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Summary

The study of tissue from the point of view of mechanics provides a tool to understand
and unveil its structure as well as its behavior at different scales. Linear theories based on
the superposition principle are an approximation that is devoid of meaning at the microme-
chanical level. Nonlinear theories generalize this concept where the effect does not need to
be a consequence of only the sum of its causes, that is, where the principle of superposition
is not valid and they explain the phenomenology of the processes in more precise contexts
i.e. weather prediction, cellular competition in biology and propagation of sound through a
complex media.

Particularly, Nonlinear Ultrasounds (NLUS) depend on elastic and inelastic constants
different from Young’s or Elastic’'s Modulus E and Poisson’s Coefficient v, which can be
quite more sensitive to damage and hiperelastic properties in tissues, as they depends on
their microestructure.

Throughout History, there are a disparity of unified criteria to consider the Third Order
Elastic Constants (TOEC). Landau and Lifshitz in 1941, proposed for the first time in their
book “Theory of Elasticity” [1] the TOEC as an exercise or proposed problem, following a
series expansion of Hooke’s law from the energy.

From the 70’s, several visionary researchers on nonlinear waves as Zarembo and
Gol'dberg field observed experimentally nonlinear elasticity constants by the finite am-
plitude techniques. Independently, they were raised theoretical models as Westervelt and
Khokhlov, Zabolotskaya and Kuznetsov (KZK), where by making use of resolution proceses
mainly based on perturbation theory an analytical solution were established and sometimes
comparing with elasticity models. Progress in Science is subject to the application or uni-
fication of theories only by standing on the shoulders of giants. Since then, a large number
of different references and criteria to encompass nonlinear elastic constants with the corre-
sponding conversion have been published.

In trying to systematize the above, we have found many inconsistencies and contradic-
tions. For example, following a reasonable basis to explore the relationship between nonlin-
ear elasticity and nonlinear acoustics, there are several definitions of the nonlinear acoustic
parameter of first order 3 (without physical meaning), several TOEC, Westervelt, Burgers
and KZK Partial Differential Equations PDE or Nonlinear acoustic models only valid for the

case of fluids or solids further with various different solutions suggested.



Therefore it is important to develop a general theory, consistent from the viewpoints of
(1) mathematics, (2) the theory of continuum mechanics, (3) of the physics of wave propa-

gation and (4) experimental engineering, that unifies all previous developments.

> (1) Mathematics: A framework of PDE should be derived from a consistent series in
terms of invariants to rotations and translations are explicitly developed and analyzed,
and indexical and vector notation facilitates a clear and unambiguous expression. At
this point the families of nonlinear PDE should be well classified to establish the best
practice in the relationship between elasticity and acoustics.

> (2) Continuum Mechanics: The beginning of a new theory should be expressed with-
out simplifications in a general context without small displacements, correctly defin-
ing all the concepts of stress, Piola-Kirchoff tensor, strain tensor, deformation gradient,
energy, and related magnitudes.

> (3) Physics of Waves: The equation of nonlinear waves and definition of nonlinear-
ity from acoustic pressure is solved using perturbation theory as iterative recursive
method in converging to the equation of Westervelt and its generalization to multiple
harmonics.

> (4) Experimental Engineering : To quantify different harmonics from an experimen-
tal point of view, the acoustic pressures are measured with hydrophones and oscillo-
scopes, in different configurations via harmonic generation methods, as well as non-
linear interactions of ultrasonic waves, exciting with different types of source waves,

Primary (P), Secondary (S), and their combinations.

This thesis provides an unified derivation of the theories of nonlinear elasticity based on
the classical continuum mechanics evidencing several misconceptions and errors commonly
assumed in literature. It establishes a relationship with the classical nonlinear acoustics from
a new perspective that is validated with the results by Hamilton and Norris [2].

This analysis leads us to unify criteria and break down of the definition of the parameter
B previously mentioned, to develop an equation of Westervelt, generalized for harmonics of
any order, and to establish a new theory of nonlinear acoustics, expanding into four types
of nonlinearity, whose origin is based on the contribution of the liquid phase and the fiber
or collagen phase, which is crucial to explain and understand the hyperelasticity and wave
propagation in quasi-fluids and tissue. The potential impact of this technique involves a
new approach in the tissue characterization with clinical applications due to the separation
of nonlinear phases of tissue revealing their main mechanism that is relevant in the diagnosis
and therapy of many tissue disorders.

The different results that arise as a consequence of this theory, are experimentally vali-
dated in several setups in different materials by developing new non-destructive evaluation
techniques. They are (1) Non-linear mixing with a single transducer to measure and quantify

the nonlinearity of water, (2) nonlinear mixing with two transducers in angle to characterize



aluminum, and (3) a new torsional sensor for characterizing hydrogels, silicones and tissues,
which has been designed, optimized and prototyped.

Finally, this thesis proposes a possible explanation on how the nolinearity is caused by
damage from microcracks. The Homogenization theory developed by Eshelby in 1956 [3], is
used for this purpose. Subsequently, the case of a material is resolved with inclusions with
geometric form of spheroids. Note that the theoretical and experimental scheme proposed
could be relevant in the development of new medical devices for bone quality assessment

and the osteoporosis diagnosis.






Resumen

El estudio de los tejidos desde el punto de vista mecdnico proporciona una herramienta
tanto para entender y conocer su estructura como su comportamiento a distintas escalas.
La teorias lineales basadas en el principio de superposicién o el efecto como suma de las
causas, son una aproximacién que queda exenta de sentido a nivel micromecénico. Las
teorias nolineales generalizan este concepto donde el efecto no tiene porque ser solo suma de
las causas, es decir el principio de superposicion no es completo y explican la fenomenologia
de los procesos en contextos mds precisos.

La Nolinelalidad Ultrasénica NL US en concreto depende de constantes eldsticas e
inelasticas diferentes al Médulo de Young o Elastico E, y Coeficiente de Poisson v, que
pueden ser mucho maés sensibles a dafio y propiedades hiperelasticas de tejidos que E, y v,
porque dependen de su microestructura.

Varios investigadores visionarios desde los afios 70 como Zarembo y Gol’dberg, obser-
varon experimentalmente nolinealidades actisticas mediante métodos de amplitud finita.
Independientemente, se plantearon modelos tedricos como es el caso de la Ecuacién en
derivadas parciales nolineal PDE de Westervelt, Khokhlov, Zabolotskaya y Kuznetsov, KZK
con procesos de resolucién analiticos basados en la teoria de la perturbacién. El avance en la
ciencia viene sujeto a la aplicacién o unificacién de grandes teorias poniéndonos a hombros de
gigantes. A lo largo de la historia, existen disparidad de criterios para unificar las constantes
elasticas de tercer orden. El libro de Teorfa de la Elasticidad de Landau y Lifshitz en 1957 [1]
es el primer lugar donde se plantean las Constantes Elasticas de Tercer orden conocidas hoy
en dia como TOEC, en un ejercicio o problema préctico propuesto, a raiz del desarrollo en
serie de la ley de hooke a partir de la energia. Dese entonces es posible encontrar numerosas
referencias y diferentes criterios para englobar las constantes de la elasticidad nolineal con
su correspondiente conversion.

Al tratar de sistematizar lo anteriormente expuesto, hemos observado miltiples incon-
sistencias, y contradicciones. Por ejemplo, a raiz de explorar un criterio razonable para
vincular la nolinealidad elastica con la nolinealidad actstica, existen diferentes definiciones
del conocido parametro 3, diferentes pardmetros eldsticos de tercer orden, ecuaciones de
Westervelt, Burgers y KZK que valen solo en el caso de fluidos, sélidos, etc. que ademads

sugieren distintas soluciones.



Por lo tanto es importante desarrollar una teoria generalizada, consistente desde el punto
de vista (1) matematico, (2) de la teoria de medios continuos, y (3) de la fisica de la propa-
gacion de ondas y (4) de la ingenieria experimental, que unifique todos los desarrollos ante-

riores.

> (1) Matematico: Partiendo de un marco consistente en el sentido de los desarrollos en
serie de la energia bien analizados cuyos invariantes frente a rotaciones y traslaciones
estén explicitamente analizados y desarrollados y cuya notacién indicial y vectorial
facilite de forma clara y univoca su expresién. En este punto las familias de ecua-
ciones en derivadas parciales nolineales deben quedar muy bien clasificadas de cara a
establecer procedimientos 6ptimos en la relacion entre Elasticidad y Acustica.

> (2) Medios continuos: Comenzando con la teoria sin simplificaciones en un contexto
lo mds general posible sin pequefios desplazamientos, definiendo correctamente todos
los conceptos de tensién, tensor de Piola-Kirchoff, tensor de deformaciones, gradiente
de deformacién energia, etc...

> (3) Fisica de ondas: Teoria de la perturbacién como método recursivo iterativo en la
ecuacién de ondas nolineal, definicién de nolinealidad desde la presién actstica coin-
cidiendo con la que interviene en la ecuacién de Westervelt, generalizacién a multiples
armonicos, etc.

D> (4) Ingenieria experimental: Cuantificacién de diversos armoénicos desde el punto
de vista realista a partir de la presién actstica que medimos con osciloscopios, en
diferentes configuraciones via generacion de armoénicos, mezcla de ondas ultrasénicas,

diferentes tipos de ondas, P, S, y su combinacién, etc.

A lo largo del desarrollo de esta Tesis, hace un desarrollo unificado de las teorfas de
nonlinealidad eldstica basadas en la mecanica de medios continuos cldsica. Se establece una
relacion con la nolinealidad actstica clasica desde una nueva perspectiva que valida los re-
sultados de Hamilton y Norris en su libro Nonlinear Acoustics [2]. Dicho andlisis nos lleva
a unificar y desglosar criterios de definicién del parametro 3 previamente mencionado, a
desarrollar una ecuacién generalizada de Westevelt para armoénicos de cualquier orden y a
establecer una nueva teoria de nolinealidad actstica expandiendo en cuatro tipologias de
nolinealidad, es debido a la contribucién de la fase liquida y la fase de fibra o coldgeno,
en el caso de quasifluidos o tejidos, respectivamente. El impacto potencial de esta técnica
supone un nuevo aporte en la caracterizacion tisular cuyas aplicaciones clinicas se deben a
la separacién de fases nolineales que revelan sus principales mecanismos, lo cual es espe-
cialmente relevante desde el punto de vista diagnoéstico y terapéutico de muchos trastornos
en el tejido.

Al tratar de explicar experimentalmente los distintos resultados que surgen como con-
secuencia de esta teoria, se desarrollan varios ensayos en distintos materiales, utilizando

técnicas de evaluacién no destructiva. Mezcla no lineal con un solo transductor para medir



la nolinealidad del agua, mezcla con dos para caracterizar aluminio y el disefio y opti-
mizacién de un nuevo sensor de torsién para caracterizar hidrogeles, siliconas y tejidos.
Ademas en esta Tesis se plantea una posible explicaciéon sobre como se origina la nolin-
ealidad por dafio a partir de microgrietas. Para ello se recurre a la teoria de homogeneizacién
desarrollada por Eshelby en 1956 [3], y se resuelve el caso de un material con inclusiones
con forma geométrica de esferoides. Cabe destacar que el esquema tedrico y experimen-
tal propuesto podria ser relevante en el desarrollo de nuevos dispositivos médicos para la

evaluacion de la calidad 6sea y el diagnéstico de la osteoporosis.
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INTRODUCTION






Context and motivation

Ultrasonics based Nondestructive Evaluation (NDE) is an emerging technology with an
enormous potential in the field of biomedical and industrial engineering. To rigorously ad-
vance this technology, it is necessary to develop the knowledge mathematical and physical
models that ground it. Nonlinearity is the key to introduce us into a micro-mechanical level
and understand it as the origin of damage or pathology in new terms. Ultrasound non-
linearity is a new diagnosis principle with potentially superior sensitivity. The potential of
this multi-scale new paradigm gives us a significative tool to quantify several modulus and
parameters that could be relevant in diagnosis and therapies.

Nonlinearity should be studied for this proposal from the root, from (1) a mathematical
point of view, where a nonlinear system of equations is a set of simultaneous equations in
which the unknowns appear as variables of a polynomial of degree higher than one or in
the argument of a function which is not a polynomial of degree one, and (2) In physics and
other sciences, where a nonlinear system, in contrast to a linear system, is a system which
does not satisfy the superposition principle: meaning that the output of a nonlinear system is not
directly proportional to the input.

As nonlinear equations are difficult to solve, nonlinear systems are commonly approxi-
mated by linear equations (linearization). This works well up to some accuracy and some
range for the input values, but some interesting phenomena such as chaos and singulari-
ties are hidden by linearization. It follows that some aspects of the behavior of a nonlinear
system appear commonly to be chaotic, unpredictable or counterintuitive. Although such
chaotic behavior may resemble random behavior, it is absolutely not random. For example,

some aspects of the weather are seen to be chaotic, where simple changes in one part of the



system produce complex effects throughout. This nonlinearity is one of the reasons why
accurate long-term forecasts are impossible with current technology.

Nonlinear acoustics is a branch of physics and acoustics dealing with sound waves of
sufficiently large amplitudes. Large amplitudes require using full systems of governing
equations of fluid dynamics (for sound waves in fluids and gases) and elasticity (for sound
waves in solids and quasifluids such as tissues). These equations are generally nonlinear,
and their traditional linearization is no longer realistic [8, 9, 10, 11]. The solutions of these
equations show that, due to the effects of nonlinearity, sound waves are being distorted as
they travel. This is a key in understanding the interaction and propagation of ultrasound.

The understanding of nonlinearity from the point of view of the Theory of Elasticity
carry out the study of constitutive equation from the energy potential. Landau-Lifshitz,
Murnaghan, Hughes, Gol’dberg, Thurston and Zarembo were interested in the formulation
of nonlinear elasticity since the beginning of the second half of twentieth century [1, 12,
13, 14, 15, 5]. The main context was the rotation and displacement invariance before and
after the consideration of strain. They extracted the TOEC with different expressions, and in
the case of Gol’dberg Thurston and Zarembo started with the relationship between TOEC
and acoustics. At the end of twentieh century, there were several authors interested on
that research due to the experimental developing of new techniques in ultrasonics as finite
amplitude, multilayer approaches, where the new forms of nonlinearity in acoustics and the
study different types of waves as shear and surface played an important role [16, 17, 18, 19,
20, 21, 22, 23, 24, 25].

Nowadays, there are several new approaches in this field due to the repercussion of
many experimental proceses as Dynamic Acousto Elasticity Testing, (DAET), and the re-
newal importance of the realtionship between the propagation of waves in complex media
[26, 27, 28]. Biomaterials and tissues can be understanding without non invasive radiations
in vivo [29, 30, 31].

Analyzing the theoretical background from Hamilton Nonlinear acoustics book and dif-
ferent studies about nonlinear acoustics previously cited [2], there were some conflict criteria
by different schools. For example, the TOEC definitions are not unique, they depend on the
algebraic invariants from the energy function and at the end to a Taylor expansion. There are
many definitions of stress and strain and the main point is the consideration of compatibil-
ity equation where the strain is formulated from displacements and the large displacements
when are introduced are considered as geometric nonlinearity. This leads to find in litera-
ture an ambiguous definition of beta nonlinear acoustic parameter of first order beta [32].
Consequently, this allow us to unify acoustic and elastic nonlinearity as a common theory
where all formulations in solids, crystals, liquids and tissues are contemplated. Starting
from the Hamilton classic relationship between TOEC and beta, and being validated from
Landau invariants, and nonlinear wave equation we extend to second order of nonlinearity
in acoustic and elastic regime, and transversally isotropic case is considered too due to the

nature of tissues. Considering all these contexts, is posible to derive the Westervelt equation



[33, 34] to higher harmonics. It could be interesting in the field of the understanding of wave
propagation in fluids, and may to the development of the KZK equation that is actually used
in High Intensity Focus Ultrasound (HIFU) as a mechanism of modellization for ultrasonic
therapies against some solid cancers [35, 36]. Elastic and geometric nonlinearity manifest
in ultrasonic waves in new interactions by nonlinear mixing and appearance of growing
harmonics by harmonic generation technique, which are easily detected and isolated exper-
imentally in the frequency domain.

Finally, a new paradigm is formulated in order to establish a new criteria allowing the
separation and quantification of nonlinear parts due to the fiber or collagen and from the
liquid or water. For this reason, is necessary to validate the new types of nonlinearity from
experimental setups, non collinear mixing is [37] immersion tank with just one transducer.
Then, a new device is constructed to try the angles of interaction of two P and S waves even
for horizontal and vertical amplitudes and all combinations between them, based on Ko-
rneev’s equations [38]. However, for the cases of quasifluids and tissues nonlinear torsional
waves are investigated under the fundamentals of this theory. A torsional ultrasonic sen-
sor is design optimized and fabricated to validate the results of the theory [39]. The main
impact of this transducer is the direct application to preterm birth assessment, it consists of
the quantification of shear modulus as the consistency changes in cervical tissue [40]. The
nonlinear torsional parameters could be also relevant in the diagnosis of many diseases that
may be influenced by biomechanical variables.

Alternatively, the origin of nonlinearity in materials from the physical point of view was
studied by several authors taking into account atomistic potential arguments [41, 42]. In
this thesis, a new plausible explanation is proposed introducing that could be due to the
appearance of micromechanical damage. The microcrack inclusions inside a material are
considered and studied from nonlinear propagation of ultrasonic waves. This perspective,
based on the homogenization theory developed firstly by Eshelby in the beginning of sec-
ond half of the twentieth century [43, 44, 45] and then by many authors [46, 47, 48, 49, 50],
provides a new approach studied as a set of microcracks as density of them, which could
explain osseous quality and fracture risk [51, 52, 53, 54, 55, 56]. An experimental approach
is also proposed to link nonlinear acoustic properties and density of microcracks in osteo-

porotic bone.






Objetives

r]?he need to understand the mechanics impels us to unify nonlinear elasticity as well as
nonlinear acoustics and the different techniques and prototypes that could be useful as med-
ical diagnostic tools and principles.

The mechanics of solids understood and controlled to characterize tissue, provides both
diagnostic techniques based on ultrasonic propagation and new sensors reliable and sen-
sitive criteria in the face to improve the understanding of the structural annd mechanical
properties [57, 58, 59, 60, 61, 62, 63]. The interaction between ultrasound and tissue entails
evaluation techniques that evolve as advances into the understanding of the subject and the
development of the technology [64, 65, 66, 67, 68]. The methodology used to quantify the
mechanical properties focuses on the application of the inverse problem to reconstruct both
the linear constitutive characteristics as the nonlinear model-based ones [69, 70, 71, 72, 39].

To this end, this thesis aims at understanding nonlinear elastoacoustic parameters in
tissue, rewrite nonlinear acoustic models designing and validating a new set of parameters
and explore the posible origin of nonlinearity in terms of damage and microcracks. To reach

this target, the following research steps are consider, in basis of hypothesis:

1. To unify nonlinear continuum mechanics, which implies a global definition of stress
and strain taking or not taking into account geometric nonlinearity in the compatibil-
ity equation and considering the material, if it is solid, fluid or tissue. The different
assumptions, govern the whole theoretical background of this thesis.

Hypothesis 1: Nonlinear Elasticity can be understood from a consistent algebraic
context where a material whose anisotropic or isotropic behavior could be univo-

cally characterized. The parameters that appear in nonlinear classical extensions



are relevant in the study of different materials as solids, crystals, liquids or tis-

sues.

Research objetive 1: Create a new consistent framework where all theories in nonlin-
ear classical elasticity are connected and a set of conversion factors to link to the
Third Order Elastic Constants.

2. To Unify nonlinear classical acoustics, is a key to understand the classical nonlinear
elasticity parameter because with a strong relationship with nonlinear acoustics, is
possible to measure experimentally with ultrasonic technologies [73, 74].

Hypothesis 2: Nonlinear classical acoustics under an unification criteria is a impor-
tant tool to understand mechanical parameters relatives to damage in the case of
materials or pathology in the case of tissue. A consistent and unified view pro-

vides a new approach to design a set of relevant experiments in tissue mechanics.

Research objetive 2: To unify nonlinear classical acoustic theories to exploring the
relationship between this parameters an mechanical ones and extend this to other

possible scenarios exploring its physical meaning.

3. Rewrite of nonlinear acoustics is a necessary task to contribute in the scope of the non-
linear acoustic unification. Several authors, give the inspiration idea of non unique-
ness in this field but without a physical explanation [38, 75].

Hypothesis 3: Fluid and matrix parts of tissue could be the origin of Nonlinearity
in tissues. The extension of nonlinear classical acoustics theories would imply a

new point in the understanding of nonlinear physical meaning.

Research objetive 3: Define nonlinear constitutive constants with physical meaning
from the point of view of the interaction of waves depending on fluid and matrix

parts, rather than a power series expansion as proposed by Landau.

4. To formulate a posible explanation to the nonlinear origin based on microdamage and
microcracks in solid state. This origin starts with developing of the homogenization
techniques, constructing a theory that connects micromechanical and heterogeneous
elasticity and nonlinear ultrasound tools is possible to derivate and quantify density
of microcracks [76, 77].

Hypothesis 4: The study of the theory of homogenization by Eshelby and its ex-
tension to nonlinear geometrical inclusions or microcracks suggests that using
ultrasonic nonlinear techniques, an origin to the nonlinearity could be due to the

microdamage.

Research objetive 4: Extending the theory of Eshelby to solve various cases of geo-
metrical inclusions and provide a method for measuring density of microcracks
with a consistent relationship established between the acoustic nonlinearity and

homogenization.

5. Validate if nonlinear parameters could be measured by ultrasonic experimental setups.

Reviewing the experimental techniques measuring ultrasonic parameters, a set of test

10



should be taken into account in order to provide a full set of nonlinear acoustic reliable
parameters [78, 79, 80].
Hypothesis 5: The different techniques in the literature used to measure nonlinearity
may lead us to improve the form of measurement by setting different cases of
waves that interact resulting in desired measurements. Collinear mixing, Non-

linear mixing and new designs may explore and determine these parameters.

Research objetive 5: Develop new experimental techniques from ultrasonic sensors
and different setups that allow us to measure the deduced theoretically parame-

ters.

6. Torsional sensor method and measurements, once designed, provide a novel tool to
understand tissue from the quantification of shear modulus and nonlinearity in biome-
chanics field. This process carry out the mathematical design from a semi-analytical
model, a computational simulation, an structural optimization based in a different set
of criteria and the fabrication and improves. The measurements should be try in dif-
ferent materials which is a new technique.

Hypothesis 6: Torsional waves have the capability of be sensitive to the changes of
consistency in tissues through the quantification of shear modulus and nonlinear

acoustic parameters decomposed into collagen or fibers part and liquid part.

Research objetive 6: Evaluate the torsional wave feasibility and capability for assess-

ing linear and nonlinear measurements.

11






State of Art

The need to model the soft tissue behavior in terms of mechanical characteristics, relies on
the understanding of nonlinear elasticity. Specifically, transversally isotropic nonlinear elas-
ticity plays a special role due to the complexity of the nature of biological tissues. Relevant
studies confirm the importance of these mechanical properties depending on the direction
of anisotropy [81, 82, 83, 84, 58, 85, 86, 87, 88].

3.1 Nonlinear elasticity

The chapter 4 presents the most frequent mathematical descriptions of nonlinearity in the
literature. We propose that nonlinearity can be understood from three different perspectives:
(1) at the continuum mechanics level, where the constitutive laws that relate stress and strain
deviate from Hooke’s law, (2) at the theoretical level, or wave equation level in chapter 5,
where the nonlinear parameters are directly related to the observable harmonics that appear
in oscillatory movements such as ultrasonics, and (3) at the micro-mechanics level, in which
atomistic, clapping microcracks see chapter 9, thermoelastic effects and so on, are proposed
hypothesis of mechanisms may originate the observable nonlinearity at the other two lev-
els. As opposed to many reviews, here we start from the continuum mechanics level, since
there is no consensus over the variety of mechanistic origins of nonlinearity. We consis-
tently derive the most frequent wave nonlinearity parameters from the different continuum
mechanics nonlinear definitions, which are based on Taylor expansions of the constitutive
equations. This expansion makes no assumption on the nature of the nonlinearity, which
can be proposed ad hoc. This formulation serves as a basis to quantitatively understand

and interpret experimental observations.
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The Eriksen and Rivlin are the classical Invariants assuming strain-energy [89, 90, 91], to
find a consistent algebraic context based on a historical review of isotropic and composite
materials modelling [92, 93, 94, 95, 96, 97, 98]. Murnaghan Invariants and Desdrade’s stud-
ies in the case of the compresibility restrictions of the strain-energy function to quasifluids
or tissues, concluding remarks of some subcases discussing the degree of phisically realistic
terms [99, 100, 101]. Exist a several invariants theories as such as Citarelle et. al. [102, 103],
Lu and Zhang [104], Criscione et. al. [105, 106], depending on the type of skin tissue, for ma-
terials with fiber tension, and for materials with a reference configuration with transversally
isotropic behavior, respectively.

Nevertheless, it is interesting explore the relationship between all of the different Third
Order Elastic Constants TOEC, in the standard, Murnaghan, Landau,...[2, 107, 99, 98, 108,
109], with details. It is also significant different techniques of how make measures of a set of
properties and explore the range limits of these experimental parameters where the tissue

perform its mechanical function [110].

3.2 Nonlinear acoustics

The nonlinear constitutive equation is commonly described there by making use of the Third
Order Elastic Constants TOEC [1, 111, 13, 5, 112, 6, 100], which are then linked to the non-
linear ultrasound propagation under the one dimensional P-wave restriction [113, 114, 115,
116]. Classical and nonclassical types of acoustic nonlinearities are developed below, show-
ing their effect on common stress-strain, strain-time and strain amplitude-frequency spec-
trum relations. [117].

The Westervelt equation due to its nonlinear acoustic nature, has recently been used
in the field of ultrasound for medical purposes such as for lithotripsy [118, 34] or by Fast
Ultrasound Image Simulation (FUIS) [119, 120] can simulate realistic ultrasound images in
a short time or through the application of HIFU [121, 122, 123].

In the chapter 5 an environmental theory about propagation of nonlinear waves in one
dimension is presented. Once exposed to classical Westervelt equation, the first parameter
of acoustic nonlinearity is derived from the classical nonlinear Hamilton equation. The gen-
eral equations of acoustic propagation in mechanical terms are presented, are developed for
the first order. The second order is also resolved using perturbation theory that is briefly
explained in the chapter 5 .

The aim of the chapter 5 is to extend the Westervelt equation to classical second order
nonlinearity and generalize it to the case of any high harmonics. At the same time it has been
characterized by coefficients in elastic and viscous terms. Finally, the Westervelt general-
ized equation involve an ideal environment to develop future applications as technological
progress in the field of tissue ultrasound mechanics.

As it is analyzed in this thesis, the study of the coefficients of acoustic nonlinearity has
recently been recovered again [124, 125, 126, 6, 100]. There is abundant literature relating

the degree of nonlinearity, in terms of the first and second nonlinear parameter in the wave
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equation, with the atomic potential, microcracks and damage generation on specific ma-
terials [127, 128]. Nevertheless, there is a lack of theoretical proposals on nonlinear serial
developments with the capability to explain some experimental phenomena. Nevertheless,
the present theoretical proposals on nonlinear serial developments has not got the capability
to explain some experimental phenomena.

The chapter 7 proposes deepening on the study of classical nonlinear acoustics, spliting
the general first order nonlinearity into five specific nonlinear phenomena, due to the in-
teraction of the deviatoric and volumentric components with the wave mode, P or S. The
concept is scalable to the third and higher harmonics [129, 21, 130]. Hysteretic and viscous
terms are also consider at this moment, in order to make easer the analysis [131].

Given the recent interest generated on the nonlinear elasticity and its relation to the non-
linear wave propagation [15], this chapter analyses the connection between the Landau third
order elasticity constants TOEC and second order parameters of acoustic nonlinearity. Un-
der this point of view, it can be considered that the parameters of constitutive nonlinearity

are explicitly described in terms of those of acoustic nonlinearity and viceversa.

3.3 Possible origins of nonlinearity

Alternatively, in nonlinear acoustics, when a sinusoidal ultrasonic wave at a given frequency
is transmitted into a nonlinear medium, the fundamental wave distorts as it propagates,
generating second and higher harmonics of the fundamental frequency [174]. Those acousti-
cal manifestations of nonlinear behavior can be explained as follows: Due to the amplitude-
dependent wave propagation velocity, the compression phase of a sinusoidal wave travels
faster than the rarefaction phase, and thus the wave distorts after it has propagated for some
distance through a nonlinear material being transformed into a saw-tooth wave. This steep-
ening of the waveform in the time-domain causes an energy transfer from the fundamental
frequency to higher harmonics. As a consequence, several higher harmonics can be ob-
served as local maxima in the frequency-domain [175, 176]. Measurements of the amplitude
of these harmonics thus provide a means for extracting the coefficient of second and higher
order terms in the nonlinear stress-strain relation, and deliver valuable information on the
material degradation that is far more sensitive than the linear acoustic properties. Mea-
suring these amplitudes is commonly referred to as the finite-amplitude method, initially
developed by Breazeale and Thompson [177]. The nonlinear coefficients are usually deter-
mined by measuring the second-harmonic generation and sometimes higher harmonics for
the longitudinal waves, and can be used to characterize acoustic nonlinear properties of
gases, liquids, and solids. For this technique, the through- transmission mode in immersion
is usually preferred. Instead of using two transducers, it is opportune to replace the receiver
by a needle hydrophone (with a nearly linear frequency response), in order to conveniently
measure the second and higher-harmonics. A finite- duration burst of (nearly) pure tone
- typically around 20 cycles long - is launched towards the specimen, and the progress of

some stationary peaks near the end of the tone-burst is followed and selected to compute
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the Fast Fourier Transform (FFT), and thus permits one obtain the second and higher-order
harmonics amplitude.

Associated with this study is the question of whether ultrasonic testing can be employed
successfully as an investigative tool to determine significant changes in these macrosopic
properties and thus provide an indication of material degradation in the form of dam-
age or microcracks. This would be an important diagnostic tool as an indicator for, e.g.
early on-set of a number industrial applications [178] or medical diagnosis tools, such as
osteoporosis[179]. As a result, nonlinear ultrasound techniques have been proposed since
it appears that the nonlinear acoustic parameters are much more sensitive to an increase in
microdamage [180, 179, 181].

The induced nonlinearity appears to be present at small strains, attributed to e.g.
Hertzian contact and other microstructural effects. The nonlinearity manifests itself in terms
of a Strain energy function (SEF) associated with the material, from which effective stresses
are found via differentiation. This SEF is not quadratic in strain, thus giving rise to non-
linear stress-strain relationships and effective nonlinear elastic moduli. Of specific interest
is how these moduli depend on the microstructure. In particular in the bone community,
where the interest is on the dependence of these parameters on the presence of damage,
usually assumed to be micro-cracks, Renaud et al. [181] state “However, little work has been
done on the relationship between crack density and level of elastic nonlinearity” and in Muller et
al. [179] “From empirical evidence it is clear that micro-cracks are responsible for the enhanced non-
linear response...we have no quantitative link between damage quantity and nonlinear response.” It
therefore appears to be of importance to try to build theoretical models which can attempt
to provide these links.

Most of conventional ultrasonic NDE methods are very sensitive to gross defects, but
much less sensitive to distributed micro-cracks. Furthermore, general degradation of
strength is often found in apparently flawless materials [182]. It is well known that material
failure is usually preceded by some kind of nonlinear mechanical behavior before signifi-
cant plastic deformation or material damage occurs [183]. Therefore, the degree of material
degradation can be evaluated by measuring the nonlinearity of the ultrasonic wave that
propagates through the target material. Thus, one can expect that the magnitude of the sec-
ond and higher-order harmonics will appear differently in normal and degraded material,
when the same amplitude of wave and the same propagation distance is used. For instance,
the finite-amplitude technique has been proven to be useful for nondestructive detection
of defects in ceramics [184], concrete structures [185, 186], composites [174], as well as fa-
tigue cracks in metals, such as steels, titanium, and aluminum alloys [187, 188]. Such defects
are due to internal stresses, micro-cracks, zero-volume disbonds, and usually precede the
main cracking mechanisms and the subsequent failure of the material. The characteristics
between such defects and common material heterogeneities (i.e. pores, grains, etc.) is that
an internal interface separates the intact material and the inclusion. This contact interface

can be either free (large pores, opened cracks), partially clamped (”clapping” mechanism
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between the states opened/closed cracks), or ideally bonded, and is thought to be mostly
responsible for the high nonlinear behavior of degraded materials [22]. Therefore, a con-
siderable number of authors have been involved in laboratory experiments to show that
cracks and imperfect interfaces can behave in a nonlinear fashion [189, 190], and have thus
opened new opportunities to detect partially closed cracks that may not be identified by
conventional linear methods. The potential of such models for describing interfaces, the
nonlinear mechanical behavior of layered media has been investigated using almost only
homogenization approaches [191].

The problem of determining the effective linear elastic properties of an inhomogeneous
material has been studied extensively [192, 193, 194]. A popular approach in micromechan-
ics is to characterize the heterogeneous medium via dispersions of inclusions, particularly
those involving spheroidal or ellipsoidal inclusions [195, 196, 197] thanks to the result of
Eshelby [198]. These methods include self-consistent methods [199], the differential scheme
[200, 201], the Mori-Tanaka method [202] and bounding schemes [203, 204]. Extensions
of these schemes to accommodate the case of cracked media in the linear (static) regime
when the cracks are assumed open (traction free), have been carried out in numerous stud-
ies [205, 206, 207, 208, 209, 210, 211]. Also see the comprehensive micromechanical study in
[192]. However, often overlooked is the effective dynamic response where cracks can be in
either opened or closed states (or more complex loadings) depending upon whether, for ex-
ample, the crack is in a compressive or tensile cycle of the propagating wave. Furthermore,
the notion of nonlinear crack response can often be important.

As opposed to the linear case, significantly less work has been carried out in the area
of the effective behaviour of nonlinear inhomogeneous materials. In the context of finite
elasticity, variational approaches associated with the Hashin-Shtrikman (HS) approach have
been developed [212, 204]. More recently some of the micromechanical approaches have
been adapted to the finite deformation regime [213, 214, 215, 46].

For the particular case of incompressible dispersions with rigid or liquid inclusions the
effective energy was approximated, and for a more general case, with a power-law-type
shear energy [216], where the energy density depends only on the Von Mises equivalent
stress. Other authors took into account higher-order moments of the local fields in individ-
ual phases to introduce the nonlinear effects in the effective properties. Computational in-
vestigations of the first and second moments of the strain fields were performed by Moulinec
and Suquet [217]. Recently, a new homogenization procedure of nonlinear inclusions based
on the Eshelby theory was developed by Giordano et al. [218], who obtained the bulk and
shear moduli along with the nonlinear Landau coefficients of the overall material in terms
of the elastic behavior of the constituents and of their volume fractions, all in the context
of small strain. Two nonlinear types of inclusions were investigated, spherical and paral-
lel cylindrical inclusions, both of which were embedded into a linear homogeneous and
isotropic matrix. In this context the material is considered to behave in a constitutively non-

linear manner under small strains (i.e. it is geometrically linear).
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3.4 Experimental techniques on nonlinear acoustics

Chapter 6 is aimed to organize the basis of a new perspective on the classical acoustic non-
linearity: to analytically solve the wave propagation on each case, to find its relation to the
coefficients of elastic nonlinearity and to experimentally validate using the Dynamic Acusto-
Elasticity Technique DAET or nonlinear mixing methods [132, 6, 133, 134, 135]. Then, some
possible scenarios will be considered with numerically simulated results in order to under-
stand the range of the values that has not been able to be experimentally measured until
Now.

The nonlinear manifestations usually observed in classical materials are ultrasonically
quantified by nonlinear acoustic parameter of first order 3. Many methods have been de-
veloped to measure 3 as is showed in previous chapters. One of the most common used
techniques for solids and fluids is the finite amplitude method [136]. This method based
on the second harmonic generation; measuring its amplitude, 3 can be experimentally ob-
tained. Despite it does not need a complicated setup and is relatively easy to perform, there
are some some drawbacks inherent to this method. The first limitation is that the second
harmonic signal recorded by the receiver may not all be due to the material nonlinearity
of the sample. Some of this measured nonlinearity may be due to the nonlinearity of the
measurement system, particularly the use of amplifiers, which reduces the accuracy of the
method. To overcome these limitations of the finite amplitude method, the methods based
on the nonlinear mixing technique have been recently applied to measure the ultrasonic
nonlinearity of different materials [137, 138, 139, 140]. The aim of chapter 8 is to extract 3
parameter with a new experimental setup based on nonlinear mixing. The novelty of this
configuration resides on the use of just one transducer as transmitter. Such a configuration
permits to avoid the need to amplify the signal beyond 10 V while canceling out system
nonlinearities. First, an expression of 3 that can be experimentally measured from the am-
plitude of the generated harmonics is derived. Secondly, the harmonic generated by the two
incident waves at different frequencies are experimentally investigated in water for different

excitation powers and different transmitter-receiver distances.

3.5 Torsional ultrasonic transducer

The chapter 9 focuses on designing and optimizing a transducer capable of transmitting
and receiving torsional ultrasound waves, intended for tissue characterization applications
in the field of clinical diagnosis. The application of ultrasonic sensors in the clinical field
is mainly covered by compressional waves [141]. However, torsional ultrasonic waves are
proposed in this paper for the first time for shear stiffness based medical diagnosis. Tor-
sional ultrasound is chosen as the physical magnitude for several reasons. First, it is a
mechanical wave, controlled by and therefore most sensitive to the mechanical parame-
ters than any other indirect measurement. Second, the novelty and impact of this applica-
tion is rooted in the fact that torsional waves propagate at the S-wave speed c¢; has been

reported[142, 143, 144] to be significantly sensitive to consistence changes in quasifluids and
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soft tissues (p-value j 0.001 measured with ultrasound) and to consistency changes caused
by tumors[145, 146]. Several authors have reported evidence about the potential of shear dy-
namic viscoelastic properties to characterize tissue condition [147, 148, 149, 150]. We propose
a design of a transducer to record information on the mechanical shear modulus in tissues.
The reason is that shear stiffness directly correlates with the tissue micro architecture, which
is most sensitive to pathologies, whereas compressional waves are predominantly correlated
with the fluid phase of the tissue, which remains mostly constant. The main challenge and
novelty resides in the capability of separate P waves and S waves based on the frequency
contents of each wave. In contrast to commercial shear transducers, torsional movement
guarantees no P-wave generation at the boundary of the transducer, with is critical in quasi-
fluids, where c; is at least 10 times lower than c,, and P-waves mask S-waves. This is re-
inforced by using a radially rigid sensor contact surface. The ensuing design comprises an
emitting disc and a receiving ring. Previous torsional transducers exist with resonance fre-
quency between [22-148] kHz, which are of the torsional Bolt-clamped Langevin Type (BLT),
and consist of discs of alternating polarity piezoelectric elements and two elastic blocks fit-
ted at each end, in order to generate torsional mechanical vibrations of the desired frequen-
cies with the capability of measuring shear modulus [151, 152]. The concept of introducing
a radiating head mass resembles the Tonpilz design, but has been modified fundamentally
to generate a torsional movement instead of a flexural movement.[153].

The transducer design that we propose is composed by a combination of elastic and
piezoelectric parts. Piezoelectric materials convert electrical signals into mechanical vibra-
tions and viceversa. Piezoelectric ceramic materials, such as lead zirconate titanate (PZT) are
widely used in solid-state actuators and sensors for various areas of nondestructive evalua-
tion and bioengineering such as an optical scanners, precision positioning, noise and vibra-
tion sensing and cancellation, linear motors,... [154, 155, 156, 157, 158, 159]. For this reason,
PZT-5 is adopted for our design.

The central focus of our contribution in this chapter is the optimization of the trans-
ducer design with the aim of maximizing the sensitivity to shear properties. There are
several optimization criteria of ultrasonic sensors, where the conventional characteristics
as impedance of the backing material and the thickness of piezoelectric material have been
studied [160, 141].

Numerical approaches can be used to evaluate transducer designs for each of the de-
sign parameters required, to maintain transducer performance within a specified range
[161, 162]. Our transducer is simulated with the Finite Element Method (FEM) using the
FEAP software [163], revealing the main mechanisms, which are in summary a circumfer-
ential shear movement of the piezoceramic elements, a torsional relative movement between
upper and lower discs and rings, an inertial mass by the discs and rings that control the res-
onant frequency and movement amplitude, and compressional eigenmodes at frequencies

at least 100 times higher than the torsional frequency. The model is subsequently validated
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with an analytical model, where the simplified differential equations of piezoelectric tor-
sional motions are derived and solved in terms of the circumferential displacement and the
electric potential, aimed at unveiling the main correlations between the design parameters
of the numerical model, and the response. This strategy has previously been used in dif-
ferent designs [151]. We have introduced dermic and connective tissue in the finite element
model in view of the first intended application, but it could be extended or modified to other
kinds of soft tissues, whose properties are similar, and the result too. Our simulated values
for the S wave velocity ranged [20,380] [m/s], and for P-waves [1200, 1800] [m/s], while the
thicknesses layers in dermic and connective tissue was allowed to range at [0.3,0.7] [mm)].
Genetic Algorithms (GA) [164] and FEM have already been used in the literature to optimize
waveform and amplitude spectra of ultrasonic transducers [160, 165, 166], as well as other
optimization criteria [167, 166, 157].

The issue of the probability of detection (POD) has only been addressed independently,
under the name of identifiability, in statistics and mathematics, with a wide application in
chemistry and physics. In the field of nondestructive characterization, the concept of POD
has been discussed under the name of identifiability in relationship with the number of mea-
surements and the number of degrees of freedom to establish a necessity condition to obtain
a minimum criteria between the number of measurements and unknown variables[168].
Also, the inversion theory under a probabilistic formulation and the introduction of prob-
ability density functions in the model has been examined (see [169, 170]) to explain the
robustness of the inversion. Other perspectives of probabilistic formulations have been pre-
sented providing a general overview of the statistical inversion theory, whose Bayesian and
Kalman filtering exposition for nonstationary inverse problems is particularly useful, for
example in the micro damage detection field [171]. Some of these rational approaches have
been scarcely applied experimentally for the case of damage characterization [172, 173]. In
this paper, a new design optimality criteria called Robust Probability of Detection (RPOD)
is proposed in this paper as a methodology approach. It is defined with the goal of maxi-
mizing the transducer sensitivity to the tissue properties while minimizing the sensitivity to

noise ratio of the multilayered shear elastic constants.
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Unifying theories of classical nonlinearity

4.1 Nonlinear elasticity

In order to classify the nonlinear acoustic behavior of solid and fluid materials, the prin-
ciples of nonlinear elasticity are introduced. The general constitutive equations are consid-
ered, in tensile form to derive the one-dimensional wave equation with nonlinear elastic
coefficients. The notation used here is introduced in a similar manner that Norris 1998 [107]
changing a by x? as the initial position. Lagrangian (are used to locate a point in space with
respect to a fixed basis) and Eulerian (used to label material points) coordinates are defined
as x in vector notation, or x; in index notation (final position) and x°, or x? (initial position),
respectively, and displacements as u = x — x%, or u; = x; — x0. The deformation gradient
tensor is F = 9x°/dx in tensor notation or Ej = ax? /0x; in index notation is introduced to

quantify the change in shape of infinitesimal line elements in a solid body.

The associated Green-Lagrange strain tensor is E = 1/2(F'F — I or ¢;; = 1/2(F;;Fj; — &;;)
where I is the identity matrix and ¢;; is the Kronecker’s delta function (equal to 1 when

index i=j and zero if i # j) or in terms of displacements:

1<Bui ou aukauk>

“=3\ox; T ox o oy

(4.1)

Note that the last term is frequently neglected in ultrasonic literature because small strains
are considered. However, it should be necessary taken into account to consistently link the
harmonics amplitude to the continuum mechanics, as proved later in the Nonlinear (NL)

wave equation. The latter is commonly defined Cauchy’s stress as,
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Figure 4.1: Classical representation of an undeformed and deformed body in both initial
and final positions.

1 W .t 1 W
where we have introduced the strain energy per unit volume of the undeformed material W.
The nominal stress or first Piola-Kirchoff stress P or P;;, is defined as the force measured
per unit surface area expressed in the reference configuration. the use of nominal stress and
Green-Cauchy strain and them expansions establishes, so-called general nonlinear elasticity.

It is linked to the Cauchy stress is given via,

1
P = (detF)T- (F )T, T — @eiF) p.Fl
or
4 1
Pij = (detFj)oiFy; % = TderEy P (4.3)
ij

Consider a strain energy per unit volume of the undeformed material. Then,
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oW oW

P=— P = 4.4
oF or I oF;; (4.4)
noting that here we use the convention (%—VFW iy = gTV:;). Note that, for example, Ogden

(1997) adopts [219] the transpose of this definition, mainly due to the fact that the nominal
stress is usually measured [107, 8]. We eventually wish to write the strain energy in terms

of the strain E so we write,

oW OE oW
P=%8 ¢~ F o

or
W deij oW

Py

and using the relations between stresses we obtain Equation 4.2. Importantly we note that

T # %—VI}:’ in general in nonlinear elasticity.

We note that only when E < 1, where strains are small, then T = %—Vg. This stress
is usually noted as S = %—Vg and called second Piola-Kirchoff tensor, since in that context

geometric nonlinearity is neglected and only constitutive nonlinearity is retained [220]. Here
we also remain in the context of small strain but we prefer to use an asymptotic methodology
which retains all second order nonlinear (quadratic terms). We note that via Equation 4.1 we

can obtain the expansions

F=1+E+ O(E?), FT =1+E+ O(E?),
or
Pz'j = (51‘]' +é&ij+ O(‘Sijgjk)/ F]'i = 51']' +eé&ij+ O(gijgjk) (4.6)
and thus we find that,
trF = 3 + trE, tr(F?) = 3 + 2trE, tr(F®) = 3 + 3trE,
or
Foo =3+ ek, Fl']'F]'l' = 3 4 2¢44, F']'ijFk,‘ =3+ 3¢ 4.7)

whereby,
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detF = 1+ trE 4+ O(E?)
or

det Fij =1+ e+ O(&ijejk) (4.8)

Finally note the importance of notation in the above, i.e. tr(F") # (trF)"” where we note the
standard definition for powers as for example E?> = €ijejk so that tr(E?) = gijeji. We use
brackets in order to make this notation clear when n > 1.

Defining a relationship between the strain energy W, and the strain ¢;;, a Taylor series
expansion allows any degree of approximation to reality without loss of generality. The first

term describes the linear elasticity,

W(E) = C:EQE+C:EREQE+..,
or
1 1
W = icijklﬁijﬁkl—f—ﬁcijklmnqj‘eklemn—km (4.9)

where ”:”, denotes contraction operator (index-ijjk contracts by Einstein summation to
index-ik), and ® is defined as the tensorial product which contract a pair of shared indices
in two tensors. As a consequence, the stress can be decomposed into linear and nonlinear

parts as,

T=T+T"" or o;=0/+0)" (4.10)

where crl-L]» is consequence of Hooke’s law.

In order to write down appropriate strain energy functions it is useful to define the in-
variants of deformation. ”A deformable medium is isotropic if, and only if, W(E) is a function of
three invariants I, I and I3 of E” (For more details see Murnaghan [12]). Then, for nonlinear

elasticity, i.e. the case that we consider here we use,

I = trE, L = tI‘(Ez), I; = tr(E3),
or,
I = ex, L = gjeji, I3 = €€ jkexi- (4.11)

These invariants are chosen explicitly in terms of the strain by writing detF (see Erigen
[109]). For an isotropic material the form of the corresponding strain energy W; was pro-

posed by Landau as,
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A
Wy = *Ilz—f—[,l.b_—f—

5 “413 +BLI + gli‘ + h.o.t. (4.12)

3

where the coefficients A, B and C are often referred to as the nonlinear, third-order Landau
coefficients and h.o.t. stand for the neglected fourth order effects (See [1, 107]). The combi-
nations of invariants I3, I; I, and If are the three possible in third order. Let us consider the
stress of second Piola Kirchoff as defined above, that arises in an isotropic material. Note
that

oW,
TEI = A(trE)I + 2uE + AE? + B((tr(E?))I + 2(trE)E) + C(trE)?I,
or
3, = Aewkdij + 2pueij + Aeikex; + B(expepdij + 2exktij) + Cerdij)”. (4.13)
ij

Then, grouping in strain terms of invariants using Cauchy stress, see Equation 4.2, the non-
linear extension of the Hooke’s law to the third order and isotropic materials can be written

as,

T = AMrEI+ 2uE + AE? + BtrEI + 2BtrEE + C(trE)?I or (4.14)
Oij = Askkéi]- + Z[Jflz‘j + flsikek]- + Bskpepkéi]- —+ ZBEkké'l‘j + C(skkéij)z

where A and p are the Lamé constants related to the Young modulus E, and Poisson ratio

v,as A = (1+V)E(+2V) and pu = Z(%ﬁ/)’ &jj is the strain tensor, ¢y is the trace of the strain
tensor, ¢;;é jx is the square of the strain tensor, 51-]- is the Kronecker delta, and A = 4u + A,
B =B+ A—pand C = C — A are often referred to as the nonlinear, A, B and C third order
elastic constants [1]. The contribution in that the nonlinear stress never has been derived
under these hypothesis, and the expression of TOEC impacts on the nonlinear theory even in
the relationship between it and acoustics. Note that many authors defined other sets of third
order elastic constants, by taking into account different combinations invariantsi. e. in terms
of Murnaghan [, m and n parameters, as a combination of three invariants in third order of
energy function see Equation 4.13 with a different rule of derivation [12, 221, 108, 222]. See
Table 4.1. below, note the standard nonlinear coefficients Cjjx are defined with the Voigt
notation (where index is contracted with the rule ijkimn = I]K).

Table 4.2 ilustrates some experimental values of third order elastic constants [6, 126, 125,
223], using experimental acoustoelasticity techniques for Aluminum [6] and by other au-
thors in Aluminum 7075 and Aluminum 2S samples using finite amplitude methodology

and several ultrasonic setups.
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Murnaghan Standard,
(1951) Cijx
I=B+C c123 =2C,c111 =2A+6B+2C
m:%A—&-B C144 = B, c110 = 2B+ 2C
n=A C456=%A, C166=%A+C
Table 4.1: Relations between third order elastic constants for isotropic solids

TOEC | AL7075 (GPa) AL7075 (GPa) AL7075 (GPa) AL2S (GPa)
Muir (2009)  Stobbe (2005) Dubuget et al. (1996) Smith (1966)

A -334.5 -351.2 -282 -408
B -125.35 -149.4 -179 -197
C -60.5 -102.8 53 -114

Table 4.2: Literature values of Third-Order Elastic Constants experimentally determined.

A solid is characterized by a positive bulk and shear moduli but the signs of third order
elastic constants are not univocal as shown in Table 4.2. In the case of fluids, since they have
null shear modulus, the relationship is givenby A = A, A= 0,8 = —A,andC = (A—B)/2,
where A and B are the parameters of Taylor expansion of the pressure in fluids,

2 N\ 3
2 2(a) 5 (3)
=A(—)+5(=) += (=) +-- 415
P (Po 21 \po) T3\ o (.15
where py is the unperturbed density. The parameters A and B, are also described by making
use of the Westervelt and KZK nonlinear propagation models inside the acoustic nonlin-

earity of first order, (see [107]). Finally, Equation 4.1 can be written with respect to either

coordinate system. Working in Eulerian coordinates, the equation of motion is

Dv _
o =V-T,
or, neglecting advection,

PUj st = Ojj,j (4.16)

where v is the velocity, D/Dt is the total derivative, T is the Cauchy stress defined above,
and for the index notation, p is the density, u; = (x1, x2, x3,t) and 0ij,js where we adopt the
af

compact notation of derivative f; = o with i, j = 1,2,3 are the cartesian components of

the displacement and Cauchy stress, respectively.
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Nonlinear propagation of ultrasound:

Unification

The nonlinear wave propagation is particularized to one dimensional P-wave and S-wave
equations to extract the nonlinearity parameter of first order 3, which has been widely used
in the literature. The second and hysteretic nonlinearity parameters are considered and
characterized in the next subsections.

The contribution is a consistent derivation of the NL wave solutions based on clear con-

tinuum mechanics assumptions.

5.1 One dimensional P-wave equation

The one-dimensional nonlinear wave equation for solids is derived from the continuum
model above. The nonlinear wave equation is reduced here to the classical theory and its
fundamental solution up to third- and fourth-order is provided below.

In order to derive the effects of nonlinear elastic materials, the formulation of the kine-

matic relations can be written as in the following equation [5], as in Equation 4.1,

1
E(“i,j + i+ Uy ity ) (5.1)

Under P waves restriction we note that u, = uz = 0, uq(x1, x2, x3) = u1(x1), since particles

El']' =

only move along the x;-direction, and ¢;; =0V i, j # 11,
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Kinematic relations : 11 = U1 + %uuul,l
Constitutive law : o11 = (A4 2u)eny
+(3(A+2u) + (2A+ 6B +2C))es,
+0(€3;) (neglecting attenuation)

Dynamic equilibrium : puiu = o11,1 (from Equation 4.2) (5.2)

5.1.1 Nonlinearity of first-order

The case of the nonlinear wave equation up to the first-order nonlinearity is first considered.
By making use of Equations 5.2 introducing Kinematic relations into Constitutive law and

making use of Dynamic equilibrium as spatial derivative of stress we can obtain,

PuUl = Mul,ll + (3M +2A+68B+ 36)1/!1,11/[1,11 (53)

If the second order wave equation (See [224]) is considered, Hamilton proposed to synthe-

size the 1D nonlinear wave equation to,

puq = Mug11(1 —2Bgu1,1) (5.4)

where u1, u; 4+ and uy 11, are the displacements in one dimension, and the second derivatives
in time and space respectively M = A + 2 = pc%,, and ¢, denotes the longitudinal (P-wave)
velocity. Whereby the constant By (H is introduced to distinguish from other definitions of
/3 by other authors) is,

3 A+3B+C

Pr=—3 At 2u

(5.5)

This is the standard relationship between third order elastic constants and first nonlinear

wave parameter as defined Hamilton 1998, (See [2]). The linear part —% coming from geo-

A+3B+C
A42p

is a contribution counterintuitive due to large strains of Cauchy stress tensor. Note that we

metric nonlinearity and the NL part — from constitutive nonlinearity. Definitely, it
have introduced the nonlinear coefficient 35, in order to obtain a single nonlinearity param-
eter that described the acoustic harmonic generation. The perturbation theory [2] allows to

decompose the wave displacement as,

u=u® 4™ 4 (5.6)

where u(9) and u(1) denote the zero-order and first-order perturbation solutions, respec-
tively. The zero-order perturbation solution corresponds to the solution to the linear wave
equation (that is, when 3 = 0). When considering a monochromatic plane wave propagat-

ing in a semi-infinite nonlinear elastic layer, the latter is given as,
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u® (x, 1) = aeltkx—wt) (5.7)

where k is the wave number, a is the amplitude of fundamental harmonic neglecting vis-
cosity and w = 271f is the angular frequency of an oscillation frequency f. The nonlinear

parameter of first order 3 can be determined by iteration from,

ull) — 2l = 22Bru®) ) + hot 53)

where .0.t. is neglected since they are of order O(/32). The former expression has the form
of a classical partial differential equation with an inhomogeneous part. It is well-known that
when the inhomogeneous part is linearly dependent to the general solution of the homoge-
neous part, the solution approach for the particular solution of u(!) must be multiplied by
a sufficiently large power of x to become linearly independent. Thus, a particular solution
may be obtained by substituting Equation 5.7 in (), whereby the right hand side becomes

a forcing them that only allows a homogenous solution,

uM (x, 1) = bxe?kx—ah) (5.9)

where b is the amplitude of the second harmonic. From that solution, the nonlinear param-

eter of first-order 3y is derived as,

4
 k2a2x

5.1.2 Nonlinear acoustic parameter of first order defined by Guyer

B (5.10)

A different definition of nonlinear parameter of first order was given by Guyer [225] from

the following expansion of the constitutive law,

o1 = K(e11 + B (elq) + O(e1 1) + Ale, e1,4]) (5.11)

where K is the compressional modulus, Ale, €1 ¢] are the hysteretic elastic elements typically
nonanalytic and ¢ is the nonlinear term. Note that it is only valid for fluids, since it coin-
cides with that one of Hamilton Equation 5.3 if = 0. Also, A = 0 and B = 0 from Equation
4.1, because all terms of strain tensor ¢;;, outside the diagonal are neglected which carries

out this specific condition for fluids.

5.1.3 Nonlinear mixing

This is used to explain both harmonics generation and frequency mixing. To illustrate the
second, if we consider two excitation frequencies, w,, wy, the solution of the wave equation
yields a third output pair of waves frequencies w. = w, & w;, with amplitude proportional
to 62 that builds up over distance x to amplitude ¢.. Their amplitudes ¢,, ¢, and ¢, are

related by,
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Ec
Bc ~

~ — 5.12
o (5.12)

5.1.4 Nonlinear acoustic parameters of first order defined by Zarembo

If we consider as invariants Iy = ¢y, b, = 1/2(e;j¢j; — 2) and I3 = dete; j classical invariants
of Murnaghan, deduced from the characteristic polinomial of the strain tensor, the stress is
defined as follows,

o YBW

po Ocij

0j = Yy’ (5.13)

where p and pg are the densities in the deformed and undeformed states, respectively, p =
po(1+41I1), Y = |u; ; + &;j|. Note that Equation 5.13 is similar to the Cauchy stress defined in
equation 4.2, however, in Equation 5.13 p/pp = 1 + ¢ and in Equation 4.2 its correspond to
1/(dete;j) = 1 — ex.

The equation of motion results to apply spatial derivate of stress and the conversion of

Murnaghan constants into Landau TOEC given in Table 4.1, stated as,

POUi it — MU, jj — (K + %) g = () (s jjitii + e jittii + 204 il )
+ (K45 + 5+ B) (iijtuij + i)
+ (K — 23—“ + B) Ui j itk
+ (5 + B) (1 + i)
+ (B +2C) ujiju (5.14)

If the wave front travels in x;-direction, all the particles of the x,x3-plane do not depend
on x; and x3, and thus u; and u; are reduced to u(x1,t) and uy(x1,t), respectively [5]. By
making use of perturbation theory, the nonlinear interaction of wave propagation in one

direction is obtained. Then, take the form,

urg — (2uryn = Bhugiiuig + BY(ug11uoq + us11uss) (5.15)
us gt — (cN2up1n = B (ug1ura + i 11tiag) (5.16)
uspr — (¢ )uzpn = BY(uz1iura +ui11usn) (5.17)

where (c/)? = (K + %‘L) /po and (c)? = u/py are the longitudinal and transversal square
velocities, respectively. The Equation 5.16 corresponds to P-wave equation, primary wave
equation and Equations 5.17 and 5.17 with the S-wave equation, secondary wave equation,
in two polarizations that are related to the directions x; and x3, respectively. The nonlinear
longitudinal parameter of first order ﬁlz, (note that labeled Z side it correspond to Zarembo,

1951), is defined as follow in terms of Landau third order elastic constants,
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Adt2u 1
po 1

By =3
‘ Po Po

(2A+ 6B +20C) (5.18)

If in a similar way, the S-waves is considered in the u-direction u5(x1), and u; = uz = 0,

we obtain the nonlinear transversal parameter 37 defined as follows,

A
= — —+B 5.19

Pz = Po ( 2" > 1)
This definition establishes a relationship between nonlinear longitudinal and transversal
parameters of first-order with the third order elastic constants. Note that the conversion of
Murnaghan coefficients to Landau constants have been carried out by making use of the
Table 4.1 above.

5.2 Nonlinearity of second-order

The case of the nonlinear wave equation up to the second-order nonlinearity (two nonlinear

parameter 3y and §) is considered now. Therefore, equation 5.6 is reduced to,

Uty = cy(1—2Bpug +36(u1,1)*) 1,1 (5.20)

The elastic coeffcient of second-order é can be derived in the same manner as the first-order

one 3y, resulting in,
2 2 0 0 0
udly = Suih = =28l + ull ) - 38ul’) (u)? (5.21)

being u(?) the second-order perturbation solution by making use of Equation 5.6 up to u(2.
Then, following the same framework, the solution for the 5 parameter with monochromatic

plane wave excitation is,

u® (x,t) = celilkr—wt) o — 1Bk atx% + LokPax (5.22)
where c is the amplitude of the third harmonic.

5.3 Extension to nonclassical nonlinearity

Recent studies show that a broad category of materials share nonclassical nonlinear elas-
tic behavior. Manifestations of nonclassical nonlinearity include stress-strain hysteresis and
discrete memory in quasi-static experiments, and specific dependencies of the harmonic
amplitudes with respect to the drive amplitude in dynamic wave experiments, which are
remarkably different from those predicted by the classical theory. Nonclassical nonlinear
effects are believed to be due to the presence of soft regions in hard materials (e.g., mi-
crocracks, micropores and soft bonding regions between material grains). They have been

successfully reproduced by a model [226] and, later, by Guyer and McCall, based on a
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Preisach-Mayergoyz space (PM space) representation [227, 228], in analogy with the treat-
ment of magnetic hysteresis. Differences between nonclassical and classical Landau-type [1]
nonlinear dynamic behavior include: a downshift of the resonance frequency, proportional
to the resonance amplitude in the nonclassical case versus a quadratic amplitude depen-
dence in the classical case; nonlinear attenuation versus amplitude independent attenua-
tion; quadratic amplitude dependence of the third harmonic versus cubic in the classical
case [229].

Given a harmonic excitation on a nonlinear constitutive material, the history of any vari-
able (either the strain, stress or displacement) at any point will not necessarily be harmonic

and can therefore be represented by,

0= M(1+ Bre+ 6%+ ...+ e +esgn(ers))e (5.23)

The implications of the nonlinear classical and non classical contributions on the acoustic
wave propagation are depicted in Figure 5.1, which highlights the effects on the stress-strain

relations, the frequency spectrum and the deformation of the signal.

Linear Nonlinear classic Nonlinear classic Nonlinear

1st order (P) 2nd order () Hysteretic (@)
Stress-Strain g
g
&
t

) . - -
.

Strain Amplitude
Frequency Spectrum

w ] e | L
S5 1 3 5 1 3 5

1 12 3 4

Figure 5.1: Nonlinear contribution to constitutive equation [4].

Note that Chapters 4 and 5 have direct application in nonlinear ultrasonics for early

damage detection [230].

5.4 Connection with classical Westervelt model

To describe the level of nonlinearity in fluids or quasifluids, the nonlinear parameter B/ A
is usually provided, which originates in the Taylor series expansion of density in terms of
pressure.

By using the relation c;% = dp/dp where p and p are sound pressure and density respec-
tively, once can obtain from (Hamilton, Blackstock, and others, 1998) [107]:

2 I\ 3
w) 2 () 5 ()
—A(E)V 2 (2) w2 (2 +. 5.24
P (Po 20 \po) " 31 \ o 624
And from Equation 5.24, using the relation C% =%

°
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¢ B (o), C [0\

P P p

—=1+—|— — | — 5.25
c5 +A<Po>+2A<Po> " 629

After a binomial expansion and leading root square,

©_q B (P, 1]C _1/BY?
C()_ 2A Po 4 1A 2\ A

Equation of state with Ap = p — py, is considered now in terms of B/ A ratio as follows,

B Ap Ap 3
=32NAp|1+—"S40 <> 5.27
P=c p( 2A po Po (5.27)

where py, is the ambient density and ¢ = 4/ %, is the small signal sound speed. The values

7N\ 2
5
<po) +.. (5.26)

of B/A are usually calculated for selected fluids, liquefied gases,
Bw =1+ 5 (5.28)
Y] '
where Sy is defined now from the Westervelt equation that is explained in Equation 5.30 by

making use of Taylor expansion of the pressure p in terms of volumetric strain v. Hydrostatic

stress (071 = 022 = 033) is defined in terms of pressure as,
1
p= —5(011 + 022 + 033) = —om1 (5.29)
If we define p as a Taylor expansion of volumetric pressure being 3 the nonlinearity of first-
order, from Equation 5.2 it results,
— p = —3Kv + 9BKv* + O(v°) (5.30)

Note that M = K + 47”, so in the case of fluids and quasifluids (the limit of compressibility),
pn = 0and u — 0 respectively, M = K is assumed. Then inverting Taylor expansion in terms

of pressure and after second time derivative,

2

v = 3% + /33'/1\[5 + h.o.t. (5.31)
) 2

o = 3% + %pp + ho.t. (5.32)
i 2Bw

i = 3% + %(pp + p) + h.o.t. (5.33)

then using the kinematic relations in Equation 5.2, and space derivative, assuming small

strains,

—30=E&11 = ii1,1 (5.34)
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introducing kinematic relations into pressure expansion, we obtain,

— p = Kuyq + KBwui ; + h.o.t. (5.35)

assuming that high order terms are neglected (O(uil) = 0), where By, is the Westervelt
nonlinear parameter of first-order. So, the pressure may be defined as follows, by making
use of Equations 5.34, 5.33 and 5.33,

1. P Bw,. .
301 = 3¢ T 352 (pp +p) + h.o.t (5.36)

After second derivative of the pressure and introducing Dynamic equilibrium 5.2 leads,

V2p = —o1111 = —pii11 (5.37)

then the State Equation is deducted by comparing Equation 5.36 and Equation 5.37,

P Bw
K TPR2

is possible to derive the classical nonlinear Westervelt equation. This equation is used in or-

-Vip=p (pp + p*) + ho.t. (5.38)

der to describe nonlinear sound propagation in dissipative fluids when cumulative nonlin-

ear effects dominate local nonlinear effects. It is obtained from second order wave equation

for progressive waves as,

1 02 D o? Bw 9*p?
2, L+0p LYop_ Pwop
vy c3 ot? + cg o pcg ot? (539)
where D is the sound diffusivity that is not deducted at the moment, and By is the nonlin-

earity of first order coefficient.

5.4.1 Westervelt equation assuming large strains

Following the same framework that has been introduced in the previos section, the rela-
tionship between kinematic relations in Equation 5.2 and volumetric pressure second time-

derivative 5.33 results,

— 30 =& = 1;[1,1(1 + M1,1) + L'l%,l (5.40)

Introducing Kinematic relations into the pressure expansion neglecting displacement terms

with power upper than third we obtain,

1
—p=Kup1+ EKuil + ISWKu%,l + O(uil) (5.41)
A series expansion of u1; = —14 /1 — 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-
librium in terms of pressure p by making use of constitutive equation inverted, that have

been deducted in the previous section,
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V2p = —piiq (5.42)

whereby,
9 27
w1 = —3v-— Evz — 703 + +h.o.t. (5.43)
1
11 = —30—9v0— %vzv +h.o.t. (5.44)
81
i1 = —30—9(0* 4 vd) — 7(2m>2 + v%8) + h.o.t. (5.45)

thus, by making use of Equations 5.32, 5.33 and 5.33 where volumetric pressure, its first and
second time-derivatives were developed in terms of pressure and its first and second time

derivatives,

V7 — Lkt 2ot vagrard) B (65 +25E) B2 (540)

is posible to derive the classical Westervelt equation assuming large strains in this case,

neglecting sound diffusivity part and third and high order terms as follows,

v =o(k+(B+Y)5) (5.47)

5.5 Extension to higher harmonics

In this section we have taken into account two parts, one with the assumption of fluid with-
out viscosity, and the other the assumption of small displacements inside the compatibility

equation with the wave propagating in one direction.

5.5.1 For fluid without viscosity in one direction and assuming small strains

e First simplification: For ideal fluid, shear moduli is equal to cero, u = 0 and neglecting
viscosity means 1 = 0. In this case the terms outside the diagonal in the Cauchy stress

tensor are zero, 7;; = 0 that implies,

1
go'kkéij = —pdij (5.48)

where §;; is the Kronecker’s delta, and p is the pressure.

O‘l']‘ =

e Second simplification: is to consider the displacement in one direction, it means, u; #
0 and up = uz = 0 that implies e17 # 0 and ¢;; = 0V ij # 11. In this case, the

volumetric part is derived as,
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1 1
V= —5(511 + e + 633) = —5611 (5.49)

where €17 = —0vd11 + di1, and dy; is the deviatoric part of strain. Also small strains
implies, v = éul 1
e Third simplification affects to volumetric expression and its second derivative as fol-
lows,
N P . N
0= g(“l,l +ip +1i33) and G = —3 kzl ik (5.50)

The linear elastic dependency is enriched with quadratic and cubic terms, following the
series expansion concept put forth by Landau [1]. Only the volumetric part is datelined in
terms of nonlinear acoustic parameter of second order 3 and nonlinear acoustic parameter

of third order 6 being scalar,

— p = —3Kv + 9BKv? — 275Kv° + h.o.t. (5.51)

the constitutive Equation 5.51 could be introduced in Equilibrium Equation 5.2 as follows,

pii = 0yj,; = V(—péi;) = V(—3Kv + 9BKv* — 275Kv° + h.o.t.) (5.52)

If we consider the Constitutive Equation 5.32 in terms of volumetric part v, comparing coef-

ficients of the polynomial series as follows,

o0
y = ao+a1x+a2x2+...:Zan(x—xo)"

x = Zb y—1yo)" Zkaa]x—xo

n=0
1
hh = —
ao
az
bz = _73
ay
2a% — aya;
b; = 5
a3
2 3
by — Sayazaz — ajay — 5a;
4 = 77
1
( 1)11 1 an72a
a, 1 Hn
b, = a1 (5.53)

ay

Thus, we obtain the constitutive law for o,

1

= 2 3
= 3Kp+3K2/3p + 31<3 (282 = 8)p> + h.o.t. (5.54)
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Then, if we introduce first and second derivative in time, volumetric scalar expansions re-

sults,

A 2 , 1 2 2.,

v = 3Kp+3K2ﬁpP+K3(2B 8)p°p+ h.o.t.

Lo L2 o Lo 2 5.

v = 3Kp+ 3Kzﬁ(pp+p )+ e (2B — 8)(2pp* + p°P) + h.o.t. (5.55)
by making use of Equation 5.42 ¢ = _%ﬁl,l and Equation 5.45, The westervelt equation for

third order of nonlinearity with the assumption of small strains and viscosity neglected in

one dimension, is deducted as follows,

lge,_1op 9p? B 0’ (287 -9)
o Kot otz K2 ot3 K3

(5.56)

5.5.2  For fluid without viscosity in one direction and assuming large strains

If we consider the case in which strains are related to large displacements, regarding to

Equation 5.2, Kinematic relations 5.2 are derived as follows,

1 1
U= _g(ul,l + 5”%,1) (5.57)
A series expansion of u1,; = —1 4 /1 — 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-
librium in terms of pressure p by making use of constitutive equation inverted 5.47, that

have been deducted in the previous section,

pii g = V3(—p) (5.58)

whereby,

B 9 , 27 5 405,
up = —3v 22} > v 3 v* 4+ h.o.t. (5.59)
1
1 = —30—900— %vzv + h.o.t. (5.60)
1
iy = —34—9(0° +vd) — %(zw2 +0%%) + h.o.t. (5.61)

So, the Westervelt equation for large strains for an ideal fluid neglecting viscosity terms, in

one direction results as follows,

41



1oo L ppB , pPp2E-5)\? }(267-5)
_Ev p =-9 <%+%+MT> _9<3K+6K2 + e 18K3 )
5| (PrppB | (P20 26 -0)
o e Wpes)
.. ) .. -3 o 2_
3 (3% 4+ @ ;152?)/3 4+ @ +2P£I)<(32[3 5)) (5.62)

This expression could be expand and simplified under the assumption that p/K is the
unique factor no neglected up to third order. The others are approximately equal to zero

because the order of bulk modulus is upper than the pressure. Then it results as follows,

1 2

R A A

_|_2P By 6PP By ZPPB + 319 pﬁ

2
+ 12 6”K’§’5 - 6"}{3 - 3"}@”‘5 (5.63)
Thus, grouping terms results,
1 2 3

5v2p =P+ (B+ )—+%(1+2/5+2(2/32—5)) & (5.64)

5.5.3 For fluid with viscosity in one direction and assuming large strains

If we consider the case in which strains are related to large displacements, regarding to

Equation 5.2, Kinematic relations 5.2 are derived as follows,

1 1
U= —g(ul,l + E”%,l) (5.65)
A series expansion of u1,; = —14 /1 — 6v have been calculated in order to deduce the

dynamic equilibrium in terms of volumetric part v. Then, is possible to establish the equi-
librium in terms of pressure p by making use of constitutive equation inverted (39), that have
been deducted in the previous section, but in this case we introduce 1°0 as the viscosity part

in the constitutive equation as,

o11,1 = pii1 — 3n°V?0 = V*(—p) (5.66)

whereby,

1
i1 = 30— 9(P+ vd) — %(zw +0%) + hot. (5.67)
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So, the Westervelt equation for large strains for an ideal fluid with viscosity terms, in one
direction results as follows,

— 36 — 9(0* + 1) — %(20@ + v%9) ! V2p = ;VZ(—p) (5.68)

—_— U*
Note that nonlinear terms are neglected in the viscosity part, due to the harmonics gener-
ation is not expressed. Since one frequency is considered, %VZﬁ = P, Westervelt equation

results as follows,

p 1\ p? 3( 2 )P3 ol 1o
= )=+ (1+28+2(2 d)) == —n"=P =-V(- 5.69
K+</5+2>K2+2 +2B+2(28°+0)) 15 el pV(p) (5.69)
These results are an “open door” that suggest the main idea of the next section, introduce
the extension to nonlinearity of second order into the Westervelt equation, and then upper
harmonics translated to nonlinearities of high order. This process have been carried out
based on binomial series expansion, discussing under different assumptions of the state of

material and regime of strain.

5.6 Generalized Westervelt equation

Westervelt generalized equation is derived under the assumption of an ideal fluid without
viscosity, since small displacements are considered inside the compatibility Equation 5.2.
Analagously to the previous cases, the wave propagation along 1 direction is fixed. Then,

an extension to high harmonics is derived.

5.6.1 For fluid without viscosity in one direction and assuming small strains
For an ideal fluid, where attenuation has been neglected, is possible to derive the generalized
Westervelt equation for high harmonics by making use of the same three simplifications

taking into account in Equations 5.48, 5.49 and 5.50.

e First simplification: For ideal fluid, shear moduli is equal to cero, 1 = 0 and neglecting
viscosity means 1 = 0. In this case the terms outside the diagonal in the Cauchy stress

tensor are zero, 7;; = 0 that implies,

1
0ij = 30ubij = —pd (5.70)

where §;; is the kronecker delta, and p is the pressure.
e Second simplification: is to consider the displacement in one direction, it means, u; #
0 and up = uz = 0 that implies €17 # 0 and ¢;; = 0V ij # 11. In this case, the

volumetric part is derived as,

1 1
V= —5(611 + &0 + 833) = —5611 (5.71)
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where €17 = —vd11 + di1, and dy; is the deviatoric part of strain. Also small strains

implies, v = —%um
e Third simplification affects to volumetric expression and its second derivative as fol-
lows,
o1 . . N
0= g(1/11,1 +usp + M3/3) and 7 = —5 Z Uy (5,72)
k=1

The linear elastic dependency is enriched with quadratic and cubic terms, following the
series expansion concept put forth by Landau [1]. Only the volumetric part is datelined in
terms of nonlinear acoustic parameter of second order 3 and nonlinear acoustic parameter

of third order 6 being scalar,
n . .
— ) 3K (5.73)
the Constitutive Equation 5.55 could be introduced in equilibrium Equation 5.2 as follows,
pii = 0j = V(—pdij) = Z 3! Kv (5.74)
If we consider the Constitutive Equation 5.55 in terms of volumetric part v, comparing coef-

ficients of the polynomial series as follows,

o0
y = ao+a1x+a2x2+...:Zan(x—xo)”

x = Zb y—1yo)" Zkaa]x—xo

n=0
1
bhh, = —
ap
az
bz - _73
ay
2a% — aya;
b; = =
a3
b 5a1a,a3 — azas — 5a3
4 = 7
1
(_1)1171 n an72a
ay —ay “an
b, = g (5.75)

ay

Thus, we obtain the constitutive law for o,

1

=3P T ex /5p + (23% — 8)p® + h.o.t. (5.76)

18K3

Then, If we introduce second derivative in time, volumetric scalar expansions results,
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D R v o Loy . .3
0= ggP+ 3PP +p7) + 5 (287 —0)(2pp +p7) +hot. (5.77)
by making use of Equation 5.58 ¢ = —%L’illl and Equation 5.61, The Westervelt equation for

third order of nonlinearity with the assumption of small strains and viscosity neglected in

one dimension, is deducted as follows,

Loz, = & |, + Ly ab,pt (5.78)
; p= 3 op K& iOn—iP ’
where
n .
a; = Y 3"UK and, T;={1,8,6,..}],
=0
n
i=1
1
by = —— (5.79)
ap

5.6.2 For fluid with viscosity in one direction and assuming small strains
Generalized Westervelt equation is almost the same that in the equation 5.78 for fluid in one
direction of propagation and assuming small strains. However, in this case viscosity term

should be introduced in the same manner that in Equation 5.69, the case of the second order

of nonlinearity.
4 e 3 2y 5)) 2l Loz
Pr(b+y) by (14265208 40) =27 = V%) G50
where %Vzp can be generalized as follows,
1, & 1y i1 _ N 9p

where the coefficients of this generalization are the same than in the previous cases 5.79.

n .
ai et 31+1niK and, ni — {1/ [51 5/"‘ ?:1
i=0
n
bn - Z albl/l—l
i=1
1
by — L (5.82)
ap
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Note that all cases of second and higher order in a classical context have been studied
and extracted. However the case of generalization for large strains no, it keeps the same
frameworks than the others.

The purpose introducing an analytical new approach where the nonlinear acoustic West-
ervelt equation is directly linked with the future applications in this field. Nowadays is
technically almost imposible to develop a experimental procedure to obtain measurements
physically significant upper than the third harmonics, but with the constant evolution of the

ultrasonic technologies, some day could be relevant in the understanding of the matter.

5.7 Unification between 3 nonlinear parameters

The second research objetive of this Thesis connects with the unification of nonlinear acous-
tic parameter of first order and its explicit calculation from several literature values in differ-
ent materials. Table 5.1 shows seven types of 3 parameters depending on author conception

respect how are derived and the nature of the plane wave considered.

Nonlinear Classic | Relation with third order = Harmonic amplitudes B/ A ratio
15t order 3 elastic constants and strains (Fluids)
B _ 3 _ A3B+C 4D _

" R i

e A YE2 -

B 32+ L(2A+6B+2C) - -
A

B st5(2+8) - -

BL. 3K+4u+ (2A+ 6B +2C) - -

o K+durdrs : :
C+B B

Bw 1+ %% - 1+ 8

Table 5.1: Relationship between various nonlinear classic first order 8 from literature and
TOEC, harmonics amplitudes, and B/ A ratio.

Note that to compare all definitions of 3 we have introduced Bw = 1+ 5 with de index
W since Westervelt equation is commonly used in fluids with this relationship explicitly
deducted by Hamilton, see [2]. The definition of Gol’dberg in 1960 is also introduced as
longitudinal and transverse nonlinear acoustic parameter, AL , and g, respectively. It was
based on the study of 3 by Zarembo previously detailed, but with the purpose of analyzing

the interaction between them [14].

5.8 Nonlinear acoustic parameter of first order values for metals, crystals,
liquids and tissues

It is well known that there are not many references where Third Order Elastic Constants are
experimentally obtained. However, in the case of metals and crystals have been calculated
by Zarembo 1971 and Muir 2009. (See [5, 6]). Also, Third Order Elastic Constants have
been calculated from Hamilton 1998 [2] since B/A ratio was determined in all cases from
Equation 5.4 for liquids and biological tissues. Tables 5.2 and 5.3 shows TOEC for some
metals and crystals, and tables 5.4 and 5.5 shows TOEC for liquids and biological tissues,
respectively and in both the first parameter of no linearity 3y that has been taken with the
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common Hamilton meaning from Equation 4.15. The first and second Lamé parameters A
and p have been included also, using traction forces and NDT (Non-Destructive Testing)
technics, with a database given by [231, 232, 233, 234, 63].

Metal A[GPa] w[GPa] A[GPa] B[GPa] C[GPa] gy
AL7075 52.04 25.86 -3345  -125.35 -60.5 5.93
Steel 60C2H2a 107.8 81.32 -760 -250 -90 442
Nickel Steel 535 154 124 -730 -230 -180 2.48
Polystyrene 2.8 1.2 -10 -8 -11 7.15

” Armco” iron 80 80 1100 -1580 1230 8.54
Glass (pyrex) 16.67 25 420 -118 -132 -0.51

Table 5.2: Beta value and Third-Order Elastic Constants associated to literature values of
metals. TOEC were given by Zarembo and Muir (See [5, 6])

The first group of materials, solid metals, have been from references of Zarembo 1971 and
Muir 2009, the nonlinear acoustic parameter 3 comprises between -0.51 for glass (pyrex),

and 8.54 in the case of " Armco” iron.

Crystal A 7 A[GPa] B[GPa] C[GPa] By
NaCl | 13.63 16 132 33 1.13 -6.56
NaF 57.66  29.7 304 76 2.74 -6.07
KBr 746  11.2 7.44 18.6 0.46 -6.63
KCl1 954 1214 82.8 20.7 0.62 -5.8

Si 65.08 51.14 -256 12 -2.67 -0.2
Ag 86.22  30.29 332 56 7.88 -4.96
Au 112.86 28.21 -48 -13 9.71 -0.93
Cu 9436 444 380 -3 -2.08 -3.51
SiO, 16.09 31.24 870 -276 -12.25  -1.88

Table 5.3: Beta value and Third-Order Elastic Constants associated to literature values of
crystals. (See Zarembo 1971 [5])

Table 5.3 shows the same parameters for solid crystals, this values have been calculated
from Zarembo 1971. In all cases the nonlinear acoustic parameter 3 has been obtained with
a minus sign and the minimum value corresponds to -6.63 for KBr and the maximum was
obtained for SiO, with -1.88.

Liquid A[GPa] u[GPa] A[GPa] B[GPa] C|[GPa] Bg
Distilled water 2.15 0 0 -2.15 -4.3 3.5
Methanol 0.82 0 0 -0.82 -353 58
Ethanol 1.06 0 0 -1.06 -498 6.2
Mercury 28.5 0 0 -28.5 969 49
Glycerol 4.35 0 0 -4.35 -174 55

Table 5.4: Beta value and Third-Order Elastic Constants associated to literature values of
liquids. (See Hamilton and Blackstock 1998 [2])

47



In the next type of materials, for the liquid state Table 6, they have been deduced from the
extraction of experimental B/ A parameter (see Hamilton and Blackstock 1998), this param-
eter is commonly calculated from finite amplitude technics. By making use of 8 = 1 + 55
relationship, and the mechanical properties assumptions for fluids u ~ 0, A = 0 thatimplies
B=—-Aand C = % as was shown in section 1 is possible to deduce all nonlinear coef-
ficients. The nonlinear acoustic parameter 3 comprise a minimum value of 3.5 for distilled

water and a maximum value of 5.4 for the case of ethanol.

Biological Tissue A[GPa] p[GPa] B/A
Haemoglobin 22 ~0 3.6+0.3
Human liver 1.7 ~0 7.6+0.8

Human breast fat 2.1 ~0 9.91

Human spleen 29 ~0 7.84+0.8
Human multiple myeloma 2.5 5+0.1  5.845
Collagen 0.07 0.77 43=+1

Table 5.5: B/ A parameter associated to literature values of biological tissues. (See [2, 7])

Assuming the references values of haemoglobin 2.2 [7], human liver has a Lamé of about
1.7 [GPa] [7], human breast fat with 2.1 [GPa] of Lamé parameter [7], 2.9 £ 1.8 [kPa] for the
spleen [235], multiple myeloma 5.10+ 1.47 [Pa] [236], and 0.073, 0.77 for first and second
Lamé parameters, respectively in the case of collagen [237], the values of Table 5.5 has been
extracted. The results, of nonlinear acoustic parameter B/ A varies between 9.91 for human
breast fat and 4.3 for collagen.

Note that biological tissues are derived under the A >> u condition and p can be rel-
evant in the context of fiber phase. In fact, there is no manner to measure TOEC at the

moment, this conclusion is one of the main contributions of this thesis, in Chapter 9.

5.9 General nonlinear elasticity for isotropic and transversely isotropic
materials

Three invariants suffice for isotropic elasticity, see Equation 4.13, but for transverse isotropy
we require an additional two, in terms of the anisotropy of the material. We define a vec-
tor M, or ;3 which defines the axis of transverse isotropy and thus define the additional

invariants,

I, =M-EM, Is = M - E*M,
or
Iy = 8;3¢;j03k, I5 = 6i3€i€ jk O3k- (5.83)

Here we shall take M to be in the direction parallel to the x3 axis, without loss of generality,
just by an reference rotation.
Thus for a macroscopically anisotropic material the form of the corresponding strain

energy W (see [238]) is,
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1 1
Wri = 5 (k- m)I7 +mly + S(n—dp— 20+ k+m)I3+2(p —m)ls + (£ — k4 m) 1 14(5.84)
A

C
+§13 + BLI, + 5113 +DLI; + ELIs + FIEI 4 GIL Iy + HI; + T1,15(5.85)

where k, £, m, n and p are the linear elastic coefficients usually taken for linear elasticity [239],
they are introduced to simplify constitutive law in terms of invariants previously defined.
Note that there are nine nonlinear (third-order) moduli A4, B, ..., Z.

In the limit of isotropy, k = A+, = A,m = u,n = A+2pand p = p. This gives rise to
the leading order terms in (5.85) reducing to the form of those in (4.12). Additionally in this
limit, wemusthave D =€ =F =G =H =7 =0.

So if we consider the transversely isotropic material with quadratic nonlinearity. Follow-

ing an analogous approach using 5.85-?? with 4.15 we can group,

T = TLl + TLZ + TNLl + TNLZ (586)

where we have decomposed the stress into its linear (L) and nonlinear (NL) parts and con-
tributions associated with isotropy 4.15 and anisotropy 5.86, defined by

Tr1 = (k—m)(trE)I + 2mE, (5.87)
T, = Li(M:-EM)N + 2(p — m)(NE + EN) + £((M - EM)I + (trE)N), (5.88)
Tnrr = AE? + B(tr(E*)I + 2(trE)E) + C(trE)?I, (5.89)

Ty = (DI + EIs + 2F L)1+ 2D Iy + FI3 + G, + 3HI; + Z15)N
+2GLE + (511 —|—II4)(NE + EN), (5.90)

where we used the notation N = M ® M, or

O‘iL-l = (k - m)ekkéij + 2m5,‘]‘, (5.91)
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O'Z-L]-2 = £1(5i35ij63j)5i35j3 + Z(P — m)(5i35]‘3£i]‘ + 5ij533)
+ L£2((8:3€j03)8ij + ex0i30j3), (5.92)

off ' = Aeijeji+ BleijEji)8ij + 2exeij + Cepgi, (5:9)

o'? = (DI + €5+ 2F L 14)6ij + (2Dh1s + FI§ + Gl + 3HIE + T5)5i383
+ 291451-]- +(EhL+ 114)(51'35]'361']‘ + 81']'51'35]'3), (5.94)

and

£1:Tl—4p—2£+k+m, Lo =V0—k+m. (595)

We note that in the isotropic limit, the anisotropic contributions Ty = Tnr2 = 0 and T
and Ty, recover the isotropic forms Equation 4.15. (All derivations rules are detailed in the
appendix B)

5.10 Nonlinear acoustic constant 3 calculated from nonlinear terms in
transversally isotropic media

If the material constitutive law is extended to the anisotropic case, in addition to nonlinear,

the stress can be split into four terms, as it is explained in Equation 5.96,

T="Tr1+ T+ Tna + T2 (5.96)

By making use of the index notation, the previous equation is explicitly related as,

Glel = Aexdij + Bejj
017 = T(8i3€ij03)) 8303 + A(8aeijbia + Siaeijoi)
+E(8k3€kp0p30ij + €xk0i303))
glNLl = Zejjejk + Hegpepidij + Oepreij + I(fkk‘sij)z
o1 = 5 (KSksekpd3pSkacipOap + ASiacipep3p + 2MencSiaeij63j — Eepdineijds;)  (5:97)
+ 61303 (2Kexk8i3€ij03; + Merkerk + Neijejx + 320i3€1030i3€i;03;
+ O8i3Eijejxdsj — (Tekdin€ijdsj + Eexkerk)) + €ij(2N + 2E) (8i3€i;03;)
+ (0ka€ijdiz + 0iacijdra) (A + E — A)eg + (O + T)diz¢ij03;)

+ A(8i303€ij€jk + €ij€jk0i303) + €ij0i3ek k3 + 0i3€ijOk3ex)
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where A, B,T, A E, Z,H,0, 1, K, A, M, N, Z and O are parameters related to anisotropy

stress expression showed below:

A= (k—m), B =2m, r=L£ A=2(p—m)
E=L,, Z=A+4m, H=B, ©=2(B-2m+k)
(5.98)
I=C—k+m, K=D, AN=E M=F
N =g, ==H, O0=71

Once, specified constitutive anisotropic nonlinear third order law, two cases are considered,
on one hand the case of uniaxial stress in direction 1 where all strains are different and on
the other hand the case of uniaxial stress in direction 3 for the same strains in directions 1
and 2.

Case of uniaxial stress in direction 1, and all strains different

Case one of trasversally isotropic media occurs when 011 # 0,02 = 0,033 = 0 and €11 #
€ # €33. Firstly, 011 # 0,020 = 0,033 = 0 restriction is assumed. Then, constitutive

nonlinear anisotropic law takes the next form,

011 = (A4 B)eyg + Aeop + (A +E)ess + (Z + H)edy +2H(3y + €35) + (K + A)e3,

+ Oeq1(e11 + €22 + €33) + I(e11 + €20 + €33)?

0= Ae;; + (A+B)eay + (A+E)ess + (Z + H)e3p + 2H(e3, + €33) + (K+ A)edy
+ Oem(e1n + €22 + €33) + I(e11 + €20 + €33)?

0= (A+E)e; +(A+E)epn+ (A+B+T+2A+2E)ess
+(Z4+H+0O+K+3A+2M + 2K+ 3N +3E + 32430 + T+ 2A)e3,
+2H(e3; +€3) + (@ +2M —E+2K —T+2(A+E — A))(e11 + e2)e33
+ (I+M —E)(e11 + €2 + 33)?

(5.99)

and when €17 # € # €33, only linear terms are retained for substitution, since quadratic

terms will generate vanish higher order terms,

Ae1n + (A+ B)ex

AT E (5.100)

€33 = —

(A+E)?—A(A+B+T+2A+2E)
€22 = 5 €11
—(A+E)2+ (A+B)(A+ B+T+2A+2E)

(5.101)

Finally, constitutive law in one dimension for this first case is derived as follows,
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2
o11 = B(1 — X)en + (Z+H+2HX2+(K+/\+1) <A+(A+B)X> )g%l

A+E
( ) ( ) 2 (5.102)
AtA+B)X A+ (A+B)X\
I+ Xt (14 x4V P2/
+<®<+ + 4 F >+<+ + ))611
where X — — (ATE)2—A(A+B4T+2A42F)

—(A+E)2+(A+B)(A+B+T+2A+2E) "
The acoustic nonlinearity is measured by comparing the stress and strain in one direction,

in our case for the direction 1. In order to define the acoustic 3y, the terms of stress that

depend linearly and quadratically on the strain are grouped as,

o1 = E«(1 — Benn)en (5.103)

where E, is the young modulus. The acoustic nonlinearity parameter 3y is therefore derived
to be,

2
<Z+H+2HX2+(K+A+1) (%jj)x) >

Ba = —

B(1-X
( ) ) (5.104)
(01 x+ A4450) 4 1 (14304 £2430Y)
B(1 - X)
and after the application of conversion given in the Equation (44), the next expression is
obtained,
2
(A+4m+B+ZBX2+ (D+E+1) (%) )
b= m(1—X)
2
(28 2m 00 (1304 SEY) 4 0t (13 it
B m(1—X)
(5.105)
where X — —(k=mt-La)2—(k=m) (kt-L1 +-4(p—m)+2L5)

—(k—m~+L2)? 4 (k+m) ((k-+m)+ Ly +4(p—m)+2L;)
5.10.1 Case of uniaxial stress in direction 3, and equal strains in directions 1 and 2

The case two of transversally isotropic media is considered now and it occurs when o011 =
0,092 = 0,033 # 0 and €17 = €2 # e33. Firstly, constitutive nonlinear law under 017 =

0, 022 = 0, 033 # 0 condition is assumed as follows,
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0= (A+B)ey + Aepp + (A4 E)eas + (Z 4+ H)edy + 2H (e, + e33) + (K+ A)eds
+ Oeq1(e11 + €00 + €33) + I(e11 + €20 + €33)?

0=Aey1 + (A+Bepy + (A4 E)eas + (Z 4+ H)ezy + 2H (€3, + e33) + (K+ A)eds
+ Oep(e11 + €00 + €33) + I (€11 + €20 + €33)?

033 = (A+E)e11 + (A+E)epn + (A+ B+T+2A+ 2E)ess
+(Z+H+0©+K+3A+2M+2K + 3N + 3E + 32 + 30 + T+ 2A)eZ,
+2H(3) +€3) + (@ 4+2M —E +2K —T+2(A4+E — A))(e11 + €2 )ézs
+ (I+M —E)(e11 + €2 + €33)°

(5.106)

and when €11 = €2 # €33, the previous Equation 5.106 takes this form,

0= (2A+B)eyy + (A4 E)ezs + (Z 4+ 2H)e2, + Hesy + Oc1q (2611 + €33)
+ I(2e11 + €33)2

0= (2A+B)eyy + (A4 E)ess + (Z 4 2H)e2, + HE3; + OF 11 (2617 + €33)
+ 1(2¢e11 + €33)?

o33 =2(A+E)e11 +(A+B+T+2A+2E)es;
+(Z+H+0O+K+3A+2M+2K+3N +3E + 32 +30 +T+2A)ed,
2He? + (©+2M — E+2K —T+2(A+E — A))(2¢e11 )ess
+ (I4+M —E)(2e11 + £33)?

(5.107)

The acoustic nonlinearity is measured by comparing the stress and strain in one direction,
(in our case the x3-direction). In order to define the acoustic 3, the terms of stress that

depend linearly and quadratically on the strain are grouped as,

A+E

- _ - A1
€11 2A T B0 (5.108)
Then, the nonlinear anisotropic constitutive in 3-direction, is derived as follows,
A+E
= — A A 2
033 <2( +E)2A—|—B+ +B+T+2A+ E)Egg
+(Z+H+®+K+3/\+2M+2K+3N+3E+3E+3O+F+2A)e%3
A+E , A+E (5.109)
—2H 2M —E+2K—-T+2(A+E—-A E
2a+pen 2O+2M—E+ F2AAFE=A) g

A+E
+(I+M—E) (—22A+B+1>533
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and the acoustic nonlinear first parameter S is therefore derived to be,

(Z+H+0©+K+3A+2M+2K+3N +3E+3=Z+30 4+ T'+2A)

(2(A+E)ATE + A+ B +T+2A +2E)

A+E
2H2A+B

(2(A+E)#tE + A+ B+T+2A+2E)
2(0+2M—E+2K—T+2(A+E—A))4E
(2(A+E)AtE + A+ B+T+2A +2E)

(I+M—E) (255 +1)

(2(A+E)&tE + A+ B+T+2A+2E)

Bu =

(5.110)

By making use of conversion related to Equation 5.98 is possible to deduce that,

_ A+4m+B+2(B-2m+k)+D+3E +2F +2D +3G

2(k — m + Lo) g 4k m + L1+ 4(p — m) + 2L,

3L+ 3H + 3L 4 L1+ 4(p — m)

+
2(k = m + Lo) gt + k- m + L1+ 4(p —m) + 2L,

k—m+L
ZBZ(kfnnZ)Jrém

2((k = m) + L) shcs 4k + m + L1 +4(p — m) + 2L, (5.111)

2(2(B = 2m + k) +2F — L2 42D — L1+ 2(E + L2 = 2(p — m))) zf—nt

2(k — m + Lo) g r + k- m + L1+ 4(p —m) + 2L,
((C—k+m)+F—Ly) (—Z%Jﬁ)

2(k = m 4 L) s Ak m 4 L1+ 4(p — m) + 2L,

B

Furthermore, two anisotropic cases have been analytically derived and linked to the non-
linear acoustic parameter 3y by a relationship based on constitute law. The next subsection

shows a numerical validation for both isotropic and anisotropy material of this formulation.

Numerical example for transversally isotropic cases

The consistency of the obtained formulation is validated by numerical evaluations of the
stress-strain curves for a set of realistic materials and setups. The obtained formulation
for acoustic nonlinearity is validated for realistic cases, where some of the constants are
known, whereas others are just invented for the sake of simulating realistic stress-strain
curves, using the nonlinear Landau formulation versus the acoustic nonlinearity expression
derived herein. First, the isotropic case is tested for a Polymethylmethacrylate (PMMA)
material whose Young’s modulus E. is between 1800 and 3100 [MPa] and whose Poisson’s
ratio v ranges between 0.35 and 0.4 (see Figure 2). As the coefficients .4, B and C have
never been measured experimentally in the case of CFRP. However, the acoustic nonlinear

coefficient 3y for this material typically varies in the range between 12 and 15 [31], and
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hence, coefficients A, B and C are assigned assumed values compatible with S (see figure

3). Furthermore, for the conversion of m and k variables depending on elastic constants, the

following relationships are obtained,

E.
—2v)’

T

Stress T, (MPa]

Figure 5.2:

002

k=— (5.112)

3(1—2v)?

L L
-0.005 0 0.015 0.02

Stain £,

L L
-0.015 -0.01

Landau acoustic example for isotropic case

Transversally isotropic cases has been validated using carbon fiber material whose Young’s

modulus and Poisson’s ratio depends on direction E,; and v;, respectively. As the coef-

ficients A, B, C, D, €, F, G

, H and Z have never been measured experimentally, to the

knowledge of the authors, simulated values were simulated computationally with a non-

linear acoustic 3y assumed.

Furthermore, for the conversion of values m, k, I, n and p

depending on elastic constants, we obtained:

o Q11—Q12’ r Q11+Q12, I = Qs
2 2
n = Qss, p = Qu (5.113)
where,
Oy = E.«1(1 — va3van) Op — E.a1(va1 + v31v23)
11 N , 12 v ,

_ Eai(va1 +v21v32) _ E.3(1 —vi2va1)

Qi = v , Q33 = N ,
E*23

=Gy = — 2 5.114

Qua 23 201+ va3) ( )

are related to the stiffness matrix usually noted by Q;; in composites materials where

V =1—viava1 — va3Vv32 — Vi3V31 — 2v21v32vi3. They have been deducted experimentally

by the rule of mixtures method. It assumes that the modulus of a composite is the combina-

tion of the modulus of the fiber and the matrix that are related by the volume fraction of the
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constituent materials [240, 241].

Stress T, [MPa]
Stress T, [MPa]

Landau nonlinearity
- \coustic nonlinearity

Landau nonlinearity
Acoustic nonlinearity
Error

L L L L L 50 L L L L L
~0.02 -0.015 -0.01 -0.005 0 0.005. 0.01 0.015 0.02 ~0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0015 0.02
Strain E,, Strain E,

Figure 5.3: Landau acoustic example for transversally isotropic cases
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Figure 5.3 shows stress-strain relationship with two anisotropy directions cases 11 and
33 using Third Order Elastic Contants and 3y nonlinear acoustic parameter as is extracted in
Equations 5.105 and 5.111. Note that the values of Third Order Elastic Constants have been
simulated computationally. Table 5.6 shows mechanical properties as Young modulus and
Poisson coefficient for isotropic (PMMA material) and transversally isotropic cases (CFRP
T300 N5208). Also, Third Order Elastic Constants and beta nonlinear acoustic parameter of

first order is calculated computationally in both cases.

Ispotropy Anisotropy Anisotropy
Properties/ Material PMMA  CFRP T300 N5208 (2.1.) CFRP T300 N5208 (2.2.)
Young Modulus [MPa] 2700 - -
Poisson coefficient 0.384 - -
BH 13.247 10.569 14.952
S11 [MPa] - 0.0055 0.0055
S1p [MPa] - -0.0015 -0.0015
S13 [MPa] - -0.0015 -0.0015
S33 [MPa] - 0.0971 0.0971
S44 [MPa] - 0.1395 0.1395
A 22866 7450 73
B -34299 -2990 -2990
C -57165 -3850 -3850
D - -40000 43080
& - -10000 -10000
F - 1000 1000
g - -1000 -1000
H - 1000 1000
T - 10000 10000

Table 5.6: Numerical example parameters

Note that S*, or 5j; is the compliance matrix, by making use of Q = S*~ 1! relationship, Qj;

coefficient have been deduced introducing Equation 5.114 into Equations 5.105 and 5.111.
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5.10.2 Isotropic derivation to fourth order elastic constants

It is possible to derive strain energy until fourth order, for macroscopically isotropic material
based on a combination of invariants, just introducing I = trE*, or I = Eij€ikEkpEpi, N the
same manner that it has been developed in the previous subsection. (For more details about

derivation rules, see Appendix B).

A A C L M N
Wi =Sh+ph+ 513 +BLI + 51; + %16 + KL+ ZI% + 711212 + ZI{* + ... (5.115)

It must be noted that anisotropic terms are neglected in this step, by making use of asymp-
totic methodology which retain all third order (cubic terms). Via Equation 4.2 we can obtain

the expansions,

1
F:I+E—§E2+O(E3),
1
F'=1+E— E +O(E),
or
1
Fij = 6ij +¢€ij — Efijfjk + O(Ez’jfjkfkl),
1
Fji = 8ij + eij — Seijeje + Oleijeuen) (5.116)

and thus from this we find that,

1 3
trF = 3 + trE — Etrlzz, tr(F?) = 3 + 2trE, tr(F®) = 3 + 3trE + EtrEz,
or

1 3
Fr=3+¢ew — 551']'5]'1', Fi]'P]‘i = 3 4 2¢41, Piijkai =34 3¢ + Egijgji/ (5.117)

and

detF = —[6 + 6trE 4 3(trE)* — %trEz + O(E®)]

N =

or

1 3
det Fij = 6[6 + 65kk + 36%7( - Eei]f]'i + O(&i]f]'ké:k])] (5.118)

Under these condition, the constitutive equation extended to FOEC (Fourth Order Elastic
Constants), by making use of Cauchy stress definition in Equation 4.10, it has been assumed

in the next form,
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T = TH 4 TNU 4 N3 (5.119)

where TNE3 has been noted with the index 3 to be differentiated from TNE2 in Equation 5.96

related to anisotropic nonlinear part of stress.

T = MrEI + 2uE + AE? + 2BtrEE + Btr(E)? + C(trE)?
+ JE® + Ktr(E*1 + KE*trE) + £ (Etr(E?))
+ My trEltr(E)? + M, (trE)?E) + N (trE)?,
or
Oij = Aegdij + 2 + Aeijejk + ZBekkeij + Beijeji + (fe%k
+ jeija]'kejp + Keijé jrexi) 0ij + Keijejkekk) + ljsijeijeﬁ
+ Miewdijeijeji) + Ma(ere)*eij + N (exe)’. (5.120)

where J = J +2A+u, K =3K - A+4B—4dpu+ 3, L=L+2B- 84 My=M—-B-13,
My =M=-2B+2C+pu—22xand N = N +C — % are referred to nonlinear constants
extracted to Taylor expansion of the strain energy up to fourth order, see Equation 5.115
above. We have noted that T: and TN!! retain the same coefficients that Equation 4.10.

If we consider 011 # 0 and e = €33 = 0 since up = u3z = 0 the case of wave propagation

in one direction neglecting strain in directions 2 and 3, Equation 5.120 stated as,

o11 = Aerq + 2uery + Aedy +2Bed, 4 Bedy + Ce?y
+Jeh +Kedy + Kedy + Le3,
+ Myed) + Maed, + Ned. (5.121)

Thus, by making use of the Equations 5.2, the nonlinear wave equation up to third order in

terms of nonlinear elastic constants results as follows,

A+2 - ~ -
0111 = (/\ -+ 2[4)1/[1,11 +2 