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Abstract

Imprecision and uncertainty appear together in many situations of real life and therefore

soft computing techniques must be studied to tackle this problem. Imprecise and uncertain

values are usually expressed by means of linguistic terms, specially when they have been

provided by a human being. This is also the case of temporal information where, in

addition to handling time constraints, we may also have both uncertainty and imprecision

in the description, like in the sentence ”It is very possible that Giotto’s Crucifix was painted

by 1289”. To manage both uncertainty (very possible) and imprecision (by 1289) in a

separate way would lead to a quite complicated computation and a lack of comprehension

by the users of the system. Because of these reasons, it is very desirable that both

sources of imperfection of time values are combined into a single value which appropriately

describes the intended information. In this work, we extend our previous research on this

topic and we study how to adapt it to relational systems in order to be useful. The final

goal is obtaining normalized fuzzy values that provide an equivalent information about the

described temporal fact than the original ones, for making it possible to store and manage

them in a fuzzy relational database. On the other hand, there will be some situations

where more than one expert opinion about a time period must be taken into account and

we need to find a representative value of them all in order to be stored and managed. For

the sake of simplicity, comprehensibility and the efficiency in computation (when using

trapezoidal representation), the fuzzy average is used to find such a representative value.
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Final version published in International Journal of Intelligent Systems May 21, 2019



1. Introduction

Imprecision and uncertainty coexist in many applications. More often than desirable,

a given datum is affected by imprecision and uncertainty at the same time. For example,

if we have the information ”It is very possible that Giotto’s Crucifix was painted by 1289”

two measures of imperfect information are supplied; on the one hand, the information by

1289 is fuzzy in the sense that it could mean from the end of 1288 to the end of 1289

but more possibly in 1289; on the other hand, very possible measures to what point it

is true the previous assertion. To work with both measures at the same time is quite

impossible in the framework of relational temporal databases, where data (tables) take

part in both relational operations (like cartesian product, selection, join, groupping,...)

and fuzzy temporal operations (like before, after, between, at the same time...).

For these reasons it is specially important to solve this problem when fuzziness and

uncertainty refers to time.

Since temporal data are stored in a relational way (22) (11), it is of great importance

that they are normalized for the sake of simplicity in the representation, management,

and understanding. Take into account that data are not only stored, but manipulated in

many ways where normalization is a must.

All these considerations led us to find a mechanism (13) to:

• represent uncertainty in linguistic terms

• combine such uncertainty with the imprecision of the datum itself.

• transform the resulting value into an equivalent fuzzy normalized one.

That is, we start with an information like ”It is very possible that the picture was

painted by 1289 and we want to obtain something like ”The picture was painted around

1289 ” (where around 1289 has a wider range than by 1289 due to the fact that we have

omitted uncertainty from our assertion).

Another problem that may arise is that some experts give an opinion about the same

work, originating different time intervals. Moreover, it is very common to find uncertainty
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in the expert assessments about the date on which a work of art was made; when the

work is very old, many different assessments can be found and most of them are fuzzy

and uncertain at the same time.

For example, if we look for Giotto Crucifix in Internet, the following assessments

can be found: ”... the magnificent crucifix by Giotto, who, probably painted it between

1288 and 1289”, ”wood painting... between 1287 and 1288”, ”scholars suspect Giotto may

have painted the crucifix in his early years”, ”...has been dated to the same time as the

frescoes in Padua” where uncertainty (probably painted, may have painted) on fuzzy or

crisp intervals, time labels (early years) and fuzzy time comparators (the same time as)

appear. In this case, we need to find a consensus among all these time appreciations in

order to be able to represent and manipulate such information properly.

It is important to note that we show in this paper an application of our theoretical

results to art works dating but there are many areas where these ideas can be useful, like

ancient buildings or documents, crime evidences, eyewitnesses assessment,... In summary,

any problem where it is necessary jointly deal with imprecise and uncertain time values.

The paper is organized as follows. Section 2 is devoted to present all the preliminary

concepts needed to understand the rest of the paper: representation of fuzzy values,

information functions, fuzzy numbers transformation and the relational representation of

fuzzy time. In section 3, the problem of finding a consensus when more than one time

assessment is found, is addressed. We need a unique fuzzy time interval which represents

all of them, in order to be stored and managed properly. Section 4 shows how to represent

uncertainty and imprecision in a relational way , extending data tables suitably. Section 5

describes the implementation of these results on our prototype of Fuzzy Object-Relational

DBMS, including many examples of data definition, inserting and different types of queries

mainly focused on fuzzy time intervals. Finally, section 6 is devoted to show the most

interesting conclusions of this work and points out some future research lines to explore.
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UNCERTAINTY
“It is almost sure that Da Vinci

painted Mona Lisa in 1504” 

IMPRECISION
“Da Vinci painted Mona Lisa 

Between 1503 and 1506” 

Expert 1 Opinion Expert 2 Opinion

Problems

• Ranking by date

• Representation

• Find consensus

• Which is better?

• Understanding

• Manipulation

Unification Process: Transforms uncertainty in imprecision
about 1503 and 1506 FUZZY AVERAGE “Da Vinci painted Mona Lisa about 1503 and 1506” 

1502    1503       1506   1508

FUZZY TEMPORAL DB SYSTEM

“Find pictures painted after the XIV century but

previous to Mona Lisa”

DATA DEFINITION

DATA INSERTING

DATA QUERYING

FUZZY AVERAGE 
(1503,1506,0.5,1)

1502’5    1503       1506   1507

Figure 1: Summary of the whole process.
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2. Preliminary Concepts

2.1. Fuzzy values representation

A fuzzy value is a fuzzy representation about the real value of a property (attribute)

when it is not precisely known. We will use
∼
R to denote the set of fuzzy numbers, and

h(A) to denote the height of the fuzzy number A. For the sake of simplicity, we will use

capital letters at the beginning of the alphabet to represent fuzzy numbers.

The interval [aα, bα] (see figure 2) is called the α-cut of A. Therefore, fuzzy numbers

are fuzzy quantities whose α-cuts are closed and bounded intervals: Aα = [aα, bα] with

α ∈ (0, 1]. The set Supp(A) = {x ∈ R | A(x) > 0} is called the support set of A1.

If there is, at least, one point x verifying A(x) = 1 we say that A is a normalized fuzzy

number.

A widely used fuzzy number representation is the trapezoidal one (7) , where a fuzzy

number is completely characterized by four parameters (m1,m2, a, b) and the height h(A),

as figure 2 shows. The interval [m1,m2] (i.e, the set {x ∈ Supp(A) | ∀ y ∈ R, A(x) ≥

A(y)}) will be called modal set. The values a and b are called left and right spreads,

respectively.

The basic idea is that when a fuzzy number is not normalized, the situation can be

interpreted as a lack of confidence in the information provided by such a number (2).

1In the rest of the paper, for the sake of simplicity, A(x) will stand for µA(x) for every A.

1

A

m -a m

α

a
α α

m2 m  +b
1 1 2

b

h(A)

Figure 2: Trapezoidal Fuzzy Number
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In fact, the height of the fuzzy number could be considered as a certainty degree of the

represented value, and this implies that normalized fuzzy numbers represent imprecise

quantities on which we have complete certainty.

2.2. Information Measure on Fuzzy Values

As pointed out in the previous section, we are going to translate fuzzy uncertainty

into imprecision under certain conditions. The most important of these conditions is that

the amount of information provided by the fuzzy number remains equal before and after

the transformation. Therefore, the first step is to define an information function for fuzzy

numbers.

In (12), we propose an axiomatic definition of information, partially inspired in the

theory of generalized information given by Kampé de Fériet (16) and that can be related

to the precision indexes (8) and the specificity concept introduced by Yager in (27).

Definition 1. Let D ⊆
∼
R | R ⊆ D; we say that the application I defined as (13):

I : D −→ [0, 1]

is an information on D if it verifies:

1. I(A) = 1, ∀ A ∈ R
2. ∀ A,B ∈ D | h(A) = h(B) and A ⊆ B =⇒ I(B) ≤ I(A).

The information about fuzzy numbers may depend on different factors, in particular,

on imprecision and certainty. In this work, we focus on general types of information

related only to these two factors.

To compute a measure of the imprecision contained in a fuzzy number, we will consider

a measure of the imprecision of its α-cuts:

∀ A ∈
∼
R, fA(α) =

 bα − aα if α ≤ h(A)

0, otherwise

From this imprecision function on the α-cuts, we define the total imprecision of a fuzzy

value as a combination of the imprecision in every level α. We will consider that fA(0) is

the length of the support set.

6



Definition 2. The imprecision of a fuzzy number is defined as follows (13):

f :
∼
R−→ R+

0

∀ A ∈
∼
R, f(A) =

∫ h(A)

0

fA(α) dα

That is, the imprecision function f coincides with the area below the membership

function of the fuzzy value, and can also be expressed as follows:

∀ A ∈
∼
R, f(A) =

∫ m2+b

m1−a
A(x) dx

With respect to the height (certainty) and the imprecision of a fuzzy value, we use the

following general type of function on
∼
R (12):

IF :
∼
R−→ [0, 1]

IF(A) = F(h(A), f(A))

which depends on the certainty (height) and the imprecision (area below the fuzzy value).

There are many ways to build information functions but, for our purpose, we are

defining an information associated to a particular function. This F -information will

permit, subsequently, the definition of transformations that keep constant the amount

of information a fuzzy number provides.

In (12) we used the function:

IF :
∼
R−→ [0, 1]

∀ A ∈
∼
R, IF(A) =

h(A)

f(A) + 1

where h(A) is A height and f(A) is the imprecision associated to A. This is the simplest

function that verifies the mentioned properties of information functions.

We show how uncertainty can be translated (using some suitable transformations) into

imprecision, taking into account that the less the uncertainty (or the more the certainty)

about a fuzzy number is, the more the imprecision of such number is. This transformation

is made in such a way that the amount of information provided by the fuzzy number is

the same before and after the modification.
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2.3. Transformation of Fuzzy Numbers

Once we have an information function on fuzzy numbers, we can use it to define

transformations which preserve the information amount it provides. The idea is to find

an equivalent representation of the considered fuzzy number in such a way that we change

fuzzy uncertainty by imprecision keeping constant the relationship between them, which

is determined by the information function.

The aim of the transformations is, basically, to be able to modify the height of a fuzzy

number but keeping the information contained in it.

The expression for the transformation will be obtained from the condition of equality

in the information and is widely explained in (12) and (13); it consists of finding the four

parameters of AT in such a way that:

I(AT ) =
1

f(AT ) + 1
=

h

f(A) + 1
= I(A)

being

f(AT ) =

∫ 1

0

(bTα − aTα )d(α) and [aTα , b
T
α ] = {x/AT (x) ≥ α}

In general, the transformation process is the following. We will note by H the

class of trapezoidal fuzzy values on
∼
R. Let A,B ∈ H be two fuzzy values with

heights h(A) = αA and h(B) = αB, respectively (B is AT ). Then,

IF(A) = IF(B)⇐⇒ fB(0) + fB(αB) = fA(0) + fA(αA) +
2

k
∆(αA, αB)

where

∆(αA, αB) =
αB − αA
αA.αB

which is immediate for trapezoidal fuzzy numbers, taking into account that

f(A) = fA(0)+fA(αA)
2

αA

In figure 3 we summarize this process in a graphical way.
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Figure 3: Graphical representation of A, Aα and AT

2.4. Transformation of Fuzzy Certainty in Imprecision

The linguistic qualification of certainty is not a new problem and has already been

addressed by some authors under different names (17), (4). Our approach (13) starts from

a different point of view, since the membership function of the fuzzy uncertainty C(.) will

be used to truncate the fuzzy value A in some way, as we did in the crisp uncertainty

case.

As we said in the introduction, an example of the process we are carrying out could

be the following: we start with an information like ”It is very possible that Giotto painted

The Crucifix by 1289” and we want to obtain something like ”Giotto painted The Crucifix

around 1289” (where around 1289 has a wider support set than by 1289 due to the fact

that we have omitted uncertainty from our assertion).

In summary, we want to translate the information X is A is C into X is T (A,C) (i.e.

a transformation of A depending on C).

The difficulty is now to give a suitable procedure for computing T(A,C). To do it, we

will consider that, for any possible truncation level α, the membership function of the

linguistic label modifies in a certain way the uncertainty level. In fact we can assume

that:

(X is A) is C ←→ ∀α ∈ [0, 1], X is A to a degree C(α), α ∈ [0, 1]

Figure 4 depicts the general problem we are tackling

Consequently T(A,C) has to be defined in such a way that it summarizes the right

side of the above sentence by means of some average. It should be remarked that the
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Figure 4: Fuzzy Uncertainty on a Fuzzy Value.

membership function C(.) induces two fuzzy measures (possibility/necessity) on the [0,1]

what gives rise to two choices.

In (25), Sugeno introduced the concept of fuzzy integral of a fuzzy measure as a way

to compute some kind of average value of a function in terms of the underlying fuzzy

measure. Obviously, fuzzy measures formally include possibility/necessity measures as

special cases.

The fuzzy integral over a referential set X of a function f(x) with respect to a fuzzy

measure g is defined as follows:∫
X

f(x) ◦ g(.) = supα∈[0,1]{α ∧ g(A ∩ Fα)}

where Fα = {x|f(x) ≥ α}.

Depending on the measure, Sugeno’s integral has the following expressions (24):

∫
X

f(x) ◦ g(.) = supx∈A(f(x) ∧ µ(x)) (1)

∫
X

f(x) ◦ g(.) = infx∈A(f(x) ∨ (1− µ(x))) (2)

for possibility and necessity respectively.

In this case, after truncating the fuzzy number at the level α, obtaining an non-

normalized fuzzy number Aα(.), we apply the Sugeno’s integral to the function Aα(x) with

respect to the α variable, to compute the mean of the truncated values, and obtaining

a possibly non-normalized fuzzy number with membership function S(x). This fuzzy

number will be transformed into a normalized one in the step ii.
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We have two choices:

1. Possibility

Let ΠC(.) stands for the possiblity measure induced by C and Tp(.) stands for the

mean of the truncated fuzzy numbers. Using the expression 1, we have:

Tp(x) =
∫

[0,1]
Aα(x) ◦ ΠC(α) = supα∈[0,1](A

α(x) ∧ C(α)) =

= supα∈[0,1](A(x) ∧ α ∧ C(α)) = A(x) ∧ supα∈[0,1](α ∧ C(α))

If Cp = supα∈[0,1](α ∧ C(α)), then we finally have:

Tp(x) = A(x) ∧ Cp

which indicates that, in the case of the possibility measure, the mean of truncated

values is the result of truncating with an specific value which only depends on the

linguistic label C(.).

2. Necessity

Let NC(.) stands for the necessity measure induced by C and Tn(.) stands for the

mean of the truncated fuzzy numbers. Using expression 2, we have:

Tn(x) =
∫

[0,1]
Aα(x) ◦NC(α) = infα∈[0,1](A

α(x) ∨ (1− C(α))) =

= infα∈[0,1](A(x) ∧ α ∨ (1− C(α))) = A(x) ∧ infα∈[0,1](α ∨ (1− C(α)))

If Cn = infα∈[0,1](α ∨ (1− C(α))), then we finally have:

Tn(x) = A(x) ∧ Cn

which indicates that, also in the case of the necessity measure, the mean of truncated

values is the result of truncating with an specific value which only depends on the

linguistic label C(.)

As it happens with all dual measures, the expert can choose either to work with both

of them or to decide which one is the most suitable for the purpose of the system. In

figure 5 we graphically show the results obtained considering that the linguistic label C

has a trapezoidal membership function with parameters (0.4,0.8,0.1,0.2).
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Figure 5: Upper and lower measures
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In figure 6 we show in a graphical way the results obtained for the Pict-ID 7 The

Garden of Delights.

1490 1495 1500 1505 1510 1515
0

0.5

1

Cn

Cp

A
(x

)

T
n
(x

)

T
p
(x

)

Figure 6: Computed periods for the Picture The Garden of Delights.

In table 1 we show the results obtained for Cn, Cp, FV P
τ
n and FV P τ

p . The last ones

are the computed periods taking into account the necessity and the possibility approaches,

respectively. As expected, the periods obtained from the necessity approach are wider

than the ones from the possibility, due to the fact that the truncation is made at a lower

level, where the α-cut leads to a larger interval.

2.5. Relational representation of fuzzy valid time

The primary aim of temporal databases is to offer a common framework to those DB

applications that need to store or handle different types of temporal data from a variety

of sources, since they allow the concept of time to be unified from the point of view of

meaning, representation and manipulation.

Although at first sight the incorporation of time into a DB might appear to be a direct

and even simple task, it is, however, quite complex because new structures and specific
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Pict-ID Cn Cp FV P τn FV P τp

15 1 1 (1813,1814,2,0) (1813,1814,2,0)

87 0.5 0.77 (1284.5, 1290.5,4.5,2.5) (1286.4,1289.7,5.7,2.6)

7 0.23 0.59 (1500.7,1503.8,4,3.6) (1501.8,1503.4,2.5,1.3)

6579 0.33 0.9 (805.32,933.35, 4.34,3.68) 809.30,850.50,6.4,4.6)

469 1 1 (1890,1890,1,1) (1890,1890,1,1)

72 0.33 0.58 (1473,1519,7,3,2.4) (1473.7, 1519.4,2.5,1.3)

580 1 1 (1498,1499,0,0) (1498,1499,0,0)

131 0.95 1 (1517,1520.2,1,2) (1517,1520,1,2)

9 0.95 1 (1477,1480.1,1,2) (1477,1480,1,2)

Table 1: Computed periods using the necessity and the possibility measures.

operators must be included when temporal data are present.

The time dimension may appear with many semantics according to the problem to be

represented. In many situations, time periods are used to express the validity of the data

representing a fact. This way of interpreting time is called valid time.

When valid time is represented in a relational framework, the table schema must be

extended in order to include the attributes VST (Valid Start Time) and VET (Valid End

Time), and a valid time relation (VTR) is obtained.

In addition, temporal information is not always as precise as desired since it is af-

fected by imprecision due to the use of natural language or to the nature of the source.

More concretely, it is not always possible for the user to give an exact but an imprecise

starting/ending point for the validity period associated to a fact. In this case, the fuzzy

set theory is a very suitable tool for not missing such information since fuzzy time val-

ues can be represented and managed. Several authors have dealt with the problem of

imprecision on time from different points of view. In (3) a comparison of approaches to

model uncertainty in time is presented. In (26) fuzziness on spatio-temporal information

is represented by means of generalised constraints in an object-oriented framework, (23)

presents general aspects of dealing with imperfect data in temporal databases and in (22)
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the concept of possibilistic valid-time period is introduced together with the extension of

relational algebra operators in order to operate with it.

The more immediate solution to this problem is to soften the VST and the VET in

such a way that they may contain fuzzy dates represented by means of a fuzzy number,

as shown in 2.

Author Pict-ID Pict-Name ... VST VET

Da Vinci 145 Mona Lisa ...
∼

1475
∼

1519

Goya 15 Third of May ...
∼

1812 1814

... ... ... ... ... ...

Table 2: Fuzzy time relation with VST and VET

This means that, if we use the parametrical representation for fuzzy numbers, we

need to store four values for the VST and four values for the VET; that is,
∼

1475 will be

internally stored as (1475,1475,3,3).

Since the meaning of the attributes VST and VET is the period of time during which

the values of a tuple are valid, it is more convenient to summarize the information given by

the two fuzzy dates in a fuzzy interval (from now on FVP or fuzzy validity period).In (22)

the authors show two ways to transform two fuzzy dates into one single time period; the

use of an only fuzzy value for representing the period of validity reduces the complexity

of storage and data manipulation in queries. In (11) the authors present all necessary

operators to handle FVPs on a relational framework and (18) presents a generalized model

of object-relational fuzzy DB that supports the representation and handling of temporal

data in a classical RDBMS (Oracle).

Let us consider the following example of the time relation WOA (Works of Art),

where each tuple represents the available information about a painting. In the Table 3

an instance of WOA is shown. A cronon of year has been used for the sake of simplicity

due to the nature of the time specification.

This representation has the additional advantage that, not only periods of time, but
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Author Pict-ID Pict-Name ... FVP

Goya 15 Third of May ... (1813,1814,2,0)

Giotto 87 Crucifix ... (1288,1289,7,3)

Bosch 7 The Garden of Delights ... (1503,1503,3,1)

Castelseprio 6579 Bust of Christ ... (810,850,7,5)

Renoir 460 Two Sisters ... (1890,1890,1,1)

Da Vinci 72 Mona Lisa ... (1503,1506,1,5)

Miguel Angel 580 Pieta ... (1498,1499,0,0)

Rafael 131 La Trasfigurazione ... (1517,1520,1,3)

Botticelli 9 The Spring ... (1477,1480,1,2)

Table 3: Instance of WOA fuzzy valid-time relation

fuzzy dates can also be represented in a unified way. Think that a parametric represen-

tation as (m,m,a,b) represents a central time point with some imprecision at both sides,

what is interpreted as a fuzzy date. In (11) the authors present a temporal extension of

fuzzy SQL which permits to manage FVP in a classical relational framework. Thanks

to this extension, queries like Find pictures finished before Mona Lisa or Find pictures of

middle sixth century can be made.

3. Finding a Consensus

There will be some situations where various experts (decision makers) have different

more or less conflicting opinions about the date of a work of art, and all of them should

be taken into account at a certain point. In this case, the notion of consensus plays a key

role. In (10) the authors present a review of well known fuzzy logic-based approaches to

model flexible consensus, which constitute a well defined research area in the context of

fuzzy group decision making (GDM). Fuzzy consensus describes the degree of agreement

regarding a specific problem among multiple opinion or decision makers. Most of these

indexes are useful under certain circumstances but they are often criticized due to the

difficulty and complexity of the computation process. Moreover, in our case, the aim is
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not to know how accurate or disjoint the assessments are but to find a representative

value of all the expert opinions about a time period in order to be stored. Obviously, the

coherence of every assessment with respect to the others, can be studied in a previous

step using the mentioned indexes in order to filter the data.

It is not the aim of this paper to study the different approaches to consensus, but

to choose a suitable one for our purposes. So then, for the sake of simplicity, compre-

hensibility and the efficiency in computation (when using trapezoidal representation), the

fuzzy average is used to find such a representative value (14) (15). Such fuzzy average is

calculated based on an arithmetic average of the fuzzy time periods in the following way.

If we assume that there are n experts dating the same work of art, there will be n

trapezoidal fuzzy time intervals to represent their particular assessments. Let us note

these fuzzy periods by (m1i,m2i, ai, bi), i = 1...n.

Then, the resulting average fuzzy time period (FV Pa) will be the one represented by

the parameters:

FV Pa = (
∑n

i=1...nm1i
n

,
∑n

i=1...nm2i
n

,
∑n

i=1...n ai
n

,
∑n

i=1...n ai
n

)

Obviously, this average can be weighted for representing the relative importance of

individual experts. In particular Ordered Weighted Aggregation Operators (28) have

been widely applied to address GDM problems.

4. Relational Representation of Imprecision and Uncertainty on Fuzzy Time

Intervals

The main goal of this paper is to propose a unified way to represent uncertain imprecise

temporal information by means of normalized fuzzy intervals that can be used as the basis

for the implementation of fuzzy temporal capabilities in a conventional database system.

To do that, the first step is to extend the table once again by adding the column FC

(Fuzzy Certainty). The result is Table 4.

It is also possible to use linguistic labels instead of the four-parameters representation
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Author Pict-ID Pict-Name FVP FC

Goya 15 Third of May (1813,1814,2,0) Sure

Giotto 87 Crucifix (1288,1289,7,3) Quite-Possible

Bosch 7 The Garden of Delights (1503,1503,3,1) Possible

Castelseprio 6579 Bust of Christ (810,850,7,5) (0.6,0.9,0.2,0)

Renoir 460 Two Sisters (1890,1890,1,1) Sure

Da Vinci 72 Mona Lisa (1503,1506,1,5) (0.4,0.5,0.2,0.2)

Miguel Angel 580 Pieta (1498,1499,0,0) Sure

Rafael 131 La Trasfigurazione (1517,1520,1,3) Almost-Sure

Botticelli 9 The Spring (1477,1480,1,2) Almost-Sure

Table 4: Relational representation of Fuzzy Certainty on FVP.

for the fuzzy certainty. One familiy of certainty labels is the one used in (17) which is

shown in table 5.

Although we have found a solution to the problem of representation in a relational

framework, there are still many problems derived mainly of the application of relational

and/or temporal operators to such a database. For example, what happens if we apply the

before operation (11) on the WOA table when tuples are affected by fuzzy uncertainty?

What should we do when joining two WOA tables?. It is clear that we need a unified way

to represent the whole information about time and transform the original data provided

into a different format.

On the other hand, the original table WOA should be kept in the system since the

information provided separately by the fuzzy interval and the fuzzy certainty could be

used only to be queried or as part of a different reasoning process (for example to match

the opinions of two experts about the same painting).

So then, the idea is to create a transformed table WOAT in order to avoid all the

above mentioned problems.

Once we have found the mechanisms to transform uncertainty into imprecision in a

suitable way, we can now build the transformed table WOAT as shown in table 6. In this
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Label Parameters (m1,m2,a,b)

Almost-Impossible (0,0.05,0,0.03)

Slightly-Possible (0.07,0.14,0.02,0.03)

Moderately-Possible (0.15,0.35,0.05,0.1)

Possible (0.35,0.55,0.1,0.1)

Quite-Possible (0.55,0.75,0.1,0.1)

Very-Possible (0.75,1,0.1,0)

Almost-Sure (0.98,1,0.03,0)

Sure (1,1,0,0)

Table 5: Family of Linguistic Certainty Values

table, we have omitted the Pict-ID column for the sake of space.

Author Pict-Name FV PT
n FV PT

p

Goya Third of May (1813,1814,2,0) (1813,1814,2,0)

Giotto Crucifix (1284.5,1290.51,4.5,2.49) (1286.39,1289.69,5.69,2.61)

Bosch The Garden of Delights (1500.96,1503.68,3.09,2.44) (1501.77,1503.41,2.47,1.28)

Castelseprio Bust of Christ (806.51,852.5,4.51,3.5) (809.3,850.51,6.41,4.6)

Renoir Two Sisters (1890,1890,1,1) (1890,1890,1,1)

Da Vinci Mona Lisa (1502.33,1509.35,2.36,3.67) (1502.58,1508.1,1.3,3.62)

Miguel Angel Pieta (1498,1499,0,0) (1498,1499,0,0)

Rafael La Trasfigurazione (1516.95,1520.15,1.01,2.9) (1517,1520,1,3)

Botticelli The Spring (1476.95,1480.1,1.01,1.95) (1477,1480,1,2)

Table 6: WOAT table obtained after the transformation of uncertainty in imprecision.

5. Handling Imprecision and Uncertainty in Fuzzy Database Systems

This section describes how we have implemented this proposal of integration of impreci-

sion with uncertainty on our prototype of Fuzzy Object-Relational Database Management

System (FORDBMS) (6; 1). This system is developed as an extension of a market leader

RDBMS (Oracler) by using its advanced object-relational features. This strategy let us
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take full advantage of the host DBMS features (high performance, scalability, availability,

etc.) adding the ability of representing and handling fuzzy data.

Figure 7: Data type hierarchy for the FORDBMS

The FORDBMS extension includes a set of user-defined types (shown in Fig. 7) to

allow the representation of a wide variety of fuzzy data, as the following ones:

• Atomic fuzzy types (AFT), represented as possibility distributions over ordered

(OAFT) or non ordered (NOAFT) domains.

• Fuzzy collections (FC), represented as fuzzy sets of objects, fuzzy or not, with

conjunctive (CFC) or disjunctive (DFC) semantics.

• Fuzzy objects (FO), whose attribute types could be crisp or fuzzy, and where each

attribute is associated with a degree to weigh its importance in object comparison.

All fuzzy types include a Fuzzy Equal operator (FEQ) definition that computes the

degree of fuzzy equality for each pair of instances. The OAFT type implements other fuzzy

comparators, based on the possibility measure, such as FGT (Fuzzy Greater Than), FGEQ

(Fuzzy Greater or EQual), FLT (Fuzzy Less Than) and FLEQ (Fuzzy Less or EQual).

Also, OAFT implements another version of those operators by using the necessity measure

(NFGT, NFGEQ, NFLT and NFLEQ).

In (18) we present a fuzzy temporal model for fuzzy object-relational databases, and

its implementation on top of the FORDBMS called FVTM (Fuzzy Valid Time Support

Module). This module includes, among other things, all the operators needed to perform
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fuzzy temporal queries, using approaches based on possibility: fbefore, fafter, foverlaps,

etc... and based on necessity: nfbefore, nfafter, nfoverlaps,...

The flexible and extensible architecture of these modules, allows to integrate our pro-

posal to handle imprecision with uncertainty in an easy way. To do this, we only need to

define and implement two new operators: toFUP and toFUN, which takes a fuzzy uncer-

tainty value and a fuzzy interval and returns a fuzzy value that combines imprecision and

uncertainty using possibility and necessity, respectively.

We have implemented several overloads of these operators, to handle fuzzy data and

fuzzy temporal data, also to take into account the k factor (where k = k0 ·λ, as mentioned

in section 2.3).

Next, we show the main signatures of these operators:

FUNCTION toFUP(fval OAFT, fcval FC, lambda DEFAULT 1 NUMBER) RETURN OAFT;

FUNCTION toFUP(tfval FVP, fcval FC, lambda DEFAULT 1 NUMBER) RETURN FVP;

FUNCTION toFUN(fval OAFT, fcval FC, lambda DEFAULT 1 NUMBER) RETURN OAFT;

FUNCTION toFUN(tfval FVP, fcval FC, lambda DEFAULT 1 NUMBER) RETURN FVP;

where FC is a OAFT subtype defined on the underlying domain [0,1] and lambda is the relation

between the scale we are using and the base scale.

Using cp expression and the normalization process shown in figure 3 we can implement the

former expression in this way (using PL/SQL).

FUNCTION toFUP(fval OAFT,fcval FC,lambda DEFAULT 1 NUMBER) RETURN OAFT IS

cp NUMBER; k NUMBER; k0 NUMBER; m1 NUMBER; m2 NUMBER; a NUMBER; b NUMBER;

BEGIN

-- retrieves from the catalog the k0 value for the type of fval.

k0:= fval.getK0();

IF k0 IS NULL THEN k0:=1;

k:= k0*lambda;

cp:=(fcval.m2+fcval.b)/(fcval.b+1);

m1:=fval.m1+fval.a*(cp-1);

m2:=fval.m2+fval.b*(1-cp);

a:=(cp-1)/cp*k)-fval.a*cp;
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b:=fval.b*cp+(1-cp)/(cp*k);

RETURN m1m2ab(m1,m2,a,b);

END;

The implementation of toFUN function is similar; it only differs in the use of cn instead of

cp.

5.1. The WOA example on the Imprecise-Uncertain extension

Our FORDBMS with the FVTM and the described imprecise-uncertain extension, can store

and query several kind of fuzzy data and temporal fuzzy data even affected by uncertainty.

A query can combine fuzzy conditions on imprecise data and on temporal data, stored with

uncertainty.

Next we are going to show some of these features using the example of the time relation

WOA (Works of Art) shown in table 4.

5.1.1. Data Definition

To store the information of the pictures (including the imprecision and the uncertainty of the

dates in which they were painted) we need to create a subtype of OAFT to store FC definitions

and labels as this code shows:

-- Creation of oaft datatype to define labels for uncertainty in Table 4.

exec OAFT.extends(’woa_FC’);

-- Definition of labels

exec woa_FC.labelDef(’Almost-Impossible’,m1m2ab(0,0.05,0.03));

exec woa_FC.labelDef(’Slightly-Possible’,m1m2ab(0.07,0.14,0.02,0.03));

exec woa_FC.labelDef(’Moderately-Possible’,m1m2ab(0.15,0.35,0.05,0.1));

exec woa_FC.labelDef(’Possible’,m1m2ab(0.35,0.55,0.1,0.1));

exec woa_FC.labelDef(’Quite-Possible’,m1m2ab(0.55,0.75,0.1,0.1));

exec woa_FC.labelDef(’Very-Possible’,m1m2ab(0.75,1,0.1,0));

exec woa_FC.labelDef(’Almost-Sure’,m1m2ab(0.98,1,0.03,0));

exec woa_FC.labelDef(’Sure’,m1m2ab(1,1,0,0));

Then, the table WOA FUT (Table 4) can be created using the following SQL sentence:
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CREATE TABLE WOA_FUT (author VARCHAR2(30), pict_ID NUMBER PRIMARY KEY,

pic_Name VARCHAR2(30), fvp FVP, fc woa_FC);

Note that this table does not include the fields to store the values for Cn, Cp, FVPn and FVPp

shown in Tables 1 and 6; this is because this values are computed from the fvp and fc values by

means of the functions previously described: toFUN and toFUP, respectively. It is also important

to note that, in this example, both λ and k0 take value 1, and therefore, k = 1.

5.1.2. Data Inserting and Fuzzy Querying with Uncertainty

Now, we can insert into the WOA FUT table the information shown in Table 4, running the

following DML sentences:

INSERT INTO WOA_FUT VALUES (’Goya’, 15,’Third of May’,

FVP(’1811’,’1813’,’1814’,’1814’,’yyyy’),woa_FC(’Sure’));

INSERT INTO WOA_FUT VALUES (’Castelseprio’, 6579,’Bust of Christ’,

FVP(’803’,’810’,’850’,’855’,’yyyy’),woa_FC(0.6,0.9,0.2,0));

...

INSERT INTO WOA_FUT VALUES (’Botticelli’, 9,’The Spring’,

FVP(’1476’,’1477’,’1480’,’1482’,’yyyy’),woa_FC(’Almost-Sure’));

The parameter ’yyyy’ in the FVP constructor indicates that the above four arguments are

interpreted as years in four-digit format.

On this table, we can perform several kinds of queries that involve imprecision and uncer-

tainty on the temporal domain, as the following examples illustrate:

Query 1. “Find pictures painted after the XIV century but previous to Mona Lisa” (threshold
0.5).

The query, in possibilistic terms, can be expressed by means of this sentence:

SELECT a.author,a.pic_name, toFUP(a.fvp,a.fc), CDEG(1) CDeg

FROM WOA_FUT a, WOA_FUT a WHERE b.pic_name=’Mona Lisa’ AND

FCOND(FzAND(FBEFORE(toFUP(a.fvp,a.fc),toFUP(b.fvp,b.fc)),

FAFTER(toFUP(a.fvp,a.fc),(1399,1399,0,0))),1)>=0.5
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The operator FBEFORE(fv1,fv2) returns the possibility degree in which fv1 is previous to

fv2; in the same way, the operator FAFTER(fv1,fv2) returns the possibility degree in which

fv1 is posterior to fv2. The operator CDEG(1) shows the fulfillment degree of each tuple for the

condition expressed into the FCOND operator. Finally, the FzAND operator applies the T-Norm

of minimum on its arguments.

The results of this query are shown in Table 7.

Author Pict-Name FV P Tp CDeg

Bosch The Garden of Delights (1501.77,1503.41,2.47,1.28) .87

Da Vinci Mona Lisa (1502.58,1508.1,1.3,3.62) .5

Miguel Angel Pieta (1498,1499,0,0) 1

Botticelli The Spring (1477,1480,1,2) 1

Table 7: Results of Query 1 using possibility measure

The same query expressed in terms of necessity would be:

SELECT a.author,a.pic_name, toFUN(a.fvp,a.fc), CDEG(1) CDeg

FROM WOA_FUT a, WOA_FUT b WHERE b.pic_name=’Mona Lisa’ AND

FCOND(FzAND(NFBEFORE(toFUN(a.fvp,a.fc),toFUN(b.fvp,b.fc)),

NFAFTER(toFUN(a.fvp,a.fc),(1399,1399,0,0))),1)>=0.5

Where the operators NFBEFORE and NFAFTER are the necessity based versions of the operators

FBEFORE and FAFTER, respectively.

The execution of this query retrieves the results shown in Table 8.

Author Pict-Name FV P Tn CDeg

Miguel Angel Pieta (1498,1499,0,0) 1

Botticelli The Spring (1476.95,1480.1,1.01,1.95) 1

Table 8: Results of Query 1 using necessity measure

Query 2. “Find the pictures of the same period than ’The Garden of Delights’ by El Bosco
(Bosch)” (threshold 0.5).
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The query expression for possibility is:

SELECT a.author,a.pic_name, toFUP(a.fvp,a.fc), CDEG(1) CDeg

FROM WOA_FUT a, WOA_FUT b WHERE b.pic_name=’The Garden of Delights’ AND

FCOND(FOVERLAPS(toFUP(a.fvp,a.fc),toFUP(b.fvp,b.fc)),1)>=0.5

Where the operator FOVERLAPS(fv1,fv2) returns the possibility degree in which fv1 and

fv2 are overlapped.

The results are shown in Table 9.

Author Pict-Name FV P Tp CDeg

Bosch The Garden of Delights (1501.77,1503.41,2.47,1.28) 1

Da Vinci Mona Lisa (1502.58,1508.1,1.3,3.62) 1

Table 9: Results of Query 2 using possibility measure

The expression for this query using necessity measures is:

SELECT a.author,a.pic_name, toFUN(a.fvp,a.fc), CDEG(1) CDeg

FROM WOA_FUT a, WOA_FUT b WHERE b.pic_name=’The Garden of Delights’ AND

FCOND(FNOVERLAPS(toFUN(a.fvp,a.fc),toFUN(b.fvp,b.fc)),1)>=0.5

Where the operator NFOVERLAPS is the necessity based version of the operator FOVERLAPS

The Table 10 shows the results of this query.

Author Pict-Name FV P Tn CDeg

Bosch The Garden of Delights (1500.96,1503.68,3.09,2.44) .5

Table 10: Results of Query 2 using necessity measure

Query 3. “Find pictures of the second half of XV century” (threshold 0.5).

In a fuzzy way, we can say that this period starts in (1450,1460,5,0) and ends in (1505,1505,5,5).

So, we could express the query in this way:
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SELECT author,pic_name, toFUP(fvp,fc), CDEG(1) CDeg FROM WOA_FUT WHERE

FCOND(FzAND(FAFTER(toFUP(fvp,fc),(1450,1460,5,0)),

FBEFORE(toFUP(fvp,fc),(1505,1505,5,5))),1)>= 0.5

Results in Table 11

Author Pict-Name FV P Tp CDeg

Bosch The Garden of Delights (1501.77,1503.41,2.47,1.28) .78

Da Vinci Mona Lisa (1502.58,1508.1,1.3,3.62) .62

Miguel Angel Pieta (1498,1499,0,0) 1

Botticelli The Spring (1477,1480,1,2) 1

Table 11: Results of Query 3 using possibility measure

The query for necessity measures is:

SELECT author,pic_name, toFUN(fvp,fc), CDEG(1) CDeg FROM WOA_FUT WHERE

FCOND(FzAND(NFAFTER(toFUN(fvp,fc),(1450,1460,5,0)),

NFBEFORE(toFUN(fvp,fc),(1505,1505,5,5))),1)>= 0.5

and the results are shown in Table 12.

Author Pict-Name FV P Tn CDeg

Miguel Angel Pieta (1498,1499,0,0) 1

Botticelli The Spring (1476.95,1480.1,1.01,1.95) 1

Table 12: Results of Query 3 using necessity measure

6. Conclusions and Future Work

As we have seen, imprecision and uncertainty coexist in many applications. More often

than desirable, a given datum is affected by imprecision and uncertainty at the same time

and working with both measures is almost impossible. Though this situation may arise in any

context, it is very common to find together uncertainty and imprecision when dating ancient
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objects and this is the reason why we have chosen this area to apply our results. Concretely, in

the framework of temporal databases, where data (tables) take part in both relational operations

(like cartesian product, selection, join, groupping,...) and fuzzy temporal operations (like before,

after, between, at the same time...) this problem is still worse and make it specially important

to solve this problem when fuzziness and uncertainty refers to time.

Thanks to the presented approach, we can integrate fuzzy uncertainty and imprecision on

fuzzy time intervals into a single fuzzy value in order to solve the following drawbacks:

• Representation problems: As mentioned in the paper, a unified representation of uncer-

tainty and imprecision in a relational framework saves a lot of memory and improves the

query response time.

• Manipulation: Both relational and time operators have serious applicability problems

when both measures appear together in a tuple. Concretely, it should be impossible to

join two WOA tables or to apply the fuzzy before operation.

• Comprehension: Working with uncertainty and imprecision at the same time (if possible)

is very difficult to be understood by the users: why so many degrees, what do they really

mean, which of them is more important, how can we rank the data...

• Reusability: It is obvious the advantage of this process. Uncertainty and imprecision

are included in the fuzzy interval itself and there is no need to develop or use different

mechanisms from those already introduced for fuzzy validity periods (temporal reasoning,

rules definition, languages like TFSQL,...). Besides, there is no need to consider levels

of truth (all the values to be handled are completely true). Nevertheless, we keep in the

system the original table with both measures for the interest of experts.

• Unification criteria: As we have mentioned in the introduction, when looking for the Cru-

cifix of Giotto painting date in Internet, we can find many expert assessments; therefore,

from these results, the unification of criteria is very important, not only to be able to put

them in a database, but to have an only answer to this question.

Regarding the extension of these results, different research lines for future work appear:

First, the application of these results to other problems of representation where it is necessary

jointly deal with imprecise and uncertain time values. This problem may appear in all cases
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concerning events not well referenced due to unreliable sources: databases concerning historical

facts, buildings, crimes etc.

Another possible future work closely related to the situation explained above, is the con-

sideration that different sources of information with different reliability provide particular ap-

proximations of temporal data. We intend to apply or extend this case to different forms of

aggregation provided by fuzzy set theory. (5)

Finally, it should be noted that in the case of linguistic uncertainty, the result of the trans-

formation is actually two fuzzy numbers (including one the other) which can be seen as a single

interval fuzzy set (19); we propose to apply the theory of such fuzzy sets to give a better

interpretation and use the results in fuzzy temporal databases.
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