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Abstract

Cross-validation (CV) is a common approach for determining the optimal num-
ber of components in a principal component analysis model. To guarantee the
independence between model testing and calibration, the observation-wise k -fold
operation is commonly implemented in each cross-validation step. This oper-
ation renders the CV algorithm computationally intensive and it is the main
limitation to apply CV on very large data sets. In this paper we carry out an
empirical and theoretical investigation of the use of this operation in the element
wise k -fold (ekf ) algorithm, the state-of-the-art CV algorithm. We show that
when very large data sets need to be cross-validated and the computational time
is a matter of concern, the observation-wise k -fold operation can be skipped.
The theoretical properties of the resulting modi�ed algorithm, referred to as
column wise k -fold (ckf ) algorithm, are derived. Also, its performance is eval-
uated with several arti�cial and real data sets. We suggest the ckf algorithm
to be a valid alternative to the standard ekf to reduce the computational time
needed to cross-validate a data set.
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1. Introduction

In chemometrics and related disciplines, cross-validation (CV) is probably
the most commonly used method to determine the optimal number of compo-
nents (PC) to retain in a principal component analysis (PCA) model. Several
cross-validatory algorithms have been proposed [1, 2] after the pioneering works
of Wold [3] and Eastment and Krzanowski [4]. The simplest version of CV is
the so-called row wise k -fold (rkf ) method [5, 6], where groups of rows (observa-
tions) of the data set are left-out to build the model. The rkf has been criticized
because the estimation of the left-out observations is not independent from the
observations themselves [2].

An alternative, proposed by Wold himself (see page 401 in [3]: An alternative
scheme), is the the so called element wise k -fold (ekf ) cross-validation. This
method is based on the capability of PCA to recover missing data [7, 8, 9, 10,
11, 12, 13]: some of the elements of the data matrix X are set to be missing
and are subsequently recovered using a missing data imputation strategy and
the model built on the remaining data. An estimation error is then derived
by comparing the true values with their reconstruction, which is, in this case,
independent from the left-out elements [2].

The ekf was found to outperform other CV methods (among them the rkf ) in
a comparative study [2] (where it was referred to as the Eigenvector algorithm,
see also [14] for historical reasons), and recently it has bene�ted of an in-depth
analysis at both the theoretical and practical levels [14, 15]. The ekf is especially
suited to select the number of components when the PCA model is going to
be used for future missing data recovery [14] or when a model is derived for
Multivariate Exploratory Data Analysis (MEDA) with the goal of �nding groups
of related variables.

The biggest drawback of ekf is its computational cost, which prevents the
use on very large data sets, like for instance omics data, and this limitation is
common to other CV methods. For this task a number of alternative and faster
methods have been proposed to determine the optimal number of components
either considering numerical approximation of the cross-validation procedure
[16] or statistical approaches [17, 18]. Despite this limitation ekf is one of the
most used CV methods in chemometrics [2].

The most computationally intensive operation within ekf, if the e�cient
algorithm proposed in [15] is used, is the observation-wise k -fold operation. In
this paper a thorough study on the convenience of this operation is performed.
It is shown that the observation-wise k -fold operation does not provide the ekf
algorithm with any relevant property. Thus, we claim that if computational
time is a matter of concern, this operation can be skipped. The mathematical
properties of the resulting algorithm, referred to as column wise k -fold (ckf )
algorithm, are studied and its performance is compared with that of ekf in
order to show its suitability to select the number of components in very large
data sets. We suggest the ckf algorithm to be a valid alternative to the standard
ekf to reduce the computational time needed to cross-validate a data set.

The paper is organized as follows. Section 2 presents the rkf, ekf and ckf
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algorithms. Section 3 is dedicated to the mathematical characterization of the
ckf algorithm. In Sections 4 and 5 the performance of the two algorithms
is compared on simulated and real data, respectively. Section 6 o�ers some
conclusions and recommendations for the use of the ckf algorithm.

2. Description of the rkf, ekf and ckf algorithms

Let the PCA model for a N ×M data matrix X be de�ned as:

X = TA(PA)t + (RA)t (1)

where TA is the N × A score matrix, PA is the M × A loading matrix, and
RA is the N ×M matrix of residuals. Consistently with [14, 15], the principal
components used in a model is indicated with A.

2.1. The rkf algorithm

The rkf algorithm is presented in Box 1. Here the outer loop iterates through
the observations rather than trough the components as in the formulation in [15]:
this change reduces the number of PCA models to be �tted. The observations
(rows) are arranged in G disjoint groups. Thus, if a leave-one-out scheme is
employed, each group contains a single observation. In each iteration, one group
of observations is left out and a PCA model is �tted from the rest of the groups.
This model is �tted with the maximum number of PCs considered in the cross-
validation.

The inner loop iterates through the PCs. It starts with a model using the
�rst PC, then using the �rst two PCs, and so on. In each iteration, the recon-
struction error for the left-out group of observations is computed. The output
of the algorithm is the matrix of reconstruction errors RA from which the cor-
responding sum of squares of the prediction error (PRESSA) can be computed
as follows:

PRESSArkf = ||RA||2F (2)

where ||x||F indicates the Frobenius norm of x.
The rkf method yields strictly decreasing PRESS curves since the error

computed within the algorithm is the reconstruction error.
In the rkf, the estimation of the left-out observations is not independent from

the observations themselves: the �rst equation of the inner loop shows that the
scores of the left-out samples are computed from the actual observations. One
controversial point is to decide whether the preprocessing information, i.e. the
average and weight of the variables, should be estimated either from the entire
calibration data X or else from X∗ (data from all groups but G) and then
applied to X# (data from G). Under the assumption that the model will be
applied to future observations the second option is preferred. For the sake of
simplicity, the parameters relating to preprocessing are here omitted.
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For each group of observations (G = 1...Gtot)
Form X∗ with data from all groups but G
Form X# with data from G
Fit the PCA model: X∗ = TAmax

∗ (PAmax
∗ )t + RAmax

∗
For each PC (A = 1...Amax)

TA
# = X# ·PA

∗
X̂# = TA

# · (PA
∗ )

t

RA
G = X# − X̂#

end
Combine matrices RA

G in RA

end

Algorithm box 1: Row-wise k -fold (rkf ) algorithm. X, T, P, R represent
the data, scores, loading and reconstruction error matrices. The superscript A
indicates the components used in the model. G indicates the disjoint groups in
which the observations (rows) are arranged and the columns selected.

2.2. The ekf algorithm

In comparison to rkf, the ekf can be seen as a combination of a k -fold
operation in both the rows and the columns of the data matrix. It should be
noted, however, that the two k -fold operations are not identical: the k -fold
operation in the observations discards complete observations to construct the
model, while this is not the case in the k -fold operation in the variables. The
ekf method is outlined in Algorithm box 2.

The outer and the intermediate loops reproduce the rkf algorithm. The
di�erence with rkf is the inner loop that iterates through the variables, arranged
in H disjoint groups. Again, a leave-one-out scheme can be used in the groups
of variables if desired. The loop computes the CV error by using the missing
data method referred to as trimmed score imputation (TRI) [19]. Very brie�y,
the scores of incomplete observations are estimated by imputing missing values
with their unconditional means (i.e. zero value for mean-centered data). In this
way a so called trimmed-score, which is a least square estimator, is obtained.
See [15] and [20] for a thorough analysis on the use of this and other imputation
methods.

The inner loop yields the corresponding error for the elements which belong
to the rows in G and the columns in H. The output of the algorithm is the
matrix of prediction errors EA (with elements eAn,m in the n-th row and m-th
column) from which the corresponding PRESSA can be computed as follows:

PRESSAekf = ||EA||2F (3)

The PRESS curves computed in this way typically show a U-valley shape
where the minimum identi�es the optimal number of components.
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For each group of observations (G = 1...Gtot)
Form X∗ with data from all groups but G
Form X# with data from G
Fit the PCA model: X∗ = TAmax

∗ (PAmax
∗ )t + RAmax

∗
For each PC (A = 1...Amax)

TA
# = X#PA

∗
X̂# = TA

#(P
A
∗ )

t

RA
# = X# − X̂#

For each group of variables (H = 1...Htot)
Select the rows of PA

∗ in H yielding PA
∗,H

Select the columns of RA
# in H yielding RA

#,H

QA
∗,H = PA

∗,H(P
A
∗,H)

t

EA
G,H = X#,HQA

∗,H + RA
#,H

end
Combine matrices EA

G,H in EA

end
end

Algorithm box 2: Element-wise k -fold (ekf ) algorithm. X, T, P, R, E repre-
sent the data, scores, loading and reconstruction and prediction error matrices.
The superscript A indicates the components used in the model. G and H indi-
cate the disjoint groups in which the observations (rows) are arranged and the
columns selected.

The steps followed in the intermediate and inner loops to compute the ekf
error were proposed in [15], providing a much more e�cient way to iterate
through the variables than in the traditional, more intuitive version of [2]. It
should also be noted that [2] makes use of the Projection to Model Plane (PMP)
imputation method [19] instead of TRI, a procedure that was demonstrated to
introduce instability in the ekf algorithm. The reader is referred to [14] for more
information on the application of di�erent imputation algorithms to ekf.

The properties of ekf descend from the use of the Trimmed Score Imputation
(TRI) [9] in the algorithm. Although theekf may not be well suited to separate
structure from noise (as the variance in one original variable is neither treated as
structure nor as noise) it may be indicated to use ekf with typical chemometrics
data sets, like spectroscopy data, where independent variables are uncommon
[15].

2.3. The ckf algorithm

If the observation k -fold operation in ekf is skipped, the algorithm greatly
simpli�es since the outer loop disappears. The resulting algorithm is outlined
in Algorithm box 3. As this algorithm only iterates through the columns, we
propose the name of column-wise k -fold (ckf ) algorithm. It should be noted
that, following [15], if a leave-one-out (loo) operation is done in the columns
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Fit the PCA model: X = TAmax(PAmax)t + RAmax

For each PC (A = 1...Amax)
RA = X−TA(PA)t

For each group of variables (H = 1...Htot)
Select the rows of PA in H yielding PA

H

Select the columns of RA in H yielding RA
H

QA
H = PA

H(P
A
H)

t

EA
H = XHQA

H + RA
H

end
Combine matrices EA

H in EA

end

Algorithm box 3: Column-wise k -fold (ckf ) algorithm. X, T, P, R, E repre-
sent the data, scores, loading and reconstruction and prediction error matrices.
The superscript A indicates the components used in the model. H indicates
the columns selected.

within the ckf, the inner loop is transformed to a single matrix operation. This
leads to an algorithm that is particularly fast in computational environments
designed for matrix operations, like Matlab [21] or Octave [22, 23].

Likewise the ekf, ckf makes use of the TRI procedure but in one single step,
so that only one PCA model is �tted. The idea of skipping the k -fold operation
in the observations is also substantiated by the fact that the properties of PRESS
curve of the ekf do not depend on the k -fold operation in the observations [15]
but only in the properties of the error by TRI. Thus, the PRESS by ckf retains
all properties highlighted in the introduction, including the convenient valley-
shape where the minimum value identi�es the number of PCs.

3. Mathematical characterization of the ckf algorithm

As shown in [24], very di�erent data distributions can lead to the same
covariance matrix. Thus, the function that links a data matrix with its corre-
sponding covariance matrix is one to many; the covariance matrix can be seen
as a summary of the data where the information about data distribution is lost.

We now set to demonstrate that the output of ckf depends on the covariance
matrix, and we de�ne a kernel version of the algorithm.

For any group H of variables (without any particular order) the correspond-
ing reconstruction error RA

H is given by

RA
H = XH −XPA(PA

H)
t (4)

The loading vectors PA of a PCA model for a N ×M data matrix X can be
also obtained using the eigendecomposition of the cross-product matrix:

Ψ = XtX. (5)
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The cross-product matrix for any group H of variables of X can be obtained as
sub-matrix of the full cross-product matrix Ψ. We set

ΨH,H = (XH)
tXH (6)

and

ΨM,H = XtXH (7)

Both ekf and ckf use the TRI procedure: it can be shown (see [15]) that the
error by TRI EA

H for a group of variables H in a PCA model �tted with A
components is given by

EA
H = XHQA

H + RA
H (8)

with:

QA
H = PA

H(P
A
H)

t (9)

The PRESS for the model computed with A components can be computed
as:

PRESSA =
∑
H

(
EA

H

)2
=
∑
H

tr
{
(EA

H)
tEA

H

}
(10)

Substituting Equation (8) in the third member of Equation (10), with some basic
matrix algebra manipulation and using the properties of the trace operator it is
immediate to arrive at

tr
{
(EA

H)
tEA

H

}
= tr

{
(QA

H)
t(XH)

tXHQA
H)
}
+ tr

{
(RA

H)
tRA

H

}
+ (11)

+2 tr
{
(RA

H)
tXHQA

H

}
By plugging Equation (11) in (10) and re-arranging the sum over H, the PRESS
is given by

PRESSA =
∑
H

tr
{
(RA

H)
tRA

H

}
+
∑
H

tr
{
(QA

H)
t(XH)

tXHQA
H)
}
+ (12)

+
∑
H

2 tr
{
(RA

H)
tXHQA

H

}
For the �rst term, it holds that:

∑
H

tr
{
(RA

H)
tRA

H

}
= tr

{
(RA)tRA

}
(13)

with QA = PA(PA)t. However, the same simpli�cation cannot be performed
on the other two terms of Equation (12) due to the QA

H terms.
It is now easy to show that the three terms of Equation (12) can be expressed

in terms of the elements of the data cross-product matrix Ψ. The �rst term
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in Equation (12) is just the trace of the cross-product matrix of the residual
matrix RA and can be computed from the data cross product matrix Ψ

tr
{
(RA)tRA

}
= tr

{
Ψ−QAΨ(QA)t

}
(14)

Using de�nition (6) the second term of Equation (12) is∑
H

tr
{
(QA

H)
t(XH)

tXHQA
H

}
=
∑
H

tr
{
(QA

H)
tΨH,HQA

H

}
(15)

By making use of formula (4) and de�nitions (6) and (7) the last term of ex-
pression (12) becomes∑

H

2 tr
{
(RA

H)
tXHQA

H

}
=
∑
H

2 tr
{
(XH −XPA(PA

H)
t)tXHQA

H

}
= (16)

=
∑
H

2 tr
{
ΨH,HQA

H −PA
H(P

A)tΨM,HQA
H

}
Thus PRESSA can be re-written as

PRESSA = tr
{
Ψ−QAΨ(QA)t

}
+
∑
H

tr
{
(QA

H)
tΨH,HQA

H

}
+ (17)

2
∑
H

tr
{
ΨH,HQA

H −PA
H(P

A)tΨM,HQA
H

}
This ends the proof. The resulting kernel algorithm is presented in Algorithm

box 4. This kernel algorithm is expected to be more suitable than the one given
in Algorithm box 3 when the number of observations is large enough so that
matrix Ψ can only be iteratively computed [25]. It should be noted that di�erent
data sets can yield the same covariance matrix: this would yield di�erent PRESS
curves according to ekf but equal PRESS curves according to ckf. Thus, the
ckf is much faster but less speci�c to the �tting data set than ekf. Therefore,
by comparing both algorithms, we can conclude whether the k -fold operation
in ekf is convenient from a practical point of view or not.

4. Comparison of ekf and ckf with simulated data

In this section we discuss the practical implication of using ckf instead of
ekf. A �rst and obvious consequence of using ckf in place of ekf is the di�erent
computational time required. In Table 1 the computational times of both algo-
rithms on matrices of di�erent sizes in a speci�c setup are compared. The ekf is
used in two modes: observation-wise leave-one-out (loo) and with a 7-fold split.
When the number of observations is large, a common approach is to use a re-
duced number of folds to perform CV, instead of the loo operation. As expected,
the ckf is much faster than any version of ekf. This result is especially relevant
for very large matrices, in the observations and/or in the variables, since the
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Fit a PCA model with Amax PCs from XX, obtaining PAmax

For each PC (A = 1...Amax)
QA = PA(PA)t

RA = Ψ−QAΨ(QA)t

PRESSA = tr(RA)
For each group of variables (H = 1...Htot)

Select the rows of PA in H yielding PA
H

QA
H = PA

H(P
A
H)

t

PRESSAH = PRESSAH +tr((QA
H)

tΨH,HQA
H) + 2 tr(ΨH,HQA

H)

PRESSAH = PRESSAH −2 tr(PA
H(P

A)tΨM,HQA
H)

end
end

Algorithm box 4: Column-wise k -fold (ckf ) kernel algorithm.

computational time of ekf is too large to be used in those circumstances. This
makes ckf an interesting and attractive alternative to ekf for large data sets.
Also, the kernel ckf is suitable for data sets in which the number of observations
is much larger than that of variables.

Other aspects to be evaluated are the price to pay for this improvement in
computational e�ciency and the actual bene�t of using the observation-wise k -
fold operation within the cross-validation. As already discussed in Section 3, the
ekf takes as input the original data matrix while ckf takes only the covariance
matrix. When the covariance matrix is obtained from the original data matrix,
the original distribution of the observations is lost. Indeed, as shown in [24],
very di�erent data distributions can lead to the same covariance matrix. For this
reason, the ekf is expected to be more speci�c to the actual data set than the ckf :
an expected advantage of the former could be that the PRESS curve depends,
to some extent, on the data distribution. To check whether this is the case, the
ADICOV algorithm [24] is used to create three di�erent data sets for the same,
exact, covariance matrix. These distributions are a multinormal distribution, a
distribution with one outlier and a distribution with two multinormal clusters.
This experiment is repeated twice for two di�erent covariance matrices. The
�rst one presents equally separated eigenvalues, so that each eigenvalue is one
order of magnitude higher that the following. In the second one, this di�erence
was only present between the �rst and second eigenvalues, while the remaining
were of a similar to the second one. Results are shown in Figures 1 and 2,
respectively.

From Figure 1 a clear conclusion can be derived: there are circumstances
where the observation-wise k -fold operation does not provide any hint about
data distribution. This can be seen from the leave-one out ekf cross-validation
PRESS curves which are the indistinguishable although the three data sets
show di�erent variable distributions (random multinormal, with 1 outlier and
a two clusters multinormal distribution). Moreover, the PRESS curves are the
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same for the 7-fold ekf and, remarkably, for ckf. Thus, in this simulation, the
observation wise k -fold operation does not carry information about the data
distribution.

The results shown in Figure 2 lead to similar conclusions for what concern
both loo ekf and 7-fold ekf which give similar PRESS curves for the three
di�erent data distributions. In the three cases, 1 principal component would be
selected. Again, this shows that although ekf is expected to be more speci�c
for the data set, this is not the case and it does not provide any insight on the
data distribution.

Here the ckf is markedly di�erent and indicates a di�erent number of signif-
icant components. Let's recall that the second experiment was designed so that
the �rst eigenvalue is one order of magnitude higher than the remaining. How-
ever, if the di�erence in variance between the �rst and the remaining eigenvalues
grows of 2 orders of magnitude, ekf and ckf again provide the same PRESS and
thus the same results (not shown).

Clearly, there are some speci�c cases where ekf and ckf provide di�erent
results and we further investigate these cases. In Figure 3, the PRESS curves
shown in Figure 2 corresponding to loo ekf and ckf are decomposed in the three
following terms of Equation (12):

term1A =
∑
H

tr
{
(RA

H)
tRA

H

}
(18)

term2A =
∑
H

2 tr
{
(RA

H)
tXHQA

H

}
(19)

term3A =
∑
H

tr
{
(QA

H)
t(XH)

tXHQA
H)
}

(20)

According to [15], the �rst factor is monotonically increasing with A, the
third factor is monotonically decreasing with A and the second one is a crossed
factor between the other two with unpredictable tendency. Also, it should be
noted that the �rst factor incorporates structural information in QA

H and that
the third factor corresponds to the PRESS by rkf, criticized to violate the in-
dependence in the CV loop. This factor is only a�ected by the row-wise k -fold
operation, and not the column-wise k -fold operation.

Figure 3 shows that the di�erence between ekf and ckf is found in terms 2
and 3. Since term 2 is a cross product of terms 1 and 3, it is term 3 which makes
the di�erence. Therefore, we can conclude that the structural information in
term 1 is mainly determined by the column-wise k -fold operation and not the
row-wise k -fold operation. Furthermore, we can make the following equivalence:
ekf has the same relationship with ckf that rkf has with a variance plot in terms
of the number of components.

A last simulated experiment is performed in this section. We inherit the
simulation approach of [14] which consists of four di�erent data sets (D.1, D.2,
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D.3 and D.4) where the number of latent variables (LVs) ranges from 4 to 15.
The LVs are generated independently at random following a normal distribution
with zero mean and unit variance. Observable variables (OVs) are computed
from the LVs according to 4 generating rules, reproduced for convenience of the
reader in the Appendix. These data sets are chemometrics-like data sets, similar
to process variables (data set D.1) or spectral variables (data set D.4).

For each of the four rules, 100 noise-free data sets are generated containing
100 observations. At each data set X (dropping indexes for the sake of simplic-
ity) random noise is added following a normal distribution with zero mean and
given variance σ2

n, N (0, σ2
n). The noised data set are obtained as

Xn = (X + n
√
σn) /(

√
1 + σn) (21)

where the subscript n indicates the level of noise generated, and σn equals 0.05,
0.1, 0.15, 0.2, 0.25 and 0.5 corresponding to 5%, 10%, 15%, 20%, 25% and 50%
respectively. The noise percentages are computed such that the lowest standard
deviation of a LV is 100%. For more details see [14].

Results of this simulated experiment are shown in Table 2. Clear di�erences
are only found in the third data set and, to some smaller extent, in the forth
one. The decomposition in the three terms (18)-(20) of the PRESS curve for
data set D.3 is given in Figure 4. Similar conclusions do apply: di�erences are
only found in the last two terms.

5. Comparison of ekf and ckf on real data

As stated by Jolli�e [26] and remarked by [27] simulation of multivariate
data sets can always be criticized as unrepresentative because they can never
explore more than a tiny fraction of the vast range of possible correlations and
covariance structure. For this reason we compare the performance of the ekf
and ckf algorithms on real data sets from di�erent areas of research for which
the dimensionality is not known a priori and for which also the error structure
is mostly unknown. By making use of real data set we aim to establish how
often and on what kind of data ekf and ckf would select a di�erent (optimal)
number of components.

Figure 5 allows a visual comparison of the PRESS curves of 4 di�erent
data sets. Two out of four, the second and third ones, show no di�erence
in the PRESS curves of ekf and ckf. The PRESS for the �rst data set, a NIR
spectroscopy data set, show di�erent magnitudes but still the same shape of
the PRESS, and thus the same number of signi�cant components. It should be
noted that in this case, the 7-fold ekf presented a very high variability, so that
di�erent runs of the CV led to very di�erent numbers of components selected.
This is a clear drawback of k -fold ekf that is only solved bu using a loo approach
or ckf. Finally, clear di�erences appear in the PRESS obtained by ekf and ckf
on the fourth example, a gene expression (microarray) data set.

Table 3 presents the results of the comparison of ekf and ckf on 15 more
data sets in addition to the four previously described (Data sets 16 to 19).
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The two CV-procedures provide the same results on 12 out 19 data sets. In
three cases (data sets 5, 11 and 15) the di�erence between the estimates of the
optimal number of components is 1, and this attributable to the rounding o� of
the PRESS minimum values. Only 4 out of 20 data sets (data sets 1, 4, 12 and
19) provided di�erent results in the estimated number of components where ckf
tends to overestimate the number of components in respect to ekf, although in
the simulation data sets we observed the contrary.

6. Conclusions

Principal component analysis is one of the most commonly used multivari-
ate tools to describe and summarize large data sets. Determining the optimal
number of components that best �t the data is a fundamental task in the mul-
tivariate analysis of biochemical and biological data. A common approach for
this is to use cross-validation. However, cross-validation is a costly operation,
particularly when it includes the observation-wise k -fold operation.

In this paper, we have performed an in-depth study of the use of the observation-
wise k -fold operation in the state-of-the-art PCA cross-validation element-wise
k -fold (ekf ) algorithm. As a result, we propose a variant of ekf, termed column
wise k -fold (ckf ) algorithm, in which the observation-wise k -fold operation is
removed. We have theoretically shown that the ckf cross-validation procedure
can be obtained from the data covariance matrix rather than from the data itself
using a kernel algorithm; this is not possible for the ekf. This kernel algorithm is
especially suited for very large data sets where the large number of observations
renders ekf unfeasible either because of the large computational time required
or because of allocation memory problems

By comparative investigation of ekf and ckf using both simulated and real
data, we provide the following conclusion/suggestions

• The ckf is much faster than the ekf. Thus, ckf can be of practical use in
data sets where ekf takes too long to compute.

• The observation wise k -fold operation does not provide ekf with the ca-
pability of highlighting di�erent types of distribution. In particular, the
observation wise k -fold operation is not robust against outliers. Consider-
ing that this operation makes the computation of ekf prohibitive in many
cases, ckf seems to be a promising alternative.

• Algorithms ckf and ekf output the same estimation of the optimal number
of components in most cases.

• Algorithms ckf and ekf treat PCA structural information in the same
way. The di�erence between the two is determined by the way in which
residual variance is computed. Thus, ekf keeps the same relationship with
ckf that the simple row-wise k -fold (rkf ) keeps with the residual variance
plot in terms of the number of components.
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• Algorithm ekf should be used with a leave-one-out operation in the obser-
vations to avoid variability of the results. This renders ckf the only valid
alternative for fast computation.

As a main conclusion, ckf is a recommended algorithm to select the number
of PCs in very large data sets: it performs similarly to ekf and it is computa-
tional e�cient. We also suggest the use of ckf to perform a �rst cross-validation
using 1 to Amax = p − 1 components to detect the presence of a global min-
imum in the ckf PRESS curve. The ekf could be then used to explore the
behavior of PRESS in the surrounding of the minimum obtained by ckf. This
will signi�cantly reduce the computational time needed to cross-validate a data
set.

Appendices

Computational and numerical methods

The Multivariate Exploratory Data Analysis Toolbox for Matlab (MEDA
Toolbox) [28] was used to perform both ekf and ckf cross-validation and the
(ADICOV) method [24]. The Toolbox is available at:
github.com/josecamachop/MEDA-Toolbox/releases/tag/v1.0.

In-house Matlab scripted routines were use for further analysis.

Smulated data sets

Generatin rules (R.1 to R.4) for the 4 data sets D.1 to D4 investigted in
Section 4 as proposed in [14].

R.1 :

xi =

√
i

0.5
· lv1 +

√
1− i

5
· lv2 for i ∈ 1, 2, . . . 5

xi =
√
0.5 · lv1 +

√
i

10
− 0.5 · lv2 +

√
1− i

10
· lv3 for i ∈ 6, . . . 9

x10 =
(√

0.01 · lv1 +
√
0.01 · lv2 +

√
0.01 · lv3 + lv4

)
/
√
1.03 for i ∈ 6, . . . 9

R.2 :

xi =
√
0.5 · lvj +

√
0.5 · lvk for i ∈ 1, 2, . . . 6 and j 6= k ∈ 1, . . . 4

xi =
√
0.5 · lvj +

√
0.5 · lvk for i ∈ 7, 8, 9 and j 6= k ∈ 5, 6, 7

x10 = lv8
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R.3 :

xi = lvi for i ∈ 1, 2, . . . 12

xi =
√
0.5 · lvj +

√
0.5 · lvk for i ∈ 13, 14 . . . 27 and j 6= k ∈ 1, 2, . . . 6

R.4 :

xi =
√
0.5 · lvj +

√
0.5 · lvk for i ∈ 1, 2 . . . 45 and j 6= k ∈ 1, 2, . . . 10

x46 = lv11, x47 = lv12

x48 =
√
0.5 · lv11 +

√
0.5 · lv13

x49 =
√
0.5 · lv12 +

√
0.5 · lv14

x50 = lv15
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Figure 1: Score plots for of three di�erent data distributions that provide the
same PCA loadings, computed using ADICOV [24]: a multinormal distribution
(A), a distribution with one outlier (B) and a distribution with two clusters
(C). Panels D, E and F show the CV PRESS curves for the 3 data sets with
observation-wise leave-one-out (ekf -loo) ekf, 7-fold ekf and ckf.
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Figure 2: Score plots for of three di�erent data distributions that provide the
same PCA loadings, computed using ADICOV [24]: a multinormal distribution
(A), a distribution with one outlier (B) and a distribution with two clusters
(C). Panels D, E and F show the CV PRESS curves for the 3 data sets with
observation-wise leave-one-out (ekf -loo) ekf, 7-fold ekf and ckf.
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Figure 3: Decomposition in the three terms of PRESS (see Equation (17) and
Equations (18)-(20)) of the PRESS curves corresponding to the multinormal
distribution (Data set 1), the distribution with one outlier(Data set 2) and the
distribution with two clusters (Data set 3) shown in Figure 2 (Panels A, B and
C).
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Figure 4: PRESS curve for the cross-validation of data set D.3 of the simulation
study (panel A). Plot of the three terms (term1, term2 and term3, Equations
(18), (19), and (20), respectively) summing up to make the PRESS.
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Figure 5: Score plot and PRESS cross-validation curves for four di�erent data
sets. From left to right: A-E) chemometrics (NIR data); B-F) chemometrics
(McReynolds data), C-G) metabolomics data (NMR data) and D-H) genomics
(microarray) MA. Cross=validation results for these data sets are reported also
in Table 3 (data sets number 16 to 19)). Data sets have been cross-validated
using the ekf algorithm with both leave-one (loo) out and 7-fold procedure for
the observation-wise CV step and with the new ckf algorithm.
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Tables

Computational time

Data set size ekf-loo ekf-7fold ckf ckf-kernel

10× 10 <0.1 s <0.1 s <0.1 s <0.1 s
100× 10 <0.1 s <0.1 s <0.1 s <0.1 s
100× 100 2.0 s 0.2 s 0.1 s 0.4 s
100× 1000 1.1m 5.0 s 2.2 s 47.4 s
1000× 100 46.0 s 0.7 s 0.8 s 0.4 s
1000× 200 3.0m 4.0 s 4.7 s 2.5 s

1000× 500 1.0h 59.2 s 37.7 s 58.9 s

1000× 1000 7.4h 7.4m 3.6m 3.7h

Table 1: Computational time for the three di�erent CV algorithms: ekf with
leave-one out (loo), ekf with 7 fold CV (7fold) and ckf. The maximum number
of components for which di�erent models are �tted is set equal to the rank of
the data matrix. Calculation has been performed on a Intel CPU Dual-Core
Pentium E5200, running Windows 7 Enterprise equipped with 4 GB ram. PCA
is performed via SVD.
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Data set D.1 (4/8)

Noise level (%) ckf ekf-loo ekf-7fold
0 3.8 (0.4) 3.8 (0.4) 3.9 (0.3)
5 3.7 (0.5) 4.0 (0.0) 4.0 (0.0)
10 3.7 (0.5) 3.9 (0.3) 3.9 (0.3)
15 3.6 (0.5) 3.7 (0.5) 3.8 (0.4)
20 3.6 (0.5) 4.0 (0.0) 4.0 (0.0)
25 3.8 (0.4) 3.9 (0.3) 3.9 (0.3)
50 3.6 (0.5) 3.8 (0.4) 3.8 (0.4)

Data set D.2 (8/10)

Noise level (%) ckf ekf-loo ekf-7fold
0 5.9 (0.3) 5.9 (0.3) 6.0 (0.5)
5 5.9 (0.3) 6.0 (0.5) 6.0 (0.5)
10 5.9 (0.3) 6.1 (0.6) 6.3 (0.8)
15 6.0 (0.0) 6.0 (0.0) 6.1 (0.3)
20 6.0 (0.0) 6.1 (0.3) 6.1 (0.3)
25 5.9 (0.3) 6.1 (0.6) 6.2 (0.6)
50 5.9 (0.3) 6.1 (0.6) 6.1 (0.6)

Data set D.3 (12/27)

Noise level (%) ckf ekf-loo ekf-7fold
0 9.1 (1.7) 12.0 (0.0) 12.0 (0.0)
5 9.5 (1.4) 11.9 (0.3) 12.0 (0.0)
10 10.0 (1.9) 12.0 (0.0) 11.9 (0.3)
15 9.9 (1.3) 12.0 (0.0) 12.0 (0.0)
20 8.9 (1.7) 12.0 (0.0) 12.0 (0.0)
25 9.6 (2.0) 12.0 (0.0) 11.9 (0.3)
50 9.2 (2.0) 12.0 (0.0) 12.0 (0.0)

Data set D.4 (15/50)

Noise level (%) ckf ekf-loo ekf-7fold
0 12.4 (0.5) 13.0 (0.0) 13.0 (0.0)
5 12.3 (0.5) 13.0 (0.0) 13.0 (0.0)
10 12.4 (0.5) 13.0 (0.0) 13.0 (0.0)
15 12.5 (0.5) 13.0 (0.0) 13.0 (0.0)
20 12.6 (0.5) 13.0 (0.0) 13.0 (0.0)
25 12.5 (0.5) 13.0 (0.0) 13.0 (0.0)
50 12.5 (0.5) 13.0 (0.0) 13.0 (0.0)

Table 2: Estimation of the number of component for four data sets: D.1 (4/8
signi�cant components), D.2 (8/10), D.3 (12/27) and D.4 (15/50) obtained
using the three di�erent CV algorithms: ekf with leave-one out (loo), ekf with
7 fold CV (7fold) and ckf.
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Data set Description Size Reference Number of Component

ekf-loo ekf-7fold ckf

1 Computational linguistics 71× 317 [29] 14 14 18
2 NMR metabolomics 978× 29 [30] 2 2 2
3 NMR metabolomics 994× 29 [31] 1 1 1
4 GC-MS proteomic 39× 590 [32] 5 5 8
5 NMR metabolomics 705× 373 [33] 15 16 15
6 NMR metabolomics 77× 63 [34] 1 1 1
7 NIR gasoline 60× 401 [35] 6 6 6
8 Fisher's Iris data 150× 4 [36] 1 1 1
9 City rating 329× 9 [35] 1 1 1
10 Wine type attributes 178× 14 [37] 1 1 1
11 Music origins 1059× 70 [38] 26 25 25
12 NIR on marzipan 32× 1000 [39] 12 13 10
13 Florescence on yogurt 125× 15 [40] 1 1 1
14 NMR low �eld 908× 256 [41] 4 4 4
15 GS-MS 12× 409 [34] 9 8 8
16 NIR 39× 227 [42] 2 2 2
17 Chromatography 212× 10 [43] 1 1 1
18 NMR metabolomics 68× 416 [44] 4 4 4
19 Microarray 56× 1000 [45] 11 11 22

Table 3: Estimation of the number of component for 19 di�erent experimental
from di�erent disciplines obtained using the three di�erent CV algorithms: ekf
with leave-one out (loo), ekf with 7 fold CV (7fold) and ckf. PCA plots and
PRESS curves for data set 16 to 19 are given in Figure 5.
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