting, so 12000 points are contained within
Ψfit
F .

The measure values can be affected by some factors, like brightness, contrast
or noise, which typically causes outliers in the fitting points. For this reason,
in our approach the membership function is calculated by means of a Robust
Fitting of the multiset Ψfit

F . In this modelling, the robust fitting based on M-
estimators has been employed [51]. M-estimators are a generalization of the
traditional maximum likelihood estimation, and, therefore, of the least squares
fitting. If we consider a function TF defined by D parameters p1, . . . , pD, these
parameters will be obtained as follows:

argmin
p1,...,pD

N∑
i=1

ρ
(
riw
)

(5)

2As mentioned in Section 3, the measures used in this study are not size dependent. There-
fore, the fineness models obtained by means of the fitting process do not depend on the window
size. Sub-images smaller than 32 × 32 are not considered because they would break texture
primitives.
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Table 1: Fitting error and test error related to each measure, and graphical
representation of the model with the lowest error.

Measure
Fitting Test
error error

Amadasun 0.1333 0.1695
Correlation 0.1401 0.1747
Abbadeni 0.1639 0.1947
FD 0.1776 0.2084
Tamura 0.1913 0.2070
ED 0.2009 0.2168
DGD 0.2031 0.2339
LH 0.2150 0.2336
Weszka 0.2157 0.2411
Contrast 0.2161 0.2475
SNE 0.2267 0.2418
SRE 0.2296 0.2455

where riw are the fitting residuals, and the function ρ, whose objective is to
reduce the effect of outliers, gives the contribution of each residual in the model.
In particular, in our approach we have taken one of the most commonly used
functions in literature, that achieves a robust outlier rejection: the Tukey’s
biweight function [52].

For the fitting process, the number of measures K ′ within the set F should
be taken into account. In this paper, we have focused our analysis on the cases
of K ′ = 1 and K ′ = 2. The unidimensional case (K ′ = 1) will allow us to
study each measure separately, comparing its goodness respect to the others
(preliminary studies were presented in our previous work [39], that are sum-
marized in section 5.1). In the bidimensional case (K ′ = 2), pairs of measures
will be taken in order to improve the unidimensional models (section 5.2). For
higher dimensions (K ′ ≥ 3), the fitting based on M-estimators is too complex,
so new methods for finding TF need to be considered (for example, some kind
of heuristic approaches). These cases will be considered in future works.

5.1 Unidimensional case

In the case of K ′ = 1 each measure Fk ∈ F is studied separately [39]. To define
TF the following considerations will be taken into account:

• The values TF (x) = 0 and TF (x) = 1 should be achieved.

• TF should be a monotonic function.

Regarding the above properties, we propose to define TF as a function

TF : R→ [0, 1] (6)
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of the form3

TF (x; an . . . a0, α, β) =

 1 x < α,
poly(x; an . . . a0) α ≤ x ≤ β,
0 x > β

(7)

with poly(x; an . . . a0) being a polynomial function

poly(x; an . . . a0) = anx
n + . . .+ a1x

1 + a0 (8)

In our proposal [39], the parameters an . . . a0, α and β of the function TF are

calculated by carrying out a robust fitting on Ψfit
F , with the constraint to obtain

a strictly monotonic function between α and β. For the polynomial function,
the cases of n = 1, 2, 3, 4 (i.e. linear, quadratic, cubic and quartic functions)
have been considered.

The second column of Table 1 shows for each measure Fk ∈ F the least
fitting error obtained [39]. Note that this value can be viewed as the goodness
of each measure to represent the perception of fineness. Table 1 has been ranked
in increasing order of these fitting errors. In all the cases, the least error has
been obtained for a polynomial function of order n = 3 (the use of higher order
functions does not provide better fits).

In addition, the test error for each measure has been calculated by using the
subset of points Ψtest

F and it is shown in the third column of Table 1. In our
approach, this error is calculated as the mean absolute difference between the
values vi and the degrees obtained by applying the function TF to the values
Mi,w
F , for all the points (Mi,w

F , vi) ∈ Ψtest
F , i.e.

Etest =

∑
(Mi,w

F ,vi)∈Ψtest
F

∣∣∣TF (Mi,w
F )− vi

∣∣∣
card(Ψtest

F )
(9)

with card(Ψtest
F ) being the cardinality of Ψtest

F .
The parameters of the membership function with the lowest error, corre-

sponding to the measure of Amadasun, as well as its graphical representation,
are shown on the right of Table 1 [39].

5.2 Bidimensional case

In the case of K ′ = 2, the membership function TF will have two variables,
corresponding to the pair of measures used as reference set. To define this
function, the following considerations will be taken into account:

• The values TF (x) = 0 and TF (x) = 1 should be achieved from a certain
value.

3Note that this function is defined for measures that decrease according to the perception
of fineness. For those that increase, the function needs to be changed appropriately, i.e. it
takes the value 0 for x < β, it takes the value 1 for x > α, and the polynomial function is
computed for β ≤ x ≤ α.
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Table 2: Fitting error and test error related to each pair of measures.

Measure x Measure y
Fitting Test
error error

FD Amadasun 0.1053 0.1574
Amadasun Correlation 0.1306 0.1660
Correlation FD 0.1180 0.1733
Abbadeni Amadasun 0.1313 0.1673
Correlation ED 0.1361 0.1741
Correlation Abbadeni 0.1400 0.1724
Tamura Amadasun 0.1207 0.1666
Abbadeni Tamura 0.1404 0.1833
Correlation Tamura 0.1368 0.1740
Amadasun ED 0.1330 0.1688
FD Tamura 0.1486 0.1980
Abbadeni ED 0.1521 0.1925
Abbadeni FD 0.1510 0.1861
Tamura ED 0.1738 0.1939
ED FD 0.1782 0.1944

• TF should be a “monotonic” function in the sense that its gradient must
satisfy the following condition:

‖∇TF (x)‖ 6= 0 ∀x / 0 < TF (x) < 1 (10)

Regarding the above properties, we propose to define TF as a function

TF : R2 → [0, 1] (11)

of the form

TF (x, y; a(n!+n) . . . a0) = TF (x, y; coef) =

=

 1 poly2(x, y; coef) > 1,
poly2(x, y; coef) 0 < poly2(x, y; coef) < 1,
0 poly2(x, y; coef) < 0

(12)

with poly2(x, y; coef) being a polynomial function of two variables

poly2(x, y; a(n!+n) . . . a0) =

n∑
i=0

i∑
j=0

a(i!+j)x
jyi−j (13)

As in the unidimensional case, the parameters a(n!+n) . . . a0 of the function

TF will be calculated by carrying out a robust fitting on Ψfit
F . Furthermore, the

cases of n = 1, 2, 3, 4 have been considered for the polynomial function.
Table 2 shows the least fitting error and the test error obtained for each

pair of measures. Only the combination of the first six measures in Table 1 are
shown, and, in all the cases, the least error has been obtained for a polynomial
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Parameters for
{FD,Amadasun}
a9 0.4175
a8 -38.064
a7 0.0000
a6 -0.6475
a5 -4.5174
a4 51.149
a3 1.5584
a2 15.194
a1 -27.351
a0 -12.156

Figure 3: Parameters and graphical representation of the membership function
TF corresponding to the pair of measures F = {FD,Amadasun}.

function of order n = 3. It can be noticed that the combination of both mea-
sures allows us to reduce the error obtained by applying each one separately.
This implies that the use of bidimensional functions provides models that fit
more closely to the perception of fineness than in the unidimensional case. In
our experiments, the pair of measures F = {FD,Amadasun} gives the best
results. The parameters corresponding to this membership function, as well as
its graphical representation, are shown in Figure 3.

6 Results

In this section, the goodness of the fuzzy models proposed for texture modelling
will be analyzed. First, in section 6.1, we will compare them with the state of
the art in the modelling of the fineness texture property. Then, in section 6.2 we
will show the results obtained by applying these models to several experiments
with images. In particular, the fuzzy sets with least fitting error and least test
error for the unidimensional case and the bidimensional case (corresponding to
the measure of Amadasun and the pair of measures F = {FD,Amadasun},
respectively) will be used.

6.1 Comparison with the state of the art

At this point, the aim is to compare the fuzzy sets obtained in section 5 with
the state of the art in the modelling of visual texture properties. As has been
commented throughout this paper, the proposed fuzzy models allow to represent
the presence degree of the fineness texture property, and we have verified by
means of goodness measures (fitting errors and test errors) that the obtained
degrees match with the human perception of this property. However, as we have
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shown in section 1, there is no other fuzzy approach in the literature with the
ability of providing this type of information. Nevertheless, most of the existing
crisp measures (shown in section 3) allow to represent the fineness property in
the sense that the greater the value given by the measure, the greater (lower)
the presence of this property. With this in mind, and in order to compare the
different approaches, we will study whether the increase in the value of a measure
is always produced by the increase (or decrease) in the fineness presence.

In particular, two comparative studies will be performed using the subset of
images ItestW . In the first one, we will study the correlation between the order
given by the measure values computed from the images in ItestW and the order of
these images according to the poll4. To do this, we propose to use the Kendall
rank correlation coefficient [53] and the Spearman rank correlation coefficient
[54], that are widely used in this type of problems. The Kendall coefficient is
defined as:

τ =
nc − nd

n(n− 1)/2
(14)

with n being the number of ranked elements, and where nc and nd are the
number of concordant and discordant pairs comparing both rankings, as it is
shown in [53]. The Spearman coefficient is defined as:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(15)

with xi and yi being the rank of each pair of elements in its corresponding
ranking, and with x̄ and ȳ being the mean of the values in each ranking. In both
cases, a higher coefficient indicates a better correlation between the ranking of
the measure values and the ranking of the human assessments about the presence
of the property.

In the second comparative study, the significance of each model will be ana-
lyzed. In this case, we study whether the values given by the model for textures
with different fineness presence are significantly different compared to the values
obtained from textures with a similar presence. For this purpose, the F-statistic
[55] will be computed from the Rp classes in which the images in ItestW have been
grouped in the poll. This statistic compares the between-group variation of the
values with their within-group variation as follows:

F =

∑k
i=1 ni(x̄i − x̄)2/(k − 1)∑k

i=1

∑n
j=1(xij − x̄i)2/(N − k)

(16)

where k is the total number of groups, ni is the number of elements in the
i-th group, N is the total numer of elements, xij represents the j-th element in
group i, x̄i is the mean in group i, and x̄ is the mean of all the elements. A
higher F-statistic means that the model has more significance, i.e. it allows to
distinguish more clearly different presence degrees of fineness.

4Note that in this case we are not interested in the specific assessment associated to each
image, but in the ranking of these values.

15



In these two studies, we will compare the fuzzy models proposed in this pa-
per for the unidimensional and bidimensional cases (the models with the highest
goodness according to fitting and test errors) with the state of the art in the
modelling of texture properties, consisting of all the crisp measures shown in
section 3, as well as the fuzzy approaches commented in section 1. Note that
these fuzzy approaches are based on partitions, so they do not provide a pres-
ence degree of fineness, but a set of linguistic labels (and their corresponding
membership degrees) to describe this property. Thus, this information cannot
be used directly in the proposed comparative studies. However, from a seman-
tical point of view, this information also provides a presence estimation of the
fineness property, although it is represented in a different mathematical format.
In this sense, it can be ranked on the basis of the linguistic labels, that are
semantically ordered according to the presence of fineness. This way, given an
image from the set ItestW , we associate it to the linguistic label with the highest
membership degree, obtaining a ranking that can be used in the comparative
studies. As has been commented in section 1, the majority of the fuzzy ap-
proaches in the literature [26, 36, 28, 56, 37] propose a fuzzy partition with
five linguistic terms defined on the domain of the fineness measure defined by
Tamura. According to these approaches, we have generated the fuzzy partitions
through an unsupervised fuzzy clustering algorithm on the basis of the measure
values obtained from the subset of images IfitW . As all these approaches pro-
pose a similar solution, we have included the item “FuzzyP” in the comparative
studies, that represents all them.

Tables 3(a) and 3(b) show the results obtained in these two studies, re-
spectively. The first table is ranked in decreasing order of the Spearman rank
correlation coefficient, while the second one is ranked in decreasing order of the
F-statistic. As can be seen, the best approach in all the comparative studies
is the fuzzy model proposed in this paper for the bidimensional case, followed
by the fuzzy model corresponding to the unidimensional case. Note that the
values of both correlation coefficients in Table 3(a) are relatively low. This is
due only to the fact that nine different classes of fineness have been considered
in the poll and there is much overlap between them, which is also reflected in
the corresponding study of significance (Table 3(b)).

Therefore, although the full potential of our approach is not being used in
these comparative studies, the obtained results show that, in the experiment
performed in this paper, our approach already improves the state of the art.
In order to appreciate the ability of our fuzzy models to represent the presence
degree of the fineness property, which is not reflected in these comparative
studies, the results obtained by applying these models to experiments with
different images will be shown in next section.

6.2 Experiments with images

In this section, four experiments using both the unidimensional and bidimen-
sional models are shown. In the first one, which was also employed to illustrate
our preliminary studies in [39], the unidimensional model is applied; in the sec-
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Table 3: Comparative study of rank correlation by means of Spearman and
Kendall coefficients (a), and comparative study of significance by means of the
F-statistic (b).

Fineness Spearman Kendall

model coefficient coefficient

Chamorro2D 0.7346 0.5913

Chamorro1D 0.7303 0.5705

Amadasun 0.7299 0.5660

Correlation 0.7289 0.5610

Abbadeni 0.6981 0.5293

ED 0.6407 0.4744

FD 0.6163 0.4545

Tamura 0.6118 0.4567

FuzzyP 0.5983 0.4781

DGD 0.5629 0.4197

LH 0.5624 0.4132

Weszka 0.5436 0.4039

SRE 0.5413 0.3984

Contrast 0.4923 0.3674

SNE 0.4857 0.3555

(a)

Fineness Significance

model (F-statistic)

Chamorro2D 174.3169

Chamorro1D 168.7424

Correlation 155.9657

Tamura 125.0183

Amadasun 118.1959

FuzzyP 115.7747

FD 114.4741

ED 110.3823

DGD 70.7770

LH 69.6480

Weszka 65.5035

SNE 66.7699

SRE 53.0102

Abbadeni 42.4382

Contrast 34.0349

(b)

ond one, both models are used in order to compare the obtained results; and in
the last two experiments only the bidimensional model is applied.

For the first experiment, we have considered Figure 4(a), corresponding to
a mosaic made by several texture images, each one with a different increasing
perception degree of fineness. These images are part of the set I used in the
poll, so human assessments about fineness presence are available in order to
compare them with the obtained results.

Figure 4(b) shows an ideal mapping from the original mosaic image to its
fineness values, where all pixels corresponding to the same texture image have
been mapped using the human assessment associated to that image5. These
assessments (between 0 and 1) have been mapped into a gray level from 0 to 255,
so that a white pixel in the mapping indicates maximum perception of fineness,
while a black one indicates no perception of fineness (maximum perception of
coarseness).

Figure 4(c) shows a mapping from the original image to its fineness values
obtained by applying the proposed unidimensional model. For each pixel in the
original image, a centered window of size 32 × 32 has been analyzed and its

5Actually, note that an ideal mapping would not be exactly as shown in the figure, because
pixels near the boundary of different textures would have an intermediate fineness value of
both textures.
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(a)

(b)

(c)

Figure 4: Result for a mosaic image (a), comparing the human assessments
about the presence degree of fineness (b) and the membership degrees obtained
by applying the proposed unidimensional model (c).

fineness membership degree has been calculated. This degree has been mapped
into a gray level from 0 to 255. It can be noticed that our model captures
the evolution of the perception degrees of fineness, and the obtained mapping,
that represents the estimated presence degree of this property, can be directly
interpreted by humans.

In this first experiment, the use of the unidimensional fineness model has al-
ready given good results. In fact, if the proposed bidimensional fineness model
is applied, very similar mappings are obtained. However, with others textures,
as the ones shown in the following experiments, the unidimensional model does
not have a good performance, so the bidimensional model is needed to improve
the obtained results. Let’s consider Figure 5(a) corresponding to a mosaic made
by several texture images, each one with a different increasing perception degree
of fineness. As in the previous experiment, these images are part of the set I
used in the poll, so human assessments about fineness presence are available in
order to compare with the obtained results. Figure 5(b) shows an ideal mapping
from the original mosaic image to its fineness values, where all pixels within the
same texture image have been mapped using the corresponding human assess-
ment. Moreover, the histogram associated to this mapping image has also been
represented in Figure 5(b), and we can see the four peaks corresponding to the
four different fineness degrees in the image.

Figure 5(c) shows a mapping from the original image to its fineness val-
ues using the bidimensional model corresponding to the pair of measures F =
{FD,Amadasun}, while figure 5(d) and 5(e) show a mapping using the unidi-
mensional model of each measure separately (Amadasun and FD, respectively).
It can be noticed that in this case the unidimensional models are not able to
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(a)

(b)

(c)

(d)

(e)

Figure 5: Result for a mosaic image (a), comparing the human assessments
about the presence degree of fineness (b) with the membership degrees obtained
by applying the bidimensional model for the measures F = {FD,Amadasun}
(c) and the unidimensional models for each measure separately (Amadasun (d)
and FD (e)), as well as the histograms of the corresponding mappings.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Pattern recognition. (a) Original image. (b) Binary image obtained
by thresholding the original one. (c) Region outlines of b superimposed on the
original image. (d) Fineness membership degrees from the original image using
the proposed model. (e) Binary image obtained by thresholding d. (f) Region
outlines of e superimposed on the original image.

capture the evolution of the perception degrees of fineness, while the bidimen-
sional model can do it. Moreover, comparing the histogram of these mappings,
we can clearly see four different peaks in the histogram corresponding to the
bidimensional model, as it captures the four different fineness degrees in the
image, while in the other two histograms only three peaks can be identified.
Therefore, we can state that the bidimensional model represents more faithfully
the fineness perception, giving results that match what a human would expect.

In the third experiment, the proposed bidimensional fineness model has been
employed for pattern recognition. In this case, the microscopy image shown in
Figure 6(a), corresponding to the microstructure of a metal sample, has been
used. The lamellae indicates islands of eutectic, which are to be separated from
the uniform light regions. The brightness values in regions of the original image
are not distinct, so texture information is needed for extracting the uniform
areas. This fact is showed in figures 6(b) and 6(c), where a thresholding on the
original image is displayed (homogeneous regions cannot be separated from the
textured ones as they “share” brightness values).

Figure 6(d) shows a mapping from the original image to its fineness member-
ship degrees. It can be noticed that uniform regions correspond to areas with
low degrees of fineness (i.e., high coarseness), so if only the pixels with fineness
degree lower than 0.1 are selected (which is equivalent to a coarseness degree
upper than 0.9, i.e. an α-cut of the coarseness fuzzy set with α = 0.9), the
uniform light regions emerge with ease, as it is shown in figures 6(e) and 6(f).

The fourth experiment, that is presented in Figure 7, shows another example
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(a) (b) (c)

(d) (e) (f)

Figure 7: Pattern recognition. (a) Original image. (b) Region outlines obtained
by thresholding the original image. (c) Fineness membership degrees from the
original image using the proposed bidimensional model. (d)(e) Binary images
obtained by applying two different thresholds to c. (f) Region outlines of d and
e superimposed on the original image.

where the proposed bidimensional fineness model has been employed for pattern
recognition. Figure 7(a) shows the natural image used in this example, that
corresponds to a microscopic image of a volvox (a colony of greencells). In this
case, we want to separate the main colony from the background and the daughter
colonies from the mother colony. As in the previous example, this cannot be
done by thresholding on the original image, as it is shown in Figure 7(b), so
texture information is needed. Figure 7(c) shows a mapping from the original
image to its fineness membership degrees. Three different degrees of fineness can
be clearly identified: a very fine texture (pixels in white) corresponding to the
daughter colonies of greencells that are inside the main colony, an intermediate
coarseness texture (pixels with an intermediate grey level) corresponding to the
main colony and a very coarse texture (pixels in black) corresponding to the
background. Thus, daughter colonies can be obtained by selecting the pixels
with fineness degree higher than 0.9., i.e. an α-cut of the fuzzy set with α = 0.9,
as it is shown in Figure 7(d). On the other hand, the main colony can be
separated from the uniform background by selecting the pixels with fineness
degree lower than 0.1, as it is shown in Figure 7(e). Finally, the region outlines
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of figures 7(d) and 7(e) superimposed on the original image are shown in Figure
7(f).

7 Conclusions and Future Works

In this paper, a perception-based fuzzy approach for texture modelling has been
proposed. For this modelling, fuzzy sets defined on the domain of representa-
tive fineness measures have been employed, associating the concept of texture
with the presence of the fineness property. In our approach, subsets of fineness
measures have been used as reference set, allowing us to combine the ability of
different measures to capture the presence of fineness. In order to define the
fuzzy sets, parametric functions have been employed, where the corresponding
parameters have been calculated by taking into account the relationship be-
tween the computational measures and the human perception of fineness. This
way, the shape of the membership function has been adjusted to represent this
relationship, and the obtained membership degrees match what a human would
expect, as has been shown in the experiments of section 6. Moreover, the use
of a unique fuzzy set to model the fineness concept as a whole has allowed its
application to pattern recognition problems (e.g. the examples shown in figures
6 and 7).

In addition, our approach has been also employed to analyze the combi-
nation of fineness measures in order to identify the most appropriate pair for
representing the fineness property. In the proposed modelling, some of the most
representative measures in the literature have been employed, analyzing their
ability to represent the perception of fineness. First, a ranking of individual
measures has been obtained, that is shown in Table 1. This ranking allows us
to analyze each measure separately, identifying the most appropriate one in this
case, that is the fineness measure of Amadasun. Second, a ranking of pairs of
measures has been achieved, which is shown in Table 2. Comparing both rank-
ings, we have verified that the combination of measures improves the fineness
characterization. Therefore, we can state that the bidimensional model proposed
in this paper represents more faithfully the fineness perception, giving results
that match what a human would expect. Moreover, according to the second
ranking, we have concluded that the most suitable combination of measures to
represent the fineness property corresponds to the pair F = {FD,Amadasun}.

Regarding to the future work, as it has been commented in section 5, the
fitting based on M-estimators is too complex for higher dimensions (K ≥ 3).
This complexity must be understood in the sense that the cost functions used in
M-estimators are non-convex. This implies that the optimization problem may
have many local optimal solutions, so a good initialization is needed, especially
for high-dimensional problems. In our approach, suitable initial parameters can
be found for the unidimensional and bidimensional cases by using non-robust
fitting methods, but this is a non-trivial problem for higher dimensional models.
Therefore, new methods for finding TF will be considered in future works (for
example, some kind of heuristic approaches).
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In addition, as it was pointed out, the fuzzy sets proposed in this paper have
been obtained by using the assessments given by a group of subjects in the polls,
so they are representing the average perception of fineness. Thus, these fuzzy
sets can be considered as the default models for the fineness property, because
they can be used if additional information is not available (user’s profile, context,
etc.). However, a particular user may have a different perception of fineness, and,
moreover, the image context may influence the global perception. In order to
take into account these considerations, an approach that allows us to adapt the
default models to each particular case is needed. In this sense, we are working
on a methodology to automatically adapt the membership function associated
to each fuzzy set according to the information given by an user to represent his
particular perception, or the information about the context extracted from the
textures present in the image.
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